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Introduction

Supervised learning methods require labeled training data, and in classification prob-

lems each data sample belongs to a known class, or category [1, 2]. In a binary classifi-

cation problem with data samples from two groups, class imbalance occurs when one 

class, the minority group, contains significantly fewer samples than the other class, 

the majority group. In many problems [3–7], the minority group is the class of inter-

est, i.e., the positive class. A well-known class imbalanced machine learning scenario is 

the medical diagnosis task of detecting disease, where the majority of the patients are 
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healthy and detecting disease is of greater interest. In this example, the majority group of 

healthy patients is referred to as the negative class. Learning from these imbalanced data 

sets can be very difficult, especially when working with big data [8, 9], and non-standard 

machine learning methods are often required to achieve desirable results. A thorough 

understanding of the class imbalance problem and the methods available for addressing 

it is indispensible, as such skewed data exists in many real-world applications.

When class imbalance exists within training data, learners will typically over-clas-

sify the majority group due to its increased prior probability. As a result, the instances 

belonging to the minority group are misclassified more often than those belonging to the 

majority group. Additional issues that arise when training neural networks with imbal-

anced data will be discussed in the "Deep learning methods for class imbalanced data" 

section. �ese negative effects make it very difficult to accomplish the typical objective 

of accurately predicting the positive class of interest. Furthermore, some evaluation met-

rics, such as accuracy, may mislead the analyst with high scores that incorrectly indi-

cate good performance. Given a binary data set with a positive class distribution of 1%, 

a naïve learner that always outputs the negative class label for all inputs will achieve 

99% accuracy. Many traditional machine learning techniques, which are summarized in 

the "Machine learning techniques for class imbalanced data" section, have been devel-

oped over the years to combat these adverse effects.

Methods for handling class imbalance in machine learning can be grouped into three 

categories: data-level techniques, algorithm-level methods, and hybrid approaches [10]. 

Data-level techniques attempt to reduce the level of imbalance through various data 

sampling methods. Algorithm-level methods for handling class imbalance, commonly 

implemented with a weight or cost schema, include modifying the underlying learner 

or its output in order to reduce bias towards the majority group. Finally, hybrid systems 

strategically combine both sampling and algorithmic methods [10].

Over the last 10 years, deep learning methods have grown in popularity as they have 

improved the state-of-the-art in speech recognition, computer vision, and other domains 

[11]. �eir recent success can be attributed to an increased availability of data, improve-

ments in hardware and software [12–16], and various algorithmic breakthroughs that 

speed up training and improve generalization to new data [17]. Despite these advances, 

very little statistical work has been done which properly evaluates techniques for han-

dling class imbalance using deep learning and their corresponding architectures, i.e. 

deep neural networks (DNNs). In fact, many researchers agree that the subject of deep 

learning with class imbalanced data is understudied [18–23]. For this reason, our survey 

is limited to just 15 deep learning methods for addressing class imbalance.

A comprehensive literature review was performed in order to identify a broad range 

of deep learning methods for addressing class imbalance. We have documented the spe-

cific details of the literature search process so that other scholars may more confidently 

use this survey in future research, an essential step in any literature review [24]. Can-

didate papers were first discovered through the Google Scholar [25] and IEEE Xplore 

[26] databases. Keyword searches included combinations of query terms such as: “class 

imbalance”, “class rarity”, “skewed data”, “deep learning”, “neural networks” and “deep 

neural networks”. Search results were reviewed and filtered, removing those that did 
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not demonstrate learning from class imbalanced data with neural networks containing 

two or more hidden layers. No restrictions were placed on the date of publication. �e 

matched search results were then used to perform backward and forward searches, i.e. 

reviewing the references of matched articles and additional sources that have cited these 

articles. �is was repeated until all relevant papers were identified, to the best of our 

knowledge.

Additional selection criteria were applied to exclude papers that only tested low lev-

els of class imbalance, that did not compare proposed methods to other existing class 

imbalance methods, or that only used a single data set for evaluation. We discovered 

that papers meeting these criteria are very limited. �erefore, in order to increase the 

total number of selected works, these additional requirements were relaxed. �e final set 

of 15 publications includes journal articles, conference papers, and student theses that 

employ deep learning methods with class imbalanced data.

We explore a variety of data-level, algorithm-level, and hybrid deep learning meth-

ods designed to improve the classification of imbalanced data. Implementation details, 

experimental results, data set details, network topologies, class imbalance levels, perfor-

mance metrics, and any known limitations are included in each surveyed work’s discus-

sion. Tables 17 and 18, in the "Discussion of surveyed works" section, summarize all of 

the surveyed deep learning methods and the details of their corresponding data sets. 

�is survey provides the most current analysis of deep learning methods for addressing 

class imbalance, summarizing and comparing all related work to date, to the best of our 

knowledge.

�e remainder of this paper is organized as follows. �e "Class imbalance background" 

section provides background information on the class imbalance problem, reviews per-

formance metrics that are more sensitive to class imbalanced data, and discusses some 

of the more popular traditional machine learning (non-deep learning) techniques for 

handling imbalanced data. �e  "Deep learning background" section provides neces-

sary background information on deep learning. �e neural network architectures used 

throughout the survey are introduced, along with several important milestones and the 

use of deep learning in solving big data analytics challenges. �e "Deep learning meth-

ods for class imbalanced data" section surveys 15 published studies that analyze deep 

learning methods for addressing class imbalance. �e  "Discussion of surveyed works" 

section summarizes the surveyed works and offers further insight into their various 

strengths and weaknesses. �e "Conclusion" section concludes the survey and discusses 

potential areas for future work.

Class imbalance background

�e task of binary classification, comprised of one positive group and one negative 

group, is used to discuss class imbalance and various techniques for addressing its 

challenges in this section. �ese concepts can be extended to the multi-class problem, 

because it is possible to convert multi-class problems into a set of two-class problems 

through class decomposition [27].
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The class imbalance problem

Skewed data distributions naturally arise in many applications where the positive class 

occurs with reduced frequency, including data found in disease diagnosis [3], fraud 

detection [4, 5], computer security [6], and image recognition [7]. Intrinsic imbalance 

is the result of naturally occurring frequencies of data, e.g. medical diagnoses where the 

majority of patients are healthy. Extrinsic imbalance, on the other hand, is introduced 

through external factors, e.g. collection or storage procedures [28].

It is important to consider the representation of the minority and majority classes 

when learning from imbalanced data. It was suggested by Krawczyk [10] that good 

results can be obtained, regardless of class disproportion, if both groups are well rep-

resented and come from non-overlapping distributions. Japkowicz [29] examined the 

effects of class imbalance by creating artificial data sets with various combinations of 

complexity, training set size, and degrees of imbalance. �e results show that sensitivity 

to imbalance increases as problem complexity increases, and that non-complex, linearly 

separable problems are unaffected by all levels of class imbalance.

In some domains, there is a genuine lack of data due to the low frequency with which 

events occur, e.g. detecting oil spills [7]. Learning from extreme class imbalanced data, 

where the minority class accounts for as few as 0.1% of the training data [10, 30], is of 

great importance because it is typically these rare occurrences that we are most inter-

ested in. Weiss [31] discusses the difficulties of learning from rare events and various 

machine learning techniques for addressing these challenges.

�e total number of minority samples available is of greater interest than the ratio or 

percentage of the minority. Consider a minority group that is just 1% of a data set con-

taining 1 million samples. Regardless of the high level of imbalance, there are still many 

positive samples (10,000) available to train a model. On the other hand, an imbalanced 

data set where the minority class displays rarity or under-representation is more likely to 

compromise the performance of the classifier [30].

For the purpose of comparing experimental results across all works presented in this 

survey, a ratio ρ (Eq. 1) [23] will be used to indicate the maximum between-class imbal-

ance level. Ci is a set of examples in class i, and maxi{|Ci|} and mini{|Ci|} return the max-

imum and minimum class size over all i classes, respectively. For example, if a data set’s 

largest class has 100 samples and its smallest class has 10 samples, then the data has an 

imbalance ratio of ρ = 10 . Since the actual number of samples may prove more impor-

tant than the ratio, Table 18 also includes the maximum and minimum class sizes for all 

experiments in this survey.

Performance metrics

�e confusion matrix in Table 1 summarizes binary classification results. �e FP and FN 

errors correspond to Type I and Type II errors, respectively. All of the performance met-

rics listed in this section can be derived from the confusion matrix.

(1)ρ =
maxi{|Ci|}

mini{|Ci|}
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Accuracy (Eq. 2) and error rate (Eq. 3) are the most frequently used metrics when evalu-

ating classification results. When working with class imbalance, however, both are insuf-

ficient, as the resulting value is dominated by the majority group, i.e. the negative class. 

As mentioned previously, when given a data set whose positive group distribution is just 

1% of the data set, a naïve classifier can achieve a 99% accuracy score by simply labeling 

all examples as negative. Of course, such a model would provide no real value. For this 

reason, we review several popular evaluation metrics commonly used with imbalanced 

data problems.

Precision (Eq. 4) measures the percentage of the positively labeled samples that are actu-

ally positive. Precision is sensitive to class imbalance because it considers the number of 

negative samples incorrectly labeled as positive. Precision alone is insufficient, however, 

because it provides no insight into the number of samples from the positive group that 

were mislabeled as negative. On the other hand, Recall (Eq. 5), or the True Positive Rate 

(TPR), measures the percentage of the positive group that was correctly predicted to 

be positive by the model. Recall is not affected by imbalance because it is only depend-

ent on the positive group. Recall does not consider the number of negative samples that 

are misclassified as positive, which can be problematic in problems containing class 

imbalanced data with many negative samples. �ere is a trade-off between precision and 

recall, and the metric of greater importance varies from problem to problem. Selectivity 

(Eq. 6), or the True Negative Rate (TNR), measures the percentage of the negative group 

that was correctly predicted to be negative.

(2)
Accuracy =

TP + TN

TP + TN + FP + FN

(3)Error Rate = 1 − Accuracy

(4)Precision =
TP

TP + FP

(5)Recall =TPR =
TP

TP + FN

(6)
Selectivity =TNR =

TN

TN + FP

(7)F-Measure =
(1 + β2) × Recall × Precision

β2 × Recall + Precision

(8)G-Mean =
√
TPR × TNR

(9)Balanced Accuracy =
1

2
× (TPR + TNR)

Table 1 Confusion matrix

Actual positive Actual negative

Predicted positive True positive (TP) False positive (FP)

Predicted negative False negative (FN) True negative (TN)
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�e F-Measure (Eq. 7), or F1-score, combines precision and recall using the harmonic 

mean, where coefficient β is used to adjust the relative importance of precision versus 

recall. �e G-Mean (Eq. 8) measures performance by combining both the TPR and the 

TNR metrics using the square root of their product. Similar to the G-Mean, the Bal-

anced Accuracy (Eq. 9) metric also combines TPR and TNR values to compute a metric 

that is more sensitive to the minority group [18]. Although F-Measure, G-Mean, and 

Balanced Accuracy are improvements over Accuracy and Error Rate, they are still not 

entirely effective when comparing performance between classifiers and various distribu-

tions [28].

