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Survey on Cooperative Perception in an Automotive
Context

Antoine Caillot, Safa Ouerghi, Pascal Vasseur, Rémi Boutteau, Yohan Dupuis

Abstract—The idea of cooperation has been introduced to self-
driving cars about a decade ago with the aim to reduce the
occlusion caused by other users or the scene. More recently,
the research efforts turned toward cooperative infrastructure
bringing a new kind of the point of view as well as more
processing power. This paper lies in this new field providing a
survey that addresses the cooperative environment. We provide
an overview of the architectures available to create such a
system as well as the challenges introduced by the cooperation.
Later, we review the main blocks involved in the perception:
localization, object detection & tracking, map generation. Each
block is reviewed under the prism of cooperation. We also
provide a Strengths, Weaknesses, Opportunities, and Threats
(SWOT) analysis of the cooperative perception as well as a list
of related scenarios alongside experimentations. Finally, we list
some related datasets before concluding our paper, underlining
the perspectives for further works.

Index Terms—Cooperation, Infrastructure, Vehicle, Localiza-
tion, Mapping, Object detection, Tracking.

I. INTRODUCTION

THE concept of driverless cars is one of the landmarks
of a futuristic world for generations. Already in 1939,

General Motors (GM) initiated the first attempt of making
this a reality by showcasing a radio piloted car [1]. Since
then, the development of this technology has never stopped
and is increasingly getting complicated over a wide range of
fields such as perception, decision making, and control. After
the pioneer works of GM, during the 1980s, Mercedes-Benz
showcased the first autonomous car with a vision-controlled
robotic van reaching a speed of 63 km/h on streets without
traffic. This led to the creation of international projects and
challenges such as the Defense Advanced Research Projects
Agency (DARPA) Grand Challenge in 2004 consisting of
autonomously navigating through the Mojave desert in 142
miles long course [2]. The next step was navigation in an
urban environment through normal traffic conditions. In 2007,
the DARPA announced the holding of the Urban Challenge
that simulates an urban environment with streets, traffic lights,
and human-driven vehicles. [3]. We can also note the VisLab
Intercontinental Autonomous Challenge (VIAC) challenge in
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2010 consisting of driving autonomously through a 13000
km long way from Parma in Italy to Shanghai in China [4].
Nowadays, several companies sell cars with the ability to
offer an autonomous driving experience such as Tesla [5] or
the Audi A8 [6]. The idea of cooperative vehicles quickly
appeared and in 2011 the grand Cooperative Driving Challenge
(GCDC) took place in the Netherlands in which vehicles
had to perform the best in a platoon [7], [8]. The GCDC
has been reiterated in 2016 to perform lane merging, driving
in an intersection as well as emergency vehicle handling
in a cooperative context [9]. Cooperation between vehicles
can be extended to infrastructure and thus led to the project
Providentia in Germany [10] consisting in creating a digital
twin of a road section generated from the sensors of an
infrastructure.

We assume that the purpose of perception is to represent
the elements around the ego-vehicle as well as its status in
the scene. We distinguish 3 subsections, the localization of
the ego-vehicle, the detection and tracking of other users and,
finally, the detection and representation of the environment
(mapping). Cooperation represents the use of data provided
by other agents to perform perception tasks or to refine their
results. Cooperation can be performed at three levels of data
sharing depending on whether the data is raw (early fusion),
preprocessed data (mid fusion), or processed data (late fusion).
Fig. 1 represents this pipeline with three steps and three
blocks (namely: Localization, Object Detection and Tracking
and Map Generation) performing the main perceptive tasks to
understand the scene. In the early fusion stage, we represented
the raw data fusion. In this stage, the data provided by the
sensor at a given timestamp is aggregated and associated with
a given transformation between sensors. The raw data come
from connected users which perform an early fusion. The raw
data from the ego vehicle may also be shared with other users.
In the second stage, we note two parallel tasks running. One
estimates the vehicle’s location in the environment from the
sensors and can also benefit from other users’ measurements
as an aid. The second task performs the detection and tracking
of objects in the scene. It can also benefit from the data
of connected users to densify the global perception of the
environment. Both together perform the heart of the perception
outputting feature level data shareable with other users. The
last stage aims to build a map, hence giving context to
the previously acquired data. It is based on the use of a
given prior map and can also be updated cooperatively by
connected users. This block diagram tries to briefly showcase
the classical scheme of a cooperative Vehicle-to-Everything
(V2X) perception pipeline. However, reality offers a broader
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range of architectures with their specificities and a certain
amount of challenges when realizing them, which is exposed
later in this survey. This paper aims to provide a state of the
art of cooperative perception methods for Vehicle-toVehicle
(V2V) and Vehicle-to-Vehicle (V2I). We have organized the
paper in an order that respects the data flow, divided in six
sections. Section II focuses on the creation of cooperative
systems from a general point of view. We particularly review
the challenges brought by cooperative systems, the possible
architectures, and the available communication facilities. We
also present a review of frequently used sensors along with
their performances in a non-cooperative environment to pro-
vide a reference as a basis for comparison. Section III lists the
cooperative methods of locating the ego-vehicle in the scene.
Section IV, for its part, reviews the methods of detection and
tracking of objects in the scene. Section V reviews the role
of maps and their usage in a cooperative context. In Section
VI, we propose to summarize the cited techniques through a
summary table and we propose a SWOT analysis. In section
VII we review the scenarios in which cooperation brings
real advantages illustrated by experimentations. Finally, We
list the datasets available to unlock work perspectives before
providing our conclusion in section VIII.

II. BASICS OF COOPERATION

The ways of creating cooperative perception systems are
multiple and require to assess several types of architecture.
Each design has advantages and disadvantages and will deeply
affect how the system will react as well as its strengths and
its weaknesses. Another unavoidable point of any cooperative
system is the communication facilities which define what data
can be shared as well as the formats available. These two
points will be tackled in this section but we will start by briefly
reviewing the results available in the non-cooperative methods
based on the same sensors widely used in the cooperative
counterpart to get comparison points.

A. Sensing Modalities

Sensors are the basics of any perception system as they
allow us to sense ourselves as well as the surrounding environ-
ment. Since the sensors we are going to discuss have already
been presented in numerous articles, we will rather focus on
their performances. In [11], Kuutti et al. brought a survey
introducing the sensors and comparing their performances
in a positioning context and therefore inspired the following
structure.

1) Global Navigation Satellite System: When it comes
to knowing our position, the satellite positioning system is
the most widely used. Initiated by the United States with
the Global Positioning System (GPS), several countries con-
tributed with new satellite constellations. The pure GPS has
an error of up to 20 meters [12] but several methods have
been used to refine these results. However, since the GPS has
an update rate up to 20 Hz, it is often associated with an
Inertial Measurement Unit (IMU) bringing a high updating
rate [13]. An association of a pure GPS with an IMU showed

they could achieve an error of 7.2 meters (Root Mean Square
(RMS)) after a path of 408 meters [14].

One of the problems encountered with pure GPS is its
first acquisition time. The Assisted GPS (AGPS) brings a
solution to this by using the cellular network to download
the almanacs and hence reducing the downloading time from
the slow satellite connection. However, it does not bring any
precision improvement. Unlike the AGPS, the Differential
GPS (DGPS) allows a reduction of the error up to 1 to 2
meters in the covered zones [15]. The arrival of the Real-Time
Kinematic GPS (RTK) achieved unprecedented performance
with an error of a few centimeters range [11]. Similarly to the
AGPS, both DGPS and RTK do use a terrestrial infrastructure
to download the satellites’ almanacs via an internet connection.
Although we do not consider Global Navigation Satellite
System (GNSS) technology as a cooperative system, it is one
as it features several vehicles (terrestrial users and satellites)
and infrastructures.

Nowadays, pure GPS had been replaced by the GNSS,
currently based on several satellite constellations such as the
American GPS, the Chinese BeiDou Navigation System, the
Russian Global Navigation Satellite System (GLONASS), the
Japanese Quasi-Zenith Satellite System (QZSS) and the Euro-
pean Galileo. Using the Real-time extended (RTX) technology,
the Root Mean Square Error (RMSE) achieves a 2.9 cm
accuracy [16].

2) Camera: Cameras can be used to detect and track
obstacles (pedestrians, cars, animals) as described by Arnold
et al. [17]. Formerly, these tasks were mostly based on a
geometric approach to the problem, but the machine learning
and deep learning methods have taken over the state-of-the-art.
Hence, nowadays, most efforts are based on machine learning
solutions.

Another field of application for cameras is trajectory esti-
mation, especially with visual odometry [18]. This technique
consists in recognizing key points in a frame and then finding
them in the following frames to estimate the displacement
of the camera. We can note that this method is sensitive to
error accumulation over time. This principle is extended in the
Simultaneous Mocalization And Mapping (SLAM) algorithms
with the difference that the perceived environment is kept to
create a map and estimate its position with an accuracy of
75 cm [19]. Nowadays, new methods featuring Deep Learning
bring even better results such as DeepSLAM proposed by Li et
al. in [20] which gives a mean translation RMSE drift of 5.58%
and a mean rotational RMSE drift of 2.47◦/100m alongside
a 100 m to 800 m path. Since visual odometry and SLAM are
based on the notion of optical flow, the arrival of event-driven
cameras with hardware adaptation offers promising results in
both localization and classification.

