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This survey provides a comprehensive analysis on recent research related to optimization and simulation in the new paradigm of
power systems, which embraces the so-called smart grid. We start by providing an overview of the recent research related to smart
grid optimization. From the variety of challenges that arise in a smart grid context, we analyze with a significance importance the
energy resource management problem since it is seen as one of the most complex and challenging in recent research. The survey
also provides a discussion on the application of computational intelligence, with a strong emphasis on evolutionary computation
techniques, to solve complex problems where traditional approaches usually fail. The last part of this survey is devoted to
research on large-scale simulation towards applications in electricity markets and smart grids. The survey concludes that the
study of the integration of distributed renewable generation, demand response, electric vehicles, or even aggregators in the
electricity market is still very poor. Besides, adequate models and tools to address uncertainty in energy scheduling solutions are
crucial to deal with new resources such as electric vehicles or renewable generation. Computational intelligence can provide a
significant advantage over traditional tools to address these complex problems. In addition, supercomputers or parallelism
opens a window to refine the application of these new techniques. However, such technologies and approaches still need to
mature to be the preferred choice in the power systems field. In summary, this survey provides a full perspective on the
evolution and complexity of power systems as well as advanced computational tools, such as computational intelligence and
simulation, while motivating new research avenues to cover gaps that need to be addressed in the coming years.

1. Introduction

Energy is essential to assure most of the activities in devel-
oped societies [1]. Looking to the energy vectors, electricity
consumption is rising significantly and changing the global
paradigm of the energy mix [2]. The emerging and developed
countries are also changing the primary sources to obtain the
electricity, supporting the increase of the use of renewable
primary sources, such as wind and the sun and the use of
more clean sources like the natural gas [3]. The growing
responsibility of each country regarding environmental
aspects is also contributing to this paradigm change [4].

Other important aspects of modern societies are the effi-
ciency in the use of energy, and electricity in particular, and
the transparency in electricity negotiation [5]. These con-
cerns have led to the adoption and development of competi-
tive electricity markets. The rules and policies of electricity
markets are very different worldwide, reflecting, in many
cases, the reality of power systems in different regions [1].
Due to the significant changes in the power systems both in
the production and in new usages of electricity, the markets
and the power systems control itself are evolving in order
to meet the present and future needs. New players and energy
resources are emerging—notably electric vehicles (EV) [6],
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consumption flexibility and demand response (DR) [7], large
penetration of renewable based generation [8], energy effi-
ciency measures [9], and building energy management
parties [10], among many others. Several types of aggregator
players, taking advantage on concepts such as the smart grid
and microgrid [11], as discussed in Section 2 are also emerg-
ing in order to boost the potential of smaller players and
resources. This new paradigm in power systems has
increased the complexity to manage and operate the trans-
mission and distribution networks and the interactions
between the traditional and new players. The uncertainties
associated with renewable based generation, electricity mar-
ket prices, energy consumption, or electrical vehicles trips
are just a few examples of the increased sources of complexity
brought to the power and energy sector. Now that the
planning and operation must consider the small resources
of new players, rather than just looking at the overall picture
of overall consumption and generation, makes the problem-
solving in this domain an increasingly complex task. To
address this complexity, new approaches have been proposed
in the research field, for instance, considering hierarchical
management with the inclusion of increased intelligence
at each level of the hierarchical control [12]. In such
approaches, the main idea is to have a good balance between
the complexity of the problems to be solved at each level and
the number of iterations and quantity of information needed
to exchange between each level of the hierarchy. However,
multiple alternative solutions should take into account the
reality of each region.

The development of new algorithms using advanced
optimization techniques and artificial intelligence are being
proposed and tested to enable dealing with the increased
complexity allowing a cyber-physical representation of the
reality [13]. These two worlds, the real and the virtual, should
run in parallel, considering and learning from past experi-
ences to forecast and estimate the future. The new large-
scale and complex models that are required to model the
power and energy system under the new paradigm cannot
be solved in due time without the support of new intelligent
simulation and optimization approaches.

This paper provides a survey on the latest advances on
optimization and simulation in the new paradigm of power
systems. The main focus is centered on (i) the optimization
of power systems under the new smart grid context, analyz-
ing energy resource management models that deal with the
increased complexity brought by the large number of new
players and energy resources in this domain, and especially
by the uncertainty associated to the variability and fluctua-
tion of prices, generation, and consumption. Optimization
models including stochastic modeling, robust analysis, and
innovative business models are discussed and compared;
(ii) the discussion and analysis of the application of compu-
tational intelligence approaches as means to solve the
complex optimization problems, while guaranteeing an ade-
quate balance between the execution time, the use of compu-
tational resources, and the quality of the achieved results.
Evolutionary computation techniques are discussed in detail,
as one of the most widely used approaches to solve the
complex optimization models; (iii) the analysis of large-

scale simulation of electricity markets and smart grid.
Multiagent-based approaches are especially relevant in this
domain, which includes the interaction between purely
virtual environments, and hybrid approaches combining
software agents and physical resources.

This paper is organized as follows. After this introduc-
tion, Section 2 introduces and explains the main concepts
that are used throughout the paper. Section 3 presents a gen-
eral overview of the recent research work related to new
arisen challenges in the scope of smart grid and power sys-
tems optimization. In addition, a critic analysis is given to
research work on energy resource scheduling, seen as one
of the most complex and challenging research problems
faced in power systems optimization. Section 4 provides an
overview of the application of computational intelligence
techniques for solving complex optimization problems in
the energy domain. An extensive analysis of evolutionary
computation applications for optimization in the energy
domain is provided, followed by a brief review on artificial
neural networks and fuzzy systems applications. Section 5
reviews the current state of the art in complex large-scale
simulation in power and energy systems. The section empha-
sizes two main topics, namely, electricity market simulation
and smart grid simulation, and covers both simulation
models and studies proposed in the literature, as well as
large-scale simulators resulting from relevant international
research projects. Finally, the conclusion provided in Sec-
tion 6 summarizes the most relevant points identified
throughout the document, including the main advances in
the literature and the main limitations that lead to new
emerging research paths.

2. Preliminaries

Power systems are one of the backbones of our modern soci-
ety. In fact, the electric grid is considered one of the greatest
inventions of the 20th century. Despite the big challenge that
the generation, control, and management of electricity repre-
sent, speaking in an elevated level of abstraction, the process
from the generation of electricity to the delivery of it to end-
user was somehow simple to understand. For instance,
Figure 1 shows a simplified design of electric grids. In the
early days of the electric grid, the flow of electricity was well
defined from generation facilities, traveling through the
transmission and distribution grid, until reaching end-
users. Simple communication capabilities were required for
control and monitoring. So, despite that some of the pro-
cesses inside the electric grid were complex, looking at the
electric grid as a whole, and compared with the electric grid
of today, one could say that its design presents low complex-
ity and it is easy to understand.

The truth is that without the electric infrastructure, it
would be hard to imagine our days. However, nowadays
due to recent reforms in the energy sector, unprecedented
changes have been observed in this field, most notably the
proliferation of renewable energy sources, mainly wind and
solar generation and increasing penetration of EVs [14].
In this context, we are witnessing the appearance of new
terms in the power systems arena, such as smart grid and
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microgrid, which have distinct meaning. Although the def-
inition of those terms is still evolving, it is accepted that
smart grid refers to the merge of advanced computing tech-
nologies and communications with the electricity network.
Equipment such as smart meters and phasor measurement
units will contribute to an increase in observability and
improvement in decision-making and situational aware-
ness. Ultimately, the goal of smart grid is to provide a safe,
reliable, and flexible grid operation, which is able to accom-
modate large number of renewables and other resources
without sacrificing the reliability and cost of grid operation
[15, 16]. On the other hand, microgrid represents a group
of interconnected loads and generation resources with
defined grid boundaries that can be controlled as a single
entity. A microgrid in its pure definition should be able
to operate isolated from the main grid, that is, in islanded
mode. A university campus or a residential building can
constitute an independent microgrid if the above definition
is met. Since the microgrid relies on advanced computation
technologies, it is possible to generalize that a microgrid is
“smart” or part of a larger smart grid.

In this paper, we refer to the abovementioned changes as
the new paradigm of power systems. On the one hand, these
changes are contributing to reduction in the carbon footprint
and increase in sustainability [17, 18]; on the other hand,
power systems are becoming more complex and difficult to
understand [19–22]. For instance, the electric grid from
Figure 1 is evolving to something like the smart grid shown
in Figure 2. The complexity of the smart grid is attributed
to multiple players that interact and operate with indepen-
dent behaviors and goals in a physical constrained network.
These decisions impact the physical layer, and the overall
result is difficult to be inferred from analyzing individual

behavior. Moreover, no single entity can control, monitor,
and manage in real time, which furthers contributes to higher
system complexity.

If those new considerations were not enough, the techni-
cal constraints in modeling power systems are increasingly
complex due to new societal challenges such as pollution
and health impacts, ecological changes, multiple uses of land
and water resources, and safety. These constraints are specific
and translate into specific mathematical equations in optimi-
zation problems, making them harder to solve [23]. The cur-
rent framework of smart grid involves several layers from the
component parts (grid lines, equipment, and resources),
including communication, management, and business layers.

In addition, smart grid design and implementation need
to embed broader social and cultural considerations in order
for smart grids to be successful. Not only do smart grids need
to be understood as complex techno-socio-economic systems
with multiple physical, cyber, social, policy, and decision-
making layers; also, the interaction of those layers with
changing external conditions (economic cycles, technological
innovation, and prevailing and changing weather and cli-
matic conditions) needs to be properly studied.

3. Recent Research to Tackle Challenges in the
New Paradigm of Power Systems

3.1. Overview and Status of Recent Research. In the last years,
research has been devoted to deal with this complexity and
overcome the challenges brought by the new paradigm of
modern power systems. We have looked at scientific research
over the last few years (since 2010) in the SCOPUS database
[24] (i.e., in December 2017) using different search terms to
analyze the number of publications produced and provide
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Figure 1: The past of the electricity system. One of the greatest inventions of the 20th century.
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an overview of the recent research. Table 1 shows the over-
view of research documents produced since 2010 (excluding
2018) analyzed by different search terms. The search terms
have been combined with similar variants within the power
systems field to observe results as accurately as possible. We
looked for each search term in the abstract, title, and paper’s
keywords. In addition, we investigate the most cited articles
in each search criterion as well as the most noticeable
research authors by the number of articles produced. A total
of 23,619 documents between 2010 and 2017 are found in the
SCOPUS database by using search term “smart grid” OR
“smart distribution network” alone in the abstract, title, and
keywords and 17,757 if the search term is “renewable gener-
ation” OR “renewable energy sources.” The search term
“smart grid” AND “electric vehicle” produced the least num-
ber of documents when compared with the other search
terms. In spite of their complementary, EVs in the smart grid
context are yet a growing research field not as mature as the
research observed in other topics, such as DR.

Themost cited article we came across while looking at the
produced research documents is [25] (3057 citations). The
interest in grid storage applications is noticeable and consid-
ered the holy grail of modern power systems, since it can
solve many problems and challenges arisen in smart grid.
In particular, Dunn et al. [25] review battery systems for grid
applications including redox flow, sodium-sulfur, and lith-
ium batteries. The interest of storage for grid applications is
related to diversified factors, including management of peak
demands and grid reliability, postponement of grid invest-
ments, and integration of renewable energy sources.

