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Abstract As a promising method in artificial intelligence, deep learning has been proven successful in several

domains ranging from acoustics and images to natural language processing. With medical imaging becoming an

important part of disease screening and diagnosis, deep learning-based approaches have emerged as powerful

techniques in medical image areas. In this process, feature representations are learned directly and automatically

from data, leading to remarkable breakthroughs in the medical field. Deep learning has been widely applied in

medical imaging for improved image analysis. This paper reviews the major deep learning techniques in this time

of rapid evolution and summarizes some of its key contributions and state-of-the-art outcomes. The topics include

classification, detection, and segmentation tasks on medical image analysis with respect to pulmonary medical

images, datasets, and benchmarks. A comprehensive overview of these methods implemented on various lung

diseases consisting of pulmonary nodule diseases, pulmonary embolism, pneumonia, and interstitial lung disease is

also provided. Lastly, the application of deep learning techniques to the medical image and an analysis of their

future challenges and potential directions are discussed.
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Introduction

Deep learning covers a set of artificial intelligence methods
that use many interconnected units to fulfill complex tasks.
Deep learning algorithms can automatically learn repre-
sentations from large amounts of data rather than the use of
a set of pre-programmed instructions [1–3]. Radiology is a
natural application field for deep learning because it relies
mainly on extracting useful information from images, and
the research in this field has rapidly developed [4]. With
the aggravation of air pollution and the increasing number
of smokers, respiratory diseases have become a serious
threat to people’s life and health [5]. However, many of the
early clinical manifestations of respiratory diseases are not
evident, and some patients do not even feel any discomfort
during the early stage. Hence, many patients miss the
critical period of early treatment because they discover
clinical symptoms at a later time. Therefore, public
awareness of early detection and treatment is necessary
for the prevention and treatment of lung diseases. In

medical imaging, the accurate diagnosis and evaluation of
diseases depend on image collection and interpretation.
Computer-aided diagnosis (CAD) of medical images has
been developed for the early discovery and analysis of
patient’s symptoms based on medical images. However,
this method has long been rooted on limited features that
are identified based on physicians’ past experiences. Most
researchers also study medical image features that need to
be extracted manually and thus require special clinical
experience and a deep understanding of the data [6,7].
With the rapid development of computer vision and
medical imaging, computer-aided calculation can assist
medical workers in diagnosis, such as enhancing diag-
nostic capabilities, identifying the necessary treatments,
supporting their workflow, and reducing the workload to
capture specific features from medical images.
The deep learning algorithm was first applied to medical

image processing in 1993, in which the neural network was
used for the detection of pulmonary nodules [8]. In 1995,
deep learning was applied in breast tissue detection [9].
The region of interest (ROI) was extracted from mammo-
grams through a model, which contains tumors and normal
tissues confirmed via biopsy. The model results include
one input layer, two hidden layers, and one output layer for
back propagation. At that time, the typical convolutional
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neural network (CNN) image-processing architecture has
not been widely accepted by scholars because it has high
demand for computing power and sufficient data and does
not provide good interpretations of results. Most doctors
prefer clear interpretations, which are important in the
medical field but cannot be provided by deep learning to
support clinical decisions.
Most people focus on manual feature extraction on

images, such as features that may represent the edge of a
straight line (e.g., organ detection) or contour information
(e.g., a circular object like a colon polyp) [10]. Alter-
natively, key points (feature points) on different scales are
identified, and their directions are calculated [11,12].
Radiomics [13] is also used to study some higher-order
features, such as the local and global shape and texture.
With the explosive growth of data and the emergence of

graphics processing unit with increasing computing power,
deep neural networks have made considerable progress. In
general, medical image processing can be divided into
image classification, detection, segmentation, registration,
and other related tasks. For image classification, each
image must be classified into specific categories. The
algorithm determines related objects in the image,
including the type of disease, pneumothorax, and bullae
and generates a list of possible object categories in
descending order of confidence [14–17]. The image object
detection is a further improvement based on image
classification. In this task, the algorithm gives the category
of the detected object (e.g., pulmonary nodules appear in a
CT slice) and marks the corresponding boundary of the
object on the image [18–20]. Semantic segmentation is a
basic task in computer vision in which visual input is
divided into different semantically interpretable categories.
All the pixels belonging to the lesion in the image might
need to be distinguished [21,22].
Medical image processing mainly aims to detect

possible lesions and tumors because of their remarkably
effects on the follow-up diagnosis and treatment. Although
tumor detection and analysis have been widely studied,
many obstacles must be overcome for future application. In

pulmonary nodules [23,24], challenges exist due to within-
class variability in lesion appearance. First, the shape, size,
and density of the same lesion may vary, and the
appearance of the lesion might be different (Fig. 1A,
solid pulmonary nodules; Fig. 1B, ground glass pulmonary
nodules, in green box). Second, many different diseases
(normal tissues and pulmonary nodules) show the same
texture features (Fig. 1C, pleural nodules, in green box,
and many blood vessels in the center of the image). Third,
the quality of image acquisition, such as the change of
posture, blur, and occlusion, is considered (Fig. 1D).
Fourth, different surrounding environments make different
types of lung nodules appear to be diverse. Lastly,
unbalanced data often pose a challenge in designing
effective models from limited data.
Several dedicated surveys have been developed for the

application of deep learning in medical image analysis
[11,25]. These surveys include a large amount of related
works and cover various references in almost all fields in
medical imaging analysis by using deep learning. In the
present study, we focused on a comprehensive review of
pulmonary medical image analysis. A previous review [26]
centered on the detection and classification of pulmonary
nodules by using CNNs. However, additional works
should be focused on targeting the segmentation tasks
crossing diverse pulmonary diseases. The present review
aimed to present the history of deep learning and its recent
applications in medical imaging, especially in pulmonary
diseases, and to summarize the specific tasks in these
applications.
This paper is organized as follows. In section “Overview

of deep learning,” we present a brief introduction of deep
learning techniques and the origins of deep learning in
neuroscience. The specific application areas of deep
learning are presented in section “Deep learning in
pulmonary medical image.” Detailed reviews of the
datasets and the performance evaluation are presented in
section “Datasets and performance.” Finally, our discus-
sion are provided in sections “Challenges and future
trends” and “Conclusions.”

Fig. 1 Variety of lesion appearances poses a big challenge for medical image processing. (A) Solid nodule (green box), (B) ground glass nodule
(green box), (C) pleural nodule (green box), and (D) the effect of image acquisition.
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Overview of deep learning

In this section, we introduce the origin of modern deep
learning algorithms and several deep learning network
structures commonly used in medical image processing.
Then, we will briefly introduce some concepts used in the
network (Table 1).