However, monocular systems pose a limitation on the esti-
mation of the position on the depth axis of the images. One
solution is to use two or more cameras to create a stereoscopic
vision system and to synchronously search in both cameras for
corresponding interest points. Another solution to get the depth
information from a monocular system is to use a deep learning
algorithm [21]. In addition to these techniques, Camera-Light
Detection and Ranging (LiDAR) or Camera-Radar coupling
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Fig. 1: Block diagram of the minimal perception pipeline in a vehicle (in black). We can distinguish three main stages able to
share the locally produced data (in green). Each of them can receive data (in blue) to perform their task cooperatively.

has been extensively investigated in the state of the art.
3) Radio Detection and Ranging (RADAR): Compared to

cameras, radars have a lower angular resolution. This char-
acteristic makes them less suitable for the classification of
perceived objects. However, their accuracy in distance and
speed measurements is much better than cameras and they are
therefore used in addition to the latter as in the Providentia
project [10].

The concept of visual odometry has been adapted to the
radar device. A high-speed rotating radar has allowed a
position estimation with an error of 12 meters despite the
distortions due to the rapid rotation [22]. Another system
using Short Range Radar (SRR) allowed an estimation with
an RMS error of 7.3 cm on the lateral axis and 37.7 cm on the
longitudinal axis in [23]. In the same way with the SLAM, an
experiment allowed a localization with a mean error of 9 cm
and a standard deviation of 38 cm [22]. Nevertheless, radars
can penetrate certain materials, notably those that compose the
ground. Thus, a method based on the mapping of underground
terrain has allowed a localization with a precision of 4 cm and
is presented in [24]. Despite advantages such as insensitivity to
weather conditions, the authors specify that further researches
are needed to create robust maps to multi-path effect or to
characterize reflections induced by vehicles chassis.

4) LiDAR: LiDARs (Light Detection And Ranging) can
be considered as an intermediary between radar and camera.
They provide a list of points in a three-dimension space.
These points are extracted from the angle formed by the
laser beam and the distance from the sensor and the impact.
To get the distance, there are several techniques. The most
common one is based on the Time of Flight (ToF) principle,

but we can cite other techniques such as the Frequency Modu-
lated Continuous-Wave (FMCW) or the Amplitude Modulated
Continuous-Wave (AMCW) [21]. Since the angular resolution
is thinner than the radar, we can classify detected objects
besides being able to locate them more accurately [25], [26].

In the same way as what we have seen with previous
sensors, the principles of visual odometry and SLAM can be
adapted to LiDAR sensors. In [27], a GPS, IMU and wheel
odometry have been combined within a SLAM framework that
allowed a localization estimation error between 10 and 30
cm. An improvement of the SLAM and an implementation
of dynamic maps allow an error of 9 cm in a dynamic
environment [28]. By projecting the ground on a grid invariant
to the laser perspective, a position estimation with an RMS
error of 3.3 cm on the longitudinal axis and 1.7 cm on the
lateral axis has been performed in [29].

Halfway between cameras and LiDARs, ToF cameras, made
of a sensor similar to cameras are based on measuring the
ToF taken bay the light to return to the sensor. They provide
depth images that can be related to point clouds generated by
the LiDARs. By using them in a visual odometry algorithm,
Chen et al. were able to estimate the trajectory with an absolute
trajectory error (ATE) of 78 cm on a 25-meter path [30].

5) Ultrasonic: The majority of vehicles sold today carry
ultrasonic sensors. The drawback of such sensors is that they
have a very low angular resolution that requires a too important
calculation cost. Also, they are highly sensitive to weather
conditions and the Doppler effect when objects are moving
fast and have a short-range [11]. These elements make this
sensor unsuitable for applications of obstacle localization and
classification.
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6) Radio Frequency (RF) based methods: Wireless commu-
nications are mandatory in a cooperative environment hosting
mobile users. However, they can be used as sensors, especially
to estimate the position of a receiver. Various sources of
radio signals can be used, such as the cellular network or
infrastructure made up of anchors, as in the case of Ultra Wide
Band (UWB) systems allowing centimeter-scale location [31].

Position estimation methods are generally based on mea-
suring the distance between the transmitter and the receiver.
Thus there are four main methods for position estimation :

• Received Signal Strength Indication (RSSI): RSSI based
method that consists of measuring the signal strength
to measure the distance between the transmitter and
the receiver based on the electromagnetic permeability
and the diffusion factors of the environment. A distance
measurement allows us to position ourselves on a circle
surrounding the transmitter base, but, as shown in Fig.
2, it is impossible to know where on this circle. To
eliminate the ambiguity, it is necessary to make at least
three measurements to find the common intersection of
the three circles.

• Time Of Arrival (TOA) and Time Difference Of Arrival
(TDOA): These methods that use the transmission delay
of a signal between its emission and its reception. Since
the speed of an electromagnetic wave is known, it is
possible to find the distance between the two devices. In
the same way as the RSSI-based method, at least three
measurements are necessary to estimate the position of
the receiver.

• Angle Of Arrival (AOA):, Unlike the other two methods,
AOA method, is based on measuring the angle formed by
the direction of the received signal. This angle associated
with the position of an anchor forms a straight line on
which the vehicle is located. With a second measurement
on another anchor, a second straight line is obtained
which intersects the first one at the position of the vehicle
as illustrated in Fig. 3.

• Fingerprint: This method is based on the specificity of
the environment and in particular on its capacity to alter
the strength of a signal and to reflect it (multi-path). The
aggregated information is compiled into a map allowing
us to match the received signals to a position.

Typical setup: The listed sensors succeed to achieve their
tasks but also suffer from shortcomings. Therefore, sensor
fusion is mandatory to get over the limitations of each one. We
already mentioned the fusion between a GNSS receiver and
an IMU to improve the localization performance. Similarly,
vehicles or infrastructures embed several types of sensors. A
usual setup for autonomous cars is constituted of GNSS - IMU
to achieve global localization with cameras, laser scanners or
RADARs for detection and tracking of elements in the scene
or as another source of localization information. Infrastructure
also embeds sensors such as cameras and laser scanners or
RADARs to locate users as seen in [9], [10].

B. Communication

In the previous section, we have reviewed the most used
sensor in an automotive context. In a cooperative context,
we want to share the generated data, raw or processed, with
other agents with the aim to densify the image of a covered
area. Thus, it is mandatory to discuss the communication
facilities available, which is the aim of this section. We will
focus on the ways to wrap the data they produce and how to
share them. Then, we present some of the most widely used
communication facilities. We also consider new approaches.

1) Wrapping and sharing the data: To share data, users
have to choose a specific network architecture. The most
common is the Vehicular Ad-hoc Network (VANET) archi-
tecture consisting in connecting every vehicle in the range
from each other [37]. In VANET, a channel is common to
every vehicle to coordinate the network. The data is shared
on different channels and routed by hopping on vehicles
between the sender and the receiver. To assess the physical
layer’s requirement in a VANET network, an amendment of
the IEEE 802.11 was added to create Wireless Access in
Vehicular Environments (WAVE) (IEEE 802.11p). In Europe,
the IEEE 802.11p standard was used to create the ITS-G5
standard [38]. In the same way, two communication protocols
are based on these two standards which are respectively the
Dedicated Short-Range Communication (DSRC) [39] and the
Cooperative-ITS (C-ITS) [38]. Table. II gives an overview of
both of the standards and their components compared to the
OSI model as given in [38], [39]. We can note the presence
of Basic Transport Protocol (BTP) and GeoNetwork which
are defined in [38] as well as WAVE Short Message Protocol
(WSMP), defined in [39] as facilities to achieve the network
and transport layer tasks. The specificity of the GeoNetwork
protocol is that it bases itself on the geographical position of
the agents to determine the path to follow for the data.

The information shared with DSRC protocol are wrapped in
Basic Safety Messages (BSM) [39] which convey information
about the emitting vehicle to avoid collisions. Similarly, C-ITS
introduces the Cooperative Awareness Messages (CAM) also
conveying vehicle information as the BSM but also introduces
the Distributed Environment Notification Messages (DENM)
which notify hazards on the road and which has a higher prior-
ity than the CAM [37]. CAM and DENM messages proposed
with C-ITS are used by [9] but the authors also needed to
use another type of message, the i-GAME Cooperative Lane
Change Message (iCLCM), to indicate to other vehicles their
willing to change lane. Authors in [25] used the Signal Phase
and Timing (SPaT) messages to anticipate the traffic light
changes and used the DSRC’s BSM to notify the presence of
detected vehicles by the infrastructure. To respond to these new
needs, messages such as SPaT but also the messages for road
topology data (MAP), for special vehicles (SRM, SSM), for
probe vehicle data (PVD, PDM), and in-vehicle information
(IVI) are being standardized [38].

Novel network architecture is used by Li et al. in [40]:
the Software-Defined Network (SDN). This solution is placed
between the VANET and the fully centralized network. The
common network is thereby replaced with centralized archi-
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Sensor Given data Environement’s impact Advantage Disadvantage Performances

GNSS Absolute
position Requires at least 4

satellites in sight of
view and is sensitive to
the canyoning effect in
urban environment.

The system doesn’t re-
quire an initial position
to give a result and can
be used in an unknown
environment.

The result is outputted
once per second and the
reliability of the signal
depends on the services
coverage.

Pure GPS: 20 m
Pure GPS + IMU: 7.2 m error
GNSS RTX: 2.9 cm

IMU Relative
position

The system is not af-
fected by the environ-
ment.

Ability to output a re-
sult at a higher fre-
quency than GNSS.

The error accumulate
as the time passes and
is affected by the pre-
cision. The higher the
precision is, the higher
the price is.

Estimated bellow 7.1 % Rela-
tive Error for MPU-9150 [32]

Radar Distance and
relative speed Affected by weather

conditions (mainly rain
but also snow, mist).

Long range perception
and hardware speed
measurement possible

Poor angular resolution
making object classifi-
cation harder

Angular accuracy: 0.5º to 5º;
Speed accuracy: 0.2ms−1;
Perception range: up to 250 m;
Sampling rate: up to 20 Hz

LiDAR Point cloud Affected by weather
conditions (mainly fog
but also rain).