Regarding “smart grid” OR “smart distribution network”
term, the most cited articles we found are [11, 26, 27]. In [26]
(1393 citations), an important advance is proposed in order

to allow smartness and flexibility of smart grid based on
ISA-95 standards. The system is more flexible and expand-
able using the proposed control. Farhangi [11] (1186 cita-
tions) highlights ingredients, drivers, and standards for the
success and path of smart grid. Cabana et al. [27] (1144
citations) review the literature concerned with the materials
used in lithium batteries, strong enablers of smart grids,
and renewable technologies.

In “Renewable generation” OR “renewable energy
sources” research topic, we could conclude that the 3 most
cited articles are [25, 28, 29]. Blaabjerg et al. [28] (2256 cita-
tions) give an overview of the structures of distributed gener-
ation (DG) renewable sources based on fuel cell, photovoltaic
(PV), and wind turbines. Carrasco et al. [29] (1989 citations)
present a review of the appropriate storage system technol-
ogy used for the integration of intermittent renewable energy
sources. New trends in power electronics for the integration
of wind and PV generators are presented.

In “smart grid” AND “electric vehicle” research topic, the
most cited articles are [30–32]. Ipakchi and Albuyeh [30]
(905 citations) provide an overview of the future of the power
grid, namely, the necessary transformations to accommodate
large number of EVs and other resources such as DR.
Kamaya et al. and Skyllas-Kazacos et al. [31, 32] (856 and
574 citations) are related to this topic since they present
progress related to lithium and flow batteries, which are fun-
damental and intrinsically related to the development and
success of EVs. Lower battery costs and higher energy density
are fundamental to leverage attractiveness and competitive-
ness of electric cars.

Regarding “demand response” OR “demand-side man-
agement” research topic, the 3 most cited articles are
[30, 33, 34]. Mohsenian-Rad et al. [33] (1097 citations)
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propose a distributed demand-side management maintain-
ing user privacy and details of energy consumption. The
highly cited work emphasizes that the proposed approach
may reduce the peak-to-average ratio of the total demand,
the total costs, and each user’s individual daily electricity
charges. Palensky and Dietrich [34] (830 citations) provide
an outlook and taxonomy to demand-side management
and several successful demonstration projects that have been
implemented until the time of publication.

In the topic of “smart grid” AND “optimization,” the
results in SCOPUS revealed that [33, 35, 36] are the most
cited articles. Cheng and Chen [35] (836 citations) provide
an outlook at the current state of the art in smart grid com-
munications and open research issues in the field of informa-
tion and communication technology (ICT). ICT is a key part
of the successful deployment of optimization applications in
the smart grid. In the search term “energy resource manage-
ment” OR “energy management system”, [1, 11, 33] are the
most cited works. Siano [1] (505 citations) provides a com-
prehensive survey on energy management, including DR
potentials and benefits in smart grids. Figure 3 depicts the
number of documents produced between 2010 and 2016 by
search term according to the same terms previously depicted
and analyzed in Table 1. It can be observed that the increase
has been significant and well supported since 2010 when ana-
lyzing most of the search topics, except from the search term
“smart grid” AND “electric vehicle.” There is substantial
research work on EVs, which is not directly related to the
“smart grid” topics (cf. [37]). If compared to “demand
response” or other search terms, the number of documents
suggests a much more active and mature development. This

analysis also suggests that research on EVs in the smart grid
context is yet in the early stage. Although many theoretical
concepts and ideas have been proposed (e.g., dynamic pricing
[38, 39] and vehicle-to-grid [6, 40]), both EVs and smart grid
are yet in the early stage of introduction and lessons have to
be learned to better understand how EVs can realize the full
smart grid potential. Energy resource management-related
research has increased steadily along with the research in
DR topics since its importance to the new paradigm of
power systems (see Section 3.2). In fact, energy resource
management is key to smart grid operation in order to
attain acceptable costs with reduced impact from uncer-
tainty of intermittent generation and load sources of diffi-
cult anticipation such as EVs.

Figure 4 shows the number of conference papers and
journal articles produced between 2010 and 2016 (primary
axis) by search term “energy resource management” OR
“energy management system” in the SCOPUS database. In
the secondary axis, the conference papers per journal article
indicator are shown (green cross). Other publications such
as book chapters are not included in this comparison. The
number of journal articles produced per year has increased
substantially from 89 in 2010 to 428 in 2016 (more than 4-
fold increase). However, the number of conference papers
per journal article has reduced significantly in the last three
years to 1.27 from more than 2.23 in 2011 to 1.27 in 2016.
This suggests that more journal articles are being published
for each paper presented at an international conference. In
our opinion, this is a potential indicator that energy resource
management-related research is getting more mature in the
last years and ready for publication in journal.

Table 1: Research documents produced since 2010 analyzed by search term according to SCOPUS.

Search term Documents since 2010∗
3 most cited articles Top 5 authors with most articles
Reference Citations Author (number of articles)

“Smart grid” OR
“smart distribution network”

23,619

[26] 1393
Vale, Z. (125); Mouftahm, H.T. (78);

Morais, H. (76), Li, H. (64); Javaid, N. (59)
[11] 1186

[27] 1144

“Renewable generation” OR
“renewable energy sources”

17,757

[25] 3057
Guerrero, J.M. (58); Senjuy, T. (57); Duic, N. (49);

Blaabjer, F. (48); Andersson, G. (42)
[28] 2256

[29] 1989

“Smart grid” AND “electric vehicle” 2331

[30] 905
Vale, Z. (40); Morais, H. (26); Mouftah, H.T. (25);

Masoum, M.A.S. (24); Soares, J. (24)
[31] 856

[32] 574

“Demand response” OR
“demand-side management”

6195

[33] 1097
Vale, Z. (115); Faria, P. (85); Morais, H. (59);

Lehtonen, M. (52); Javaid, N. (49)
[30] 905

[34] 830

“Smart grid” AND “optimization” 3840

[33] 1097
Javaid, N. (44); Vale, Z. (43); Morais, H. (27);

Giannakis, G.B. (26); Khan, Z.A. (26)
[35] 836

[36] 872

“Energy resource management” OR
“energy management system”

5206

[11] 1186
Anon (69); Vale, Z. (64); Zhang, B. (58);

Sun, H. (47); Morais, H. (46)
[33] 1097

[1] 505
∗Excluding documents already available for 2018. 2017 maybe incomplete.
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3.2. Review of Works in the Energy Resource Management.
Energy resource management has been considered by some
researchers as one of the most complicated optimization
problems in power systems due to its combinatorial nature,
nonlinearities, and large number of energy resources which
leads to high dimensionality and highly constrained prob-
lems [23, 41–43]. Adequate optimization frameworks are a
key part of the new paradigm brought by the smart grid oper-
ation. The literature has a relevant amount of publications in
this field that we selected and revised in this section. Since
consideration of uncertainty is crucial for smart grid models
[44], we investigated in detail this component in the studied
models. We also include papers published in 2017 (55 publi-
cations appear in the SCOPUS database with the search term
“energy resource management” OR “energy scheduling”
AND (“uncertainty” OR “uncertain” OR “variability”)
between 2010 and 2017, of which 22 are from 2017). How-
ever, we could observe that the majority of the proposals still
lack the consideration of full component uncertainty and/or
DR in the model. Table 2 identifies the characteristics of the
main publications we selected in what regards the considered
energy resources and in terms of uncertainty consideration in
the model.

As can be observed in Table 2, very few works attempt to
consider most sources of uncertainty in a joint energy sched-
uling model [45, 46]. Moreover, it is yet not common to see
works that incorporate vehicle-to-grid (V2G), DG, DR, and
energy storage systems (ESS) simultaneously as in [45–48].
However, [47, 48] do not include consideration of uncer-
tainty of the energy resources.

The work developed in [49] approaches the problem of
day-ahead electricity market bidding to minimize charging
costs and satisfy EV demand of the aggregator. The work
considers the presence of uncertainty, but V2G is not consid-
ered in the problem. Results suggest that controlling EV
charging is important to lower energy costs, while the aggre-
gator has limited market potential with reasonable amount of
EVs. A related work can be seen in [50] where a bidding and
power scheduling is proposed to maximize the expected ben-
efit of a microgrid. The stochastic model captures several
sources of uncertainty, and the novelty lies in the exploitation
of thermal characteristics of the buildings to mitigate renew-
able imbalances. Also, works [51–53] propose to tackle the
optimal bidding in the market of the aggregator using multi-
stage stochastic [51, 53] and robust approaches [52]. The
work in [54] introduces the reliability of the fuel cell outages
in the microgrid energy scheduling, but the uncertainty con-
sidered in the model lies only in the fuel cell outages.

The model in [55] proposes a scheduling model for
microgrids under uncertainty. The work implements a two-
stage stochastic model with one external power flow algo-
rithm to calculate power losses. EV uncertainty, DR, and
V2G are not considered though. To overcome this, [45] pro-
pose an improved two-stage stochastic model that addresses
several sources of uncertainty, namely, wind, PV, EVs,
demand, and market price, in a joint model yet not account-
ing for power losses. Later, a new model is proposed in [46],
which adds network constraints, namely, power line capacity
and voltage control to the original problem in [45]. The

problem is solved using a Benders decomposition scheme.
The results suggest that the large-scale problem with uncer-
tainty can be solved in its most complex form, dealing at
the same time with the number of resources and the DSO
technical constraints as part of the equation.

The two-stage stochastic model introduced in [56] adds
to the previous stochastic microgrid energy scheduling
works, a hybrid AC/DC microgrid setting. However, the
work does not consider DR application. The model in [57]
proposes a day-ahead energy and reserve scheduling for
the aggregator. The uncertainties are modeled via a point
estimate method. The work does not consider EVs as an
intelligent load. The work in [58] proposes a similar work
but considering compressed air ESS. EVs are not considered
as well.

Most of these works have implemented a two-stage sto-
chastic model, which requires knowledge about the distribu-
tion of the uncertain data, usually possible if historical
records are available. However, it is fair to recognize that
most of these models require large amounts of computational
resources to be able to solve the stochastic model with an ade-
quate number of scenarios (even if scenario reduction tech-
niques are adopted). In fact, scenario reduction techniques
decrease the accuracy of the uncertainty representation.
Since smart grid operation is dealing with an increasing
number of energy resources and consequently more compo-
nents associated with uncertainty, it remains a major chal-
lenge to tackle these optimization models under uncertainty
with adequate representation. A solution may lie in meta-
heuristics and decomposition techniques combined with
uncertainty models and/or robust optimization models that
deal with a range of uncertainties instead of probabilistic sce-
narios. Another solution may lie in distributed real-time
energy scheduling as proposed in [59], which transforms
the problem into a distributed and tractable problem, using
rolling horizon optimization and Gaussian approximation.
However, we believe the work is still limited since it considers
only a single energy source and one source of uncertainty.

Alternatively to stochastic models, Ju et al. [60] propose a
robust model for the energy aggregator with DR, ESS, and
renewables, which does not require to know the distribution
of uncertain parameters such as the forecasts. Still, EVs are
not considered in the work as well. Another robust model
is adopted in [61] which tackles market price and load
demand uncertainty for aggregators that are new entrants
to the market and have little knowledge on the behavior of
the market and their customers. In [48], authors propose
an energy resource management for domestic loads that con-
siders uncertainty in the PV power for the day-ahead and
real-time approach. The work considers EVs, DR as flexible
loads, and ESS units. Two different stochastic methods are
compared and evaluated using a realistic case study.