�e receiver operating characteristics (ROC) curve, first presented by Provost and Faw-

cett [32], is another popular assessment which plots true positive rate over false posi-

tive rate, creating a visualization that depicts the trade-off between correctly classified 

positive samples and incorrectly classified negative samples. For models which produce 

continuous probabilities, thresholding can be used to create a series of points along ROC 

space [28]. From this a single summary metric, the area under the ROC curve (AUC), can 

be computed and is often used to compare performance between models. A weighted-

AUC  metric, which takes cost biases into consideration when calculating the area, was 

introduced by Weng and Poon [33].

According to Davis and Goadrich [34], ROC curves can present overly optimis-

tic results on highly skewed data sets and Precision–Recall (PR) curves should be used 

instead. �e authors claim that a curve can only dominate in ROC space if it also domi-

nates in PR space. �is is justified by the fact that the false positive rate used by ROC, 

FPR =
FP

FP+TN
 , will be less sensitive to changes in FP as the size of the negative class 

grows.

According to Seliya et al. [35], learners should be evaluated with a set of complemen-

tary performance metrics, where each individual metric captures a different aspect of 

performance. In their comprehensive study, 22 different performance metrics were used 

to evaluate two classifiers across 35 unique data sets. Common factor analysis was then 

used to group the metrics, identifying sets of unrelated performance metrics that can 

be used in tandem to reduce redundancy and improve performance interpretation. One 

example set of complementary performance metrics discovered by Seliya et al. is AUC, 

Brier Inaccuracy [36], and accuracy.

Machine learning techniques for class imbalanced data

Addressing class imbalance with traditional machine learning techniques has been stud-

ied extensively over the last two decades. �e bias towards the majority class can be alle-

viated by altering the training data to decrease imbalance, or by modifying the model’s 

underlying learning or decision process to increase sensitivity towards the minority 

group. As such, methods for handling class imbalance are grouped into data-level tech-

niques, algorithm-level methods, and hybrid approaches. �is section summarizes some 

of the more popular traditional machine learning methods for handling class imbalance.
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Data-level methods

Data-level methods for addressing class imbalance include over-sampling and under-

sampling. �ese techniques modify the training distributions in order to decrease the 

level of imbalance or reduce noise, e.g. mislabeled samples or anomalies. In their sim-

plest forms, random under-sampling (RUS) discards random samples from the majority 

group, while random over-sampling (ROS) duplicates random samples from the minor-

ity group [37].

Under-sampling voluntarily discards data, reducing the total amount of information 

the model has to learn from. Over-sampling will cause an increased training time due to 

the increased size of the training set, and has also been shown to cause over-fitting [38]. 

Over-fitting, characterized by high variance, occurs when a model fits too closely to the 

training data and is then unable to generalize to new data. A variety of intelligent sam-

pling methods have been developed in an attempt to balance these trade-offs.

Intelligent under-sampling methods aim to preserve valuable information for learning. 

Zhang and Mani [39] present several Near-Miss algorithms that use a K-nearest neigh-

bors (K-NN) classifier to select majority samples for removal based on their distance 

from minority samples. One-sided selection was proposed by Kubat and Matwin [40] as 

a method for removing noisy and redundant samples from the majority class as they are 

discovered through a 1-NN rule and Tomek links [41]. Barandela et al. [42] use Wilson’s 

editing [43], a K-NN rule that removes misclassified samples from the training set, to 

remove majority samples from class boundaries.

A number of informed over-sampling techniques have also been developed to 

strengthen class boundaries, reduce over-fitting, and improve discrimination. Chawla 

et  al. [44] introduced the Synthetic Minority Over-sampling Technique (SMOTE), a 

method that produces artificial minority samples by interpolating between existing 

minority samples and their nearest minority neighbors. Several variants to SMOTE, e.g. 

Borderline-SMOTE [45] and Safe-Level-SMOTE [46], improve upon the original algo-

rithm by also taking majority class neighbors into consideration. Borderline-SMOTE 

limits over-sampling to the samples near class borders, while Safe-Level-SMOTE defines 

safe regions to prevent over-sampling in overlapping or noise regions.

Supervised learning systems usually define a concept with several disjuncts, where 

each disjunct is a conjunctive definition describing a subconcept [47]. �e size of a dis-

junct corresponds to the number of samples that the disjunct correctly classifies. Small 

disjuncts, often corresponding to rare cases in the domain, are learned concepts that 

correctly classify only a few data samples. �ese small disjuncts are problematic, as they 

often contain much higher error rates than large disjuncts, and they cannot be removed 

without compromising performance [48].

Jo and Japkowicz [49] proposed cluster-based over-sampling to address the presence 

of small disjuncts in the training data. Minority and majority groups are first clustered 

using the K-means algorithm, then over-sampling is applied to each cluster separately. 

�is improves both within-class imbalance and between-class imbalance.

Van Hulse et  al. [37] compared seven different sampling techniques with 11 com-

monly-used machine learning algorithms. Each model was evaluated with 35 bench-

mark data sets using six different performance metrics to compare results. It was shown 

that sampling results were highly dependent on both the learner and the evaluation 
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performance metric. Experiments revealed that RUS resulted in good performance over-

all, outperforming ROS and intelligent sampling methods in most cases. �e results sug-

gest that, although RUS performs well in most cases, no sampling method is guaranteed 

to perform best in all problem domains, and multiple performance metrics should be 

used when evaluating results.

Algorithm-level methods

Unlike data sampling methods, algorithmic methods for handling class imbalance do not 

alter the training data distribution. Instead, the learning or decision process is adjusted 

in a way that increases the importance of the positive class. Most commonly, algorithms 

are modified to take a class penalty or weight into consideration, or the decision thresh-

old is shifted in a way that reduces bias towards the negative class.

In cost-sensitive learning, penalties are assigned to each class through a cost matrix. 

Increasing the cost of the minority group is equivalent to increasing its importance, 

decreasing the likelihood that the learner will incorrectly classify instances from this 

group [10]. �e cost matrix of a binary classification problem is shown in Table 2 [50]. 

A given entry of the table, cij , is the cost associated with predicting class i when the true 

class is j. Usually, the diagonal of the cost matrix, where i = j , is set to 0. �e costs corre-

sponding to false positive and false negative errors are then adjusted for desired results.

Ling and Sheng [51] categorize cost-sensitive methods as either a direct method, or a 

meta-learning method. Direct methods are methods that have cost-sensitive capabilities 

within themselves, achieved through modification of the learner’s underlying algorithm 

such that costs are taken into consideration during learning. �e optimization process 

changes from one of minimizing total error, to one of minimizing total cost. Meta-learn-

ing methods utilize a wrapper to convert cost-insensitive learners into cost-sensitive 

systems. If a cost-insensitive classifier produces posterior probability estimates, the cost 

matrix can be used to define a new threshold p∗ such that:

Usually, thresholding methods use p∗ (Eq. 10) to redefine the output decision threshold 

when classifying samples [51]. �reshold moving, or post-processing the output class 

probabilities using Eq. 10, is one meta-learning approach that converts a cost-insensitive 

learner into a cost-sensitive system.

One of the biggest challenges in cost-sensitive learning is the assignment of an effec-

tive cost matrix. �e cost matrix can be defined empirically, based on past experiences, 

or a domain expert with knowledge of the problem can define them. Alternatively, the 

false negative cost can be set to a fixed value while the false positive cost is varied, using 

a validation set to identify the ideal cost matrix. �e latter has the advantage of exploring 

(10)p∗
=

c10

c10 + c01

Table 2 Cost matrix

Actual positive Actual negative

Predicted positive C(1, 1) = c11 C(1, 0) = c10

Predicted negative C(0, 1) = c01 C(0, 0) = c00
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a range of costs, but can be expensive and even impractical if the size of the data set or 

number of features is too large.

Hybrid methods

Data-level and algorithm-level methods have been combined in various ways and 

applied to class imbalance problems [10]. One strategy includes performing data sam-

pling to reduce class noise and imbalance, and then applying cost-sensitive learning or 

thresholding to further reduce the bias towards the majority group. Several techniques 

which combine ensemble methods with sampling and cost-sensitive learning were pre-

sented in [28]. Liu et al. [52] proposed two algorithms, EasyEnsemble and BalanceCas-

cade, that learn multiple classifiers by combining subsets of the majority group with the 

minority group, creating pseudo-balanced training sets for each individual classifier. 

SMOTEBoost [53], DataBoost-IM [54], and JOUS-Boost [55] all combine sampling with 

ensembles. Sun [56] introduced three cost-sensitive boosting methods, namely AdaC1, 

AdaC2, and AdaC3. �ese methods iteratively increase the impact of the minority group 

by introducing cost items into the AdaBoost algorithm’s weight updates. Sun showed 

that the cost-sensitive boosted ensembles outperformed plain boosting methods in most 

cases.

Deep learning background

�is section reviews the basic concepts of deep learning, including descriptions of the 

neural network architectures used throughout the surveyed works and the value of 

representation learning. We also touch on several important milestones that have con-

tributed to the success of deep learning. Finally, the rise of big data analytics and its 

challenges are introduced along with a discussion on the role of deep learning in solving 

these challenges.

Introduction to deep learning

Deep learning is a sub-field of machine learning that uses artificial neural networks 

(ANNs) containing two or more hidden layers to approximate some function f ∗ , where 

f ∗ can be used to map input data to new representations or make predictions. �e ANN, 

inspired by the biological neural network, is a set of interconnected neurons, or nodes, 

where connections are weighted and each neuron transforms its input into a single out-

put by applying a non-linear activation function to the sum of its weighted inputs. In 

a feedforward network, input data propagates through the network in a forward pass, 

each hidden layer receiving its input from the previous layer’s output, producing a final 

output that is dependent on the input data, the choice of activation function, and the 

weight parameters [1]. Gradient descent optimization is then used to adjust the net-

work’s weight parameters in order to minimize the loss function, i.e. the error between 

expected output and actual output.

�e multilayer perceptron (MLP) is a fully-connected feedforward neural network 

containing at least one hidden layer. A shallow and deep MLP are illustrated in Fig. 1. 