Compromise between
radar and camera
allowing a physical
measure of the distance
but with a lower
angular resolution.

The sparseness of the
point cloud makes it
hard to difficult to sense
the texture.

Angular accuracy: 0.03º; rang-
ing accuracy: 10 cm to 2 cm;
Perception range: 80 m to 200
m; Sampling rate: up to 100 Hz

Camera Image Affected by weather
conditions and
brightness.

Sense color and tex-
tures facilitating seg-
mentation and classify-
ing.

Although it can be esti-
mated, there is no direct
depth measurement.

Highly dependent on the sensor
and associated optics.

Ultrasonic Distance from
obstacle

Affected by weather
conditions

Low cost sensor Small detection range
and high sensitivity to
Doppler effect

Maximum range: 6 m

TABLE I: Sensor comparison based on [12], [14], [16], [17], [33]–[36]

Application Other App. Layer Safety App. Layer

Pre-Application
CAM / DENM

BSM / SPaT / MAP / SRM / SSM

Transport TCP / UDP GeoNetwork / BTP

WSMPNetwork IPv6

Data Link ITS-G5

WAVEPhysical

TABLE II: Representation of the two protocols available in a
VANET architecture given through the OSI model [38], [39].
The the C-ITS defined standard are given in green while the
DSRC defined standard is given in blue. Both of them provide
adapted answers for vehicular communication on the physical
layer based on IEEE 802.11p as well as dedicated messages
to encapsulate the data between the application layer and the
transport layer.

tecture communicating with a controller which manages the
interconnections between the road users dynamically.

Another common architecture used nowadays is based on
the publisher / subscriber paradigm, mainly supported by the
Robot Operating System (ROS) [41] which is frequently used
in recent projects [40], [42]–[45]. The structure is based on
nodes communicating messages transmitted on topics. Each
node can be a publisher or a listener and they can be placed
on different devices on the same network. A master program
runs and plays the role of a dictionary and is contacted by
every node either to inform about the topic they publish on
or to know which node to listen to for a specific topic. Mes-
sages transiting through topics and are very various and can

contain coordinates, images, or point clouds. A new version
of ROS (ROS 2) is being developed with some improvements
regarding fleets of collaborative robots.

2) Communication facilities: A wide range of communica-
tion facilities has been proposed for tackling different needs.
We have already mentioned WAVE and ITS-G5 which are
based on Wireless Fidelity (Wi-Fi) (IEEE 802.11) but with a
given frequency of 5.8 GHz in Europe as well as in Japan
and 5.9 GHz in USA [46]. Authors of [47] used the IEEE
802.11p to establish a communication between infrastructure
and a vehicle and used DENM to transmit the control messages
and the position information. Chen et al. [26] similarly used
DSRC, and thus WAVE, to share regions of interest of LiDAR
point clouds and indicate sufficient speed. Kim et al. [42] used
Wi-Fi IEEE 802.11n and studied the impact of the delay on
the position estimation error.

Even if the majority of the current solutions are based on
IEEE 802.11 technology and its derivatives, other technologies
can be used such as the cellular network. The advantage of
it is its wider coverage and the already existing infrastructure
[48]. 5G cellular network is particularly promising thanks to
its features such as precise localization, high throughput, and
low latency. As described in [49], Proviendentia takes the
advantage of the 5G network to communicate between the
different elements (back-end station, Road Side Unit (RSU),
On-Board Unit (OBU)).

Emerging communication technologies are being explored
by authors of [40] who used the Millimeter Wave (mmWAVE)
[50] band to transmit the point cloud produced by the RSU
to the OBU and noted a significant data throughput increase.
Another technology studied is the Visible Light Communica-



JOURNAL OF IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. X, NO. X, XXX 20XX 6

tion (VLC) [51] which consists of using light-emitting diode
(LED) arrays (e.g. traffic lights, car lights) to display patterns.
VLC allows data rates up to 96 Mb/s but is sensitive to the
environment [11]. Finally, UWB which is used for localization
is capable of communication [52] with data rates tested up to
250 Mb/s in [53] and up to 1 Gb/s in [54]. However, to our
knowledge, UWB is not used for data sharing in the Intelligent
Transportation System (ITS) context.

C. Designs and challenges

Until now, we have reviewed the most used sensors used
in the automotive context as well as the communication
facilities available to share the generated data between agents.
However, when several users interact with each other, we
have to define the organization of the communication. We
distinguish two main approaches: the centralized and the
distributed ones. We discuss and compare these approaches
in the next lines. Nonetheless, no matter the chosen approach,
cooperation brings new challenges. We provide a review of
these challenges following the discussion on organization
approaches.

1) Centralized approach: The cooperative approach makes
it possible to overcome the problems of non-cooperative
approaches such as extending the horizon line. As an example,
multiple points of view can be used to reduce the effects of
obstructions while densifying the areas covered.

The centralized aspect of this approach concerns the pro-
cessing of the acquired data. In this mode of operation, users
share their acquisitions to a single point, for example, a road-
side processing unit. This server is in charge of processing
the data and extracting useful information from it, which
are then shared with users. The Providentia project is based
on this approach. Data acquired by the sensors placed on
gantries on a section of highway are transmitted to a roadside
processing unit, which creates a digital twin of the section
of road accessible to all [10]. Similarly, Lv et al. based their
work on a centralized approach in which four LiDARs monitor
an intersection and transmit their data to an RSU. Users are
detected, located and their information is then relayed to other
users [25]. The main disadvantage of this solution is that the
efficiency of this architecture relies mainly on the processing
power of the processing unit. In [55], Shi et al. proposed a
solution to the throughput drop of the service model of [56]
by introducing the cluster-based VANET which consists of
linking sub vehicular network into a larger one. Data collected
by each vehicle of a sub-network are filtered and stored on a
server to be broadcast under request which resulted in lower
network usage and hence reduced energy consumption.

2) Distributed approach: In contrast to the centralized ap-
proach, the data acquired by the users are directly transmitted
to all vehicles simultaneously. Therefore the processing of
these data is done onboard for each vehicle. A typical case
of decentralized management is presented in [9] by Xu et al.
through their participation in the GCDC of 2016. Each vehicle
was broadcasting its state and its maneuver intentions which
allowed the event anticipation and improved the car control.
However, the system used connected cars which are in range

with each other limiting the size of the network. Li et al.
proposed the use of the SDN in [40] to optimize the network
usage and set up mmWAVE communication to increase the
throughput allowing them to share raw LiDAR point clouds.
To solve the problem of disconnection in a sparse fleet, Zheng
et al. proposed in [57] the use of the cellular infrastructure to
create a heterogeneous network. The common point of these
applications is that data of every vehicle is processed onboard
on each vehicle. However, the coverage quality depends on
the size of the user fleet [58].

3) A comparison: As stated before, both centralized and
distributed approaches have several advantages and weak-
nesses, as shown in table III. We can observe that the
distributed approach is the most common because, nowa-
days, the majority of cooperative applications are based on
V2V approaches. However, applications based on centralized
approaches are increasingly present today, especially within
projects such as MEC-View [59], [60] and Providentia [10].

4) Challenges of cooperation: As we have seen, the ar-
chitecture of a cooperative system dramatically impacts the
efficiency of a cooperative system. However, this is not the
only challenging part of cooperative systems. As well as for
non-cooperative systems, difficulties brought by the type’s
diversity from the data acquired from the sensors exists as well
as the one from the calibration of the acquisition hardware.
But, to them, we have to add other challenges such as the
synchronization between the actors, the extreme difference of
point of view, or the matching of the receiving data with the
locally acquired one.

a) Multi-modality: Multi-modality is the one we are the
most aware of since it appeared in the early time of robotic
perception. Some projects avoided this problem such as Lv et
al. [25] who decided to solely use LiDARs as well Chen et
al. in [26] and Li et al. in [40].

Another project trend is to use the different sensors for an
application to merge the results to improve the reliability or
to enriches the properties of a detected item. As explained
by Hinz et al. [49], the Providentia project uses cameras
and radars to sense the environment. The choice of multi-
modality has been made to answer different needs which are
the detection and the classification, performed by the cameras,
and the distance and speed measurement, performed by the
radars. Later in this paper, we assess the way of merging
the streams of data given by the sensors with three different
approaches: early fusion, late fusion, and deep fusion.

Another way to solve the multi-modality and calibration
challenges is to process the data locally for each sensor and
share the output in the form of messages. The above-cited
project of Lv et al. [25] uses this principle to share the
detected vehicles facilitating the broadcasting with smaller
data. However, data association is a challenging topic that
must be performed afterward during the aggregation step. The
GCDC 2016 offers an answer based on the choice that users
broadcast their states and intentions only avoiding duplicate
data and assignment tasks. Xu et al. used in [9] a LiDAR
to perceive vehicle in front of the ego-vehicle on both lanes
by looking for clusters of points. As reported by the authors,
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• Reliable in case of failure of an element

• Available everywhere

• More data aggregated

• Global view of the scene

• More computing power

D
is

ad
va

nt
ag

es • Limited computing power

• Network less optimised (duplicated data)

• Synchronisation

• Synchronisation

• Converging network (Possible bottleneck effect)

• Latency between the sensor and the received information

TABLE III: Advantages and disadvantages observed between distributed and centralized architectures.

these clusters could be associated with the messages sent by
other vehicles on the map with their coordinates.

b) Calibration: Calibration is the other most known
challenge in the perception pipeline. The calibration in a
cooperative environment aims to determine the transformation
between the sensors to be able to merge acquired data from
several views at least at a given frame. If this task can
already be challenging on a single agent, it becomes more
laborious in a multi-mobile user environment. In this situation,
the transformation matrix between sensors constantly changes
as the vehicle moves in the scene, featuring long baselines.
Moreover, synchronization is arduous due to the absence of a
physical triggering line.