Table 3 classifies the works reported regarding its main
purpose, namely, technical, economic, and environmental
aspects. It can be seen that most of the works related to
uncertainty deal with economic aspects. Technical aspects
are often common and related to power losses and voltage
control (when network constraints are considered) such as
in [49, 56]. Some of the works consider environmental,
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Table 2: Summary of energy scheduling models: resources and uncertainty sources.

Ref.
Resources/components present in the work

Considered sources of uncertainty
V2G DG DR ESS

[49] No Yes No No Driving patterns and market bids

[55] No Yes No Yes Only in wind and PV

[59] No Yes No No Only in energy demand

[54] No Yes No Yes Only in the fuel cell outages

[50] No Yes Yes Yes Load, renewable generation, and electricity price

[56] Yes Yes No Yes Load, renewable generation, EV demand, and price

[57] No Yes No No Renewable generation, load, and electricity price

[58] No Yes Yes Yes Wind/PV, load demand, and market price

[60] No Yes Yes Yes Wind/PV only

[51] No Yes No No Wind, market bids, and price rivals’ offers

[52] No Yes No No Wind and market price

[53] No Yes No Yes Intermittent source and market price

[45] Yes Yes Yes Yes Wind, PV, EVs, load demand, and market price

[62] No No Yes Yes —

[38] No Yes Yes Yes Wind, PV, EVs, and load demand

[47] Yes Yes Yes Yes —

[7] No Yes Yes No —

[46] Yes Yes Yes Yes Wind/PV, EVs, load demand, and market price

[61] No Yes Yes No Market price and load demand via robust model

[48] Yes Yes Yes Yes PV power

Table 3: Summary of energy scheduling models: technical and economic aspects.

Ref.
Technical aspects

Economic aspects
Power losses Voltage control Other1

[55] No No No The goal of the aggregator is to minimize purchases in the spot market.

[49] Yes Yes No Expected operational costs over the next 24 hours.

[59] No No No Maximize system utility.

[54] No No Yes Financial aspects (costs) but also environmental and reliability.

[50] No No Yes Maximize profits of microgrid considering building dynamics.

[56] Yes Yes No Expected operation costs over the next 24 hours.

[57] No No No Maximize expected profits over the next 24 hours.

[58] No No No Minimize expected costs.

[60] No No No Maximize operation revenue.

[51] No No No Maximize profit over the scheduling horizon.

[52] No No No Maximize utility function in day-ahead and real-time markets.

[53] No No No Maximize profit in the day-ahead and balancing market.

[45] No No No Minimize expected operation costs.

[62] No No No Minimize household energy costs under DR programs.

[38] No No No Maximize aggregator profit and EV user charging opportunity.

[47] Yes Yes Yes Maximize aggregator profit.

[7] No No No Minimize aggregator operation costs and suitable remuneration groups.

[46] Yes Yes No Minimize operation costs considering market transactions.

[61] No No No Maximize aggregator payoff considering price risk.

[48] No No No Maximize domestic energy profit.
1Fault location, network restoration, and island operation.
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reliability, and building dynamic aspects such as in [50, 54].
Soares et al. and Soares et al. [46, 47] include both technical
and economic aspects. However, [47] does not incorporate
the resources’ uncertainty as formulated later in [46], despite
not including environmental aspects as in [47].

4. Computational Intelligence for Complex
Optimization Problem in the Energy Domain

Computational intelligence (CI) is usually referred to a fam-
ily of problem-solving and problem-stating techniques that
attempt to exhibit or mimic the “intelligence” observed in
nature. It includes some of the most popular paradigms in
the applications of computer science, namely, evolutionary
computation (EC), artificial neural networks (ANN), and
fuzzy systems (FS).

Despite its popularity nowadays, the term CI has had dif-
ferent definitions through the years in the scientific commu-
nity and typically is seen as a separate area of artificial
intelligence (AI) very related with soft computing or natural
computation. For instance, the first CI definition is typically
attributed to J.C. Bezdek who defined CI in 1992 as “Compu-
tational systems that depend on numerical data supplied by
manufactured sensors and do not rely upon knowledge”
[63]. Later, in 2002, Engelbrecht defined CI as “the study of
adaptive mechanisms which enable or facilitate intelligent
behavior in complex and changing environments” [64].
Therefore, in an abstract sense, CI can be defined as intelli-
gent computational tools to solve, or model, complex prob-
lems. However, two main questions arise regarding this
statement, namely, what is a complex problem? And more
importantly, why should we use CI to address such issues?

To answer the first question, notice that many real-world
problems are highly constrained by nature and face issues
related to high dimensionality, lack of information, noisy
and corrupted data, real-time requirements, and so on. Due
to these characteristics, exact mathematical formulations
sometimes fail in providing solutions because of either
restriction of time, lack of memory to deal with large-scale
problems, or other factors. In other words, problems that
cannot be efficiently solved by traditional mathematical
approaches can be seen as complex problems.

On the other hand, and answering the second question,
CI is strictly related to the subfield of computer sciences
known as soft computing. Soft computing (Soft computing
became a formal area of study in computer science in the
early 1990s and in a broader sense includes topics such as
computation intelligence (CI), machine learning (ML), and
probabilistic reasoning (PR). In this paper, however, we focus
our attention to the main three subfields of CI; namely,
an extensive analysis of EC applications for optimization
in power systems is provided, with a brief review on
optimization-related ANN and FS applications.) is used to
solve complex problems (i.e., with characteristics such as
the ones previously stated) in which exact methods cannot
compute a solution in polynomial time. Different from hard
computing, soft computing is tolerant to imprecision, uncer-
tainty, and approximation. Even when soft computing cannot
guarantee an optimal outcome, it can return near-optimal

solutions in acceptable computational times and with
low memory requirements, imitating the role model of the
human mind.

It is important to point out that despite the conditions
mentioned above, CI has demonstrated satisfactory perfor-
mance in a wide variety of application fields such as power
systems, portfolio optimization, transportation, smart grid,
and telecommunications.

As you might notice, this section is devoted to the appli-
cation of CI for solving the wide variety of complex problems
that arise in the new paradigm of power systems. As it was
stated in Section 2, current smart grids are evolving to a very
fast pace, and the interaction between a considerable number
of new participants and elements (with their inherent socio-
economic and technological aspects) makes the analysis of
such systems very complex for traditional mathematical tools
and management and control models. In addition, the same
logic applies to different areas of engineering since CI is a
paradigm that is acquiring significant importance these days.

4.1. Computational Intelligence Classification and Application
Target. CI is commonly used for different purposes, but we
can devise three main categories of its application, namely,
optimization, learning/modeling, and control. Moreover,
some problems require the use of a combination of these cat-
egories to devise practical solutions. Despite the vast syner-
gies existent in the application targets of CI, such targets
are strongly related with the three main paradigms of CI.
For instance, evolutionary computation (EC) is applied to
optimization problems; artificial neural networks (ANN) is
extensively used for learning/modeling and forecasting, and
fuzzy systems (FS) is typically implemented for control.
The relation of EC, ANN, and FS, to the target applications
is used to envisage application areas in a broader sense some-
how. However, many real-world applications may require
synergies between methods belonging to the three fields to
obtain an acceptable solution.

With the evolution of technology in diverse engineering
fields, real-world problems are becoming more challenging,
limiting the use of exact methods. Due to this, CI has
emerged as a powerful tool to provide acceptable solutions
in different domains. As a proof in the increasing interest of
the research community regarding CI applications, Figure 5
shows the number of publications in the main three topics
of CI from 2000 to 2016 (17-year span), obtained after a
search in the SCOPUS database [24]. The search was done
putting as a filter the terms shown in Figure 5, and consider-
ing all areas of applications. As a result, 24,706 publications
in total were found when searching for “evolutionary compu-
tation OR evolutionary algorithms,” 23,995 publications
using “Artificial Neural Networks,” and 49,623 when search-
ing for “Fuzzy systems.”

It is evident that CI is gaining interest mainly for its effec-
tiveness to solve a large variety of problems in all areas of
engineering. Moreover, from the total number of papers
found in the three analyzed areas, 10% (2601 publications
of EC), 22% (5299 publications of ANN), and 2% (1410 pub-
lications of FS) of the published works correspond to studies
in the energy domain. To narrow our review into the topic of

9Complexity



interest, that is, CI applied in the energy domain, we have
filtered the search focusing on the publications regarding CI
in the energy domain.

Figure 6 shows the ratio between the number of publica-
tions devoted to the energy domain and the total of publica-
tions by the CI paradigm (i.e., EC, ANN, and FS). It is worth
noticing that the three areas of CI show a trend that reflects
more publications in the energy domain. From the three
main topics of CI, EC is the one that shows the most pro-
nounced increment in the ratio in the last years.

In the following subsections of Section 4, we include
a brief analysis of the taxonomy of EC, and through
Tables 4–7, we group the most cited works of the CI para-
digm applied to the energy domain. The tables include the
CI techniques, the problem to be solved in the energy
domain, and the main mathematical characteristics that
make such problems complex and justify the use of advance
computational approaches such as CI.

4.2. Evolutionary Computation (EC) Taxonomy. Evolution-
ary computation (EC) is a fundamental part of CI and
encompasses a set of algorithms for global optimization
mostly inspired by biological and evolutionary processes. CI
is arguably one of the most successful branches of CI, used
by a large number of practitioners all over the world and in
all areas of engineering [65] (see Figures 5 and 6). It is worth
noticing that EC is not only limited to the study of evolution-
ary algorithms (EA), as it is sometimes wrongly assumed, but
also covers some of the most exciting trends in computer
sciences, namely, swarm intelligence (SI), nature-inspired
algorithms, and bioinspired or natural computation.

The family of algorithms belonging to the class of
“evolutionary algorithms” (EA) shares some common

characteristics that distinguish them from other metaheuris-
tics. In technical terms, EAs are population-based problem-
solvers. Commonly, EAs act over an initial set of candidate
solutions (i.e., a population) that is iteratively updated
through generations. The performance of the solutions is
measured by a given fitness function, and at each generation,
solutions with inferior performance are stochastically
removed, whereas new solutions (generated through a spe-
cific operation particular for different EAs) are introduced
into the population. As a result, it is expected that by the
principles of natural selection (or artificial selection in this
case), the population gradually will evolve towards the opti-
mal fitness value.

The field of EAs is broad, and the techniques typically
differ in implementation details or the genetic representation
they use. Among the existing techniques of EA, the three
main subfields (source of inspiration for many developments
in this paradigm) correspond to genetic algorithms (GA)
[66, 67], genetic/evolutionary programming (GP) [68, 69],
and evolutionary strategies (ES) [70, 71]. In the last decades,
differential evolution (DE) [72], a particular case of ES, has
been the subject of an entire line of research. DE is arguably
one of the most popular and effective EAs with a consider-
able number of successful applications in the engineering
domain [131].

On the other hand, SI and nature/bioinspired computa-
tion are metaheuristics inspired in the observation of the col-
lective behavior of agents or natural/biological processes,
respectively. For instance, SI takes advantage of the interac-
tion of simple agents with each other on the environment
to achieve collectively “intelligence,” similarly to natural
systems such as ant colonies or bird flocking. Examples of
SI algorithms are the ant colony optimization (ACO) [73],
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particle swarm optimization (PSO) [74], artificial bee colony
(ABC) [75], or cuckoo search (CS) [76]. Nature-inspired
algorithms go further in the design of algorithms inspired
by natural, physical, or even chemical phenomena. Examples
of this type of algorithms are gravitational search algorithms
(GSA), simulate annealing (SA), harmony search (HS), and
others. A very well-conducted taxonomy and classification
of nature-inspired algorithms can be found in [77].