Historical perspective on networks

The history of neural networks can be traced back to the
1940s, and the deep neural network at that time was called
cybernetics [27–29]. Simple bionic models such as
perceptrons, which can train a single model, have emerged
with the discovery of the biomedical theory [30]. In 1962,
Hubel and Wiesel proposed the concept of the receptive
field by studying of cat visual cortical cells and found that
the animal’s visual nervous system recognizes objects in
layers [21,32]. A simple structure of visual processing was
then established. When an object passes through a visual
area, the brain constructs complex visual information
through the edges. Although this model helps understand
the functions of the brain, it was not designed to be an
actual model. In 1971, basing on the receptive field study,
Blakemore [33] proposed that receptive field of visual cells
is acquired rather than innate.
In 1980, Japanese scholar Fukushima proposed a new

cognitive machine (neocognitron) based on the concept of
receptive field. It can be regarded as the first implementa-
tion network of CNN and the first application of the
concept of receptive field in the field of artificial neural

network [34]. The model is inspired by the animal visual
system, namely, the hierarchical structure of vision
proposed by Hubel. In 1984, Fukushima proposed an
improved neocognitron machine with double C-layers
[35]. By the 1980s, the method of connection mechanism
was introduced [36]. Rumelhart proposed the famous
back-propagating (BP) algorithm, which can train a neural
network with two hidden layers and transmit errors in
reverse for changing the weight of the network [37]. Some
of the ideas of this algorithm have been applied in the
structure of deep networks. The emergence of BP
algorithm makes multi-layer perceptrons trainable and
solves XOR problems [38] that cannot be explained by a
single perceptron [39,40]. In 1989, Robert Hecht–Nielsen
reported that a continuous function in any closed interval
can be approximated using a three-layer network of hidden
layers, indicating that the multilayer perceptron has the so-
called “universal approximation” capability [41].

Modern architectures

These simple learning algorithms mentioned in the
previous section have greatly accelerated the development
of neural networks. In 1989, the emergence of CNNs made
people pay attention to the generalization error of networks
[43,44,49]. In 1990, the proposed convolutional network
to identify numbers marked the great success of CNNs in
the field of computer vision and image processing [44,50].
LeNet [44] was proposed by LeCun in 1998 to solve the
problem of handwritten numeral recognition. Subse-
quently, the basic architecture of CNN has been defined;

Table 1 Historical perspective on networks
Authors Year Model name Main method

Hubel et al. [31] 1962 – Proposed the concept of receptive field and found that the animal’s visual nervous
system recognizes objects in layers

Blakemore [33] 1971 – Receptive field of visual cells is acquired rather than innate

Fukushima et al. [34] 1980 Neocognitron First implementation network of CNN and first application of the concept of
receptive field

Fukushima et al. [35] 1984 Neocognitron Neocognitron machine with double C-layers

Rumelhart et al. [42] 1988 – Proposed the BP algorithm

Hecht-Nielsen et al. [41] 1989 – Demonstrated that a continuous function in any closed interval can be approximated
using a three-layer network of hidden layers

LeCun [43] 1989 CNN Use of weight sharing and SGD in network optimization

LeCun et al. [44] 1998 LeNet Defined the basic architecture of CNN

Hinton et al. [45] 2006 DBN Improved the difficulty of training the network

Krizhevsky et al. [46] 2012 AlexNet Dropped the top five error rate of the highest accuracy from 26.1% to only 15.3%

Simonyan et al. [47] 2014 VGG-Net VGG can be seen as a deepened version of AlexNet (19 layers)

Szegedy et al. [16] 2014 GoogLeNet Deepening the network (22 layers) and introducing Inception structure instead of
simple convolution

He et al. [17] 2015 ResNet Residual module, a design of residual network, allows the network to be trained more
deeply (152 layers)

Huang et al. [48] 2016 DenseNet Dense connection: alleviating the problem of gradient disappearance and enhancing
feature propagation
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it comprises a convolution layer, a pooling layer and a full
connection layer.
With the rapid development of computer technology, the

computational bottleneck in the neural network has been
continuously overcome, which promoted the rapid devel-
opment of neural networks in the last two decades.
Subsequently, the neural network continued to achieve
impressive performance on certain tasks, but these network
frameworks are still difficult to train [51,52]. Until 2006,
the deep belief network proposed that the difficulty of
training of neural network was gradually improved [45]. In
this network, Hinton uses a greedy algorithm for layer-by-
layer training, which effectively solves the above pro-
blems. After that, the same strategy was used in training
many other types of deep networks [53].
Since 1980, the recognition and prediction capabilities of

deep neural networks have improved, and their application
fields have become more extensive. With the increasing
amount of data, the scale of the neural network model has
also expanded tremendously. Among these models,
AlexNet can be considered as the landmark algorithm
structure [46]; this model was proposed by Krizhevsky in
ImageNet in 2012 [54]. Prior to AlexNet, only a single
object in a very small image could be identified due to
computational limitations. After 2012, the size of the image
that the neural network can process has gradually increased,
and an image of any size may be used as input for
processing. In the same year, in the annual image
classification competition ImageNet, AlexNet dropped the
top five error rate with the highest accuracy from 26.1% to
only 15.3%, which was 10% lower than the previous year’s
champion and far exceeded the second participating team.
Subsequently, many scholars have re-examined deep neural
networks. Deep neural convolution networks have often
won in this competition. The VGG-Net [47] and GoogLe-
Net [16] were proposed in 2014, and the 2015 champion
algorithm ResNet [17] deepened more layers than the
previous network of AlexNet. As the network deepens, it
becomes a better network. Dense neural networks [48] have
also achieved good results in other fields.

Deep learning in medical image analysis

The aforementioned networks are mainly used for common
image classification tasks. An overview of network
structures used for classification, detection, and segmenta-
tion tasks for the perspective of medical image analysis is
described below.

Classification

The classification task determines which classes an image
belongs to. Depending on the task, the class can exist in
binary (e.g., normal and abnormal) or multiple categories

(e.g., nodule classification in chest CT). Many medical
studies use CNNs to analyze medical images to stage
disease severity in different organs [55]. Some authors
investigated on combination of local information and
global contextual information and designed architecture
for image analysis at different scales [56]. Some work
focused on the utilization of 3D CNN for enhanced
classification performance [57].

Detection

Object detection in medical image analysis refers to the
localization of various ROIs such as lung nodules and is
often an important pre-processing step for segmentation
tasks in medical image analysis. The detection task in most
medical image analysis requires the processing of 3D
images. To utilize deep learning algorithm for 3D data,
Yang et al. processed 3D MRI images by using 2D MRI
sequences with typical CNN [58]. de Vos et al. localized
3D bounding box of organs by analyzing 2D sequences
from 3D CT volume [59]. To reduce the complexity of 3D
images, Zheng et al. decomposed 3D convolution as three
1D convolutions for the detection of carotid artery
bifurcation [60].