Fortunately, to calibrate an infrastructure, manual measures
can be sufficient and remain simple to conduct. Lv et al.
[25] calibrated their infrastructure by measuring the distance
between the four sensors placed at each corner of the inter-
sections.

Similarly, it is possible to semi-automate the calibration
process in the same way as the vision calibration with a
chessboard. Krammer et al. describe in [44] the calibration
procedure of the Providentia project: cameras have been
intrinsically calibrated using a chessboard and the radar was
calibrated by using the built-in tools based on the vanishing
point method. We can note that for a cooperative project, the
baselines encountered in the scenes are much wider than the
ones met locally on a vehicle. Thus, a similar application
might bring an answer to calibrate infrastructures with a large
baseline and very different point of view: the Motion Capture
(Mo-Cap) systems. Yang et al. give in [61] an example of
calibration with multiple Microsoft Kinects v2 synchronized
through Network Time Protocol (NTP). The system uses
a calibration wand to fix the common origin between the
cameras similarly to several other commercial systems (e.g.
Vicon, OptiTrack). Unfortunately, the use of a calibration wand
will encounter laser scanners or radars limits: their low angular
resolution. In [62], Xia et al. propose a state of art for global
calibration of non-overlapping cameras. Some of the presented
methods could apply to cooperative roadside infrastructures
such as the methods based on Structure From Motion (SFM)
or the visual measuring instruments consisting in locating
landmarks with a known position in the sensor data to recover
the position of the sensors.

However, none of these methods helps when mobile ac-
quisition platforms appear. Nowadays, the most widely used

method, in this case, relies on absolute coordinates and hence
relying on the pose estimation performance assessed in the
Perception part.

c) Synchronization: Synchronization is another major
challenge to consider. In a cooperative context, calibration
relies on the synchronization of the elements to determine the
transformation between the sensors, especially with the mobile
sensors. There are multiple sources of desynchronization such
as an offset between the clocks or the communication delays.
Although clocks are synchronized, we cannot ensure their
acquisition are triggered at the same moment which adds un-
certainty at the moment to merge the acquired data. Similarly,
different sampling rates require interpolation between acquired
or predicted data, also adding uncertainty.

In a local system such as a car or an infrastructure, physical
lines can be used to trigger and thus synchronize the sensors
together. However, this solution cannot be used in a coopera-
tive context since some users are mobile.

In [42], the authors showed that the delay induced by the
communication can significantly affect the position estimation
and thus estimate delays between the users to match the
timestamps of acquisition to reduce the delay’s impact.

Another solution can be found by using the NTP to syn-
chronize the users. This is the solution given by Yang et al.
in [61]. As we mentioned earlier, they use the NTP protocol
to synchronize their Kinect to perform their acquisitions. Nev-
ertheless, while adapting the NTP to the automotive network
seems to be a reasonable solution, it brings the question of
which user provides the clock. A natural answer could be
to use the infrastructure’s clock but we know by experience
that they are not always accurate (e.g. clock provided by the
Radio Data System (RDS) data from the local radios). Another
answer is to use the GPS timestamps and the triggering signal
they provide with a Coordinated Universal Time (UTC) format
offering a basic accuracy of 2µs [63], widely used nowadays.

Movement-based synchronization can also be an answer
but highly depends on the calibration stage and requires an
overlapping area in the acquired data.

d) Point of views: Point of views can be extremely
different in a scene featuring infrastructure and mobile users.
Thus ask the question on the fundamentally different looking
of a single object which can even be considered as non-
overlapping data. An example could be a sensor observing
the front left corner of a car and another sensor observing the
right back corner of the same car. The Mo-Cap systems can
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bring an answer to this section here as well by trying to match
the perceived object with a skeleton or a bounding box and
fitting them together.

Another question comes with the mix of mobile and static
users. In [64] Merriaux et al. show that LiDAR scans are af-
fected by the movement and demonstrate that the rectification
of the point cloud brings better results at the merging step. To
our knowledge, there is no study of a fixed laser scanner with
moving objects but we can suppose that some alteration can
be caused on the scanned moving structures.

e) Perception matching: Perception matching between
objects sensed by others and shared to the ego vehicle and
the object sensed by the local sensor is a typical challenge
of a cooperative system and is rarely assessed in the works
we have seen. A basic solution is to match the object with
their positions as in [9] but the noise induced by the sensors
can lead to errors. Similarly, we can use features describing a
vehicle. The position can indeed be a feature and we can add
to them more features. This is what Kim et al. do in [42] by
using the speed of the vehicle as the key feature to match the
shared data with the perceived objects.

With a more mathematical approach, Miller et al. propose
in [65] a solution based on the bipartite graphs which are
based on the graph theory. However, the limitation of the
bipartite graphs seems that the data can be associated with only
two participants. Thus, it can perfectly fit with a centralized
architecture with each participant fitting their observation with
the one stored by the infrastructure.

III. LOCALIZATION

As we have seen earlier, some non-cooperative methods
manage to reach the constraints of 0.3m given for in-lane
autonomous navigation [11], [66] in optimal conditions. How-
ever, non-cooperative approach is limited by sensor capabili-
ties such as the GPS coverage density significantly affecting its
performance as well as weather and light conditions affecting
optical sensors such as cameras and LiDARs. Indeed, the
multiplication of the estimations makes it possible to eliminate
the outliers as highlighted in [67]. Moreover, cooperative
systems allow the extension of covered areas and fields of
view, which again increases the reliability and precision of the
estimations [42], [68], [69]. The other interest of cooperation
in a localization context lies in the reduction of costs. The
improvement of the accuracy and reliability of a sensor is
generally proportional to its price. However, they can be
improved by multiplying the number of sensors distributed
over other users or infrastructures hence reducing the cost of
each vehicle [68].

The cooperation can be implemented at several levels of
estimation from the lowest level by sharing raw sensor results
to a higher level by sharing estimated coordinates. In the first
case, the objective is rather to extend the coverage of services
either because they are inaccessible (e.g. GPS in a tunnel) or
because the vehicle is not sufficiently equipped.

A. Low-level cooperative position estimation
One of the most commonly used examples of cooperative

position estimation today is GNSS. GNSS uses the multi-

Fig. 2: Illustration of the multilateration principle. A, B and C
represent users or infrastructure points with known locations.
The multilateration allow to find the location of the vehicle
from the distances rA, rB and rC and the positions of A, B
and C.

lateration technique to estimate the position of a point by
measuring the distance between it and several anchors as
explained for TDOA or TOA algorithms (Fig. 2). Here, GPS
satellites are used as anchors with their known positions since,
in addition to transmitting the time of transmission allowing
to estimate the distance between the satellite and the receiver,
they also transmit their orbital parameters (almanacs) allowing
to recalculate their position depending on the date.

1) Multilateration: Because of the effectiveness of multi-
lateration, this method has been adapted to other sensors from
other vehicles or infrastructures. In particular, Rohani et al. in
[70] made a simulation with a GPS and a measurement of the
distance between vehicles, obtaining an error ranging from 3.3
m to 6.75 m depending on the quality of communication with
other vehicles. The maximum error corresponds to the error of
the GPS alone which shows that, in this case, the cooperation
only adds a better accuracy to the GPS but does not degrade
it in case of bad conditions.

To reduce the impact of poor communication, it is possible
to apply weight on distance measurements. This is notably
what Ahammed et al. propose in [71] by applying weight on
the measurements depending on the distance between the two
entities leading to an average error of 2.38 m on a fleet of 10
vehicles. Similarly, Altoaimy et al. in [72] apply weight on
position estimates using the signal to noise ratio (SNR) on the
communication used to estimate the distance between entities.
The simulation of this scenario leads to errors of 85 cm with
20 vehicles and 25 cm with 200 vehicles.

Although these results are not accurate enough for stand-
alone navigation, it is important to note that they were obtained
using GPS only as a base. Therefore, the use of other tech-
nologies may lead to better results, such as the work by Del
Peral-Rosando in [73] using a TDOA algorithm on 5G cellular
network antennas estimating the position of the receiver with
an error between 20 cm and 25cm.

2) Triangulation: In the same way, as for multilateration,
triangulation makes possible the estimation of the position of a
receiver in an environment equipped with anchors. However,
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Fig. 3: Illustration of the triangulation principle. A and B
are users with a known location and are detected by the ego-
vehicle. The angles of detection αA and αB form two lines
intersecting at the position of the ego-vehicle.

where multilateration uses the measurement of the distance
between the receiver and the anchors, triangulation uses the
angle of incidence of the signal emitted by the anchors.
Triangulation is therefore the principle on which the AOA
approaches are based, as illustrated in Fig. 3.

However, the authors of [74] note that the multilateration
approach obtained better results at the middle of the network
but that the triangulation approach became more efficient at
the edges of the network. The authors, therefore, propose the
implementation of hybrid TDOA and AOA systems. Nev-
ertheless, triangulation-based approaches in the context of
cooperative vehicle localization are still rare today.

3) Geometric: Compared to the two previous approaches,
the geometric approach is one of the most direct methods. It
consists of positioning the users in the local coordinate system
of an observer (vehicle or infrastructure) having its global
position known. To locate the user in the local coordinate
system, several sensors can be used such as cameras, RADARs
or LiDARs.

In particular, Einseider et al. have implemented an alter-
native positioning system for underground parking lots [47].
The detection and localization of vehicles are done via cameras
placed at known positions. To estimate the position of vehicles
in the fields of view of the cameras, the images are segmented
into zones of 1 meter. The device set up by the authors allows
detecting a vehicle at 20 m with a maximum error of 80cm.
This methodology takes advantage of the geometric topology
and the small distances of the scene but does not apply to
larger baselines. To overcome this problem of scenes with
large distances of the Providentia project, RADARs have been
added to the cameras. This device allows the detection and
localization of vehicles over distances up to 200 m with a
longitudinal RMSE of 3.27 m and a lateral RMSE of 0.53 m
[44].