�e deep MLP is the simplest deep learning model in terms of implementation, but it 

quickly becomes very resource intensive as the number of weighted connections quickly 

increases.
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The convolutional neural network (CNN) is a specialized feedforward neural net-

work that was designed to process multi-dimensional data, e.g. images [58]. It was 

inspired by the brain’s visual cortex and its origins date back to the Neocognitron 

presented by Fukushima in 1980 [59]. A CNN architecture is typically comprised of 

convolutional layers, pooling (subsampling) layers, and fully-connected layers. Fig-

ure 2 illustrates the LeNet-5 CNN architecture proposed by LeCun et al. [58] in 1998 

for the purpose of character recognition. Unlike fully-connected layers, a single unit 

of a convolutional layer is only connected to a small receptive field of its input, where 

the weights of its connections define a filter bank [11]. The convolution operation 

is used to slide the filter bank across the input, producing activations at each recep-

tive field that combine to form a feature map [60]. In other words, the same set of 

weights are used to detect a specific feature, e.g. a horizontal line, at each receptive 

field of the input, and the output feature map indicates the presence of this feature at 

each location. The concept of local connections and shared weights take advantage 

of the fact that input signals in close proximity of each other are usually highly cor-

related, and that input signals are often invariant to location. By combining multiple 

filter banks in a single convolutional layer, the layer can learn to detect multiple fea-

tures in the input, and the resulting feature maps become the input of the next layer. 

Pooling layers are added after one or more convolutional layers in order to merge 

semantically similar features and reduce dimensionality [11]. After the convolutional 

and pooling layers, the multi-dimensional output is flattened and fed to fully-con-

nected layers for classification. Similar to the MLP, output activations are fed from 

Fig. 1 Shallow MLP vs deep MLP [57]

Fig. 2 LeNet-5 CNN architecture of 1998 [58]
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one layer to the next in a forward pass, and the weights are updated through gradi-

ent descent.

The MLP and CNN are just two of many alternative DNN architectures that have 

been developed over the years. Recurrent neural networks (RNNs), autoencoders, 

and stochastic networks are explained thoroughly in [1, 60, 61]. They also present 

advanced optimization techniques that have been shown to improve training time 

and performance, e.g. regularization methods, parameter initialization, improved 

optimizers and activation functions, and normalization techniques.

Representation learning

�e success of a conventional machine learning algorithm is highly dependent on 

the representation of the input data, making feature engineering a critical step in the 

machine learning workflow. �is is very time consuming and for many complex prob-

lems, e.g. image recognition, it can be extremely difficult to determine which features 

will yield the best results. Deep learning offers a solution to this problem by building 

upon the concept of representation learning [11].

Representation learning is the process of using machine learning to map raw input 

data features into a new representation, i.e. a new feature space, for the purpose of 

improving detection and classification tasks. �is mapping from raw input data to new 

representations is achieved through non-linear transformations of the input data. Com-

posing multiple non-linear transformations creates hierarchical representations of the 

input data, increasing the level of abstraction through each transformation. �is auto-

matic generation of new features saves valuable time by removing the need for experts 

to manually hand engineer features, and improves overall performance in many complex 

problem domains, such as image and speech, where it is otherwise difficult to determine 

the best features. As data passes through the hidden layers of a DNN, it is transformed 

by each layer into a new representation. Given sufficient data, DNNs are able to learn 

high-level feature representations of inputs through the composition of multiple hidden 

layers. �ese learned representations amplify components of the input which are impor-

tant for discrimination, while suppressing those that are unimportant [11]. Deep learn-

ing architectures achieve their power through this composition of increasingly complex 

abstract representations [60]. �is approach to problem solving intuitively makes sense, 

as composing simple concepts into complex concepts is analogous to many real-world 

problem domains.

Deep learning milestones

�e first DNNs date back to the 1960’s, but they were largely abandoned in favor of tra-

ditional machine learning methods due to difficulties in training and inadequate per-

formance [62]. In 1986, Rumelhart et al. [63] presented backpropagation, a method for 

efficiently updating neural network weight parameters by propagating the gradient of 

the loss function through multiple layers. It was believed by most, however, that gradient 

descent would be unable to escape poor local minima during optimization, preventing 

neural networks from converging to a global acceptable solution. Today, we believe this 

to be untrue, as theoretical results suggest that local minima are generally not an issue 
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and that systems nearly always reach solutions of similar quality [11]. Despite some early 

successes in the late 1980s [64] and 1990s [58], DNNs were mostly forsaken in practice 

and research due to these challenges.

In 2006, interests in deep learning were revived as research groups presented methods 

for sensibly initializing DNN weights with an unsupervised layer-wise pre-training pro-

cedure [65, 66]. �ese pre-trained Deep Belief Networks (DBNs) can then be efficiently 

fine-tuned through supervised learning. �ey proved to be very effective in image and 

speech tasks, and led to record breaking results on a speech recognition task in 2009 and 

the deployment of deep learning speech systems in Android mobile devices by 2012 [11].

In 2012, Krizhevsky et al. [17] submitted a deep CNN to the Large Scale Visual Recog-

nition Challenge (LSVRC) [67] that nearly halved the top-5% error rate, reducing from 

the previous year’s 26% down to just 16%. �e work by Krizhevsky et al. included several 

crucial methods which have since become common practice in deep learning work. �e 

CNN was implemented on multiple graphics processing units (GPUs). �e drastic speed-

up provided by parallel GPU computing allows for the training of deeper networks with 

larger data sets, and increased research productivity. A new non-saturating activation 

function, the rectified linear unit (ReLU), alleviated the vanishing gradient problem 

and allowed for faster training. Dropout was introduced as a regularization method to 

decrease over fitting in high capacity networks with many layers. Dropout simulates the 

ensembling of many models by randomly disabling neurons with a probability P ∈ [0, 1] 

during each iteration, forcing the model to learn more robust features. Data augmenta-

tion, artificially enlarging the data set by applying transformations to data samples, was 

also applied as a regularization technique. �is event marked a major turning point and 

sparked new interest in deep learning and computer vision.

�is newfound interest in deep learning drove leading technological companies to 

increase research efforts, producing many advances in deep learning and pushing the 

state-of-the-art in deep learning to new levels. Deep learning frameworks which abstract 

tensor computation [12–15] and GPU compatibility libraries [16] have been made avail-

able to the community through open source software [68] and cloud services [69, 70]. 

Combined with an increasing amount of available data and public attention, deep learn-

ing is growing at a faster pace than ever before.

Deep learning with big data

Many organizations are being faced with the challenges of big data, as they are explor-

ing large volumes of data to extract value and guide decisions [71]. Big data refers to 

data which exceeds the capabilities of standard data storage and data processing systems 

[72]. �is forces practitioners to adopt new techniques for storing, manipulating, and 

analyzing data. �e rise of big data can be attributed to improvements in hardware and 

software, increased internet and social media activity, and a growing abundance of sen-

sor-enabled interconnected devices, i.e. the internet of things (IoT).

More specifically, big data can be characterized by the four Vs: volume, variety, veloc-

ity, and veracity [72, 73]. �e large volumes of data being collected require highly scala-

ble hardware and efficient analysis tools, often demanding distributed implementations. 

In addition to adding architecture and network overhead, distributed systems have been 
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shown to exacerbate the negative effects of class imbalanced data [74]. Advanced tech-

niques for quickly processing incoming data streams and maintaining appropriate turna-

round times are required to keep up with the rate at which data is being generated, i.e. 

data velocity. �e variety of big data corresponds to the mostly unstructured, diverse, 

and inconsistent representations that arise as data is consumed from multiple sources 

over extended periods of time. �is variety further increases the computational com-

plexity of data preprocessing and machine learning. Finally, the veracity of big data, i.e. 

its accuracy and trustworthiness, must be regularly validated to ensure results do not 

become corrupted by invalid input. Some additional machine learning challenges that 

are magnified by big data include high-dimensionality, distributed infrastructures, real-

time requirements, feature engineering, and data cleansing [75].

Najafabadi et al. [75] discuss the use of deep learning in solving big data challenges. 

�e ability of DNNs to extract meaningful features from large sets of unlabeled data is 

particularly important, as this is commonly encountered in big data analytics. �e auto-

matic extraction of features from mostly unstructured and diverse data, e.g. image, text 

and audio data, is therefore extremely useful. With abstract features extracted from big 

data through deep learning methods, simple linear models can often be used to com-

plete machine learning tasks more efficiently. Advanced semantic-based information 

storage and retrieval systems, e.g. semantic indexing and hashing [76, 77], are also made 

possible with these high-level features. In addition, deep learning has been used to tag 

incoming data streams, helping to group and organize fast-moving data [75]. In general, 

high-capacity DNNs are well suited for learning from the large volumes of data encoun-

tered in big data analytics.

As the presence of big data within organizations continues to increase, new methods 

will be required to keep up with the influx of data. Despite being relatively immature, 

deep learning methods are proving effective in solving many big data challenges. We 

believe that advances in deep learning, especially in learning from unsupervised data, 

will play a critical role in the future of big data analytics.

Deep learning methods for class imbalanced data

Anand et al. [78] explored the effects of class imbalance on the backpropagation algo-

rithm in shallow neural networks in the 1990’s. �e authors show that in class imbal-

anced scenarios, the length of the minority class’s gradient component is much smaller 

than the length of the majority class’s gradient component. In other words, the major-

ity class is essentially dominating the net gradient that is responsible for updating the 

model’s weights. �is reduces the error of the majority group very quickly during early 

iterations, but often increases the error of the minority group and causes the network to 

get stuck in a slow convergence mode.

�is section analyzes a number of deep learning methods for addressing class imbal-

ance, organized by data-level, algorithm-level, and hybrid methods. For each surveyed 

work, we summarize the implementation details and the characteristics of the data sets 

used to evaluate the method. We then discuss various strengths and weaknesses, con-

sidering topics such as class imbalance levels, interpretation of results, relative perfor-

mance, difficulty of use, and generalization to other architectures and problem domains. 

Known limitations are highlighted and suggestions for future work are offered. For 
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consistency, class imbalance is presented as the maximum between-class ratio, ρ (Eq. 1), 

for all surveyed works.

Data-level methods

�is section includes four papers that explore data-level methods for addressing class 

imbalance with DNNs. Hensman and Masko [79] first show that balancing the training 

data with ROS can improve the classification of imbalanced image data. �en RUS and 

augmentation methods are used by Lee et  al. [20] to decrease class imbalance for the 

purpose of pre-training a deep CNN. Pouyanfar et al. [21] introduce a new dynamic sam-

pling method that adjusts sampling rates according to class-wise performance. Finally, 

Buda et al. [23] compare RUS, ROS, and two-phase learning across multiple imbalanced 

image data sets.

Balancing training data with ROS

Hensman and Masko [79] explored the effects of class imbalance and ROS using deep 

CNNs. �e CIFAR-10 [80] benchmark data set, comprised of 10 classes with 6000 

images per class, was used to generate 10 imbalanced data sets for testing. �ese 10 gen-

erated data sets contained varying class sizes, ranging between 6% and 15% of the total 

data set, producing a max imbalance ratio ρ = 2.3 . In addition to varying the class size, 

the different distributions also varied the number of minority classes, where a minority 

class is any class smaller than the largest class. For example, a major 50–50 split (Dist. 3) 

reduced five of the classes to 6% of the data set size and increased five of the classes to 

14%. As another example, a major singular over-representation (Dist. 5) increased the 

size of the airplane class to 14.5%, reducing the other nine classes slightly to 9.5%.