Segmentation

Segmentation of meaningful parts, such as organ,
substructure, and lesion, provides a reliable basis for
subsequent medical image analysis (Fig. 2). U-net [61]
published by Ronneberger et al. has become the most well-
known CNN architecture for medical image segmentation
from very few images. U-net is based on fully convolu-
tional networks (FCN) [62]. FCN can be utilized for
classification at the pixel level and use deconvolution layer
for upsampling the feature map of the last convolution
layer and restore it to the same size of the input image, thus
allowing the prediction to be generated for each pixel. The
spatial information in the original input image is preserved.
Subsequently, the pixel-by-pixel classification is per-
formed on the upsampled feature map to complete the
final image segmentation. In U-net, however, skip
connections are used for connecting downsampling to
upsampling layers, which makes features extracted by
downsampling layers passed directly to the upsampling
layers. This process allows U-net to analyze the full
context of the image, resulting in segmentation map in an
end-to-end way. After U-net was proposed, many
researchers have used U-net structure for medical image
segmentation and made improvements based on U-net.
Cicek et al. designed 3D U-net [63] targeting 3D image
sequences, and Milletari et al. proposed a 3D-variant of U-
net architecture, namely V-net [64], which uses Dice
coefficient as loss function.
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Deep learning in pulmonary medical image

In the analysis of the number of thoracic pulmonary
nodules, the automatic texture extraction of the pulmonary

nodules has always been a key issue in traditional
algorithms. In the past decades, the manual extraction of
the texture morphology of the pulmonary nodules has been
the conventional way of designing algorithms.
This section presents an overview of the contribution of

deep learning to various application areas in pulmonary
medical imaging.

Pulmonary nodule

Lung cancer is one of the most severe cancer types [65].
This disease can be prevented if the pulmonary nodules are
detected early and diagnosed correctly. With the help of
modern CAD systems, radiologists can detect more
pulmonary nodules with much less time [66–69]. Detec-
tion, segmentation, and classification of pulmonary
nodules are the main functions of the modern CAD system
and belong to computer vision, which has achieved huge
advance with CNNs (Table 2).

Pulmonary nodule classification

For the classification of pulmonary nodules, most studies
focus on how computer-aided detection system provides
radiologists with image manifestations, such as type of the
nodule (benign or malignant) for the early diagnosis of
lung cancer and provides advice for the diagnosis. Fig. 3
provides an illustration of the commonly used classifica-
tion network.
Owing to the self-learning and generalization ability of

deep CNN, it has been applied in the classification of the
type of pulmonary nodules. A specific nodule image
network structure has been proposed to solve three types of
nodule recognition problems, namely, solid, semi-solid,
and ground glass opacity (GGO) [70]. Netto et al. [71]
studied the separation of pulmonary nodule-like structures
from other structures, such as blood vessels and bronchi.
Finally, the structure is divided into nodules and non-
nodules based on shape and texture measurement
with support vector machine. Pei et al. [72] used a 2D

Fig. 2 Structure of segmentation network. The left part uses convolu-
tion for the extraction of features, and the right part uses deconvolution
for the recovery of the original size. The middle part contains skipping
connections that are used in U-net.

Fig. 3 Structure of classification network. The output are the possibilities of the targets.

454 Deep learning for pulmonary diseases



T
a
b
le

2
D
ee
p
le
ar
ni
ng

in
pu

lm
on

ar
y
no

du
le

A
ut
ho

rs
Y
ea
r

T
as
k

M
od
al
it
y

2D
/3
D

M
ai
n
m
et
ho
ds

L
i
et

a
l.
[7
0]

20
16

N
od

ul
e
ty
pe

cl
as
si
fi
ca
ti
on

C
T

2D
R
ec
og
ni
ti
on

of
th
re
e
ty
pe
s
of

no
du
le
s

N
et
to

et
a
l.
[7
1]

20
12

N
od

ul
e
ty
pe

cl
as
si
fi
ca
ti
on

C
T

3D
T
he

3D
pu
lm

on
ar
y
no
du
le
s
w
er
e
ex
tr
ac
te
d
fr
om

th
e
lu
ng
s
(i
nc
lu
di
ng

m
ed
ia
st
in
um

an
d
ch
es
t
w
al
l)
,
an
d

th
en

cl
as
si
fi
ed

P
ei

et
a
l.
[7
2]

20
10

N
od

ul
e
ty
pe

cl
as
si
fi
ca
ti
on

C
T

2D
G
eo
m
et
ri
ca
ll
y
co
ns
tr
ai
ne
d
re
gi
on

gr
ow

th
m
et
ho
d
w
as

us
ed

fo
r
di
vi
di
ng

no
du

le
ty
pe
s

S
uz
uk

i
et

a
l.
[7
3,
74
]

20
05

B
en
ig
n/
m
al
ig
na
nt

cl
as
si
fi
ca
ti
on

L
D
C
T

2D
D
is
ti
ng
ui
sh
ed

m
al
ig
na
nt

no
du
le
s
fr
om

si
x
di
ff
er
en
t
ty
pe
s
of

be
ni
gn

no
du
le
s

C
au
se
y
et

a
l.
[7
5]

20
18

B
en
ig
n/
m
al
ig
na
nt

cl
as
si
fi
ca
ti
on

C
T

2D
,
3D

C
om

pa
re
d
de
ep

le
ar
ni
ng

an
d
ra
di
om

ic
s
ap
pr
oa
ch
es

fo
r
lu
ng

no
du
le

m
al
ig
na
nc
y
pr
ed
ic
ti
on

X
ie

et
a
l.
[7
7]

20
17

B
en
ig
n/
m
al
ig
na
nt

cl
as
si
fi
ca
ti
on

C
T

3D
P
ro
po
se
d
a
tr
an
sf
er
ab
le

m
ul
ti
-m

od
el

en
se
m
bl
e
al
go
ri
th
m

fo
r
be
ni
gn
-m

al
ig
na
nt

lu
ng

no
du
le

cl
as
si
fi
ca
ti
on

on
ch
es
t
C
T

S
he
n
et

a
l.
[7
8]

20
17

B
en
ig
n/
m
al
ig
na
nt

cl
as
si
fi
ca
ti
on

C
T

2D
,
3D

C
ro
pp
ed

di
ff
er
en
t
re
gi
on
s
fr
om

co
nv
ol
ut
io
na
l
fe
at
ur
e
m
ap
s
an
d
th
en

ap
pl
ie
d
m
ax
-p
oo
li
ng

di
ff
er
en
t
ti
m
es

L
iu

et
a
l.
[7
9,
80
]

20
18

B
en
ig
n/
m
al
ig
na
nt

cl
as
si
fi
ca
ti
on

C
T

2D
E
xp

lo
re
d
th
e
re
la
ti
on

sh
ip

be
tw
ee
n
lu
ng

no
du

le
cl
as
si
fi
ca
ti
on

an
d
at
tr
ib
ut
e
sc
or
e

L
ia
o
et

a
l.
[8
1]

20
19

B
en
ig
n/
m
al
ig
na
nt

cl
as
si
fi
ca
ti
on

C
T

3D
D
et
ec
te
d
al
l
su
sp
ic
io
us

le
si
on
s
(p
ul
m
on
ar
y
no
du
le
s)

an
d
ev
al
ua
te
d
th
e
w
ho
le
-l
un
g/
pu
lm

on
ar
y
m
al
ig
na
nc
y

D
in
g
et

a
l.
[8
5]

20
17

N
od
ul
e
de
te
ct
io
n

C
T

3D
P
ro
po
se
d
a
de
co
nv
ol
ut
io
na
l
st
ru
ct
ur
e
fo
r
fa
st
er

re
gi
on
-b
as
ed

C
N
N

W
in
ke
ls
et

a
l.
[8
6]