4.3. Evolutionary Computation (EC) in the Energy Domain.
EC can be applied to problems of all areas of engineering.
In this review, however, we are interested in applications
related to complex problems in the energy domain. There-
fore, in Table 4, we have grouped the most cited works of
the EC paradigm applied to the energy domain in the
span 2010–2017. The table is organized from the top 1
cited paper to the top 10 according to the SCOPUS data-
base. We show the specific EC approach used, the prob-
lem that was solved, and some characteristics related to
the work.

In general terms, Table 4 confirms that EC is mainly used
to solve optimization problems. Problems such as economic
load dispatch (ELD), optimal power flow (OPF), and optimal
operation of microgrids are addressed by the most influential
works, mainly due to the key role that those problems play in
power systems.With the evolution of the electrical grid led by
the penetration of distributed resources, and the deployment
of smart grid technologies, EC has attracted the attention of
many practitioners due to its effectiveness in providing
acceptable solutions when exact traditional methods fail. It
is also interesting to appreciate the correspondence between

some of the most studied algorithms in the field of EA and
the most cited papers of EC in the energy domain. For
instance, we can find the application of the strength Pareto
evolutionary algorithm (SPEA) [78], an algorithm that has
been cited more than 6000 times according Google Scholar,
into three problems of the energy domain, namely, wind tur-
bine placement, turbine layout design, and the optimization
of a stand-alone PV-wind-diesel system with battery storage.
The nondominated sorting genetic algorithm NSGA-II
[79], another well-known and highly used EA, was applied
to the combined cycle power plant (CCPP) optimization
problem in [80]. DE, well-known for its simplicity and
effectiveness in continuous global optimization, has been
used to solve the OPF problem [81] and the optimization
of PV systems [82].

In general, Table 4 shows that themajority of the problems
in which EC is applied corresponds to complex optimization
problems that cannot be solved efficiently by traditional
techniques. Such complex problems present common char-
acteristics, namely, multiobjective nature, constrained opti-
mization, convex and nonconvex problems, nonlinear
formulations, and so on. Because of the advances in tech-
nology, it is expected that the complexity of the systems
will increase in the years to come, and therefore, the com-
plexity of the mathematical formulations required to solve
related problems is expected to grow as well. In this likely
scenario, EC seems a viable and logic option for applica-
tion into the field, despite the fact that optimal solutions
cannot be guaranteeing.

The search of the most cited papers was done in the
time span 2010–2017. However, the top ten cited papers
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correspond only to the span 2010–2013. To give a glimpse
into more recent works and envisage the research directions
of the application of EC nowadays, Table 5 includes the three
most cited papers of the years 2015, 2016, and 2017.

In general aspects, it can be appreciated in Table 5 that
the tendency of recent influential works lays on the hybridi-
zation of EC algorithms. Combinations of DE and PSO into
DEPSO [90], ACO and ABC into ACO-ABC [91], or a mul-
tistep approach using cuckoo search (CS) algorithm, fuzzy
system (FS), weather research and forecasting (WRF), and
ensemble forecast (CS-FS-WRF-E) [92] are some examples
of the synergies that can be produced between EC algorithms
for solving more challenging problems.

On the other hand, in the recent applications of EC, we
still can find the application of pure popular EC algorithms.
For instance, DE was recently applied to the optimization
of combined cooling, heating, and power-based compressed
air energy storage. A GA was used in [93] to determine opti-
mal sizing of components in microgrids, while MILP was
then used to solve the unit commitment problem (UCP),
which is considered of paramount importance in the man-
agement and operation of microgrids. NSGA-II was used in
[94] to solve a multiobjective optimization problem of solar
driven Stirling heat engine with regenerative heat losses. In
addition, new algorithms are under development, and their
application is also very welcome in the energy domain.

Table 4: Most cited papers between 2010 and 2017 of EC applied to energy-related problems.

Ref. Year EC approach Problem (optimization) Characteristics

[83] 2010
Strength Pareto evolutionary

algorithm (SPEA)
Wind turbine placement
Turbine layout design

Constrained optimization problem
transformed to bicriterion optimization

problem. Objective: maximize the expected
energy output and minimize the constraint

violations.

[84] 2010

Hybrid algorithm: differential
evolution combined with

biogeography-based
optimization (DE/BBO).

Economic load dispatch (ELD)
problems of thermal power units.

Convex and nonconvex problems. The ELP
considers thermal power units, transmission
losses, and constraints such as ramp rate
limits, valve-point loading, and prohibited

operating zones.

[85] 2013

Review: fuzzy logic control
(FLC), artificial neural network

(ANN), and evolutionary
algorithms (EA).

Maximum power point tracking
(MPPT) techniques for PV applications.

The paper focuses on the applications of CI
techniques during partial shading conditions.

[80] 2011

Genetic algorithms (GAs) and
second version of nondominated

sorting genetic algorithm
(NSGA-II).

Combined cycle power plant
(CCPP) optimization problem.

Multiobjective optimization. Objective:
determine the best design parameters,

considering three objectives: (a) CCPP exergy
efficiency, (b) total cost rate of the system
products, and (c) CO2 emissions of the

overall plant.

[86] 2011
Strength Pareto evolutionary

algorithm (SPEA).

Optimization of a stand-alone
PV-wind-diesel system with

battery storage.

Multiobjective optimization. Objective:
optimize the levelized cost of energy (LCOE)
and the equivalent carbon dioxide (CO2) life

cycle emissions.

[81] 2010 Differential evolution (DE). Optimal power flow (OPF) problem

Different objective functions and nonsmooth
piecewise quadratic cost functions are

considered. Objectives: minimization of fuel
cost, voltage profile improvement, and

voltage stability enhancement.

[87] 2011
Adaptive modified particle

swarm optimization (AMPSO)
algorithm.

Optimal operation of a MG with renewable
energy sources accompanied by a back-up

microturbine/fuel cell/battery hybrid
power source.

Nonlinear constraint multiobjective
optimization problem Objective:

minimization of total operating cost and the
net emission simultaneously.

[82] 2011 Differential evolution (DE) PV modeling techniques.
DE is applied to simultaneously compute all
the model parameters at different irradiance

and temperature points.

[88] 2010
Fuzzy adaptive hybrid

PSO algorithm.
Economic dispatch problem

considering the valve-point effect.

Nonsmooth and nonconvex problem when
valve-point effects of generation units are

taken into account.

[89] 2012 Review: evolutionary algorithms.
Stand-alone hybrid renewable

energy systems.

The review focuses on multiobjective
methods using evolutionary algorithms for

hybrid renewable energy systems.
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Brainstorm optimization algorithm (BSOA) and chaotic bat
algorithm (CBA) [95] are only two examples of successful
applications of such new algorithms. BSOA was recently
applied to the optimal location and setting of flexible AC
transmission system (FACTS) devices in [96], whereas
CBA was used to solve the well-known economic dispatch
problem (EDP) considering equality and inequality con-
straints [97].

4.4. Artificial Neural Networks (ANN) and Fuzzy Systems (FS)
as Complementary Tools for Optimization. ANN and FS are
two important paradigms of CI used mainly for forecasting/
modeling and control, respectively. Since the scope of this
review is on complex optimization and simulation, the exten-
sive analysis of the applications of ANN and FS is somehow

out of the scope of what this review is intended for. However,
these two paradigms are also widely used in combination
with EC for solving some optimization problems. Moreover,
some applications of ANN or FS, such as the ANN weight
selection or the definition of the parameter of membership
functions of an FS, are indeed highly complex optimization
problems that cannot be solved with deterministic methods
suitably. Therefore, this section revises some of the hybrid
applications in which ANN, FS, and EC are used in combina-
tion to solve complex tasks.

The pure application of ANN in power systems is com-
monly used to solve forecasting problems. Forecasting of
solar irradiance or PV power [100–103], wind speed
[104–106], or load [107] are just some examples of successful
applications of ANN in the energy domain. On the other

Table 5: Recent most cited papers of EC applied to energy-related problems. The three most cited papers from 2015, 2016, and 2017 are
included.

Ref. Year EC approach Problem (optimization) Characteristics

[90] 2015
Hybrid algorithm: differential

evolution combined with particle
swarm optimization (DEPSO).

Maximum power point tracking
(MPPT) techniques for PV

applications.

Simulation and hardware implementation of
DEPSO for MPPT.

[91] 2015
Hybrid algorithm: ant colony
optimization combined with

artificial bee colony (ACO-ABC).

Optimal location and sizing of
distributed energy resources.

Multiobjective optimization. Objectives:
minimization of power losses, total emissions,
total electrical energy cost, and improvement

of voltage stability.

[96] 2015
Brainstorm optimization

algorithm (BSOA).

Optimal location and setting of
flexible AC transmission system

(FACTS) devices.

Discrete, multiobjective, multimodal,
and constrained optimization. BSOA is compared
with PSO, GA, DE, SA, hybrid of genetic algorithm
and pattern search (GA-PS), backtracking search
algorithm (BSA), gravitational search algorithm
(GSA), and asexual reproduction optimization

(ARO).

[92] 2016

Multistep approach: cuckoo
search (CS) algorithm, fuzzy
system (FS), weather research
and forecasting (WRF), and

ensemble forecast (CS-FS-WRF-E).

Forecasting of wind speed.

CS optimization is used to construct the final model
adjusting and correcting the results obtained based
on physical laws. The final model yields to best

forecasting performance and outperforming all the
other models used for comparison.

[97] 2016 Chaotic bat algorithm (CBA).
Economic dispatch problem

(EDP).

Consideration of equality and inequality constraints
(e.g., such as power balance, prohibited operating
zones, and ramp rate limits). Also, transmission
losses and multiple fuel options are taken into

account.

[94] 2016
Second version of the

nondominated sorting genetic
algorithm (NSGA-II).

Optimization of solar driven
Stirling heat engine with
regenerative heat losses.

Multiobjective optimization. Objectives: power
output, overall thermal efficiency, and thermo-

economic function. A selection of the best solution in
the Pareto front by Fuzzy Bellman-Zadeh, Shannon’s
entropy, LINMAP, and TOPSIS is also implemented.

[98] 2017 Differential evolution (DE).
Optimization of combined cooling,

heating, and power-based
compressed air energy storage.

Multiobjective optimization. Objectives:
maximization of system exergy efficiency and

minimization of total product unit cost.

[93] 2017 Genetic algorithm (GA).
Optimal size of microgrid

components. Unit commitment
problem (UCP).

Leader-follower problem. The leader problem
focuses on sizing. The follower problem, that is,
the energy management issue, is solved with a

mixed-integer linear program.

[99] 2017
Multiobjective

quantum-behaved particle
swarm optimization (MOQPSO).

Economic environmental
hydrothermal scheduling problem.

Multiobjective, nonlinear, and constrained
optimization. A constraint handling method is

designed to adjust the constraint violation of hydro
and thermal plants.
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Table 6: Some selected highly cited papers of hybrid approaches applied to energy-related problems.

Ref. Year CI approach Problem (optimization) Characteristics

[85] 2013
Review: fuzzy logic control (FLC),

artificial neural network (ANN), and
evolutionary algorithms (EA)

Maximum power point
tracking (MPPT)
techniques for PV

applications.