A variant of the AlexNet [17] CNN, which has proven to perform well on CIFAR-

10, was used for all experiments by Hensman and Masko. �e baseline performance 

was defined by training the CNN on all distributions with no data sampling. �e ROS 

method being evaluated consisted of randomly duplicating samples from the minority 

classes until all classes in the training set had an equal number of samples.

Hensman and Masko presented their results as the percentage of correct answers per 

class, and included the mean score for all classes, denoted by Total. To ensure results 

were valid, a total of three runs were completed for each experiment and then aver-

aged. Table  3 shows the results of the CNN without any data sampling. �ese results 

demonstrate the impact of class imbalance when training a CNN model. Most of the 

imbalanced distributions saw a loss in performance. Dist. 6 and Dist. 7, which contained 

very slight imbalance and no over-representation, performed just as well as the origi-

nal balanced distribution. Some of the imbalanced distributions that contained over-

represented classes, e.g. Dist. 5 and Dist. 9, yielded useless models that were completely 

biased towards the majority group.

Table 4 includes the results of training the CNN with balanced data that was generated 

through ROS. It shows that over-sampling performs significantly better than the base-

line results from Table 3. Dist. 1 is excluded from Table 4 because it is already balanced, 

i.e. ROS is not applicable. In this experiment, ROS improved the classification results 

for all distributions. Dist. 5 and Dist. 9 saw the largest performance gains, increasing 
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from baseline Total F1-scores of 0.10 up to 0.73 and 0.72, respectively. �e ROS classi-

fication results for distributions Dist. 2–Dist. 11 are comparable to the results achieved 

by the baseline CNN on Dist. 1, suggesting that ROS has completely restored model 

performance.

�e experiments by Hensman and Masko show that applying ROS to the level of 

class balance can be effective in addressing slight class imbalance in image data. It is 

also made clear by some of the results in Table 3 that small levels of imbalance are able 

to prevent a CNN from converging to an acceptable solution. We believe that the low 

imbalance levels tested ( ρ = 2.3 ) is the biggest limitation of this experiment, as imbal-

ance levels are typically much higher in practice. Besides exploring additional data sets 

and higher levels of imbalance, one area worth pursuing further is the total number of 

epochs completed during training on the imbalanced data. In these experiments, only 

10 epochs over the training data were completed because the authors were more inter-

ested in comparing performance than they were in achieving high performance. Run-

ning additional epochs would help to rule out whether or not the poor performance was 

due to the slow convergence phenomenon described by Anand et al.

Table 3 Imbalanced CIFAR-10 classi�cation [79]

Total Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Dist. 1 0.73 0.78 0.84 0.62 0.57 0.70 0.62 0.80 0.76 0.84 0.80

Dist. 2 0.69 0.74 0.75 0.58 0.33 0.58 0.65 0.84 0.78 0.87 0.79

Dist. 3 0.66 0.71 0.75 0.59 0.30 0.52 0.61 0.79 0.77 0.85 0.73

Dist. 4 0.27 0.78 0.24 0.12 0.08 0.19 0.24 0.33 0.27 0.21 0.27

Dist. 5 0.10 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Dist. 6 0.73 0.74 0.86 0.65 0.53 0.71 0.63 0.81 0.76 0.83 0.79

Dist. 7 0.73 0.75 0.86 0.66 0.52 0.71 0.63 0.80 0.78 0.84 0.79

Dist. 8 0.66 0.63 0.75 0.55 0.35 0.51 0.58 0.82 0.74 0.84 0.80

Dist. 9 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Dist. 10 0.69 0.75 0.77 0.56 0.42 0.66 0.63 0.76 0.70 0.81 0.79

Dist. 11 0.69 0.74 0.82 0.58 0.44 0.59 0.64 0.80 0.69 0.83 0.81

Table 4 Imbalanced CIFAR-10 classi�cation with ROS [79]

Total Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

Dist. 2 0.72 0.77 0.80 0.57 0.51 0.68 0.64 0.81 0.78 0.84 0.82

Dist. 3 0.73 0.73 0.80 0.59 0.53 0.63 0.65 0.82 0.81 0.87 0.83

Dist. 4 0.73 0.76 0.82 0.60 0.54 0.68 0.63 0.81 0.78 0.85 0.83

Dist. 5 0.73 0.80 0.84 0.61 0.55 0.68 0.63 0.82 0.79 0.82 0.81

Dist. 6 0.73 0.75 0.86 0.65 0.51 0.65 0.66 0.81 0.78 0.85 0.80

Dist. 7 0.73 0.73 0.85 0.62 0.51 0.71 0.66 0.81 0.79 0.86 0.80

Dist. 8 0.73 0.78 0.84 0.62 0.56 0.66 0.64 0.81 0.77 0.83 0.80

Dist. 9 0.72 0.73 0.84 0.58 0.55 0.68 0.59 0.79 0.78 0.83 0.82

Dist. 10 0.73 0.78 0.85 0.63 0.50 0.67 0.63 0.82 0.75 0.87 0.80

Dist. 11 0.72 0.82 0.87 0.58 0.64 0.64 0.49 0.78 0.69 0.84 0.80
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At the time of writing, May 2015, Hensman and Masko observed no existing research 

that examined the impact of class imbalance on deep learning with popular benchmark 

data sets. Our literature review also finds this to be true, confirming that addressing 

class imbalance with deep learning is still relatively immature and understudied.

Two-phase learning

Lee et  al. [20] combined RUS with transfer learning to classify highly-imbalanced 

data sets of plankton images, WHOI-Plankton [81]. �e data set contains 3.4 million 

images spread over 103 classes, with 90% of the images comprised of just five classes 

and the 5th largest class making up just 1.3% of the entire data set. Imbalance ratios of 

ρ > 650 are exhibited in the data set, with many classes making up less than 0.1% of 

the data set. �e proposed method is the two-phase learning procedure, where a deep 

CNN is first pre-trained with thresholded data, and then fine-tuned using all data. 

�e thresholded data sets for pre-training are constructed by randomly under-sam-

pling large classes until they reach a threshold of N examples. �e authors selected 

a threshold of N = 5000 through preliminary experiments, then down-sampled all 

large classes to N samples. �e proposed model (G) was compared to six alternative 

methods (A–F), a combination of transfer learning and augmentation techniques, 

using unweighted average F1-scores to compare results.

(A) Full: CNN trained with original imbalanced data set.

(B) Noise: CNN trained with augmented data, where minority classes are duplicated 

through noise injection until all classes contain at least 1000 samples.

(C) Aug: CNN trained with augmented data, where minority classes are duplicated 

through rotation, scaling, translation, and flipping of images until all classes contain 

at least 1000 samples.

(D) �resh: CNN trained with thresholded data, generated through random under-

sampling until all classes have at most 5000 samples.

(E) Noise + full: CNN pre-trained with the noise-augmented data from (B), then fine-

tuned using the full data set.

(F) Aug + full: CNN pre-trained with the transform-augmented data from (C), then 

fine-tuned using the full data set.

(G) �resh + full: CNN pre-trained using the thresholded data set from (D), then fine-

tuned using the full imbalanced data set.

Results from Lee et  al.’s experiments are presented in Table  5, where the L5 and 

Rest columns are the unweighted average F1-scores for the largest five classes and 

the remaining minority classes, respectively. Comparing methods (B–D) shows that 

under-sampling (D) outperforms both noise injection (B) and augmentation (C) over-

sampling methods on the given data set for all classes. Methods (B–D) saw moder-

ate improvements on the Rest group when compared to the baseline (A), but the L5 

group suffered sufficient loss in performance. Re-training the model with the full data 

set in (E–G) allowed the models to re-capture the distribution of the L5 group. �e 

proposed model (G) achieved the highest F1-score (0.7791) on the L5 group, and 
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greatly improved the F1-score of the Rest group from 0.1548 to 0.3262 with respect 

to the baseline.

�e two-phase learning procedure presented by Lee et al. has proven effective in increas-

ing the minority class performance while still preserving the majority class performance. 

Unlike plain RUS, which completely removes potentially useful information from the train-

ing set, the two-phase learning method only removes samples from the majority group 

during the pre-training phase. �is allows the minority group to contribute more to the 

gradient during pre-training, and still allows the model to see all of the available data during 

the fine-tuning phase. �e authors did not include details on the pre-training phase, such as 

the number of pre-training epochs or the criteria used to determine when pre-training was 

complete. �ese details should be considered in future works, as pre-training that results 

in high bias or high variance will certainly impact the final model’s class-wise performance. 

Future work can also consider a hybrid approach, where the model is pre-trained with data 

that is generated through a combination of under-sampling majority classes and augment-

ing minority classes.

�e previous year, Havaei et al. [82] used a similar two-phase learning procedure to man-

age class imbalance when performing brain tumor image segmentation. �e brain tumor 

data contains minority classes that make up less than 1% of the total data set. Havaei et al. 

stated that the two-phase learning procedure was critical in dealing with the imbalanced dis-

tribution in their image data. �e details of this paper are not included in this survey because 

the two-phase learning is just one small component of their domain-specific experiments.

Dynamic sampling

Pouyanfar et al. [21] used a dynamic sampling technique to perform classification of imbal-

anced image data with a deep CNN. �e basic idea is to over-sample the low performing 

classes and under-sample the high performing classes, showing the model less of what it 

has already learned and more of what it does not understand yet. �is is somewhat analo-

gous to how humans learn, by moving on from easy tasks once learned and focusing atten-

tion on the more difficult tasks. �e author’s self-collected data set contains over 10,000 

images captured from publicly available network cameras, including a total of 19 semantic 

concepts, e.g. intersection, forest, farm, sky, water, playground, and park. From the original 

data set, 70% is used for training models, 20% is used for validation, and 10% is set aside 

for testing. �e authors report imbalance ratios in the data set as high as ρ = 500 . Average 

F1-scores and weighted average F1-scores are used to compare the proposed model to a 

baseline CNN (A) and four alternative methods for handling class imbalance (B–E).

Table 5 Two-phase learning with WHOI-Plankton (Avg. F1-score) [20]

Classi�er All classes L5 Rest

(A) Full 0.1773 0.7773 0.1548

(B) Noise 0.2465 0.5409 0.3599

(C) Aug 0.2726 0.5776 0.3700

(D) Thresh 0.3086 0.6510 0.4044

(E) Noise + full 0.3038 0.7531 0.2971

(F) Aug + full 0.3212 0.7668 0.3156

(G) Thresh + full 0.3339 0.7791 0.3262
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�e system presented by Pouyanfar et al. includes three core components: real time data 

augmentation, transfer learning, and a novel dynamic sampling method. Real time data 

augmentation improves generalization by applying various transformations to select images 

in each training batch. Transfer learning is achieved by fine-tuning an Inception-V3 net-

work [83] that was pre-trained using ImageNet [84] data. �e dynamic sampling method is 

the main contribution relative to class imbalance.