20
17

N
od
ul
e
de
te
ct
io
n

C
T

3D
U
se
d
3D

ro
to
-t
ra
ns
la
ti
on

gr
ou
p
co
nv
ol
ut
io
ns

(G
-C
on
vs
)
in
st
ea
d
of

th
e
m
or
e
co
nv
en
ti
on
al
tr
an
sl
at
io
na
l

co
nv

ol
ut
io
ns

Z
hu

et
a
l.
[8
7]

20
17

N
od
ul
e
de
te
ct
io
n

C
T

3D
D
es
ig
ne
d
a
3D

ga
st
er

R
-C
N
N

no
du
le

de
te
ct
io
n
w
it
h
a
U
-n
et
-l
ik
e
en
co
de
r-
de
co
de
r
st
ru
ct
ur
e
fo
r
ef
fe
ct
iv
el
y

le
ar
ni
ng

no
du
le

fe
at
ur
es

T
an
g
et

a
l.
[8
8]

20
18

N
od
ul
e
de
te
ct
io
n

C
T

3D
In
tr
od
uc
ed

a
no
ve
l
D
C
N
N

ap
pr
oa
ch
,
co
ns
is
ti
ng

of
tw
o
st
ag
es

th
at

ar
e
fu
ll
y
3D

an
d
en
d-
to
-e
nd

T
an
g
et

a
l.
[8
9]

20
19

N
od
ul
e
de
te
ct
io
n

L
D
C
T

3D
In
te
gr
at
ed

no
du
le

ca
nd
id
at
e
sc
re
en
in
g
an
d
fa
ls
e
po
si
ti
ve

re
du
ct
io
n
in
to

on
e
m
od
el
,
tr
ai
ne
d
jo
in
tl
y

X
ie

et
a
l.
[9
0]

20
18

N
od
ul
e
de
te
ct
io
n

C
T

3D
M
od
ifi
ca
ti
on

of
th
e
R
es
N
et

an
d
fe
at
ur
e
py
ra
m
id

ne
tw
or
k
co
m
bi
ne
d,

po
w
er
ed

by
R
R
eL

U
ac
ti
va
ti
on

M
a
et

a
l.
[9
1]

20
19

N
od

ul
e
de
te
ct
io
n

C
T

2D
,
3D

U
se
d
gr
ou
p
co
nv

ol
ut
io
n
an
d
at
te
nt
io
n
ne
tw
or
k
to

ab
st
ra
ct

fe
at
ur
e
an
d
ba
la
nc
e
th
e
sa
m
pl
es

w
it
h
ha
rd

ne
ga
ti
ve

sa
m
pl
e
m
in
in
g

F
en
g
et

a
l.
[9
2]

20
17

N
od
ul
e
se
gm

en
ta
ti
on

C
T

3D
U
se
d
w
ea
kl
y
su
pe
rv
is
ed

m
et
ho
d
th
at

ge
ne
ra
te
s
ac
cu
ra
te

vo
xe
l-
le
ve
l
no
du
le

se
gm

en
ta
ti
on

M
es
sa
y
et

a
l.
[9
3]

20
15

N
od
ul
e
se
gm

en
ta
ti
on

C
T

3D
U
se
d
w
ea
kl
y
la
be
le
d
da
ta

w
it
ho
ut

de
ns
e
vo
xe
l-
le
ve
l
an
no
ta
ti
on
s

Jiechao Ma et al. 455



multi-scale filter for dividing the nodules into nodules and
non-nodules by geometrically constrained region growth
method.
For benign and malignant classification, Suzuki et al.

[73,74] developed methods to differentiate benign and
malignant nodules in low-density CT scans. Causey et al.
[75] proposed a method called NoduleX for the prediction
of lung nodule malignancy with CT scans. Zhao et al. [76]
proposed an agile CNN model to overcome the challenges
of small-scale medical datasets and nodules. Considering
the limited chest CT data, Xie et al. [77] used transfer
learning algorithm to separate benign and malignant
pulmonary nodules. Shen et al. [78] presented a multi-
crop CNN (MC-CNN) to automatically extract nodule
salient information for the investigation of the lung nodule
malignancy suspiciousness. Liu et al. [79,80] proposed a
multi-task model to explore the relatedness between lung
nodule classification and the attribute score. Many
researchers have used 3D CNNs to predict the malignancy
of the pulmonary nodule and achieve a high AUC score
[81,82]. Some researchers attempted to make the predic-
tion interpretable by using multitask joint learning [83,84].

Pulmonary nodule detection

The diagnosis of pulmonary nodules is a special detection
task. Considering that one pulmonary nodule can go across
multi CT slices, most of the existing pulmonary nodule
detection methods are based on 3D or 2.5D CNNs
(convolution neural networks). The general detection

process, including training and testing phases, is illustrated
in Fig. 4. A high-performance pulmonary nodule detection
system must have high sensitivity and precision. Hence,
many researchers have focused on two-stage networks.
Two-stage involves one network for nodule candidate
detection and the other for false positive reduction (Fig. 5).
Ding et al. [85] proposed a deconvolutional structure for
faster region-based CNN (faster R-CNN) for candidate
detection with a 3D DCNN for false positive reduction. A
3D roto-translation group convolution (G-Convs) was
introduced for false positive reduction network for
improved efficiency and performance [86]. A 3D faster
R-CNN with a U-net-like encoder-decoder structure for
candidate detection and a gradient boosting machine with a
3D dual path network (DPN) for false positive reduction
have been designed [87]. Tang et al. [88] used online hard
negative mining in the first stage and assembled both
stages via consensus until the predictions are realized.
Tang et al. [89] then proposed an end-to-end method for
training the candidate detection and false-positive reduc-
tion network together, resulting in improved performance.
In pulmonary nodule detection, the imbalanced sample is a
severe problem. Two-stage networks use the first stage for
choosing positive and hard negative samples, thus
providing the second stage with a balanced ratio between
positive and negative samples. ResNet [17] and the feature
pyramid network combined single stage model have been
modified [90]. This model improved the sample imbalance
via a patch-based sampling strategy. Another one-stage
network based on SSD has been introduced [91]. It uses

Fig. 4 Illustration of the pipeline for lesion detection. In both training and testing phases, the medical images in DICOM formats are converted and
preprocessed to obtain the input images. In the training phase, region proposal methods are used for the extraction of the ROIs of the input images and
then adopting classification on the ROIs and output prediction scores. In the testing phase, input images are fed into the trained model generated from
the training phase to obtain inference results.
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group convolution and attention network for abstract
features and balances the samples with hard negative
sample mining. Liu et al. [94] evaluated the influence of
radiation dose, patient age, and CT manufacturer on the
performance of deep learning applied in nodule detection.

Pulmonary nodule segmentation

Pulmonary nodules are first detected. The segmentation of
pulmonary nodules is also important in measuring the size
of the nodule, and the malignancy prediction is the final
target. The U-net architecture and unsupervised learning
are widely adopted in the segmentation task. Considering
that the segmentation label is difficult to obtain, a weakly-
supervised method that generates accurate voxel-level
nodule segmentation has been proposed [102]; this method
only needs the image level classification label. Messay
et al. [103] trained a nodule segmentation model by using
weakly labeled data without dense voxel-level annotations.