With a smaller scene, Lv et al. proposed an approach based
on LiDARs at the four corners of an intersection. Vehicles
are identified in point clouds by clustering points having a
distance between them below a fixed threshold. The position
extracted from this point cloud corresponds to the nearest
point of the laser scanner. In [69], Héry et al. suggest a
solution to extract the position of the vehicle from these

point clouds. They distinguish two types of clusters, those
shaped like an L common in lateral detection and those shaped
like a C for longitudinal detection. In addition to these two
types of clusters, two cooperation formulations are presented.
The first one corresponds to the one where the ego-vehicle
is equipped with sensors estimating the pose of a vehicle
with a known position. The second one corresponds to the
formulation where the ego vehicle has its position estimated
by the other vehicle having its position known and being
equipped with the sensors. Héry et al. observe that the second
formulation, corresponding to the case where the ego-vehicle
position is estimated by the vehicle knowing its position and
being equipped with sensors to estimate the pose between the
two vehicles, obtains better results than the first formulation.
This lies in the case of infrastructures where the positions of
the sensors are precisely known. Besides, L-shaped clusters
provide, in both formulations, results with better accuracy
and consistency, underlining the importance of the structural
perception of the vehicle.

B. High-level cooperative position estimation
As we have shown, low-level-oriented approaches are much

closer to the hardware. In the case of high-level approaches,
they use estimates of already established positions as a basis
for refining them. One of the most popular methods for
position estimation applications is based on the Extended
Kalman Filter (EKF). This approach has been chosen by Miller
et al. in [65] to enrich the position estimate obtained by
a GNSS system with position estimates from other vehicles
and integrating these data through the use of an EKF with a
resulting standard deviation of 0.02m.

However, despite their efficiency in terms of calculation
cost, EKFs are only applicable to locally linear signals with
noise following a Gaussian distribution. In other words, the
error of position estimation must be contained in a Gaussian
distribution and thus won’t allow jumps (which can appear in
urban canyoning conditions). Outside these conditions, they
are no longer efficient and other methods such as particle
filters are preferred. This is what Huang and Wu have chosen
in [75] by proposing a cooperative framework based on this
approach and the Interacting Multiple Model (IMM) adapted
to cooperation. The authors simulate the use of the simple
Particle Filter (PF) and obtain an RMS error of 0.2146 m/m
traveled on the x-axis and 0.2135 m/m on the y-axis whereas
with the IMM-PF filter they obtain 0.1249 m/m and 0.1193
m/m on the x-axis and y-axis respectively.

While Miller et al. [65] use an approach based on graph
theory and in particular bipartite graphs to associate perceived
vehicles with the one from the real world, Gulati et al. use
bipartite graphs in the form of factor graphs for localization
[68], [76]. In [68], the authors present a formulation of the co-
operative localization problem by setting constraints between
vehicles according to their distance to correct measurement
errors and obtain better results than those obtained using an
EKF. The authors reiterate in [76] by integrating data from
infrastructures and exceed the previous results.

The use of the high-level approach based on optimiza-
tion and filtering methods brings several advantages. The
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first one is that this approach is compatible with low-level
approaches. Indeed, low-level approaches give as output a
position estimation whereas high-level approaches take as
input position estimates to refine them. Consequently, the
high-level approaches operate as a brick placed to improve
those used for position estimation. However, this advantage of
easy integration into an existing system underlines a major
drawback: high-level approaches require basic components
to obtain a first position estimation and therefore cannot be
used alone. Another advantage of using this approach is that
the processing and size of the data required are reduced
significantly facilitating the communication between users.
This is indeed the observation of Gulati et al. in [68], [76]
via the use of factor graphs.

We could distinguish 3 methods mainly used: EKF, Particle
Filter, and Graph-based methods. Thus we introduced an
example of each to understand the available methods with
their advantages as well as their limitations. However, Gao
et al. gather a lot more of these methods in a cooperative
context in their book [67] diving into mathematical details as
well as the diversity of variations of each method which is
beyond the scope of this paper.

C. Conclusion

In Table IV, we note that several methods solely offer a
better precision compared to the non-cooperative methods.
Generally, cooperative localization optimizes the output of the
standalone position estimation methods, refining the estimation
through extra data usage. However, a poor quality localization
ability of an agent might dramatically affect the overall results.
It also offers an alternative source of localization for GNSS
denied environments, especially from well-located measure
points such as infrastructures.

IV. OBJECT DETECTION AND TRACKING

To navigate in an environment, it is necessary to be able to
detect obstacles in the scene and to track them. Today, most
approaches are based on non-cooperative detection algorithms.
This is mainly due to the limitations of communication meth-
ods. In this section, we will review the different approaches to
perform detection in a cooperative context and the available
tracking methods.

A. Detection and classification

The first step before classifying objects is the extraction of
areas of interest from the data produced by the sensors. Here,
we want to isolate the mobile objects from the background.
This is what Lv et al. do in [25] where after subtracting the
background, group the remaining points into clusters. These
clusters are delimited by batches of points having a distance to
each other below a threshold set beforehand. Another strategy
was adopted by Chen et al. in [26] where the shared data
correspond to areas of interest depending on the position of
the vehicles such as the part of the scene scanned by two
vehicles. The more precise extraction of objects is performed
during the detection phase.

The trend of point cloud raw data sharing is very recent.
This is because communication between users has been limited
for a long time. For instance, the majority of cooperative
systems perform the detection and classification of objects in a
scene locally. The extracted data is often enriched before being
shared. A typical example is the Providentia project [44] where
cameras provide a video stream sent into a neural network
based on the You Only Look Once Version 3 (YOLOv3)
architecture to detect vehicles in the images. The data of
the vehicles thus classified are enriched thanks to RADAR
sensors allowing a better estimation of their position in the
scene. Similarly, Lv et al. [25] based their solution on the
same concept where the user’s characteristics are locally
extracted and where the classification, using the random forest
algorithm, is done locally. The corresponding data are then
centralized to facilitate user tracking.

Nowadays, the majority of detection and classification meth-
ods are based on algorithms based on a neural network-
oriented architecture. Grigorescu et al. in [77] and Arnold et al.
in [17] provides an overview of methods used to detect and
classify other users in a non-cooperative manner. Although
the details of these methods are beyond the scope of this
paper, Arnold et al. offer a review of data fusion methods,
thus providing insight into the problem of multi-modality and
the management of several streams. Based on the work of
Chen et al. [78], the authors raise 3 fusion schemes :

Early Fusion:
The data streams are merged and formatted before
passing through the neural network. As an example,
color data can be added to point clouds from cam-
eras. The disadvantage of this solution is that it is
not robust to stream failure.

Late fusion:
This is the classic scheme we have seen: the data are
processed locally and separately for each modality
and then the results are merged only at the end.
Although it does not benefit as much from the
cooperation in terms of classification, it offers the
best performance.

Mid fusion:
Also named as deep fusion, the raw data are sent to
the neural network, which will handle the association
of the data by itself. Although it is sensitive to
the absence of modality, it takes full advantage of
cooperation and offers better results than the previous
methods. It is with this scheme that the work of Chen
et al. [26] can be associated.

These three approaches were initially formulated for the local
processing on the vehicle but can easily be extrapolated
into a cooperative context. Therefore, we can associate these
three strategies to the notion of a stream that can contain
point clouds, images, or the characteristics of the detected
users from any source. However, this extrapolation has a
cost in terms of complexity because the sensors have to be
calibrated dynamically from each other. Since the systems are
independent of each other, the extrinsic parameters between
the sensors are composed of translation, rotation, and time-
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Paper Category Methodology Metrics Results Simulation /
Experiment

Cooperative
style Notes

[70] Multilateration
(Low-Level)

GPS Multilatera-
tion

Error 3.3 m to 6.75 m Simulation V2V

[71] Multilateration
(Low-Level)

GPS weighted
Multilateration
(based on
distance)

Average error 2.38 m Simulation V2V With a fleet of 10
vehicles.

[72] Multilateration
(Low-Level)

GPS weighted
Multilateration
(based on SNR)

Error 85 cm to 25 cm Simulation V2V With a fleet of 20
vehicles and an-
other of 200.

[73] Multilateration
(Low-Level)

TDOA with 5G
antennas

Error 20 cm to 25 cm Simulation V2I

[47] Geometric (Low-
Level)

Image segmenta-
tion

Error 80 cm Experimental V2I At 20 m

[69] Geometric (Low-
Level)

Sensor fusion
known → unknown Mean error x: 11 cm, y: 36

cm, h: 39 cm
Experimental V2V

[69] Geometric (Low-
Level)

Sensor fusion
unknown → known Mean error x: 27 cm, y: 116

cm, h: 124 cm
Experimental V2V

[75] Optimisation
(High-Level)

Particle Filter RMSE x: 0.2146, y:
0.2135 m/m
traveled

Simulation V2V

[75] Optimisation
(High-Level)

IMM-PF RMSE x: 0.1249, y:
0.1193 m/m
traveled

Simulation V2V

[65] Optimisation
(High-Level)

EKF based opti-
misation

Standard
deviation

0.02 m Both V2V

[68] Optimisation
(High-Level)

Factor Graph combined RMSE See original pub-
lication for graph

Simulation V2I Improvement
compared to
EKF

[76] Optimisation
(High-Level)

Factor Graph decrease RMSE 10.54 % Simulation V2I Compared to
EKF with 4
vehicles for 1000
iterations

TABLE IV: Recapitulative table of the reviewed localization works.

shift parameters.
The authors of [26] however proposed an extrapolation of

the deep fusion scheme in [79] in which the raw data from
a laser scanner start being processed in a neural network.
The authors tried using the feature at a different level: the
voxel feature level and the spatial feature level. The first one
shares a 3D grid containing the result of the VoxelNET neural
network while the other one shares a higher-level feature
from the fusion of spatial features maps. While the first one
generates a large amount of data, the spatial feature level is
sparser, thus lighter, facilitating the exchanges in a bandwidth-
limited environment. Similarly, Marvasti et al. in [80] propose
a method to share deep features from an intermediary layer
of a neural network. However, such an approach brings the
question of standardization of the perception pipeline among
every user especially on the evolution of the neural network
in charge of detection as well as the diversity of models from
the different suppliers.