F1i is a vector containing all individual class F1-scores after iteration i, and f 1i,j denotes 

the F1-score for class j on iteration i, where F1-scores are calculated for each class in a 

one-versus-all manner. During the next iteration, classes with lower F1-scores are sam-

pled at a higher rate, forcing the learner to focus more on examples previously misclassi-

fied. Eq. 11 is used to obtain the next iteration’s sample size for a given class cj , where N ∗ 

is the average class size. To prevent over-fitting of the minority group, a second model 

is trained through transfer learning without sampling. At time of inference, the output 

label is computed as a function of both models.

�e proposed model is compared with the following alternative methods:

(A) Basic CNN: VGGNet [85] CNN trained on entire data set.

(B) Deep CNN features + SVM: Support vector machine (SVM) classifier trained with 

deep features generated by CNN.

(C) Transfer learning without augmentation: Fine-tuned Inception-V3 with no data 

augmentation.

(D) Transfer learning with augmentation: Fine-tuned Inception-V3 with data augmen-

tation.

(E) Transfer learning with balanced augmentation: Fine-tuned Inception-V3 with data 

augmentation that enforces class balanced training batches with over-sampling and 

under-sampling.

(F) Proposed model: Dynamic sampling, data augmentation, and transfer learning on 

Inception-V3 network.

Average class-wise F1-scores are compared across all 19 concepts, showing that the 

basic CNN performs the worst in all cases. �e basic CNN was unable to classify a single 

instance correctly for several concepts with very high imbalance ratios, including Play-

ground and Airport with imbalance ratios of ρ = 200 and ρ = 500 , respectively. Transfer 

learning methods (C–E) performed significantly better than the baseline CNN, increas-

ing the weighted average F1-score from 0.630 to as high as 0.779. Results in Table 6 show 

that the proposed method (F) outperforms all other models tested on the given data 

set. Compared to transfer learning with basic augmentation (D), the dynamic sampling 

method (F) improved the weighted average F1-score from 0.779 to 0.794.

�e dynamic sampling method’s ability to self-adjust sampling rates is its most 

attractive feature. �is allows the method to adapt to different problems contain-

ing varying levels of complexity and class imbalance, with little to no hyperparam-

eter tuning. By removing samples that have already been captured by the network 

(11)Sample size (F1i, cj) =

1 − f 1i,j
∑

ck∈C
(1 − f 1i,k)

× N ∗
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parameters, gradient updates will be driven by the more difficult positive class sam-

ples. �e dynamic sampling method outperforms a hybrid of over-sampling and 

under-sampling (E) according to F1-scores, but the details of the sampling method 

are not included in the description. We also do not know how dynamic sampling per-

forms against plain RUS and ROS, as these methods were not tested. �is should be 

examined closely in future works to determine if dynamic sampling can be used as a 

general replacement for RUS and ROS. One area of concern is the method’s depend-

ency on a validation set to calculate the class-wise performance metrics that are 

required to determine sampling rates. �is will certainly be problematic in cases of 

class rarity, where very few positive samples exist, as setting aside data for valida-

tion may deprive the model of valuable training data. Methods for maximizing the 

total available training data should be included in future research. In addition, future 

research should extend the dynamic sampling method to non-CNN architectures and 

other domains.

ROS, RUS, and two-phase learning

Buda et  al. [23] compare ROS, RUS, and two-phase learning using three multi-

class image data sets and deep CNNs. MNIST [86], CIFAR-10, and ImageNet data 

sets are used to create distributions with varying levels of imbalance. Both MNIST 

and CIFAR-10 training sets contain 50,000 images spread evenly across 10 classes, 

i.e. 5000 images per class. Imbalanced distributions were created from MNIST and 

CIFAR-10 in the range of ρ ∈ [10, 5000] and ρ ∈ [2, 50] , respectively. �e ImageNet 

training data, containing 100 classes with a maximum of 1000 samples per class, was 

used to create imbalanced distributions in the range of ρ ∈ [10, 100].

A different CNN architecture was empirically selected for each data set based off 

recent state-of-the-art results. For the MNIST and CIFAR-10 experiments, a version 

of the LeNet-5 [58] and the All-CNN [87] architectures were used for classification, 

respectively. Baseline results were established for each CNN architecture by perform-

ing classification on the data sets without any form of class imbalance technique, i.e. 

no data sampling or thresholding. Next, seven different methods for addressing class 

imbalance were integrated with the CNN architectures and tested. ROC AUC was 

extended to the multi-class problem by averaging the one-versus-all AUC for each 

class, and used to compare the methods. A portion of their results are presented in 

Fig. 3.

Table 6 Dynamic sampling with network camera image data [21]

Classi�er Acc. Avg. F1 WAvg. F1

(A) Basic CNN 0.649 0.254 0.630

(B) Deep CNN features + SVM 0.746 0.528 0.747

(C) TL + no aug. 0.765 0.432 0.755

(D) TL + basic aug. 0.792 0.502 0.779

(E) TL + balanced aug. 0.759 0.553 0.766

(F) Proposed model 0.802 0.599 0.794
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(A) ROS: All minority classes were over-sampled until class balance was achieved, 

where any class smaller than the largest class size is considered a minority class. In 

almost all experiments, over-sampling displayed the best performance, and never 

showed a decrease in performance when compared to the baseline.

(B) RUS: All majority classes were under-sampled until class balance was achieved, 

where any class larger than the smallest class size is considered a majority class. 

RUS performed poorly when compared to the baseline models, and never displayed 

a notable advantage to ROS. RUS was comparable to ROS only when the total num-

ber of minority classes was very high, i.e. 80–90%.

(C) Two-phase training with ROS: �e model is first pre-trained on a balanced data set 

which is generated through ROS, and then fine-tuned using the complete data set. 

In general, this method performed worse than strict ROS (A).

(D) Two-phase training with RUS: Similar to (C), except the balanced data set used for 

pre-training is generated through RUS. Results show that this approach was less 

effective than RUS (B).

(E) �resholding with prior class probabilities: �e network’s decision threshold is 

adjusted during the test phase based on the prior probability of each class, effec-

tively shifting the output class probabilities. �resholding showed improvements to 

overall accuracy, especially when combined with ROS.

(F) ROS and thresholding: �e thresholding method (E) is applied after training the 

model with a balanced data set, where the balanced data set is generated through 

ROS. �resholding combined with ROS performed better than the baseline thresh-

olding (E) in most cases.

(G) RUS and thresholding: �e thresholding method (E) is applied after training the 

model with a balanced data set, where the balanced data set is produced through 

RUS. �resholding with RUS performed worse than (E) and (F) in all cases.

�e work by Buda et al., which varies levels of class imbalance and problem complexity, 

is comprehensive, having trained almost 23,000 deep CNNs across three popular data 

sets. �e impact of class imbalance was validated on a set of baseline CNNs, showing 

that classification performance is severely compromised as imbalance increases and that 

the impact of class imbalance seems to increase as problem complexity increases, e.g. 

CIFAR-10 versus MNIST. �e authors conclude that ROS is the best overall method 

for addressing class imbalance, that RUS generally performs poorly, and that two-phase 

learning with ROS or RUS is not as effective as their plain ROS and RUS counterparts.

While it does provide a reasonable high-level view of each method’s performance, the 

multi-class ROC AUC score provides no insight into the underlying class-wise perfor-

mance trade-offs. It is not clear if there is high variance in the class-wise scores, or if 

one extremely low class-wise score is causing a large drop in the average AUC score. 

We believe that additional performance metrics, including class-wise scores, will better 

explain the effectiveness of each method in addressing class imbalance and help guide 

practitioners in model selection.

Buda et al. conclude that ROS should be performed until all class imbalance is elimi-

nated. Despite their experimental results, we do not readily agree with this blanket state-

ment, and argue that this is likely problem-dependent and requires further exploration. 
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�e MNIST data set, both relatively low in complexity and small in size, was used to 

demonstrate that over-sampling until all classes are balanced performs best. We do not 

know how well over-sampling to this level will perform on more complex data sets, or 

in problems containing big data or class rarity. Furthermore, over-sampling to this level 

of class balance in a big data problem can be extremely resource intensive, drastically 

increasing training time by introducing large volumes of redundant data.

Summary of data-level methods

Two of the surveyed works [23, 79] have shown that eliminating class imbalance in the 

training data with ROS significantly improves classification results. Lee et al. have shown 

that pre-training DNNs with semi-balanced data generated through RUS or augmen-

tation-based over-sampling improves minority group performance. In contrast to Lee 

et al., Buda et al. found that plain ROS and RUS generally perform better than two-phase 

learning. Unlike Lee et al., however, Buda et al. pre-trained their networks with data that 

was sampled until class balance was achieved. Since Lee et al. and Buda et al. used dif-

ferent imbalance levels for pre-training, and reported results with different performance 

metrics, it is difficult to understand the efficacy of two-phase learning. �e dynamic 

sampling method outperformed baseline CNNs, but we do not know how it compares to 

ROS, RUS, or two-phase learning. Despite this limitation, the dynamic sampling meth-

od’s ability to automatically adjust sampling rates throughout the training process is very 

appealing. Methods that can automatically adjust to varying levels of complexity and 

imbalance levels are favorable, as they reduce the number of tunable hyperparameters.

�e experimental results suggest the use of ROS to eliminate class imbalance during 

the training of DNNs. �is may be true for relatively small data sets, but we believe this 

will not hold true for problems containing big data or extreme class imbalance. Apply-

ing ROS until classes are balanced in very-large data sets, e.g. WHOI-Plankton data, will 

result in the duplication of large volumes of data and will drastically increase training 

times. RUS, on the other hand, reduces training time and may therefore be more practi-

cal in big data problems. We believe that RUS methods that remove redundant samples, 

reduce class noise, and strengthen class borders will prove helpful in these big data prob-

lems. Future work should explore these scenarios further.

All of the data-level methods presented were tested on class imbalanced image data with 

deep CNNs. In addition, differences in performance metrics and problem complexity make 

it difficult to compare methods directly. Future works should test these data-level methods 

on a variety of data types, imbalance levels, and DNN architectures. Multiple complemen-

tary performance metrics should be used to compare results, as this will better illustrate 

method trade-offs and guide future practitioners.