Pulmonary embolism (PE)

PE is a highly lethal condition that occurs when an artery in
the lung becomes partially or completely blocked. It occurs
when a thrombus generated from legs, or sometimes other
parts of the body, moves to the lungs and obstructs the

central, lobar, segmental, or sub-segmental pulmonary
arteries depending on the size of the embolus. However,
this rate can be decreased to 2%–11% if measures are taken
timely and correctly. Although PE is not always fatal, it is
the third most threatening disease with at least 650 000
cases occurring annually [104].
CT pulmonary angiography (CTPA) is the primary

means for PE diagnosis, wherein a radiologist carefully
trace each branch of the pulmonary artery for any
suspected PEs. However, in general, CTPA consists of
hundreds of images. Each image represent one slice of the
lung, and the differentiation of PE with high clinical
accuracy is time-consuming and difficult. The diagnosis of
PE is a complicated task, because many reasons may result
in wrong diagnosis, such as high false-positive results. For
instance, respiratory motion, flow-related, streak, partial
volume, and stair-step artifacts, lymph nodes, and vascular
bifurcation could affect the diagnosis. Thus, computer-
aided detection (CAD) is an important tool for radiologists
in the detection and diagnosis of PE accurately and
decreasing the reading time of CTPA (Table 3).
Matteo Rucco introduced an integrative approach based

on Q-analysis with machine learning [95]. The new
approach, called Neural Hypernetwork, has been applied
in a case study of PE diagnosis, involving data from 28
diagnostic features of 1427 people considered to be at risk

Fig. 5 Structure of the detection network. The region proposal network is used to determine the area candidates of objects, and the subsequent
structure serves the function of classification.

Table 3 Deep learning in PE
Authors Year Task Modality Main methods

Rucco et al. [95] 2015 Classification X-ray Introduced an approach for the analysis of partial and incomplete datasets based
on Q-analysis

Bi et al. [96] 2007 Detection X-ray Detected PE from CTPA images

Agharezaei et al. [97] 2016 Classification X-ray Predicted the risk level of PE

Serpen et al. [98] 2008 Classification X-ray Used knowledge-based hybrid learning algorithm

Tsai et al. [99] 2010 Classification X-ray Used GNN network to achieve the PE recognition

Tajbakhsh et al. [100] 2015 Classification X-ray Investigated the possibility of a unique PE representation

Chen et al. [101] 2017 Classification X-ray Classified free-text radiology reports
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of PE and obtained a satisfying recognition rate of 94%.
This study involves a structure-based analysis algorithm.
For CTPA image classification, the CAD of PE typically
consists of the four following stages: (1) extraction of a
volume of interest (VOI) from the original dataset via lung
[105–107] or vessel segmentation [108,109], (2) genera-
tion of a set of PE candidates within the VOI using
algorithms, such as tobogganing [110] and extracting
hand-crafted features from each PE candidate [111,112],
and (3) computation of a confidence score for each
candidate by using a rule-based classifier, neural networks
and a nearest neighbor [106,108,113] or multi-instance
classifier [110]. Jinbo Bi [96] proposed a new classification
method for the automatic detection of PE. Unlike almost
all existing PEs search space methods that require vascular
segmentation, this method is based on Toboggan’s
candidate generator, which can quickly and effectively
retrieve the suspicious areas of the whole lung. The
network provides an effective solution for the learning
problem of multiple positive examples to indicate that the
action is in progress. The detection sensitivity of 177
clinical cases was 81%.
Nowadays, the neural network method has achieved

much attention in PE recognition [114–116]. Scott et al.
proved that radiologists can improve their interpretations
of PE diagnosis by incorporating computer output in
formulating diagnostic prediction [117]. Agharezaei et al.
used the artificial neural network (ANN) for the prediction
of the risk level of PE [97]. Serpen et al. confirmed that
knowledge-based hybrid learning algorithms are config-
ured for providing better performance than the pure
empirical mechanical learning algorithms that provide
automatic classification tasks associated with medical
diagnosis described as PE. A considerable expertise in
the PE domain is considered, and the hybrid classifier of
knowledge is easily utilized based on both illustration and
experience learning [98]. Tsai et al. proposed the multiple
active contour models, which combine the tree hierarchy to
obtain the regional lung and vascular distribution. In the
last step of the system, the gabor neural network (GNN)
was used to determine the location of the thrombosis. This
novel method used the GNN network for recognizing PE,
but the accuracy and precision of the results are not good
[99]. Tajbakhsh et al. investigated the possibility of a
unique PE representation, coupled with CNNs, thus
increasing the accuracy of PE CAD system for PE CT
classification [100]. To eliminate the false-positive detec-
tion for the PE recognition, the possibility of implementing
neural network as an effective tool for validating CTPA
datasets has been investigated [118]. In addition, it
improved the accuracy of PE recognition to 83%. Mean-
while, the vessel-aligned multi-planar image representa-
tion had three advantages that can improve the PE
accuracy. First, the efficiency of the image representation
is high, because it is a brief summary of 3D context

information near the blockage in two image channels.
Second, the image representation consistently supports
data enhancement for training the CNN. Therefore, the
import extensions can be posted. Third, the image
representation is expandable, because it naturally supports
data augmentation for training CNN. Besides, Chen et al.
evaluated the performance of the deep learning CNN
model, comparing it with a traditional natural language
processing (NLP) model in extracting PE information from
the thoracic CT reports from two institutions and proved
that the CNNmodel can classify radiology free-text reports
with an accuracy equivalent to or outperform that of an
existing traditional NLP model [101].

Pneumonia

Pneumonia is one of the main causes of death among
children. Unfortunately, in rural areas in developing
countries, infrastructure and medical expertise are lacking
for its timely diagnosis. The early diagnosis of interstitial
lung disease is essential for treatment. Therefore, chest X-
ray examination is one of the most commonly used
radiological examinations for the screening and diagnosis
of many lung diseases. However, the diagnosis of
pneumonia in children by using X-ray is a very difficult
task, because the current type of pneumonia image
discrimination relies mainly on the experience of doctors.
Specialized departments and personnel from hospitals are
required for making judgments. This set-up is laborious,
and considering that the images of some pneumonia are
very similar, doctors can easily make mistake, causing
misdiagnoses (Table 4).
Pneumonia usually manifests as one or more opaque

areas on the chest radiograph (CXR) [126]. However, the
diagnosis of CXR pneumonia is complicated by many
other diseases in the lungs, such as fluid overload
(pulmonary edema), bleeding, volume loss (atelectasis or
collapse), lung cancer, or post-radiation or surgical
changes. Generally, medical images are viewed, and a
rough estimation of the observed tissue is made to
distinguish whether the tissue is normal. In recent decades,
the identification of pneumonia has developed rapidly
through the computer-assisted technology. The technique
pays attention to deep learning. However, many methods
are available based on the traditional image pattern
recognition. The template matching and learning method
based on the statistical mode is one example. Siemens used
a template matching algorithm [127] to identify the type of
pneumonia. In this work, images were converted from the
spatial domain to the frequency domain via Fourier
transform infrared spectroscopy, and the target features in
the frequency domain were used to classify the pneumonia
type. However, the algorithm is computationally intensive
and the accuracy is low. A conventional image processing
method based on a statistical model can also be used. It
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generally extracts features manually and then uses a
classifier for identification. In general, the modeling is
based on the color, texture, shape, and spatial relationship
of the image. The algorithms commonly used for texture
features are local binary patterns (LBP) mode and direction
histograms of oriented gradients (HOG) [128,129].
However, the features extracted by hand cannot