B. Tracking

The aim of tracking users is to follow them as long
as possible in the scene. Several methods are available to
tackle tracking tasks, enumerated in [81] by Datondji et al.,
such as region-based, contour-based, feature-based, or model-
based methods. Datondji et al. also list two types of tracking
algorithms: matching-based and Bayesian-based algorithms.
However, this can be a challenging task because of several

parameters such as occlusions, change of perception (e.g.
appearance, distortion, etc.), or environment changes (e.g.
lighting, color change, weather change, etc.). Cooperation
brings an answer to these difficulties by bringing various points
of view.

In [82], authors underline that localization tasks and tracking
tasks can be bounded in Simultaneous Localization And Track-
ing (SLAT). Authors propose to use a localization method
based on the footprints of radio transceivers based on the Om-
nipresent Signals of Opportunity (SOOP) method. Connected
vehicles seek targets by exterminating the radio reflection of
illuminated targets. They propose a SLAT method based on
the derivation of Fisher Information Matrix (FIM) to locate
users and use a hybrid distributed algorithm based on Belief
Propagation (BP) to track them and obtain better results than
EKF based methods. The tracking method used is based on
the region matching method. Similarly, Miller et al. used in
[65] a region matching method based on bipartite graphs to
track vehicles in a V2V context.

In Providentia project [44], [49], authors based their track-
ing methods using Gaussian Mixture Probability Hypothesis
Density (GMPHD). Similarly, Chen et al. in [83] used a
GMPHD based method to extract the tracks of multiple vehi-
cles. The authors perform a SLAT using a Bayes inference-
based algorithm optimizing relative pose estimation and fusing
the matched tracks using fast covariance intersection based
on information theory (IT-FCI). These methods are based
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on region methods alongside Bayesian-based algorithms. An
answer to the resolution of complex scenes is provided by
Huang and Wu in [75]. The authors rely on cooperation and
on a method using particle filters to locate vehicles more
precisely, thus reducing ambiguities when the vehicles are very
close to each other.

Kim et al. in [42], [43] uses the speed of the vehicles as a
feature to identify the user and to track them, thus performing
a feature-based tracking with a matching algorithm. Lv et al.
in [25] used the corner of the detected car the closest to the
sensor and applied the Global Nearest Neighbor (GNN) [84]
method to track the vehicles. This approach lies in the use of
a contour-based method with a matching algorithm.

In [85], authors propose a set of metrics available for
tracking tasks performance evaluation which is nowadays
frequently used. However, in a cooperative context, we have
not found works that bring a quantitative evaluation of their
tracking methods. This is mainly caused by the fact that, in
cooperative works, a tracking task is just a tool but not at the
center of the research efforts.

C. Conclusion

The multiplication of the points of view offers a significant
advantage to overcome the limitations of the sensors or to
reduce the effects of the changes of the scene condition. In
Table V, we provide a summary of the solutions given for
user detection. Tracking on the other hand seems to be put
aside since the cooperative tracking methods used are often
only a means to obtain other results on other parts of the
perception pipeline. We also observe that the field of detection
and tracking in a cooperative domain benefits from very little
research effort. We believe that this lack of experimentation in
a cooperative context is due to the bandwidth requirements in
communication as well as the sensitivity to desynchronization
and pose estimation errors.

V. MAP GENERATION

In the previous sections, we have reviewed the ego-
localization methods as well as the detection and tracking
methods of agents in a given scene. Ego-localization and
detected and tracked objects can be merged in a map. Thus,
the map can be built cooperatively by aggregating information
from multiple agents. Nowadays, commercial solutions are
available to bring a cooperative aspect to the maps available
in navigation aids. This is notably the case for crowdsourcing-
based solutions such as TomTom, HERE, Waze, etc.

Hence, it is clear that the goal of cooperative mapping used
today is to optimize routes and adapt vehicle navigation by
anticipating the different events on the user’s route. These
objectives can be taken further, in particular, to predict trajec-
tories in real-time thanks to lower latency and better accuracy
of shared data.

In this section, we review the use of maps in a cooperative
context and the different formats available.

A. Geometric maps

Geometric maps are made up of vector elements describing
the environment. This method is used in applications such
as OpenStreetMaps. However, in a cooperative context, data
from services like the one mentioned above are not precise
enough, which has led to the creation of maps with better
accuracy. In [86], the authors present Enhanced Maps (Emap)
that provide lane level accuracy maps. To achieve this goal,
Bétaille et al. propose to add a set of circles and clothoids to
the traditional vertices. Also in view to improve map accuracy,
Bender et al. present in [87] the lanelets. The lanelets take the
form of vertices representing the left and right sides of a traffic
lane. These vertices also have an enhanced topological role by
representing the links between places and the distance between
them.

The use of geometrical maps in a cooperative applica-
tion has a supporting role in which the information shared
between users is integrated. Xu et al., in their review of
their participation in the 2016 GCDC [9], had to recreate a
high-definition map to enrich the OpenStreetMap plots before
using it. Thanks to these high-definition maps, it has become
possible to precisely place elements in real-time such as other
users or danger zones to be avoided and thus to navigate in
a context of cooperative driving in several scenarios that we
will present later. Similarly, in the Providentia project, the
autobahn section has been modeled beforehand with great
precision, creating a digital twin of the scene [44]. Here,
the infrastructure shares the position of each of the detected
vehicles to generate a dynamic map. Finally, the team of Lv
et al. [25] didn’t use maps but has rather relied on sharing
information in real-time that can be used to enrich geometric
maps such as the position of vehicles, pedestrians or even
information on the status of traffic lights.

Through these applications, a global pattern emerges: the
shared information is used to enrich the map rather than to
modify it in depth. Cooperative geometric maps are therefore
made up of a succession of layers. The base layer represents
the terrain and is almost invariable. It can be created from
national institutes or directly extracted from sensors. Then,
the higher the layer level is, the shorter the lifespan of the
elements of this layer is. This layer organization has been
formalized under the name Local Dynamic Maps (LDM) by
European Telecommunications Standards Institute (ETSI) [88]
and takes the format of layers with varying validity periods
and offers an implementation framework. The LDM is thus
defined as 4 layers :

• Type 1: Static data (Roads, applied speeds, infrastructure-
setc.)

• Type 2: Long term transient data (Work zone, temporary
speed change)

• Type 3: Medium-term transient data (weather situation,
parked vehicles, traffic jams, etc.)

• Type 4: short term transient data (vehicles on the road,
traffic lights, etc.)

Each layer is updated with a frequency depending on the
duration of validity of the information. Typically, the Type
4 Layer is updated in real-time.
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Paper Category Methodology Metrics Results Simulation /
Experiment

Cooperative
style Notes

[25] Raw data based
detection

Random Forest Detection Rate 95.5 % Experimental V2I No data given
for the tracking
performances

[26], [79] Raw data fusion
based detection

CNN based net-
work

Average
Precision

Near detection:
77.46 %, far de-
tection 71.42 %

Experimental
(Datasets)

V2V With KITTI

[79] Voxel feature fu-
sion detection

CNN based net-
work

Average
Precision

Near detection:
77.46 %, far de-
tection 58.27 %

Experimental
(Datasets)

V2V With KITTI

[79] Spatial feature
fusion detection

CNN based net-
work

Average
Precision

Near detection:
50 %, far detec-
tion 57.14 %

Experimental
(Datasets)

V2V With KITTI

[80] Deep feature fu-
sion detection

CNN based net-
work

Detection of un-
detected vehicle

Up to 30 % Simulation
(CARLA)

V2V Detection of un-
detected vehicle
by non coopera-
tive algorithm

[47] Geometric
Tracking

Image segmenta-
tion

Error 80 cm Experimental V2I At 20 m

[44] Geometric
Tracking

Sensor fusion RMSE lat: 3.27 m lon:
0.53 m

Experimental V2I At up to 200 m

TABLE V: Recapitulative table of the reviewed cooperative detection and tracking works.

Fig. 4: Occupancy grid example. Grey boxes represent a 50
% probability of occupancy if the area is unknown. The white
boxes correspond to the zones identified as free and the black
boxes correspond to the zones occupied by an obstacle.

B. Volumetric maps

Volumetric maps are, unlike geometric maps, atomic ele-
ments representing the presence or absence of an obstacle
that form a grid with squares contiguous to each other or
scattered arbitrarily. The advantage of volumetric maps lies
in the fact that they can be easily created from sensor data
and therefore represent the immediate environment at the time
of data acquisition. Occupancy grids fall into volumetric maps
category forming a 2-dimensional grid, or matrix, similar to an
image [89]. Indeed, a greyscale image can be taken where each
pixel corresponds to an area of the environment and where the
greyscale represents the probability that the area corresponding
to the pixel contains an obstacle as illustrated in Fig. 4. These
maps have the advantage that they can be combined very
easily. The authors of [90] have thus shown that they were able

to associate the maps of several robots to obtain a complete
map of the environment. The goal of associating them is to find
the transformation matrix between perception systems. In the
case of 2D occupation grids, the transformation matrix Tx,y,θ

contains three parameters: translation on the x-axis, translation
on the y-axis and rotation by an angle θ. Hence the authors
seek a matrix Tx,y,θ that maximizes the similarity between two
overlapping maps also called a point registration algorithm.