Algorithm-level methods

�is section includes surveyed works that modify deep learning algorithms for the pur-

pose of addressing class imbalance. �ese methods can be further divided into new loss 

functions, cost-sensitive learning, and threshold moving. Wang et al. [18] and Lin et al. [88] 

introduced new loss functions that allow the minority samples to contribute more to the 

loss. Wang et al. [89], Khan et al. [19], and Zhang et al. [90] experimented with cost-sensi-

tive DNNs. �e methods proposed by Khan et al. and  Zhang et al. have the advantage of 
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learning cost matrices during training. �e work by Buda et al. in the "ROS, RUS, and two-

phase learning" section has also been included in this section, as they experimented with 

threshold adjusting.  Zhang et al. [91] combine transfer learning, CNN feature extraction, 

and a cluster-based nearest neighbor rule to improve the classification of imbalanced image 

data. Finally, Ding et al. [92] experiment with very-deep CNNs to determine if increasing 

neural network depth improves convergence rates with imbalanced data.

Mean false error (MFE) loss

Wang et al. [18] found some success in modifying the loss function as they experimented 

with classifying imbalanced data with deep MLPs. A total of eight imbalanced binary data 

sets, including three image data sets and five text data sets, were generated from the CIFAR-

100 [93] and 20 Newsgroup [94] collections. �e data sets are all relatively small, with most 

training sets containing fewer than 2000 samples and the largest training set containing just 

3500 samples. For each data set generated, imbalance ratios ranging from ρ = 5 to ρ = 20 

were tested.

�e authors first show that the mean squared error (MSE) loss function poorly captures 

the errors from the minority group in cases of high class imbalance, due to many nega-

tive samples dominating the loss function. �ey then propose two new loss functions that 

are more sensitive to the errors from the minority class, mean false error (MFE) and mean 

squared false error (MSFE). �e proposed loss functions were derived by first splitting the 

MSE loss into two components, mean false positive error (FPE) and mean false negative 

error (FNE). �e FPE (Eq. 12) and FNE (Eq. 13) values are then combined to define the total 

system loss, MFE (Eq. 14), as the sum of the mean error from each class.

Wang et al. introduce the MSFE loss (Eq. 15) as an improvement to the MFE loss, assert-

ing that it better captures errors from the positive class. �e MSFE can be expanded into 

the form 1
2
((FPE + FNE)2 + (FPE − FNE)2) , demonstrating how the optimization process 

minimizes the difference between FPE and FNE. �e authors believe this improved version 

will better balance the error rates between the positive and negative classes.

A deep MLP trained with the standard MSE loss is used as the baseline model. �is same 

MLP architecture is then used to evaluate both the MFE and MSFE loss. Image classifi-

cation results (Table 7) and text classification results (Table 8) show that the proposed 

models outperform the baseline in nearly all cases, with respect to F-measure and AUC 

scores. 

(12)FPE =

1

N

N∑

i=1

∑

n

1

2
(d(i)

n − y(i)
n )2

(13)FNE =

1

P

P∑

i=1

∑

n

1

2
(d(i)

n − y(i)
n )2

(14)MFE = FPE + FNE

(15)MSFE = FPE
2
+ FNE

2



Page 24 of 54Johnson and Khoshgoftaar  J Big Data            (2019) 6:27 

Results show that the MFE and MSFE loss functions outperform MSE loss in almost 

all cases. Improvements over the baseline MSE loss are most apparent when class 

imbalance is greatest, i.e. imbalance levels of 5%. �e MFE and MSFE performance 

gains are also more pronounced on the image data than on the text data. For example, 

the MSFE loss improved the classification of Household image data, increasing the 

F1-score from 0.1143 to 0.2353 when the class imbalance level was 5%.

Being relatively easy to implement and integrate into existing models is one of the big-

gest advantages of using custom loss functions for addressing class imbalance. Unlike 

data-level methods that increase the size of the training set, the loss function is less likely 

to increase training times. �e loss functions should generalize to other domains with 

ease, but as seen in comparing the image and text performance results, performance 

gains will vary from problem to problem. Additional experiments should be performed 

Table 7 CIFAR-100 classi�cation with MFE and MSFE [18]

Italic scores indicate MFE/MSFE loss outperforming MSE loss

Data set Imbalance 
level (%)

F-measure AUC 

MSE MFE MSFE MSE MFE MSFE

Household 20 0.3913 0.4138 0.4271 0.7142 0.7397 0.7354

10 0.2778 0.2797 0.3151 0.7125 0.7179 0.7193

5 0.1143 0.1905 0.2353 0.6714 0.6950 0.6970

Tree 1 20 0.5500 0.5500 0.5366 0.8100 0.8140 0.8185

10 0.4211 0.4211 0.4211 0.7960 0.7990 0.7990

5 0.1667 0.2353 0.2353 0.7920 0.8000 0.8000

Tree 2 20 0.4348 0.4255 0.4255 0.8480 0.8450 0.8440

10 0.1818 0.2609 0.2500 0.8050 0.8050 0.8060

5 0.0000 0.1071 0.1481 0.5480 0.6520 0.7000

Table 8 20 Newsgroup classi�cation with MFE and MSFE[18]

Italic scores indicate MFE/MSFE loss outperforming MSE loss

Data set Imbalance level 
(%)

F-measure AUC 

MSE MFE MSFE MSE MFE MSFE

Doc. 1 20 0.2341 0.2574 0.2549 0.5948 0.5995 0.5987

10 0.1781 0.1854 0.1961 0.5349 0.5462 0.5469

5 0.1356 0.1456 0.1456 0.5336 0.5436 0.5436

Doc. 2 20 0.3408 0.3393 0.3393 0.6462 0.6464 0.6464

10 0.2094 0.2000 0.2000 0.6310 0.6319 0.6322

5 0.1256 0.1171 0.1262 0.6273 0.6377 0.6431

Doc. 3 20 0.2929 0.2957 0.2957 0.5862 0.5870 0.5870

10 0.1596 0.1627 0.1698 0.5577 0.5756 0.5865

5 0.0941 0.1118 0.1084 0.5314 0.5399 0.5346

Doc. 4 20 0.3723 0.3843 0.3668 0.6922 0.7031 0.7054

10 0.1159 0.2537 0.2574 0.5623 0.6802 0.6816

5 0.1287 0.1720 0.1720 0.6041 0.6090 0.6090

Doc. 5 20 0.3103 0.3222 0.3222 0.6011 0.5925 0.5925

10 0.1829 0.1808 0.1839 0.5777 0.5836 0.5837

5 0.0946 0.1053 0.1053 0.5682 0.5730 0.5730
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to validate MFE and MSFE effectiveness, as it is currently unclear how many rounds 

were conducted per experiment and the F1-score and AUC gains over the baseline are 

only minor improvements. On the image data experiments, for example, the average 

AUC gain over the baseline is just 0.025, with a median AUC gain over the baseline of 

only 0.008.

Focal loss

Lin et al. [88] proposed a model that effectively addresses the extreme class imbalance 

commonly encountered in object detection problems, where positive foreground sam-

ples are heavily outnumbered by negative background samples. Two-stage and one-

stage detectors are well-known methods for solving such problems, where the two-stage 

detectors typically achieve higher accuracy at the cost of increased computation time. 

Lin et al. set out to determine whether a fast single-stage detector was capable of achiev-

ing state-of-the-art results on par with current two-stage detectors. �rough analysis of 

various two-stage detectors (e.g. R-CNN [95] and its successors) and one-stage detectors 

(e.g. SSD [96] and YOLO [97]), class imbalance was identified as the primary obstacle 

preventing one-stage detectors from achieving state-of-the-art performance. �e over-

whelming number of easily classified negative background candidates create imbalance 

ratios commonly in the range of ρ = 1000 , causing the negative class to account for the 

majority of the system’s loss.

To combat these extreme imbalances, Lin et al. presented the focal loss (FL) (Eq. 16), 

which re-shapes the cross entropy (CE) loss in order to reduce the impact that easily 

classified samples have on the loss. �is is achieved by multiplying the CE loss by a mod-

ulating factor, αt(1 − pt)
γ . Hyper parameter γ ≥ 0 adjusts the rate at which easy exam-

ples are down weighted, and αt ≥ 0 is a class-wise weight that is used to increase the 

importance of the minority class. Easily classified examples, where pt → 1 , cause the 

modulating factor to approach 0 and reduce the sample’s impact on the loss.

(16)FL(pt) = −αt(1 − pt)
γ log(pt)

Table 9 RetinaNet (focal loss) on COCO [88]

Italic scores indicate top AP performances

Backbone AP AP50 AP75 APS APM APL

Two-stage methods

 Faster R-CNN+++ ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9

 Faster R-CNN w FPN ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

 Faster R-CNN by G-RMI Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0

 Faster R-CNN w TDM Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods

 YOLOv2 DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

 SSD513 ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8

 DSSD513 ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1

 RetinaNet ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

 RetinaNet ResNeXt-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2
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�e proposed one-stage focal loss model, RetinaNet, is evaluated against several state-

of-the-art one-stage and two-stage detectors. �e RetinaNet model is composed of a 

backbone model and two subnetworks, where the backbone model is responsible for 

producing feature maps from the input image, and the two subnetworks then perform 

object classification and bounding box regression. �e authors selected the feature pyra-

mid network (FPN) [88], built on top of the ResNet architecture [98], as the backbone 

model and pre-trained it on ImageNet data. �ey found that the FPN CNN, which pro-

duces features at different scales, outperforms the plain ResNet in object detection. Two 

additional CNNs with separate parameters, the subnetworks, are then used to perform 

classification and bounding box regression. �e proposed focal loss function is applied 

to the classification subnet, where the total loss is computed as the sum of the focal loss 

over all ≈ 100, 000 candidates. �e COCO [99] data set was used to evaluate the pro-

posed model against its competitors.

�e first attempt to train RetinaNet using standard CE loss quickly fails and diverges 

due to the extreme imbalance. By initializing the last layer of the model such that the 

prior probability of detecting an object is π = 0.01 , results improve significantly to an 

average precision (AP) of 30.2. Additional experiments are used to determine appropri-

ate hyper parameters for the focal loss, selecting γ = 2.0 and α = 0.25 for all remaining 

experiments.

Experiments by Lin et  al. show that the RetinaNet, with the proposed focal loss, is 

able to outperform existing one-stage and two-stage object detectors. It outscores the 

runner-up one-stage detector (DSSD513 [100]) and the best two-stage detector (Faster 

R-CNN with TDM [101]) by 7.6-point and 4.0-point AP gains, respectively. When com-

pared to several online hard example mining (OHEM) [102] methods, RetinaNet out-

scores the best method with an increase in AP from 32.8 to 36.0. Table  9 compares 

results between RetinaNet and seven state-of-the-art one-stage and two-stage detectors.