The paper focus on the applications of CI
techniques during partial shading conditions.

[109] 2011 Fuzzy logic controller (FLC).

Maximum power point
tracking (MPPT)
techniques for PV

applications.

The near optimum design for membership
functions and control rules were found

simultaneously by genetic algorithms (GAs).

[111] 2011
Adaptive-network-based fuzzy inference
system combined with wavelet transform,

and particle swarm optimization.
Forecasting of wind power.

Comparison with seven other approaches
(persistence, NRM, ARIMA, NN, NNWT, NF, and

WNF) is presented.

[112] 2011
Adaptive-network-based fuzzy inference
system combined with wavelet transform

and particle swarm optimization.

Forecasting of short-term
electricity prices.

Comparison with ten other approaches (ARIMA,
mixed-model, NN, wavelet-ARIMA, WNN, FNN,
HIS, AWNN, NNWT, and CNEA) are presented.

[113] 2010
Fuzzy adaptive modified particle swarm

optimization (FAMPSO).
Nonconvex economic

dispatch problem (NEDP).
The fuzzy system is used to tune PSO parameters

(i.e., inertia weight and learning factors).

Table 7: Some selected recent highly cited papers of hybrid approaches applied to energy related problems (span of 2015–2017).

Ref. Year EC approach Problem (optimization) Characteristics

[107] 2015
Review: artificial intelligence- (AI-) based

techniques.
Forecasting of short-term load.

Comprehensive and systematic literature
review of AI-based short-term load

forecasting techniques.

[102] 2015
Hybridizing the support vector machines
(SVMs) with firefly algorithm (FFA).

Forecasting of solar radiation.
A comparison with artificial neural

networks (ANN) and genetic
programming (GP) models is provided.

[114] 2016
Ensemble empirical mode decomposition
(EEMD) and GA-backpropagation neural

network.
Forecasting of wind speed.

EEMD can effectively handle the mode-
mixing problem and decompose the

original data into more stationary signals
with different frequencies. Each signal is
taken as an input to the GA-BP neural

network model.

[115] 2015

Mutual information, wavelet transform,
evolutionary particle swarm optimization

(EPSO), and adaptive neurofuzzy
inference system.

Forecasting of wind power.

Integration of existing models and
algorithms, which jointly show an

advancement over the present state of the
art, is provided. Results show a significant

improvement over other reported
methodology.

[116] 2016
Least square support vector machine
(LSSVM) and adaptive neurofuzzy

inference system (ANFIS).

Forecasting/prediction of dew point
temperature of moist air at

atmospheric pressure.

GA was applied to optimize the
corresponding parameters of these

models. Predictions are performed over
an extensive range of temperature and

relative humidity.

[92] 2016

Multistep approach: cuckoo search (CS)
algorithm, fuzzy system (FS), weather
research and forecasting (WRF), and
ensemble forecast (CS-FS-WRF-E).

Forecasting of wind speed.

CS optimization is used to construct the
final model adjusting and correcting the
results obtained based on physical laws.
The final model yields to best forecasting
performance and outperforming all the
other models used for comparison.

[117] 2017

Artificial neural network (ANN) coupled
with fuzzy clustering method (FCM).
Additive linear interdependent fuzzy

multiobjective optimization (ALIFMO).
Second version of the nondominated
sorting genetic algorithm (NSGA-II).

Exergetic optimization of continuous
photobiohydrogen production process

from syngas by Rhodospirillum
rubrum bacterium.

Multiobjective optimization. Objectives:
minimization of the normalized exergy
destruction and maximization of the

rational and process exergetic efficiencies.
The solutions of the proposed approach
were also compared with conventional

fuzzy multiobjective optimization
procedures with independent objectives.
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hand, FS are more commonly applied as operation and con-
trol strategies. For instance, in [108], a fuzzy logic controller
(FLC) was designed for operation and control of an offshore
wind farm interconnected to a high-voltage DC (HVDC) sys-
tem. The maximum power point tracking (MPPT) for PV, a
problem sometimes solved by ANN, was addressed using
FLCs in [109, 110].

Nevertheless, ANN and FS are also commonly coupled
with EC, giving, as a result, some hybrid approaches that
attract the attention of the research community to a signifi-
cant extent. In an effort to synthesize such pieces of work,
in Table 6 we have selected some of the most cited works
regarding hybrid models using ANN and FS in the span
2010–2017. A combination of fuzzy inference systems, wave-
let transform, and PSO is used [111, 112] for forecasting. In
this case, the definition of the parameters associated with
the membership functions of the fuzzy inference system is a
complex optimization problem, and therefore, PSO is used
to this end, obtaining more accurate results. On the contrary,
in [113], a fuzzy system is used to tune the parameters of
PSO, giving place to the so-called fuzzy adaptive modified
particle swarm optimization (FAMPSO), which is used for
solving the nonconvex economic dispatch problem (NEDP).
These two examples show how the interactions between
ANN, FS, and EC might go into different directions, giving
place to the envisage of more refined techniques when a good
knowledge of the strengths and weaknesses of the involved
approaches exists.

We have also selected some recent hybrid approaches
corresponding to highly cited papers related to ANN and
FS applications. Table 7 presents such selection, and it is
interesting to notice that the majority of the selected work
is related to forecasting techniques [92, 102, 107, 114–116].
This trend is highly motivated by the necessity of a more
efficient integration of renewable generation into existing
electrical grids. Since forecasting techniques will never guar-
antee a perfect match between realizations and estimations
(or at least we seem to be far from that goal), the improve-
ment of existing techniques is of paramount importance in
the operation of power systems.

Overall, the revised literature shows that CI has a strong
potential for solving complex tasks in the energy domain.
The use of hybrid techniques, along with some other power-
ful available resources, such as super computers or parallel-
ism, opens a window of opportunity to refine existing
techniques and make them more accurate and reliable tools.

5. Complex Large-Scale Simulation in
Power and Energy Systems

5.1. Electricity Market Simulation. Renewable energy sources
such as wind and solar variable and intermittent nature pose
new challenges to the power sector and also to electricity
markets. Many different market approaches have been
experimented all around the world, and all have been subject
to multiple revisions. The primary focus is on adapting elec-
tricity markets to deliver their intended economic efficiency
and reliability outcomes under the new paradigm of growing
share of renewable energy sources [118]. One of the main

European Union (EU) priorities concerns the formation of
a pan-European energy market. The majority of European
countries have already joined together into common market
operators, resulting in joint regional electricity markets com-
posed of several countries. Additionally, in early 2015, several
of these regional European electricity markets have been
coupled in a common market platform, operating on a day-
ahead basis [119]. That achievement has been enabled by
the multiregional coupling (MRC), a pan-European initiative
dedicated to the integration of power spot markets in Europe.
The common market platform has resulted from an initiative
of seven European power exchanges, called price coupling of
regions (PCR) [119], which have joined efforts to develop a
single price coupling solution used to calculate electricity
prices across Europe and allocate cross-border capacity on
a day-ahead basis. This is a crucial step to achieve the overall
EU target of a harmonized European electricity market.

This type of initiative is being accommodated by the
European Commission, which has created the basis for a sig-
nificant number of European projects that have been giving
substantial contributions to deal with some of the most
prominent issues in the field, as discussed in [120] and sum-
marized as follows. One of the main hurdles for the operation
of a pan-European market concerns the European power
network constraints. The e-Highway2050 project aims at
developing and applying a methodology for the long-term
development of the pan-European transmission network able
to ensure a reliable power delivery from renewable sources,
and their integration in the pan-European market. The Opti-
mate (An Open Simulation Platform to Test Integration in
MArkeT design of massive intermittent Energy) project had
a simulation platform as output, which accommodates the
simulation of the pan-European electricity market. In the
scope of CASSANDRA (a multivariate platform for assessing
the impact of strategic decisions in electrical power systems),
the participation of small consumers in the electricity market
has been modeled, including the assessment of their strategic
decisions. eBADGE (Development of Novel ICT tools for
integrated Balancing Market Enabling Aggregated DR and
DG Capacity) is developing a simulation and modeling tool
for integrated balancing and reserve markets. EMELIE (elec-
tricity market liberalisation in Europe) focused on the liberal-
isation of the European electricity market and its potential
impacts on market developments; this project has resulted
in a modeling and decision support tool for analysis of vari-
ous strategic behaviors in the scope of the European electric-
ity market. E-PRICE (Price-based Control of Electrical
Power Systems) approached the issue of errors in the predic-
tion of both production and demand and their impact on
ancillary services and reserve capacity. Renewable portfolio
addresses market players’ optimal scheduling under integrat-
ing renewables in EU electricity markets, considering a sto-
chastic dynamic market environment.

These initiatives are, however, strongly directed to the
perspective of market operators and regulators, which results
in valuable advances in what concerns market mechanisms,
and market operation and validation, but, apart from a few
exceptions, almost entirely disregard the decision support
of market participant players, and the impact that the
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interaction between these entities has on the market. This
decision support is, however, essential, since the complexity
and the constantly changing environment of electricity mar-
kets makes the decision-making process of the involved enti-
ties a very difficult task. Operators and regulators need to
foresee market developments and experiment and test new
market rules andmechanisms. Market players need to under-
stand how and when to participate in each market.

Due to the rising needs, several electricity market simula-
tors have been developed, as can be consulted in [5, 121–
124], which provide interesting reviews on electricity market
simulators. In fact, a total of 2454 documents related to elec-
tricity market simulation can be found in the SCOPUS data-
base, until the end of 2017. Such works start emerging
slowing from 1981, and several peaks of interest in this theme
are well highlighted throughout the years, as can be seen
from Figure 7.

As can be seen from Figure 7, there has been a significant
increase in the interest in research on electricity market sim-
ulation in the beginning of the millennium, with a huge
increase in the number of documents published during these
few years. In fact, the 10 most cited documents in this area all
refer to the first decade of the 2000s, as depicted in Table 8.
An overview of the most cited documents and top authors
related to electricity market simulation is shown in Table 8.
The tendency keeps on increasing from that point onwards,
but there are several obvious peaks of interest, which are
closely related to the most relevant changes in electricity
market policies, as well as market model restructuring all
around the globe.

Some relevant examples of electricity market simulators
resulting from these works are [5, 122] the Simulator for
Electric Power Industry Agents (SEPIA) [135], which is a
Microsoft Windows-oriented platform; Power Web [136], a
Web-based market simulator that allows participants to
interact from very distinct zones of the globe; and The
short-medium run electricity market simulator (SREMS)
[137], which is based on game theory and is able to support
scenario analysis in the short-medium term and to evaluate
market power. These simulators present a common limita-
tion, as they lack flexibility in order to deal with dynamic envi-
ronments with complex interactions between the involved
entities. Multiagent systems are computer systems composed
of autonomous agents that interact to solve problems beyond
the individual capabilities of each agent [138]. In the last
decade, a number of multiagent electricity market simulators
have emerged [124, 139].