accurately distinguish the types of pneumonia. As a
recently developed method for the automatic feature
extraction, deep learning has been applied to some medical
image analysis. The network avoids the complex pre-
processing of the images in the early stage and can directly
input the images into the network to obtain the recognition
results. CNNs can learn the essential characteristics of
different pneumonia types autonomously through the
convolution kernels. Abdullah et al. [120] proposed a
detection method for the pneumonia symptoms by using
the CNNs based on the difference of gray-scale color and
the segmentation between normal and suspicious lung
regions. Correa [121,130] introduced a method of auto-
matic diagnosis of pneumonia by pulmonary ultrasound
imaging. Different from Refs. [131] and [130], Cisner-
osvelarde et al. [122] applied pneumonia detection in a
new field based on ultrasound videos rather than
ultrasound images. To determine an automated diagnostic
method for medical images, 40 simulated chest CXRs
related to the normal and pneumonia patients were studied
[123]. For the detection of pneumonia clouds, the healthy
part of the lungs was isolated from the area of pneumonia
infection. Then, the algorithm for clipping and extracting
lung regions from images was also developed and was
compiled based on CUDA [131–133] for an improved
computational performance [124].
The scarcity of data and the dependence on the labeled

data in the application of deep learning in medical imaging
have been analyzed. Wang et al. [125] aimed to build a
large-scale and high-accuracy CAD system for increased
academic interest in building large-scale database of

medical images. The author extracted the report contents
and tags from the picture archiving and communication
system (PACS) of the hospital by NLP and constructed a
hospital-scale chest X-ray database.

Tuberculosis

Pulmonary tuberculosis is a chronic infectious disease
mainly transmitted by the respiratory tract [35]. Pulmonary
tuberculosis is caused by individual factors such as age,
genetic factors, and personal behaviors such as smoking
and air pollution. Its pathogen is Mycobacterium tubercu-

losis, which can invade the body and cause hematogenous
dissemination. At present, the diagnostic methods of
tuberculosis mainly depend on historical records, symp-
toms and signs, imaging diagnosis, and the sputum
Mycobacterium tuberculosis examination. The chest X-
ray examination is an important method for the diagnosis
of tuberculosis. It can detect early mild tuberculosis lesions
and judge the nature of the lesions.
The success of the method depends on the radiologist’s

CAD system, which can overcome this problem and
accelerate the active case detection (Table 5). In recent
years, great progress has been made in the field of
deep learning, which allowed the classification of hetero-
geneous images [134,135]. CNN is popular for its ability to
learn intermediate and advanced images. Various CNN
models have been used for the classification of CXR
into tuberculosis [136]. Lakhani & Sundaram [137] used
deep learning with CNNs and achieved accurately
classified tuberculosis from the CXR with an area
under the curve of 0.99. Melendez et al. [138] evaluated
the deep learning framework on a database containing 392
patient records with suspected TB subjects. Melendez
[139–141] proposed the use of weakly labeled approach
for TB detection. It studied an alternative pattern
classification method, namely multi-instance learning,
which does not require detailed information for training a

Table 4 Deep learning in pneumonia
Authors Year Task Modality Main methods

Lee et al. [119] 2001 Detection CT Used a template matching algorithm for the identification of the type of
pneumonia

Abdullah et al. [120] 2011 Detection CT Proposed a detection method of pneumonia symptoms gray-scale color and
the segmentation between normal and lung regions

Correa et al. [121] 2018 Classification Ultrasound Automatic classification of pneumonia approach based on the analysis of
brightness distribution patterns present in rectangular segments

Cisnerosvelarde et al. [122] 2016 Detection Ultrasound Proposed the application of ultrasound video analysis for the detection of
pneumonia

Sharma et al. [123] 2017 Detection X-ray Used Otsu threshold to segregate the healthy part of lung from the
pneumonia infected cloudy regions

de Melo et al. [124] 2018 Detection X-ray Used parallel technique to improve the computing speed

Wang et al. [125] 2017 Classification X-ray Built a large-scale and high-accuracy CAD system
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CAD system. They have applied this alternative method
to a CAD system designed for the detection of texture
lesions associated with tuberculosis. Then, for solving
the problem of having to use additional clinical informa-
tion in screening for tuberculosis, a combination frame-
work based on machine learning has been proposed
[141,145,146]. Zheng et al. [142] studied the performance
of the known deep convolution network (DCN) structures
under different abnormal conditions. In comparison with
the deep features, the shallow features or the early layers
always provide higher detection accuracy. These techni-
ques have been applied for tuberculosis detection on
different datasets and achieved highest accuracy. For
classifying abnormalities in the CXRs, a cascade of CNN
and recurrent neural network (RNN) have been employed
Indiana chest X-rays dataset [140]. However, the accuracy
was not compared with previous results. The use of a
binary classifier scheme of normal versus abnormal has
been attempted [143].

Interstitial lung disease (ILD)

ILD is a group of heterogeneous non-neoplastic and
non-infectious lung diseases with alveolar inflammation
and interstitial fibrosis as the basic pathological changes.
This disease also called diffuse parenchymal lung
disease (DPLD). ILD involves several abnormal imaging
patterns observed in CT images. The accurate classification
of these patterns plays an important role in the accurate
clinical judgment of the extent and nature of the
disease (Table 6). Therefore, the development of an
automatic computer-aided detection system for lung is
important.
Anthimopoulos et al. [55] proposed and evaluated a

CNN for the classification of ILD patterns. This method
used the texture classification scheme of the ROI for the
generation of an ILD quantization map of the whole lung
by sliding a fixed proportion classifier on the pre-
segmented lung field. Then, the quantified results were

Table 5 Deep learning in tuberculosis
Authors Year Task Modality Main methods

Pande et al. [135] 2015 Classification X-ray Evaluated the accuracy of CAD software for diagnosis of PTB

Rohilla et al. [136] 2017 Classification X-ray Used various CNN models to classify the CXR

Lakhani et al. [137] 2017 Classification X-ray Used deep learning with CNNs and got the accurately classify tuberculosis

Melendez et al. [138] 2016 Classification X-ray Evaluated this framework on a database containing 392 patient records
from suspected TB subjects

Melendez et al. [139] 2014 Detection X-ray Proposed a method which uses a weakly labeled approach to detect TB

Shin et al. [140] 2016 Detection X-ray Presented a deep learning model to detect a disease from an image and
annotate its contexts

Murphy et al. [141] 2019 Detection X-ray Automated analysis of chest X-ray (CXR) as a sensitive and inexpensive
means of screening susceptible populations for pulmonary tuberculosis