Lin et al. provide additional information to illustrate the effectiveness of the focal loss 

method. In one experiment, they use a trained model to compute the focal loss over 

≈ 10
7 negative images and ≈ 10

5 positive images. By plotting the cumulative distribution 

function for positive and negative samples, they show that as γ increases, more and more 

weight is placed onto a small subset of negative samples, i.e. the hard negatives. In fact, 

with γ = 2 , they show that most of the loss is derived from a very small fraction of sam-

ples, and that the focal loss is indeed reducing the impact of easily-classified negative 

samples on the loss. Run time statistics were included in the report to demonstrate that 

they were able to construct a fast one-stage detector capable of outperforming accurate 

two-stage detectors.

�e new FL method lends itself to not just class imbalance problems, but also hard 

sample problems. It addresses the primary minority class gradient issue defined by 

Anand et  al. by preventing the majority group from dominating the loss and allowing 

the minority group to contribute more to the weight updates. Similar to the MFE and 

MSFE loss functions, advantages include being relatively easy to integrate into existing 

models and having minimal impact on training time. We believe that the FL method’s 

ability to down-weight easily-classified samples will allow it to generalize well to other 

domains. �e authors compared FL directly to the CE loss, but we do not know how FL 

compares to other existing class imbalance methods. Future works should compare this 
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loss function to alternative class imbalance methods across a variety of data sets and 

class imbalance levels.

Nemoto et al. [103] later used the focal loss in another image classification task, the 

automated detection of rare building changes, e.g. new construction. �e airborne 

building images are annotated with the labels: no change, new construction, rebuild-

ing, demolished, repaint roofs, and laying solar panel. �e training data contains 203,358 

images in total, where 200,000 comprise the negative class, i.e. no change. �e repaint 

roofs and laying solar panel classes contain just 326 and 222 images, respectively, yield-

ing class imbalance ratios as high as ρ = 900.

�e experiments by Nemoto et al. utilize the VGG-16 [85] CNN architecture, where 

the baseline CNN uses the standard CE loss. Images were augmented by rotation and 

inversion, creating 20,000 samples per class. Class-wise accuracy on the validation set 

was used to compare the focal loss to the CE loss. �e first experiment uses the CE loss 

function and shows that the accuracy on the repaint roof and laying solar panel classes 

begins to deteriorate after 25,000 iterations, suggesting over-fitting. In the second exper-

iment, focal loss was evaluated using the same VGG-16 architecture and the same image 

augmentation procedure, generating 20,000 images per class. Unlike the first experi-

ment, however, only three classes were selected for training and validation: no change, 

repaint roof, and laying solar panel images. �e value of the focal loss’s down-weighting 

parameter γ was varied in the range γ ∈ [0, 5] to better understand its impact.

Figure  4 shows the training validation loss and accuracy of the focal loss method. 

Nemoto et al. conclude that focal loss improves problems related to class imbalance and 

over-fitting by adjusting the per-class learning speed. By comparing the loss plots, it is 

clear that as γ increases, the total loss decreases faster and the model is slower to over-

fit. It is not clear, however, if FL with γ > 0 is producing better classification results. 

First, the results from the first experiment cannot be compared to the results of the sec-

ond experiment, because the total number of classes has been reduced from six to three, 

significantly reducing the complexity of the classification problem. Second, the results 

from the no change and laying solar panel classes in Fig. 4 show that the highest accu-

racy is achieved when γ = 0 , where the laying solar panel class is the smallest class. �e 

focal loss, with γ = 0 , reduces to the standard cross entropy loss, suggesting that the CE 

Fig. 4 Focal loss and building change detection [103]
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loss outperforms the focal loss on two of the three classes in this experiment. To better 

understand the effectiveness of FL, future work should include a baseline with consistent 

training data, several alternative methods for addressing class imbalance, and additional 

performance metrics.

Cost-sensitive deep neural network (CSDNN)

Wang et  al. [89] employed  a cost-sensitive deep neural network (CSDNN) method to 

detect hospital readmissions, a class imbalanced problem where a small percentage of 

patients are readmitted to a hospital shortly after their original visit. Two data sets were 

provided by the Barnes-Jewish Hospital, containing patient records spanning from 2007 

to 2011. �e first data set, general hospital wards (GHW), contains vital signs, clini-

cal processes, demographics, real-time bedside monitoring, and other electronic data 

sources. Of the 2565 records in GHW, 406 patients were readmitted within 30 days and 

538 patients were readmitted within 60 days, producing imbalance ratios of ρ = 5.3 and 

ρ = 3.8 , respectively. �e second data set, the operating room pilot data (ORP), contains 

vital signs, pre-operation data, laboratory tests, medical history, and procedure details. 

�ere are 700 records in the ORP data set, with 157 readmissions within 1 year and 124 

readmissions within 30 days. �e imbalance ratio of the ORP data is unclear; the authors 

merely state that the ORP data is less imbalanced than the GHW data ( ρ < 3.8 ). A vari-

ety of performance metrics, including ROC, AUC, accuracy, recall, precision, positive 

predictive value (PPV), and negative predictive value (NPV) are used for evaluation. �e 

PPV and NPV metrics are equivalent to positive and negative class precision scores. �e 

proposed CSDNN method was found to outperform existing hospital readmission pre-

diction systems, and has been deployed at the Barnes-Jewish Hospital.

Instead of representing categorical values with traditional one-hot encoding, Wang 

et al. use a categorical feature embedding approach to create more meaningful represen-

tations. In addition, they employed a CNN for automatic feature extraction from time 

series data, i.e. the patient vital signs data. �e extracted features and categorical embed-

dings are concatenated, forming a final input feature vector that is fed to a DNN for clas-

sification. �e DNN was composed of two hidden layers, with 128 and 64 neurons per 

layer. �e CE loss function was modified to incorporate a pre-defined cost matrix, forc-

ing the network to minimize misclassification cost. For the GHW data set, false negative 

errors were given a cost 2× the cost of false positive errors. Similarly for the ORP data 

set, the false negative cost was set to 1.5× the cost of false positive errors.

 Wang et al.’s CSDNN method is compared to five baseline classifiers, including three 

decision tree methods, a SVM, and an ANN. Only one of the baseline methods addresses 

class imbalance, using under-sampling with a Random Forest (RF) classifier. �e pro-

posed method outperformed all of the baseline classifiers across all performance metrics 

except for NPV. We were able to observe the class-wise performance trade-off because 

multiple complementary performance metrics were reported. On the GHW data set, 

the CSDNN’s AUC of 0.70 outscored the runner up’s (ANN classifier) AUC of 0.62. 

Unfortunately, however, it is not possible to determine if the cost-sensitive loss function 

is the cause of the improved performance, as there are several other factors that may 

have contributed to improvements, e.g. categorical feature embedding and time-series 
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feature extraction. A baseline that includes the CNN feature extractor and the categori-

cal embeddings is required to isolate the efficacy of the cost-sensitive loss function.

Incorporating the cost matrix into the CE loss is a minor implementation detail that 

should generalize well to other domains and architectures with minimal impact on train-

ing times. �e process of identifying an ideal cost matrix is likely the biggest limitation. 

In traditional machine learning problems with relatively small data sets, models can be 

validated across a range of costs and the best cost matrix can be selected for the final 

model. When working with DNNs and large data sets, however, this process of searching 

for the best cost parameters can be very time consuming and even impractical. Including 

results from a range of cost matrices in future work will help to demonstrate the class-

wise performance trade-offs that occur as costs vary.

Learning cost matrices with cost-sensitive CNN (CoSen)

Khan et  al. [19] introduced  an effective cost-sensitive deep learning procedure which 

jointly learns network weight parameters and class misclassification costs during train-

ing. �e proposed method, CoSen CNN, is evaluated against six multi-class data sets 

with varying levels of imbalance: MNIST, CIFAR-100, Caltech-101 [104], MIT-67 [105], 

DIL [106], and MLC [107]. Class imbalance ratios of ρ = 10 are tested for the MNIST, 

CIFAR-100, Caltech-101, and MIT-67 data sets. �e DIL and MLC data sets have imbal-

ance ratios of ρ = 13 and ρ = 76 , respectively. �e VGG-16, pre-trained on ImageNet 

data, is used as a feature extractor and the baseline CNN throughout the experiments.

�e cost matrix that is learned by the CoSen CNN is used to modify the output of the 

VGG-16 CNN’s last layer, giving higher importance to samples with higher cost. �e 

group presents three modified loss functions, incorporating the learned cost parame-

ters into MSE loss, SVM hinge loss, and CE loss. �e training process learns network 

weight parameters and misclassification cost parameters by keeping one fixed at a time, 

and minimizing cost with respect to the other during training. �e cost matrix update 

is dependent on the current classification errors, the overall classification error, and the 

class-to-class separability (C2C). �e C2C separability measures relationships between 

within-class sample distances and the size of class-separating boundaries.

Table 10 Cost-sensitive CoSen CNN results (accuracy) [19]

Italic scores indicate the top performance for each data set

Dataset Imbalance 
protocol

SMOTE 
(%)

RUS (%) SMOTE 
RSB (%)

CoSen 
SVM 
(%)

CoSen 
RF (%)

SOSR 
CNN 
(%)

Baseline 
CNN (%)

CoSen 
CNN 
(%)

MNIST 10% of odd 
classes

94.5 92.1 96.0 96.8 96.3 97.8 97.6 98.6

CIFAR-100 10% of odd 
classes

32.2 28.8 37.5 39.9 39.0 55.8 55.0 60.1

Caltech-101 10% of odd 
classes

67.7 61.4 68.2 70.1 68.7 77.4 77.4 83.2

MIT-67 10% of odd 
classes

33.9 28.4 34.0 35.5 35.2 49.8 50.4 56.9

DIL Standard 
split

50.3 46.7 52.6 55.3 54.7 68.9 69.5 72.6

MLC Standard 
split

38.9 31.4 43.0 47.7 46.5 65.7 66.1 68.6
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�e CoSen CNN is evaluated against the baseline CNN, multiple sampling meth-

ods, and multiple cost-sensitive methods. A two-layered neural network was used for 

the sampling classification methods, and a SVM and RF were used for the cost-sensitive 

methods. �e SVM and RF baseline classifiers used the features that were extracted by 

the pre-trained VGG-16 CNN as input. �e SOSR CNN is a cost-sensitive deep learning 

method that incorporates a fixed cost matrix into the loss function [108].

Overall accuracy was used to show that the proposed CNN outperforms all seven 

alternative techniques across all data sets. Table 10 shows that the CoSen CNN per-

formed exceptionally well, outperforming the runner-up classifier by more than 5% on 

CIFAR-100, Caltech-101, and MIT-67. �e second best classifier listed in the experi-

mental results is between the SOSR CNN and the baseline CNN. In all cases SMOTE 

outperformed RUS, and hybrid sampling method SMOTE-RSB [109] outperformed 

SMOTE. Unfortunately, with accuracy being the only performance metric reported 

between all seven class imbalance methods, and accuracy being unreliable in cases of 

class imbalance, these results may be misleading.