An agent-based simulation model of the England and
Wales electricity market is presented in [140]. The simula-
tion model enables comparing alternative market mecha-
nisms, including different settlement systems and bidding
periods. The same model is applied to the German electricity
market in [141]. The proposed simulation model defines
agents through several attributes. Reinforcement learning is
used to support agents’ decisions. The analysis of alternative
auction models is an important asset of this simulator; how-
ever, the complete functionalities of electricity markets are
not modeled, and market participation is restricted to pro-
ducers [142]. A wholesale market simulation model has also

been developed by the MIT [143]. In this simulator, a static
number of three generator agents use the derivative following
strategy [144] to learn the best bids to apply in order to max-
imize the profits. The market model is very simple, with only
generators being able to act dynamically. These agents can
bid their complete generation capacity or just a part depend-
ing on the expected profits [145]. A simulated market model
based on double auction is presented in [146, 147]. The mar-
ket model matches consumers and generator bids pairwise
[148]. The focus of this simulator is on the learning process
of agents’ bidding behavior, with the application of the
Roth-Erev reinforcement learning algorithm [147] and
genetic algorithms [146]. An electricity market simulation
study that compares three alternative pricing methods in
electricity market auctions is presented in [149]. Agents in
this simulation model submit bids for the entire generation
capacity, and they learn to bid mark-ups on top of their mar-
ginal costs. A model consisting in three sequential energy
markets representing, namely, a gas market, a wholesale elec-
tricity market, and a retail electricity market, is presented in
[150]. All these market models are modeled as uniform-
price auctions, in which only supply agents submit their bids.
The focus is on the study and analysis of the dynamics of
reward interdependence in the different markets [151]. An
electricity market simulation study directed to Nash equilib-
rium analysis is presented in [152]. Q-Learning is used to
provide learning capabilities to the involved agents, consider-
ing a market pool considering transmission grid constraints.
Social welfare implications are analyzed for several conges-
tion management approaches. A multiagent simulation sys-
tem to model the UK electricity market is introduced in
[153]. This simulator includes several different pricing calcu-
lation schemes, and the focus of the study is on producer
agents’ learning behavior. The role of other relevant involved
agents, such as consumers or the independent system opera-
tor (ISO), is, however, not considered. Additionally, the sim-
ulated market model represents the UK electricity market
before its restructuring process of 2001; hence, this model is
severely outdated.

The Genoa Artificial Power Exchange (GAPEX) [154] is
an agent-based framework for modeling and simulating
power exchanges. GAPEX is implemented in MATLAB and
allows the creation of artificial power exchanges reproducing
exact market clearing procedures of the most important
European power exchanges [155]. The Electricity Market
Complex Adaptive System (EMCAS) [156] uses an agent-
based approach with agents’ strategies based on learning
and adaptation. Different agents are used to capture the
restructured market heterogeneity, including generation,
demand, transmission and distribution companies, indepen-
dent system operators, consumers, and regulators. It allows
undertaking electricity market simulations in a time contin-
uum ranging from hours to decades, including several pool
and bilateral contract markets [157, 158]. Agent-based
modeling of electricity systems (AMES) [159] is an open-
source computational laboratory for the experimental study
of wholesale power markets restructured in accordance with
US Federal Energy Regulatory Commission (FERC)’s market
design. It uses an agent-based test bed strategically learning
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electric power traders to experimentally test the extent to
which commonly used seller market power and market effi-
ciency measures are informative for restructured wholesale
power markets. The wholesale power market includes an
independent system operator, load-serving entities, and
generation companies, distributed across the busses of the
transmission grid. Each generation company agent uses sto-
chastic reinforcement learning to update the action choice
probabilities currently assigned to the supply offers in its
action domain.

The Multiagent Simulator of Competitive Electricity
Markets (MASCEM) is a simulator developed by the Poly-
technic of Porto, Portugal [160, 161]. MASCEM supports
the simulation of several market models, including the simu-
lation of the market models of MIBEL (Iberian market),
EPEX (central EU market), and Nord Pool (northern
European market), as well as some other specific market
models, for example, CAISO’s. The network validation is also

possible, although in a simplistic manner. Agents in MAS-
CEM are endowed with machine learning and decision sup-
port capabilities through its integration with the Adaptive
Decision Support for Electricity Markets Negotiations
(AiD-EM) system [162]. The participation of DG, small con-
sumers, DR, and EVs, among other resources, is enabled
through the connection of MASCEM with the Multiagent
Smart Grid Platform (MASGriP) [163]. The integration
between the several systems is achieved through the use of
ontologies to support the communications between the
agents of the different systems. The National Electricity Mar-
ket Simulation System (NEMSIM) is an agent-based electric-
ity market simulator developed specifically for simulating
Australia’s electricity market. The agents considered in
NEMSIM are electricity producers, network service pro-
viders, retailers, and the National Electricity Market Manage-
ment Company (NEMMCO) [164]. The market models in
NEMSIM include bidding and bilateral contracts. The tech-
nical constraints of the transmission network are considered,
even if only in a superficial way. Negotiating agents have
independent learning capabilities, based on the agents’ spe-
cific goals. However, since NEMSIM is designed particularly
for the Australian market, its model is too specific to be eas-
ily adapted to other market models. Another simulation
model that follows the Australian market rules is presented
in [165]. This model includes two bidding mechanisms,
namely, stepwise and piecewise linear bidding. Simulations
are restricted to a couple of generators in order to study
the learning process of tacitly collusive strategies [166].

The short-term electricity market simulator-real time
(STEMS-RT) has been developed by the Electric Power
Research Institute (EPRI) [167, 168]. STEMS-RT models
the market and accommodates both human participants
and computer agents. Human and simulated agents repre-
sent buyers and sellers and are able to set up and submit their
bids. Two autonomous biding strategies are available for sup-
pliers, namely, a conservative approach, consisting in bidding
all generations at the marginal cost. The second approach
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Figure 7: Documents related to electricity market simulation in the SCOPUS database until 2017.

Table 8: Overview of the most cited documents and top authors
related to electricity market simulation.

Search
term

Documents
until 2017

10 most cited
articles

Top 5 authors
with most articles

Reference Citations
Author (number

of articles)

Electricity
market
simulation

2447

[125] 881

Vale, Z. (79)
Pinto, T. (59)
Praça, I. (48)

Morais, H. (43)
Wen, F. (34)

[126] 373

[127] 330

[128] 287

[129] 282

[130] 264

[131] 240

[132] 220

[133] 212

[134] 195
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tries to maximize the profit on a short-term basis [169].
STEMS-RT, however, does not include some important elec-
tricity market participants such as consumers, aggregators, or
the ISO. Also, STEMS-RT is restricted to the bidding process
in the pool market, and although it provides two autonomous
bidding strategies, there is no actual learning process for
agents’ decision support. A two-settlement market composed
by one forward market and one spot market is simulated in
[170]. The agents present in this simulator are consumers,
generators, transmission line provider agents, and the ISO.
The focus of simulations is put on the decision-making of
generators and the ISO. The problem is formulated as an
equilibrium problem with equilibrium constraints. The strat-
egy for representing the decision-making and solving it
mathematically is similar to that of STEMS-RT. PowerACE
is an agent-based simulation tool developed to study the
CO2 emission trading market [171]. PowerACE is composed
by several types of agents, namely, producers, consumers,
traders, long-term planners, market operators, certificate
traders, load serving entities, and consumers. The market
model includes a market for CO2 emission allowance that
complements the usual pool and bilateral markets. The capa-
bility of PowerACE investigating environmental issues (such
as CO2 emission) is an important asset in upcoming simula-
tors or in the improvement of existing ones, as it can largely
affect the long-term investment decisions of generation com-
panies. A multiagent architecture for decision-making in
decentralized electricity markets called EMMAS (Electricity
Market Multiagent System) is presented in [172]. Agents
are introduced as (i) basic (atomistic), which can be a con-
sumer, generator, transmission system operator, distributor,
market operator, wholesaler, retailer, or a regulator, and (ii)
synthetic (combined), which are combinations of different
basic agents. EMMAS agents are able to learn from past expe-
riences or directly from the domain of expertise. Both the dis-
tribution and transport grids are modeled.

Electricity market simulation is an area that has been
attracting a significant interest during the last years. Many
of the existing simulators have been discontinued, while
others have been adopted or purchased by governmental
entities. Tracking of their recent developments has been
proven to be a difficult task, as it is possible to observe by
the publication year of many of the review works. Some fur-
ther relevant works related to electricity market simulation
can be consulted in [173], which presents an electricity mar-
ket simulator for mainland Spain; [174] presents the Mar-
ketecture from Los Alamos National Laboratory; [175]
details the N-ABLE™, the Agent-Based Laboratory for Eco-
nomics developed at Sandia National Laboratory; and [176]
presents some simulations for coupled systems using the
GridWise™ system, at the Pacific Northwest National
Laboratory. Table 9 provides a comparison of the main
characteristics of the most relevant reviewed electricity
market simulators.

From Table 9, it is visible that most of the existing simu-
lators include some types of agent learning capabilities,
although these are almost entirely exclusively directed to
generation agents. Many of these simulators also consider
grid constraints, making them suitable for simulation under

operators’ and regulators’ perspective. However, the study
of the integration of distributed renewable generation and
integration of DR or even of aggregators in the market is still
very poor. This deficiency makes most of these simulators
still unable to provide a valuable support for the study of
the evolution of the power system in accommodating the
targeted large amounts of renewable generation and to incen-
tivize the active participation from the consumers’ side.

5.2. Microgrid and Smart Grid Simulation. One of the main
achievements of the power and energy sector in recent years
is the common acceptance by the involved stakeholders that
power systems require major changes to accommodate in an
efficient and secure way an intensive use of renewable-based
DG [177]. The conclusion that the so-called smart grids are
required is a crucial foundation for the work to be done in
the coming years towards the modernization and restructur-
ing of the power sector according to the new paradigms [20].
Huge investments have already been made in projects con-
cerning smart grids, including research and development
projects, pilot installations, and rollout of smart metering.
A list of a total of 950 projects related to smart grids starting
from 2002 up until today, amounting to €5 billion invest-
ment, is published in [178]. The domains with the highest
investment are smart network management, demand-side
management, and integration of DG and storage, together
accounting for around 80% of the total investment. The large
number of smart grid-related projects is resulting in impor-
tant advances in the field, namely, concerning demonstration
pilots and management and control methodologies.

The European Technologic Platform Smart Grids
(ETPSG) for future electric networks is the main European
forum for the establishment of R&D policies for the intelli-
gent electricity grid sector [179]. The mission of ETPSG is
(i) to create and maintain a shared sight for the future of
electricity networks in Europe and serve as a catalyzer for
their implementation and (ii) promote research, develop-
ment, demonstration, and implementation projects related
to intelligent electricity networks [120].

Under the ETPSG and due to the increase in funding
from the EU in this field, several large-scale European pro-
jects have been providing a substantial contribution to deal
with some of the most prominent issues in the field, as
discussed in [120]. The e-Highway2050 project aims at
developing and applying a methodology for the long-term
development of the pan-European transmission network,
with the objective of guaranteeing a reliable power delivery
from renewable sources, and their integration in the pan-
European market. This project adopts a top-down method-
ology to support the planning from 2020 to 2050. In this
context, the output of this work should potentiate the ideal-
ization of a possible super European power network, which
interconnects the large part of European countries. IRENE-
40 is a European project that aims at providing an Infra-
structure Roadmap for Energy Networks in Europe. The
objectives of IRENE-40 are to identify strategies for investors
and regulators to build a more secure, ecologically sustain-
able, and competitive European electricity system, which
are presented in a roadmap, that is, a timeline with actions
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and a description of development stages towards future elec-
tricity networks over the coming 40 years.