Zheng et al. [142] 2017 Detection X-ray Found that shallow features or early layers always provide higher detection
accuracy

Bar et al. [143] 2015 Detection X-ray Explored the ability of CNN learned from a nonmedical dataset to identify
different types of pathologies in chest X-rays

Table 6 Deep learning in ILD
Authors Year Task Modality Main methods

Anthimopoulos et al. [55] 2016 Classification CT Proposed and evaluated a CNN for the classification of ILD patterns

Simonyan and Zisserman [147] 2018 Classification HRCT Proposed and developed a framework in which CNN was used for
tissue categorization of ILD

Li et al. [148] 2013 Classification HRCT Used unsupervised algorithm for capturing image features of different
scales

Li et al. [149] 2014 Classification HRCT Proposed a customized CNN architecture to classify HRCT lung image
patches of ILD patterns

Gao et al. [150] 2016 Classification CT Proposed multi-label, multi-class ILD model and trained simultaneously

Christodoulidis et al. [151] 2016 Classification CT Used multiple transfer of knowledge to improve the accuracy and
stability of a CNN on the task of lung tissue pattern classification

Gao et al. [152] 2018 Classification CT Proved that the use of three attenuation ranges data can enhance the
classification effect
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used in the final diagnosis of the CAD system. Simonyan
and Zisserman [147] developed a CNN framework to
classify the lung tissue patterns into different classes such
as normal, reticulation, GGO, and honeycombing. Li et al.
[148] used an unsupervised algorithm to capture image
features of different scales and feature extractors of
different sizes and achieved a good classification accuracy
of 84%. Then, Li et al. [149] designed a customized CNN
with a shallow convolution layer to classify ILD images.
Gao et al. [150] proposed two variations of multi-label
deep CNNs to accurately recognize the potential multiple
ILD co-occurrence on an input lung CT slice. Christodou-
lidis et al. [151] applied algorithms similar to knowledge
maps to the classify ILD. In this study, the possibility of
transfer learning in the field of medical image analysis and
the structural nature of the problem were expressed. The
training method of the network is as important as the
design of that architecture. By rescaling the original CT
images of Hounsfield units to three different scales (one
focusing on the low attenuation mode, one focusing on the
high attenuation mode, and one focusing on the normal
mode), the three 2D images were used as input into the
network. Gao et al. [152] found that the three attenuation
ranges provided a better visibility or visual separation in all
six ILD disease categories.

Others

For other pulmonary diseases including common diseases,
such as pneumothorax, bullae, and emphysema, deep
learning models have many applications, which greatly
improve the diagnostic rate of etiology. Cengil et al. [153]
used deep learning for the classification of cancer types. A
semi-supervised deep learning algorithm was proposed to
automatically classify patients’ lung sounds [154,155] (for
the two most common lung sounds, wheezing and
bursting). The algorithm made some progress in automatic
lung sound recognition and classification. Aykanat et al.
[156] proposed and implemented a U-net convolution
network structure for the biomedical image segmentation.
It mainly separates lung regions from the other tissues in
the CT images. To facilitate the detection and the
classification of lung nodules, Tan et al. [157] used a
CAD system based on transfer learning (TL) and improved
the accuracy of lung disease diagnosis in bronchoscopy.
For chronic obstructive pulmonary disease (COPD) [158],
the characteristics of long-term short-term memory
(LSTM) unit are used for representing the progress of
COPD, and a specially configured RNN was used for
capturing irregular time-lapse. It improved the explanatory
ability of the model and the accuracy of estimating the
progress of COPD. Campo et al. [159] used X-rays to
quantify the emphysema instead of CT scans.

Datasets and performance

Pulmonary nodule datasets

LIDC-IDRI

The Lung Image Database Consortium image collection
(LIDC-IDRI) [160] consists of chest medical image files
(such as CT and X-ray) and the corresponding pathological
markers of the diagnostic results (Table 7). The data were
collected by the National Cancer Institute to study early
cancer detection in high-risk populations. The dataset
contains 1018 research cases, and the nodule diameter in
the LIDC-IDRI dataset ranged from 3 mm to 30 mm. For
each data, four experienced thoracic radiologists carried
out two-stage diagnostic labeling. In the first stage, each
radiologist independently examined each CT scan and
marked one of three types of lesions (“nodule ≥ 3 mm,”
“nodule < 3 mm,” and “non-nodule > 3 mm”). On the
second phase, each radiologist independently checks his or
her own markers and the anonymous markers from three
other radiologists to provide final comments. This
procedure aims to identify all pulmonary nodules in each
CT scan as completely as possible without compulsory
consistency. A brief comparison is given in the LIDC-IDRI
dataset. Armato et al. [161] believed that better results can
be obtained by combining geometric texture with the
directional gradient histogram with reduced HOG-PCA
features to create a hybrid feature vector for each candidate
node. Huidrom et al. [162] used a nonlinear algorithm to
classify the 3D nodule candidate boxes. The proposed
algorithm is based on the combination of genetic algorithm
(GA) and the particle swarm optimization (PSO) to prove
the learning ability of multi-layer perceptron. This method
was compared with the existing linear discriminant
analysis (LDA) and the convolutional neuron methods.
Shaukat et al. [163] presented a marker-controlled
watershed technique that used intensity, shape, and texture
features for the detection of lung nodules. Zhang et al.
[164] used 3D skeletonization features based on the prior
anatomical knowledge for the determination of the lung
nodules. Naqi et al. [165] used traditional manual feature
HOG and CNN features to construct hybrid feature vectors
to find candidate nodules. Refs. [166–168] showed
algorithms that achieved better results that year. The
deep learning methods [71,169–172] for lung nodule
detection did not show promising results.

LUNA16

LUNA16 dataset [160,176] is a subset of LIDC-IDRI.
LIDC-IDRI that includes 1018 low-dose lung CT images,
while LUNA excludes CT images with slices thicker than 3
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mm and pulmonary nodules smaller than 3 mm. The
database is very heterogeneous. It is clinically collected
from seven different academic institutions for dose and
low-dose CT scans, and it has a wide range of scanner
models and acquisition parameters. The final list contains
888 scans. Dou et al. [175] employed 3D CNNs for false
positive reduction in automated pulmonary nodule detec-
tion from volumetric CT scans. Setio et al. [57] used multi-
view convolutional networks (ConvNets) to extract the
features and then combined a dedicated fusion method to
obtain the final classification. Other teams [159,161,177]
also achieved relatively good results.

Pneumonia datasets

Chest X-ray images

The dataset released by the National Institutes of Health
includes 112 120 frontal-view X-ray images of 30 805
unique patients [178]. Fourteen different chest pathologi-
cal markers were labeled using the NLP method in the
Journal of Radiology. As a positive example, pneumonia
images were identified, and as a negative example of the
subject of pneumonia detection, all other images were
summarized. The database contains more than 100 000 X-
ray front views (about 42 g) of 14 lung diseases
(atelectasis, consolidation, infiltration, pneumothorax,

edema, emphysema, fibrosis, effusion, pneumonia, pleural
thickening, cardiac hypertrophy, nodules, masses, and
hernia). Researchers used NLP to label the data. Grades
1 – 14 correspond to 14 kinds of lung diseases, and grade
15 represents 14 kinds of lung diseases. The accuracy of
tags in this database exceeded 90%. Wang et al. [125]
proposed a weakly-supervised multi-label image classifi-
cation and disease localization framework and achieved F1
score of 0.633. Yao et al. [179] used LSTMs to leverage
interdependencies among target labels in predicting 14
pathologic patterns and got F1 score of 0.713. Rajpurkar
et al. [178] improved the result to 0.768 by using a 121-
layer DCN (DenseNet).