Kim et al. propose in [42], [43] to enrich their map by
taking pictures with cameras positioned on several vehicles.
The images captured in this way are distorted to be laid on the
ground, providing a satellite view of the scene. To obtain this
result, they applied the Inverse Perspective Mapping (IPM)
method. When the camera acquires an image, the scene is
projected onto the sensor plane. TheIPM is based on the
inverse principle: the 2D points of the sensor plane (stored
in an image) are projected back into a 3D space, assuming
that each of the points is on a flat surface (e.g. the road). The
authors of [42], [43] set the plane to Z = 0 and used other
sensors to remove the points that do not belong to this plane.
Thus, by knowing the position of the different vehicles and, by
extension, the position of the cameras, it is possible to obtain
a map enriched with a satellite view cooperatively.

Although this type of map has the advantage of being simple
to use and share, it has the disadvantage of becoming heavier
with the size of the environment being explored invariably,
whether the areas are interesting or not. To overcome this prob-
lem, the notion of quadtree can be introduced. The quadtree
divides the map into coarse blocks which, if they contain
useful details, can be subdivided into sub-blocks which, in
the same way, can be divided into sub-sub-blocks.

The authors of [91] used the quadtree-based method to
store a grid of occupancy generated by LiDAR type sensors.
Although they note that the method is more computationally
intensive, it shows its advantage by dividing up to 10.9 the
storage required for an equal area and accuracy. However, to
the best of our knowledge, there are no methods for merging
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maps in quadtree format.
Until now, we have mainly been talking about two-

dimensional maps, both geometric and volumetric maps. How-
ever, three-dimensional maps are becoming more and more
popular thanks to sensors that provide information in three
dimensions rather than just on one plane. 3D maps play an
active role in navigation, especially in complex environments
[92], and provide additional elements that make it easier to
combine several maps.

Similarly, the 2D occupancy grids are also available in a 3D
version consisting of voxels (volumetric elements). However,
just as 2D maps tend to be too large, 3D maps are even
more affected by this problem due to the additional axis. The
answer to this problem is similar to that of two-axis maps: the
octree. Hornung et al. present in [93] the OctoMap framework
allowing the management of maps and their updates based on
a probabilistic approach. Unlike the quadtree maps, the octree
maps have benefited from a better interest in the context of
cooperation. We can notably mention Drwiega’s work in [94]
proposing a method for associating several maps in the Octree
format. To estimate the transformation matrix between the
respective coordinate reference of the two maps, the author
translates the Octree map into a point cloud and then applies
the Iterative Closest Point (ICP) algorithm to it.

This brings us to maps based on point clouds. The volu-
metric maps we have seen so far represent the first steps in
navigation in the context of mobile robotics that can be co-
operative. However, in the context of the autonomous vehicle,
point cloud-based maps are more widespread. Point cloud-
based maps have the advantage of representing each impact
(and therefore obstacle) in Cartesian coordinates as well as the
raw data from laser scanners like sensors [95]. These maps
contain both fixed elements (the background, Type 1 in the
LDM reference frame) and highly dynamic elements (Type 4
in the LDM reference frame). As a result, the static part of
the map is occluded by the dynamic elements of the scene.
One solution to reduce the impact of occlusion is cooperation,
where the map can be generated by several sensors offering
several points of view. This is notably what Bosch’s teams
chose in the MEC-view project [59], [60] where a set of
cameras and LiDARs were placed on lampposts to generate
an High Definition (HD) map and offer a view free of blind
spots to autonomous vehicles updating in real-time. In [25],
Lv et al. proposed a solution to extract the background from
the raw scans by aggregating several frames and then applying
thresholding to the voxels resulting from the rasterization of
the accumulated point clouds.

In the same way, as for occupation grids (2D or 3D), the
key point allowing the cooperation and thus the association
of point cloud maps is the estimation of the transformation
matrix between the respective referential of each point cloud.
As explained by Yang et al. in [96], [97], the point set
registration algorithms are particularly suitable for this task.
Indeed, their objective is to find the transformation matrix
minimizing the distances between a set of points located
on overlapping acquisition parts. Note that sensors, and thus
point clouds, by convention, are measured in metric systems
which implies that scaling is generally not necessary (if it is

required, it would be specified by the manufacturer). Thus,
the desired transformation is then qualified as rigid in which
the transformation matrix is composed only of the translation
matrix and the rotation matrix. The most popular algorithm
in mobile robotics is the ICP algorithm that looks for the
minimum distance between corresponding points in the two-
point clouds by using the method of least squares. However,
this method is particularly sensitive to outliers. Another chal-
lenge appears with the lengthening of the baseline which
is the increase of the disparity of the points. To overcome
this problem, Wu et al. propose in [98] a semi-automatic
solution to merge sparse point clouds called PA-ICP. PA-
ICP is based on the recognition of corners which must be
paired with their corresponding corners in every point cloud.
Finally, in the context of the autonomous vehicle, it is vital
to know the confidence index of the generated map and thus
the quality of the point cloud association. Yang et al. propose
in [96] TEASER, a point set registration algorithm capable of
indicating its confidence index and being robust to outliers.

As we have written, maps based on point clouds contain
both static and dynamic elements. The dynamic elements
can therefore be extracted from the latter to be processed to
recognize their role in the scene and track them if necessary.

C. Conclusion

To conclude this section about mapping, we can observe that
cooperative mapping serves the enrichment of the context in
which vehicles moves. Thanks to the larger memory available
on the infrastructure it is possible to store and thus share heavy
HD maps. As we will see in the next section, the multiplication
of the point of view reduces the occlusions and improve the
reliability of the detection and tracking. These detected objects
can be placed on the map following the LDM model and
then shared with the connected vehicles to help the trajectory
planning stage.

VI. REVIEW AND SUMMARY

In the previous sections, we have reviewed the three main
blocks of the perception pipeline in a cooperative context:
localization, mapping, and object detection and tracking. In
addition to this, we reviewed the architectures available for
cooperative systems along with their advantages and draw-
backs. We also observed the challenges brought by cooperative
solutions as well as the available network facilities. This
information allows us to establish a SWOT and thus obtain
a clear view of the state of the art of cooperative perception
and more particularly of those using an infrastructure. This
SWOT is available in Table VI.

Through these sections, we have also reviewed several
solutions that make use of cooperation for certain blocks of
perception. For the sake of clarity, Table VII provides a review
of them.

VII. COOPERATIVE PERCEPTION IN REAL LIFE

So far, we have reviewed the available data to perform
perception, the methods to share them as well as the different
approaches and challenges related to cooperation. We also
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Strenghts:
• More precise localisation in environment with GNSS

• Localisation possible in GNSS denied environment

• No drift in Localisation

• V2X Mapping

• Better reliability

• Cost reduction

• Less occlusion

• Real-Time update (solely depending on the transfer latency and
computation time)

• Larger field of view

• Detection of unconnected User

Weaknesses:
• Similar precision of pose estimation with non cooperative system

• Dependent to the number of users

• Computation expensive

• High throughput required

• Latency

Opportunities:
• Raw sensor data fusion

• Various point of view of the scene

• V2I Map generation

• V2I Object management

• Infrastructure always available and calibrated

• Further Trajectory planning

• Anticipation of dangers

• Infrastructure offers more storage and can delete duplicate parts
allowing storing HD maps

• Better Bird Eyes View map creation

• Existing matching methods

Threats:
• Higher cost for the infrastructure

• Lack of normalisation between constructors

• Consistency of the accuracy of the pose estimation between the
sensors

• Detection and classification accuracy of each participant

• Synchronisation between participants

• Data association of a single object with a very different point of view.

• Missing stream or data management

• Data management between mobile and fixed users

TABLE VI: Cooperative Perception - SWOT

reviewed three main tasks of perception using cooperation
namely, ego-localization, detection and tracking, and, finally,
map generation. This section aims to assess the scenarios in
which cooperative perception proposes a significant impact as
well as the related experimentations. We will close this section
with a presentation of datasets.

A. scenarios & Experiments

The cooperative perception responds to safety issues and
more specifically those related to the lack of visibility in blind
spots. This lack of visibility can be caused by the structure
of the scene or by other users. We can take the example of
pedestrians wanting to cross the road but being hidden by
parked vehicles or even vehicles appearing in an intersection
and being hidden by buildings. It is on this last example that
the point cloud sharing project of Li et al. is based [40].
The authors’ work focuses on the SDN network structure for
connected vehicles as well as the use of mmWAVE wireless
communication links offering higher data rates than networks
in the 2.4 GHz frequency bands. In this network, there are
several infrastructures equipped with laser scanners that allow
the visualization of areas hidden by buildings thanks to the

fusion of LiDAR point clouds covering the trajectory of the
connected vehicle. In this way, they can reduce the effects
of blind spots and detect other users that were previously
undetectable.

Li et al. also addressed the overtaking scenario in which
it can sometimes be difficult to know whether a vehicle is
coming into the opposite lane since the view is occluded by the
vehicle we wish to overtake. This is also one of the scenarios
that motivated the work of Kim et al. in [43]. In this paper,
the authors use cameras placed on several vehicles to create
a see-through visualization system. To merge the images, the
authors project these pixels onto the ground to create a birds-
eye view map. This map can then be back-projected according
to a camera model to visualize what is behind the vehicle.