WILMAR (Wind Power Integration in Liberalised Elec-
tricity Markets) has focused on the study of the impact of
large-scale penetration of wind-based generation and its
accommodation in EM, while TRADEWIND—Wind Power
Integration and Exchange in the Trans-European Power
Market—led by EWEA (European Wind Energy Associa-
tion) aims at facilitating the dismantling of barriers for the
large-scale integration of wind energy in European power
systems, on transnational and European levels, and to formu-
late recommendations for policy development, market rules,
and interconnector allocation methods to support wind
power integration. TRADEWIND explores the benefits
that a European grid with better interconnections and an
improved power market design can have on the integra-
tion of large amounts of wind power. EWIS—European
Wind Integration Study—towards a successful integration
of large-scale wind power into European electricity grids pro-
vided a market model that represents the idealized operation

of existing day-ahead markets respecting declared cross-
border transfer capabilities. It simulated daily actions of
transmission system operators (TSOs) to redispatch genera-
tion to meet actual network physical limits and respond to
emerging information concerning demand, wind output,
and other generation changes [120].

IDE4L focuses on providing flexibility services and dis-
tributed control for aggregators. The role of the distribution
system operator is the core entity of this project, addressing
several distinct market models. PV-Prosumers4Grid is
studying novel self-consumption and aggregation models
for prosumers, with the aim of supporting large-scale PV
integration in the system. EU-SysFlex aims at achieving an
efficient coordinated use of flexibility to enable the wide
spread of renewable generation. This requires defining the
right amount of flexibility and system services to support
transmission system operators. iDistributedPV is developing
affordable solutions to increase the penetration of distributed
solar PV based on the effective integration of solar PV equip-
ment, including the exploration of several related concepts

Table 9: Comparison of the main characteristics of some of the most relevant electricity market simulators.

Work
Demand
response

Distributed
generation

Aggregators
Grid

constraints
Agent
learning

Market details Other

[141] + ++
Study of alternative market models;
impact on German electricity market

[143] + ++

[146] ++ + Double auction

[147] ++
Comparison of bidding

strategies

[149] ++
Comparison of alternative market

mechanisms

[150] ++ ++ +
Wholesale, retail, and natural gas

markets

[152] + ++ ++ Congestion management

[153] ++ ++ Models the old UK electricity market

[154] + +
Models GME—the Italian electricity

market

[156] ++ ++
Realistic modeling of the Australian

electricity market

[159] + ++ ++ ++
Models the US MISO, ISO-NE,
NYISO, PJMB, CAISO, SPP, and

ERCOT market areas

[160] + ++ + ++
Market models of MIBEL,
EPEX, and Nord pool

Demand response, electric
vehicles, and distributed
generation are modeled

through the connection to the
MASGriP simulator

[164] + +
Models the Australia National
Electricity Market (NEM)

[165] ++ Analysis of collusive strategies

[167] + Day-ahead auction-based market

[170] + + ++ + Spot market and forward market

[171] ++ Balancing market

[172] + + +
Day-ahead simple auction
and with uniform price
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and approaches. The main goal is to enhance the role of
the prosumer.

The significant work being developed in the scope of the
multiple projects in the field is resulting in several relevant
works in the domain of smart grid and microgrid simulation.
In fact, an astonishing number of 15,723 documents are
found in the SCOPUS database when searching for Micro-
grid OR Smart Grid OR Energy Systems Simulation, until
the end of 2017. Most of these works have been published
in the last decade, as can be seen by Figure 8.

As Figure 8 shows, although these topics have been
briefly mentioned for more than 50 years, the interest in
microgrid and smart grid simulation has just boosted in the
last decade, following the large increase of investment in
smart grids, and the worldwide definition of ambitious tar-
gets for renewable generation integration in the system,
which requires the exploration of approaches such as the
smart grid and microgrid, and their simulation. Table 10
shows the details on the most cited articles and most relevant
authors in this domain.

As Table 10 shows, a significant number of documents
related to microgrid and smart grid simulation can be easily
found. A document discussing the requirements of smart
grid simulation tools, including grid constraints, markets,
legislation, communication infrastructure, regulation, and
legislation, can be consulted in [190], paving the path for
development ways of future simulators. Also, a relevant list
of smart grid simulation tools can be consulted in [191]. In
many of these works, a multiagent approach is commonly
applied. Many of the advantages of using multiagent systems
in the energy system are discussed in [124]. These advantages
are mainly related to the large-scale accommodation of
renewable energy sources. The distributed architecture is
one of the emphasized advantages, due to the distributed
nature of renewable energy sources and their need for local
decisions and information. The flexibility is another core
asset, since a multiagent system can easily accommodate
new agents and exclude agents (both software and physical
resources) without compromising the simulated system. This
is closely related to the resiliency of the system, as a distrib-
uted approach usually has a better response to changes and
failure in the network, thus helping to improve its stability
and efficiency [192].

In [193], three main types of approaches for smart grid
and microgrid simulation using multiagent systems are
identified, namely, centralized, distributed, and hierarchical
approached. The centralized approach refers to the collection
of homogeneous agents that are managed by centralized con-
trol and management agents. These two types of agents are
described in [194] as reactive and cognitive, respectively.
Reactive agents only respond to requests with their standard
actions, and cognitive agents incorporate enhanced manage-
ment and/or control capabilities. Another relevant work con-
sidering a centralized approach for agent-based control of
microgrids is [195].

In a distributed approach, each agent detains the knowl-
edge about his share of the system, and they interact with
each other in order to coordinate and manage the operations
in a distributed way, as well as to cooperate and share services

that respecifies to each agent. A distributed system for self-
organization of generation sources, consumption, and stor-
age is proposed in [196]. The simulation of a test microgrid
with DG, consumers, and storage is used in [197] to demon-
strate the advantages of a distributed control using multia-
gent systems.

An hierarchical model considers the authority of some
agents over others [198]. This approach requires classifying
each individual agent as being of a certain type, which facili-
tates the definition of agents’ roles and also improves the
scalability and robustness of real-time operational control
[199]. The work presented in [200] proposes a three-level
agent-based hierarchical approach for distributed power flow
control. A simulation model based on a two-level hierarchi-
cal approach is presented in [201] to enable distributed
microgrid control. The upper level comprises the central
controller, which coordinates and manages the information
from the network perspective. The bottom layer includes
microsource controllers and load controllers, which perform
their control and management locally. Market participation
is also included in [202]. Agents in the higher levels are
responsible for the decision-making regarding the complex
tasks, while the lower-level agents are accommodated to sim-
pler tasks. Some other applications of hierarchal agent-based
systems for smart grid and microgrid simulation are dis-
cussed in [203–209].

A decentralized approach for the management of storage
devices is proposed in [210]. An agent-based simulation
infrastructure is used to support negotiations in order to
optimize the operation of storage units in a decentralized
manner. Another market-driven simulation system for stor-
age device management and operation is introduced in
[211]. This problem is defined as a multiplayer game, and
the Nash equilibrium is used to minimize the energy cost
by reducing the peak demand. Energy transaction patterns
are analyzed through agent-based simulation in [212]. The
load scheduling is addressed using genetic algorithms and
considering the consumer comfort. The integration of
renewable based generation in the electricity market is
explored through simulation in [213]. This work explores
potential business models considering the alternative models
of DR for buildings. The market-based control of imbalances
using a multiagent simulator is addressed by [214]. This sim-
ulator includes the control of different units and combines
DR and several distributed energy sources.

An agent-based simulation approach for microgrid con-
trol is presented in [215], focusing on the distribution grid
control decisions. The interaction between multiple micro-
grids is simulated and studied in [216]. This simulation
model enables studying the coordinated control of multiple
integrated microgrids, as well as incorporating relevant
aspects such as reserve regulation. The simulation model
presented in [217] focuses on large-scale modeling of trans-
portation assets in smart grids. Namely, the simulator
addresses the demand management of EVs through the sim-
ulation of the power grid and transport.

A simulation system for different types of consumers and
their behavior in a smart grid setting is presented in [218].
This simulation system enables consumer agents to define
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their actions at each time, deciding among use of local gener-
ation, reduction of their consumption, trade of energy with
utilities or their neighbors, and use of their batteries.

An agent-based simulation system for local energy sys-
tems named energy cultures is presented in [219]. The mul-
tiagent model integrates several types of agents, which are
represented by aggregators in the wholesale market. This
simulator has been used in the CASCADE project to address
different issues, all related to the future role of the aggregator
in future power and energy systems [220].

A flexible large-scale agent-based simulation tool for
smart grids is presented in [221]. This simulator, named
GridLAB-D, is open-source and considers different smart
grid resources such as DR, storage, EVs, and the retail
market. The flexibility of the simulator enables it to be
used to study multiple questions in the field, related to

energy trading, flexibility, management, and operation of
smart grids.

The Multiagent Smart Grid Platform (MASGriP) is a
large-scale simulator of microgrids and smart grids [163] that
combines agent-based simulation with real-time simulation
and physical emulation. This simulator can be used as a
stand-alone application, using the agent-based system to
simulate different types of smart grid players and manage-
ment, operation, and interaction models, or it can be used
in a physical setting to control a microgrid in real time, com-
bining real resources with simulated players and assets. This
simulator is connected to the MASCEM electricity market
simulator [160], which enables combining the smart grid
operation with market simulation.

A smart grid simulator that uses the AnyLogic simulation
environment is presented in [222]. This simulator models
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Figure 8: Documents related to microgrid, smart grid, and energy systems simulation in the SCOPUS database until 2017.

Table 10: Overview of the most cited documents and top authors related to microgrid and smart grid simulation.

Search term Documents until 2017
3 most cited articles Top 5 authors with most articles

Reference Citations Author (number of articles)

Smart grid simulation 5781

[33] 1110
Vale, Z. (38); Li, H. (37); Javaid, N. (36);

Senjyu, T. (31); Han, Z. (28);
[180] 475

[181] 472

Microgrid simulation 4929

[182] 936
Guerrero, J.M. (141); Vasquez, J.C. (61);
Li, P. (55); Wang, C. (41); Ghosh, A. (39);

[183] 870

[184] 668

Energy systems simulation 5808

[185] 667
Senjyu, T. (20); Streblow, R. (20); Anon (19);

Müller, D. (19); Lehnhoff, S. (16);
[186] 586

[187] 471

Power systems simulation 59,305

[188] 1657
Senjyu, T. (152); Sun, Y. (131); Blaabjerg, F. (123);

Malik, O.P. (121); Wen, J. (121);
[189] 1483

[182] 936
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local energy communities considering buildings with self-
generation and storage devices. Different configurations are
allowed in order to enable the study of a multiplicity of issues
in the smart grid domain. The simulator introduced in
[223] uses the HLA architecture to simulate multiple envi-
ronments, among which is the smart grid. The proposed
architecture connects different ICT components and
applies it to power systems modeling. Additionally, the
proposed architecture is integrated with models in Simu-
link, Omnet++, and JADE to enhance the modeling of
smart grid applications.

The large-scale simulation of smart grids using Modelica
is addressed in [224]. This object-oriented equation-based
modeling tool enables increasing the flexibility, efficiency,
and scalability of simulation frameworks. This work suggests
that using such an approach may prove to be a relevant step
forward in the simulation of large-scale systems such as the
smart grid. The work presented in [225], in turn, applies
the Discrete Event System Specification (DEVS) formalism
for modeling and simulation of the smart grid. The proposed
approach considers several distinct smart grid resources and
shows that such a model enables specifying components as
well as developing event-driven simulations.