Tuberculosis datasets

Shenzhen Hospital X-ray

Shenzhen Hospital X-ray [180] is a dataset collected by
Shenzhen Third People’s Hospital, Guangdong Medical
University, Shenzhen, China. Chest X-rays from the clinic
were captured as part of the daily hospital routine for a
month, mostly in September 2012. This dataset contains
626 frontal chest X-rays, in which 326 are normal, and 336
are accompanied by symptoms of TB. All data were
provided in PNG form, which vary in size but are all
around 3k � 3k pixels.

Table 7 Deep learning in LIDC-IDRI dataset
Authors Year Datasets Main methods Acc. Sen. Spc. FPs/Scan

Armato et al. [161] 2019 LIDC-IDRI Combined geometric texture with directional gradient
histogram with feature reduction of principal
component analysis (HOG-PCA) to automatically
detect nodules

99.2% 98.3% 98.0% 3.3

Huidrom et al. [162] 2019 LIDC-IDRI Used a nonlinear algorithm to classify the 3D nodule
candidate boxes

93.23% 93.26% 93.2% –

Shaukat et al. [163] 2019 LIDC-IDRI Presented a marker-controlled watershed technique that
uses intensity, shape and texture features to detect lung
nodules

93.7% 95.5% 94.28% 5.72

Zhang et al. [164] 2018 LIDC-IDRI Used 3D skeletonization feature based prior anatomical
knowledge

– 89.3% – 2.1

Naqi et al. [165] 2018 LIDC-IDRI Used traditional manual feature HOG and CNN
feature to construct hybrid feature vectors

98.8% 97.7% 96.2% 3.8

Liu et al. [166] 2017 LIDC-IDRI Presented a fast segmentation method for true nodules
and false positive nodules

93.20% 92.40% 94.80% 4.5

Javaid et al. [167] 2016 LIDC-IDRI Extracted 2D and 3D feature sets for nodules to eliminate
false positives

96.22% 91.65% – 3.19

Akram et al. [168] 2015 LIDC-IDR Proposed a novel pulmonary nodule detection technique
by thresholding, label masking, background removal and
contour correction

97.52% 95.31% 99.73% –

Dou et al. [175] 2016 LUNA16 Used 3D CNNs for false positive reduction – 90.7% – 4.0

Setio et al. [57] 2016 LUNA16 Used multi-view convolutional networks (ConvNets) to
extract the features

– 90.1% – 4.0

462 Deep learning for pulmonary diseases



Montgomery County X-ray

The Montgomery County X-ray dataset [180] consists of
138 frontal chest X-rays from the TB screening program in
the Department of Health and Human Services, Mon-
tgomery County, Maryland, USA. In addition, 80 patients
were in normal condition and 58 patients had imaging
symptoms of tuberculosis. All pictures were captured
using the conventional X-ray machine (cr) to store 12-bit
gray level images in the form of portable network graphics
(png). They can also be used in the form of DICOM as
required. The size of the X-ray is 4020 � 4892 or
4892 � 4020 pixels. The work [136] tested deep learning
methods on the detection of tuberculosis based on this
dataset, and the Shenzhen dataset achieved an accuracy of
more than 80% that is comparable performance to the
radiologists.

Interstitial lung disease datasets

Geneva database

Geneva database was collected by the University Hospitals
of Geneva, Geneva, Switzerland. The dataset consists of
chest CT scans of 1266 patients between 2003 and 2008 in
the University Hospitals of Geneva. Based on the EHR
information, only cases with HRCT (without contrast
agent, 1 mm slice thickness) were included. Up until now,
more than 700 cases were revised and 128 were stored in
the database that affected one of the 13 histological
diagnoses of ILDs. The database is available for research
on request and after the signature of a license agreement.
Anthimopoulos et al. [173] and Gangeh et al. [174]
improved the quantitative measurement of the ILD based
on Geneva database.

Challenges and future trends

From the medical and clinical aspects, despite the
successes of deep learning technology, many limitations
and challenges exist. Deep learning generally requires a
large amount of annotated data for analysis. This
requirement is a big challenge for annotating medical
images. Labeling medical images require expert knowl-
edge, such as the domain knowledge of radiologists.
Hence, annotating sufficient medical image is labor- and
time-consuming. Although the annotation of medical
images is not easy, the amount of unlabeled medical
images is vast, because they are well stored in PACS for a
long time. If the unlabeled images can be utilized by deep
learning techniques, considerable time and effort in
annotation would be saved.
Another challenge is the interpretability of deep learning

[181]. Deep learning methods are often taken as black box,
where their performance or failure is hard to interpret. The
demands for the investigation of these techniques increase
to pave the way for clinical application of deep learning in
medical image analysis. From the perspective of law, the
wide spread of deep learning application in medical field
would also require transparency and interpretability.
Our future work will further analyze the problem of

image semantics segmentation based on the deep learning
network, and summarize and improve the shortcomings in
the research. Under the background of the research of
medical imaging based on deep learning, this paper puts
forward several potential or under-study directions in the
future. (1) Neural network has a good classification effect
on independent and identically distributed test sets, but
examples of error classification added to the model, which
are not very visually different, will cause a great difference
in neural network. Therefore, the Adversarial Net [147] has
been proposed to determine a method that can result in
higher resolution of medical images based on human eyes.
(2) Common methods of machine learning includes
supervised learning and unsupervised learning. The current
research is based on supervised learning algorithms.
However, supervised learning requires human label
classification and network training of the data, which can
greatly consume the time of medical experts. Senior
medical experts often do not have much time to label the
training data of a certain order of magnitude. Unsupervised
learning may be a potential research direction of medical
image processing in the future.

Conclusions

Medical image processing based on deep learning is a hot
and challenging subject intersecting the medical field and
the computer field. This paper summarizes the research
work carried out in the following direction. First, the recent
popular DNN framework was introduced, and the origin of
its neural network was traced back and discussed in detail.
In addition, toward the current deep network framework,
the classical models that are universally applied to medical
images were introduced.
In the third part of this paper, the application of neural

network in various lung diseases was introduced. For the
tasks of different diseases, this paper describes the current
research status of deep neural network in medical images,
analyses and summarizes the development of the frame-
work, and makes a detailed analysis of the models
that have achieved good results in these fields to lay
an important research foundation for researchers after-
wards.
In the fourth part of the article, various algorithm models

on datasets such as LIDC-IDRI and LUNA16 were
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introduced in detail. In addition, some commonly used
datasets on other diseases were briefly introduced in this
paper, so that others can carry out relevant experiments.
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