The 2016 edition of the GCDC was an opportunity to
explore several other scenarios as well as challenging several
teams. In this case, Xu et al. [9] presented these scenarios
and their comments about their experience. Three scenarios
are presented:

Zipper merge:
This case corresponds more generally to the insertion
of a vehicle into a lane and is encountered in sev-
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eral situations such as when a traffic lane becomes
inaccessible (e.g. for maintenance).

Crossing at intersection:
Here, a vehicle wants to cross an intersection with as
little disturbance to the traffic situation as possible.

Emergency vehicle yielding:
This situation corresponds to the arrival of an emer-
gency vehicle and which therefore has the priority.
The vehicles on the scene must leave a passageway
between the traffic lanes to allow them to circulate.

During the experimentation phase, the vehicles transmitted
their status (position, speed, wheel angle, etc.) and could make
requests involving a change in vehicle behavior. For example,
when inserting into a lane, the vehicle behind changes its speed
to leave sufficient space for the requesting vehicle to change
lanes. During this challenge, the vehicles do not cooperate
on the perception axis but rather on the vehicle control axis.
However, the authors note in their remarks the weaknesses of
the perception implemented caused by the lack of a multi-
sensor based perception methods.

The project Proviendentia [44] aims to bring cooperative
perception to the motorways. This project is composed of
cameras and radars placed on gantry bridges on a section of the
motorway. Vehicles are detected and classified using machine
learning algorithms, and their positions are estimated using the
data provided by the radars. A digital twin of the road section
is created from this data and is accessible in real-time.

MEC-View is a similar project implemented by Bosch [59],
[60] where LiDARs and cameras are placed on lampposts at
an intersection to cover blind spots caused by other vehicles.
Similarly, Lv et al. in [25] equipped an intersection with
4 LiDARs sensors to track vehicles and detect obstacles to
inform users. The problem of intersections is particularly
extrapolated to roundabouts, which are more frequent on the
European continent.

Another issue, raised by Kim et al. [43] as a limitation
to their system resides in the roads forming parabola peaks.
Under these conditions, the topology of the terrain reduces the
driver’s field of view to the sensors.

B. Datasets

The increasing interest in the cooperative vehicle initiated
the sharing of some datasets. However, they tackle specific
contexts such as communication or infrastructure perception.

a) Ko-PER [99]: This dataset proposes a context of a
cooperative infrastructure. It is made of sequences monitoring
an intersection with 14 laser scanners (4 for the road, 2 for
the sidewalk, and 8 for the egresses) and 8 monochromatic
cameras (only two are available in the dataset due to personal
data protection purposes). Laser scanners are synchronized
and operate at 12.5Hz while the cameras operate at 25Hz in
phase with the laser scanners. Raw data from the scanners and
undistorted images from the cameras are available alongside
reference data of selected vehicles and object labels.

b) Warringal [100]: The authors propose a dataset gath-
ering communication interaction between vehicles of a fleet of
13 elements for 3 years. The data proposed are the state of the

Fig. 5: Synchronous video frames from each camera of our
multi-agent dataset made with CARLA.

vehicle, the list of each communication and their length, the
signal strength of each communication (e.g. RSSI or antenna
used by each vehicle), and the map.

c) T&J [26]: This dataset has been created to comple-
ment KITTI’s dataset [101] by adding a cooperative dimen-
sion. For the learning and evaluation phase of their Sparse
Point-cloud Object Detection (SPOD) algorithm, the authors
needed a dataset offering overlapping acquisitions from several
points of view. The latter is composed of images from multiple
cameras, radar data as well as point clouds from LiDARs. As
with the KITTI dataset, this data is linked to a GPS and an
IMU but offers simultaneous views from different positions.

A lack of cooperation: We could have presented other
datasets such as KITTI’s or more recently the Waymo Open
Dataset or INTERACTION by Zhan et al. [102]. However,
we can note the absence of cooperation and dataset represent-
ing the scenarios we presented despite the interest and the
projects responding to its problems. We can also note that the
datasets presented deal either only with infrastructure or V2V
cooperation. However, simulators can bring an answer to this
lack by allowing the acquisition of data from several points
of view synchronously. Moreover, they solve the problem of
the ground truth definition as well as the calibration chal-
lenges. CAR Learning to Act (CARLA) [103] is one of them
providing several sensors such as cameras, depth cameras,
LiDAR (simulated ray cast), IMU and RADAR. In July 2018,
version 0.9.0 introduced the multi-client multi-agent support
offering cooperative vehicles perspective. Fig. 5 showcases
the possibilities offered by CARLA with synchronized im-
age acquisition from vehicles and infrastructure at a round-
about. Other simulators are available such as Deepdrive [104],
LGSVL Simulator [105] or AirSim [106]. However, CARLA
remains the most popular nowadays.

VIII. CONCLUSION AND PERSPECTIVES

This paper was an opportunity for us to review the different
stages of a perception pipeline under a cooperative context and
its associated challenges.
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A large amount of work tackling the localization problem
has been accomplished. We reviewed a wide range of so-
lutions introducing different paradigms, improving the pose
estimation, or offering an alternative reference point in a
GNSS denied environment. We also noted that the cooperative
localization topic is very active as witnesses the amount of
recent literature. However, we perceived a strong contrast
concerning the available literature amount on cooperative
detection and tracking. Even if some projects employ local
perception systems merging the detected user’s information,
the topic remains sparse in raw data sharing. With the abilities
offered by the new communication infrastructures, we believe
that a whole new panel of innovation becomes reachable
featuring algorithms fed with both feature level data and raw
data.

We also reviewed the usage of maps in a cooperative context
which, similarly to localization, is currently an active topic. In
this field, cooperation also makes it possible to overcome the
limits of the distance of sensors, allowing better anticipation
of trajectories and possible adjustments.

More generally, we witnessed a difference in the cooperative
scheme between V2V and V2I architecture. In V2V, vehicles
communicate evenly with each other whereas, in V2I, the
privileged approach is unidirectional from the infrastructure to
the connected agents. We believe that bidirectional cooperation
could be beneficial in bringing an ”in the scene” point of
view, thus adding details helping to understand the scene.
This bidirectional scheme may provide new opportunities for
dynamic calibration, reinforcement learning [107] or as an
arbitrator in case some agents share erroneous data.

Finally, although cooperative perception is currently an ac-
tive topic, we noted the absence of datasets featuring multiple
points of view, from different actors, in a scene. These datasets
are a real key point in cooperative perception since they are
mandatory to bring novel cooperative solutions. However, their
creation requires solving the abovementioned challenges such
as calibration.
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Ref Type Tasks Sensors Communic. Architect. Method Comment
[25] V2I Localization,

Mapping,
Classification &
Tracking

LiDAR DSRC, SPaT, BSM Centralized Geometric Relative Localiza-
tion, Background filtered, PC
cluster, Random Forest

The lanes are detected by aggregating vehicles paths
and vehicles are tracked with the closest point of their
corresponding cluster. The infrastructure does not
merge the Point Clouds and transmit the information
to the users via Bluetooth. The pose of the vehicle
is determined in relative coordinates and converted to
absolute coordinates.

[26] V2V Detection & classifi-
cation

LiDAR DSRC (ROI) Distributed CNN SPOD is based on CNN. A dataset has been created.

[9] V2X Localization LiDAR, GNSS-RTK ETSI C-ITS (CAM,
DENM, iCLCM)

Distributed Control Absolute coordinates are transmitted by messages by
each vehicle.

[40] V2I Mapping LiDAR mmWave, ROS Mixed LDM Share Point clouds through mmWave links.
[10], [44] V2I Detection, classifica-

tion & tracking, Lo-
calisation

Camera, radar 4G, 5G, Optic Fibre Centralised YOLOv3, Tracking via radar,
GM-PHD

The radar help to determine the position of the users
in the absolutes coordinates.

[42] V2V Mapping, vehicle
matching

Odometry, LiDAR,
camera, DGPS

IEEE802,11n (WiFi) Distributed IPM RAW data are shared between vehicles for mapping.
Feature-based object matching (speed of the vehicles).
Maps are merged using the coordinates given in the
messages.

[43] V2V Tracking, Mapping Odometry, LiDAR,
camera, DGPS

IEEE 802,11gn
(WiFi), 3G, 4G,
ROS

Distributed Mapping: IPM, ICP, CSM The position of tracked users are given into relative
to the ego-vehicle coordinates.

[45] V2X Tracking Camera, LiDAR IEEE 802.11bgn
(WiFi), ROS

Distributed GM-PHD Filter, EKF, Sequen-
tial Monte Carlo

The relative poses are estimated

[68], [76] V2I Localisation Range detector,
Odometry, GPS (all
simulated)

Simulated Distributed Factor graph (High Level) The absolute positions are directly processed.

[47] V2I Tracking Camera IEEE 802.11g
(WiFi), IEEE
802.11p (WAVE)
with DENM
messages

Centralised Geometric (Low level) The map and position of the user are transmitted from
the infrastructure. The position is given in absolute
coordinates of the car park space.

[69] V2V Localisation LiDAR, GNSS RTK Not given Distributed Geometric (low level) The relative pose is extracted from the LiDAR’s data
and is used to compute the absolute pose.

[70] V2V Localisation GPS, Range sensor Not given Distributed Bayesian (High level) The estimated position is given in absolute coordi-
nates.

[65] V2V Localisation, Track-
ing

GPS RTK, camera,
radar, LiDAR

DSRC Distributed EKF, Bipartite graphs (High
level)

The localization is given in absolute coordinates. The
bipartite graphs are used to match users to the detected
ones.

[59], [60] V2I Localization, detec-
tion and tracking

Camera, LiDAR 4G, 5G Centralised Not given

[108] V2V Localization and
tracking

Radar DSRC Distributed GMPHD The estimated position is given in absolute coordi-
nates.

TABLE VII: Summary of the experimentation and methods reviewed along the paper underlining their conditions of realization, the methods used and their results.
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