The work presented in [226] proposes a cosimulation
framework of the smart grid including the modeling of the
power and communication networks. In [227], the same
cosimulation subject is addressed, but this time focused on
enabling direct load control in the smart grid. Issues such
as the data volume, timing questions, and reliability issues
are addressed. The PSS SINCAL and OPNET simulators
are combined to enable the real application of the proposed
simulation model in a German distribution network.

The large number of works related to microgrid and
smart grid simulation leads to a rather vast and complemen-
tary simulation focus in this field. Table 11 presents a com-
parison of the main top-level characteristics of some of the
most relevant simulators discussed in this paper.

As can be seen from Table 11, the main focus of micro-
grid and smart grid simulators is the study of the integration
of renewable energy generation in the system. Grid modeling
is almost always available, and DR is also being increasingly
addressed by most recent works. On the other hand, the sim-
ulation study of EVs, the role of the aggregator, and the mar-
ket interaction with the local grid are issues that, although
addressed by some simulators, still lack a significant wide
spread in terms of simulation modeling. The modeling and
simulation of agent learning capabilities is still very poor in
this domain, contrarily to what can be seen from the field
of electricity market simulation. It is a fact that most of the
least explored areas that are discussed here are addressed in
dedicated works, which does not mean these areas are not
being addressed. However, their integration in complete sim-
ulation frameworks is still showing to be taking its first steps.

6. Final Remarks and Future
Research Directions

This survey analyzed recent research (mostly from 2010) on
complex optimization and in the new paradigm of power

systems and the smart grid era. The main focus is centered
on (i) the optimization of power systems under the new
smart grid context, (ii) the discussion and analysis of the
application of computational intelligence approaches as
means to solve the complex optimization problems, and
(iii) the analysis of large-scale simulation of electricity mar-
kets and smart grid.

It started with a preliminary section with a brief explana-
tion of basic concepts in the new power systems paradigm.
After that is an overview of research work to tackle challenges
brought by the smart grid technologies. Then, it focused on
research related to energy resource management due to its
particularly complex case in this field. This study realized
that smart grid optimization is starting to adopt methods to
tackle sources of uncertainty in the mathematical models.
However, it is found that most of the work relies on tradi-
tional approaches and lacks ability to scale to real systems
(due to limited computer resources with the adopted
approaches). As a consequence, they are also limited in cov-
ering all sources of uncertainty and considering different
problem horizons.

The survey also analyzed CI due to its large potential to
tackle the challenges introduced early in this survey related
to smart grid optimization. In fact, CI encompasses some of
the most existing paradigms of computer sciences. Among
them, EC is one of the most prominent paradigms, with some
very mature algorithms applied to a wide variety of complex
optimization problems. In the energy domain, hybrid tech-
niques that make use of the three main paradigms of CI
(i.e., EC, ANN, and FS) are currently used as a tool to model
and solve some of the arising issues in power systems. The
evolution of complex energy systems is pushing into the
limits on the application of the most accepted exact solutions,
which in some cases are not suitable to deal with these new
complex scenarios. It is in this context that motivates the
use of CI as an efficient tool to deal with this challenging sce-
nario. However, despite the successful applications of CI in a
wide variety of problems, the portfolio of algorithms belong-
ing to CI has the drawback of being unable of guaranteeing
optimal solutions. The use of additional resources, such as
supercomputers or parallelism, open a window to refine the
application of CI, and it is expected that in the near future,
CI solutions will be sufficiently mature to be adopted as the
preferred solutions to power systems.

Due to its importance to the new paradigm of power sys-
tems, we analyzed electricity market simulators, which
together with smart grid optimization are also a complex case
of power systems studies. We realized in this study that those
simulators are valuable but still limited solutions, as they are
usually directed to specific market environments and present
limitations in coping with the interaction with external sys-
tems. This hardens the possibility for cosimulation of distinct
and complementary environments, such as the coexistence
and simultaneous participation of players in multiple elec-
tricity markets. Most of the existing simulators include some
agent learning capabilities, although these are almost entirely
exclusively directed to generation agents. Many of these sim-
ulators also consider grid constraints, making them suitable
for simulation under operators’ and regulators’ perspective.
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However, the study of the integration of distributed renew-
able generation, integration of DR, of electric vehicles, or
even of aggregators in the market, is still very poor. This defi-
ciency makes most of these simulators still unable to provide
a valuable support for the study of the evolution of the power
system in accommodating the targeted large amounts of
renewable generation and to incentivize the active participa-
tion from the consumers’ side.

Effective solutions should rapidly appear, so that current
and alternative market models can be easily simulated and
assessed using realistic models regarding not only electricity
markets but also the present and future penetration of diverse
types of energy resources. The main problems of the field
such as the massive integration of renewable energy sources
in electricity markets, the inadequate models to support the
active participation of consumers, and the consequent need
for modeling alternative and innovative market models that
enable accommodating new types of players, remain, there-
fore, unaddressed.

On the other hand, the quick emergence of the process of
smart grids is showing not to be entirely free of problems. A
large number of practical applications, although very expen-
sive, are enabling solutions that present serious limitations
and provide little return of investment. It is not clear that
the rolled-out equipment is sufficiently open and flexible to
be useful for the next generation of smart grid solutions that
should appear in the coming years. Additionally, although
important contributions are being achieved, these still
remain as solutions for partial problems. In highly dynamic
and codependent areas, such as power networks, smart grids,
and electricity markets, the cooperation between different
systems becomes essential in order to look at the global

problem as a whole. Most of the smart grid-related works
consist in practical implementations, highly industry driven,
and involving almost exclusively large stakeholders in the
field, such as regulators, operators, and utilities, resulting in
an almost complete focus on achieving fast ways to overcome
present problems. This is, however, leading to an absence of
pure research exploitation in the field, which is essential to
reaching innovative findings to enable the scientific break-
through that is required to provide advanced solutions, not
only to the current and most prominent problems that are
arising but also to future issues that are inevitable.

The focus of current microgrid and smart grid simulators
can be said to be quite diversified. The study of the integra-
tion of renewable energy generation in the system is the main
addressed question, while grid modeling is usually addressed,
and DR begins to be considered in large scale. On the other
hand, relevant issues such as the simulation of electric vehi-
cles, aggregator models, and the interaction with the market
are still not sufficiently addressed by current large-scale sim-
ulators. Additionally, most simulation approaches are based
on multiagent systems. Although this paradigm is showing
to be suitable for the task, it still presents several limitations,
as identified in [193]. The emergent or unexpected behavior
from autonomous agents in dynamic environments is one
of the main sources of uncertainty, as the same level of behav-
ior cannot be guaranteed under different settings, scenarios,
and contexts. The portability of agents is another issue, which
relates to agents’ physical integration. Although many
advances have been accomplished in recent years, issues with
standardization and difficulties of communication with dif-
ferent types of devices and resources are still proving to be
an arduous challenge to overcome. The scalability is another

Table 11: Comparison of the main characteristics of some of the most relevant microgrid and smart grid simulators.

Work
Demand
response

Distributed
generation

Electric
vehicles

Aggregators
Market

participation
Grid

modeling
Agent
learning

Other

[163] ++ ++ + ++ ++ + +
Real-time simulation and

emulation

[210] ++ ++ Storage

[211] ++ ++ + +
Microstorage and reserve

regulation

[213] ++ ++

[214] ++ ++ ++ Reduction of local imbalances

[215] ++ ++ +

[218] ++ ++ P2P trading

[221] ++ ++ + ++

[222] + ++ + Transactions with neighbors

[223] + ++ + ++
Ontologies for domain

knowledge

[224] ++ ++
Physical modeling of smart

grid components

[225] ++ + +

[226] + + ++
Co-simulation with

communication network

[227] ++ ++ ++
Co-simulation with

communication network
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important aspect in large-scale simulation. There are multi-
ple approaches devoted to guaranteeing the scalability of
the simulation environment; however, these are still always
dependent on the processing machines when it comes to
increasing the number of agents and integrated smart grids

or microgrids. Finally, the security component is another
important limitation when considering the real application
of agent-based systems or their simulation using real data.
Security in communications, data storage, and management
still need to be highly improved and standardized so as to

Table 12: Number of citations and h-index for selected countries ranked by total number of citations between 2010 and 2016 for the same
search term.

Affiliation country
Number of citations

h-index
2010 2011 2012 2013 2014 2015 2016 Total

United States 13 35 275 543 781 1232 1539 4481 35

China 5 31 208 439 610 762 1094 3214 31

Canada 48 22 260 390 521 685 941 2976 22

Italy 0 27 72 176 329 497 663 1756 27

Spain 4 22 111 196 348 452 600 1756 22

South Korea 1 21 142 219 296 426 552 1686 21

France 5 18 61 154 190 313 415 1164 18

Portugal 6 22 51 110 161 290 406 1038 22

United Kingdom 0 20 62 128 152 240 330 931 20

Germany 9 16 40 76 133 236 283 799 16

India 0 13 23 48 81 116 246 523 13

Japan 0 12 40 58 67 132 180 488 12

China, 674

United States, 629

Japan, 312

Germany, 248

Italy, 211

India, 207

South Korea, 205

Canada, 201

France, 185

Spain, 168

United Kingdom, 151

Portugal, 132

Figure 9: Documents produced between 2010 and 2016 by affiliation country (top 12) for search term (“energy resource management” OR
“energy management system”) in the SCOPUS database.
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enable the wide-scale application of agent-based simulators
in real environments.

Appendix

Statistic of recent research in the scope of
energy resource management

Additional information is given in this appendix regarding
statistics of recent research in scope of energy resource man-
agement. Figure 8 shows the number of documents produced
between 2010 and 2016 by affiliation country (top 12) for the
search term “energy resource management” OR “energy
management system” in the SCOPUS database. China-
affiliated researchers lead the number of documents pro-
duced so far with 674 documents, which combined with
United States, Japan, and Germany represent more than
50% of the documents produced in this research field. Portu-
gal appears in the 12th position of this list (6th European
country) with 132 research documents.

For the same search term, we also investigated the
research impact of the documents produced in this field, that
is, number of citations and citations per paper, which can be
interpreted as quality indicator. Table 12 shows the total
number of citations by country (the same as appears in
Figure 9), and Table 13 shows the citations per paper for
the same countries. It can be seen that United States, China,
and Canada are the research affiliations with the highest
impact translated by the total number of citations between
2010 and 2016 (51% of top 12 global citations). It is interest-
ing to remark that in spite of Japan ranking third in the total
number of documents (312, see Figure 9), the total number of
citations of those documents is only 488, which puts Japan as
the last in this list regarding the total number of citations,
with 1.6 citations per paper (see Table 13). Data suggests that

Canada and Spain perform quite well in the research impact
for the advances in the energy resource management, figur-
ing with 14.8 and 10.5 citations per paper, respectively, which
are significantly apart from the other countries in this list.
Portugal also presents very interesting impact results rank-
ing 5th in the citations per paper list, in spite of being in
the 12th position when ranked by number of documents
(see Table 13). Portugal is ahead of United Kingdom and
Germany, India, and Japan when seen by for the total cita-
tions (see Table 12). This data is accurate on how research
affiliations have performed in the past, namely, between
2010 and 2016, and according to SCOPUS database. But we
understand that highly cited articles related to the search
term of energy resource management, such as [11] (Canada),
[33] (Canada and USA), and [1] (Italy), contribute to
improve the country affiliation rank.
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