F1 and G-Mean scores were reported to show that the proposed CoSen CNN out-

performs the baseline CNN on all data sets, e.g. increasing the F1-score from 0.389 to 

0.416 on the Caltech-101 data set. Khan et al. also included sample network training 

times, showing that the added cost parameter training increases each training epoch 

by several seconds but has little to no impact on the inference step. In another experi-

ment, the authors defined three fixed cost matrices using class representation, data 

separability, and classification errors to derive the costs, and showed that the dynamic 

cost matrix method outperforms all three cases.

It is interesting that the baseline CNN, with no class imbalance modifications, is 

a close runner-up to the CoSen CNN, outperforming the sampling methods, SVM, 

and RF classifiers in all cases. �is does not imply that a deep CNN with no class 

imbalance modifications is better equipped to address class imbalance than tradi-

tional sampling methods. Rather, this demonstrates the power of re-using strong fea-

ture extractors that have been trained on large volumes of data, e.g. over 1.3 million 

images in this experiment.

As mentioned previously, one of the difficulties of cost-sensitive learning is choos-

ing an appropriate cost matrix, often requiring a domain expert or a grid search pro-

cedure. �e CoSen method proposed by Khan et  al. removes this requirement, and 

offers more of an end-to-end deep learning framework capable of learning from class 

imbalanced data. �e authors report results on a number of experiments across a 

variety of data sets, and the joint learning of network parameters and cost parameters 

appears to be an excellent candidate for learning from class imbalanced data. Future 

experiments should explore this cost-sensitive method’s ability to learn from prob-

lems containing alternative data types, big data, and class rarity.

Cost-sensitive DBN with di�erential evolution (CSDBN-DE)

Zhang et  al. [90] set out to automatically learn costs for the purpose of cost-sensitive 

deep learning. More specifically, they use a differential evolutionary algorithm [110] 

to improve the cost matrix each training iteration, and incorporate these learned costs 

into a DBN. �e proposed cost-sensitive deep belief network with differential evolution 
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(CSDBN-DE) is evaluated against 42 data sets from the Knowledge Extraction based on 

Evolutionary Learning (KEEL) [111] repository. �e training data sets are structured 

data sets, ranging in size from 171 samples to 3339 samples and containing between 6 

and 13 attributes each. Imbalance ratios range from ρ = 9.28 up to ρ = 128.21.

�e DBN pre-training phase follows the original layer-wise training method first pro-

posed by Hinton et al. [65]. �e cost matrix is then incorporated into the output layer’s 

softmax probabilities during the fine-tuning phase. Cost matrices are first randomly ini-

tialized, then training set evaluation scores are used to select a new cost matrix for the 

next population. Mutation and cross-over operations are applied to evolve and generate 

the next population of cost matrices. Once training is complete, the best cost matrix is 

selected and applied to the output layer of the DBN, forming the final version of the 

cost-sensitive DBN to be used for inference.

Accuracy and error rate are used to compare the proposed method to an extreme 

learning machine (ELM) [112]. �e ELM network is a type of single-hidden layer feed-

forward network that does not use backpropagation and is known to train thousands of 

times faster than neural networks. Experiments are repeated 20 times and results are 

averaged. �e proposed CSDBN-DE model outperformed the ELM network on 28 out of 

42 data sets, i.e. 66% of the experiments.

Similar to the CoSen CNN [19], the biggest advantage of the CSDBN-DE is its ability 

to learn an effective cost matrix throughout training, as this is often a difficult and time-

consuming process. Unfortunately, it is not very clear how well the CSDBN-DE handles 

class imbalanced data, because it is compared to a single baseline built on a completely 

different architecture. Also, the accuracy performance metric provides no real insight 

into the network’s true performance when class imbalance is present. �e concept of 

incorporating an evolutionary algorithm to iteratively update a cost matrix shows prom-

ise, but more robust experiments are required to validate its ability to classify imbal-

anced data.

Output thresholding

In addition to the data sampling methods discussed in the "ROS, RUS, and two-phase 

learning" section, Buda et al. [23] experimented with adjusting CNN output thresholds 

to improve overall performance. �ey used the MNIST and CIFAR-10 data sets with 

varying levels of class imbalance ratios in the range of ρ ∈ [1, 5000] and ρ ∈ [1, 50] , 

respectively. Accuracy scores were used to compare thresholding with the baseline 

CNN, ROS, and RUS methods as they were described in the "ROS, RUS, and two-phase 

learning" section.

�e authors applied thresholding by dividing the network outputs for each class by 

its estimated prior probability, effectively reducing the likelihood of misclassifying 

examples from the minority group. �ey also considered hybrid methods by combin-

ing threshold moving with RUS and ROS. �e thresholding method outperformed the 

baseline CNN for all levels of class imbalance on the MNIST and CIFAR-10 data sets. 

�resholding outperformed ROS and RUS for all levels of imbalance on the MNIST 

data, but on the CIFAR-10 data there were several instances were ROS outperformed 
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thresholding. �resholding combined with ROS performed especially well, outperform-

ing all other methods in nearly all cases.

As discussed in the "ROS, RUS, and two-phase learning" section, Buda et al. explored 

a variety of deep learning methods for addressing a wide range of class imbalance levels. 

�ey have shown that overall accuracy can be improved with threshold moving, and that 

it can be implemented relatively easily with prior class probabilities. Unfortunately, the 

accuracy score does not explain individual class-wise performances and trade-offs. Since 

thresholding is only applied during inference, it does not affect training times. �is also 

means that thresholding does not impact weight tuning and therefore does not improve 

a model’s ability to discriminate between classes. Regardless, it is still an appropriate 

method for reducing majority class bias that can be quickly implemented on top of an 

already trained network to improve classification results.

Category centers

Zhang et  al. [91] experimented with deep representation learning of class imbalanced 

image data from the CIFAR-10 and CIFAR-100 data sets. �ey present a method for 

addressing class imbalance, category centers (CC), that combines transfer learning, deep 

CNN feature extraction, and a nearest neighbor discriminator. �ree class imbalanced 

distributions are created from each original data set through random under-sampling, 

i.e. Dist. A, Dist. B, and Dist. C. In Dist. A and Dist. B, half of the classes are reduced in 

size, creating imbalance levels of ρ = 10 and ρ = 20 , respectively. In Dist. C, class reduc-

tion levels increase linearly across all classes with a max imbalance of ρ = 20 . For exam-

ple, Dist. C for the CIFAR-100 data set contains 25 images in each of the first 10 classes, 

75 images in each of the next 10 classes, then 125 images in each of the next 10 classes, 

etc. �e proposed model is compared to both a baseline CNN and an over-sampling 

method. �e mean precision performance metric is used to compare results.

Zhang et al. observe that similar images of the same class tend to cluster well in CNN 

deep feature space. �ey discuss the decision boundary that is created by the final layer 

of the CNN, the classification layer responsible for separating these deep feature clus-

ters, stating that there is a greater chance for large errors in boundary placement when 

class imbalance is present. To avoid this boundary error in scenarios of class imbalance, 

they propose using high-level features extracted by the CNN to calculate each class’s 

centroid in deep feature space. �ese category centers in deep feature space can then 

be used to classify new images, by assigning new images to their nearest deep feature 

Table 11 Category centers with CIFAR-10 data (AP) [91]

Classi�er Dist A ( ρ = 10) Dist B ( ρ = 20) Dist C 
( ρ ∈ [1, 20])

(A) Baseline CNN 0.779 0.747 0.857

(B) CC last conv. layer 0.824 0.775 0.859

(C) CC last FC layer 0.826 0.772 0.865

(D) Baseline CNN + over-sampling 0.787 0.770 0.850

(E) CC last conv. layer + over-sampling 0.831 0.792 0.861

(F) CC last FC layer + over-sampling 0.830 0.796 0.862
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category center. �e VGG-16 network, pre-trained on ImageNet data, is used through-

out the experiments as the baseline CNN. �e proposed method fine-tunes the CNN on 

the imbalanced distribution, maps all images to their corresponding deep feature repre-

sentations, then calculates the centroid for each class. At test time the trained CNN is 

used to extract features from new images, and each new image is assigned to the class of 

its nearest category center in feature space, defined by the Euclidean distance between 

the features.  Zhang et al. claim that the category center is significantly more stable than 

the boundary generated by a CNN’s classification layer, but no evidence was provided to 

support this.

A portion of  Zhang et al.’s results are displayed in Table 11. �e authors tried using 

two different CNN layers for feature extraction, the last convolutional layer (B) and 

the last fully connected layer (C), to determine if one set of features performed bet-

ter. Finally, over-sampling was applied to the baseline and the category centers meth-

ods to determine the impact of data sampling on CC (D–F). �ese results show that the 

CC methods (B, C) outperform the baseline CNN (A) on mean precision for all three 

imbalance scenarios. Results also show that the addition of over-sampling (D–F) led 

to improved results on the CIFAR-10 distributions, with the exception of Dist. C. For 

example, the CC method with over-sampling (E) increased mean precision on Dist. A 

from a baseline (A) of 0.779 to 0.830. CIFAR-100 results were similar, in the sense that 

the proposed method (B, C) outperformed the baseline (A) for all three distributions. 

Unlike the CIFAR-10 data, interestingly, over-sampling did not improve the results of 

the proposed method when classifying the CIFAR-100 distributions, but it did improve 

the baseline CNN.

We believe that the biggest limitation to the CC method is that it is highly dependent 

on the DNN’s ability to generate discriminative features that cluster well. If a large vol-

ume of class balanced, labelled training data is not available to pre-train the DNN, deep 

feature boundaries may not be strong enough to apply the CC method. �e specifics of 

the over-sampling method used in methods (D–F) are unknown, so we do not know if 

over-sampling was applied to a level of class balance or some other ratio. In addition, we 

do not know if these results are the average of several rounds of experiments, or are just 

results from a single instance. With no balanced distribution results, an unclear over-

sampling method, and only one performance metric, it is difficult to understand how 

well the proposed CC method does in learning from class imbalance.

Very-deep neural networks

Ding et al. [92] experimented with very-deep CNN architectures, e.g. 50 layers, to deter-

mine if deeper networks perform better on imbalanced data. �e authors observe in 

literature that the error surfaces of deeper networks have better qualities for training 

convergence than smaller sized networks [113, 114]. �ey claim that larger networks 

contain more local minimum with good performance, making acceptable solutions eas-

ier to locate with gradient descent. �e networks are tested on the problem of Facial 

Action Units (FAUs) recognition, i.e. the detection of basic facial actions as defined by 

the Facial Action Coding System [115].

�e EmotioNet Challenge Track 1 data set [116] is used to compare methods. From the 

original data set, with over one million images, 450,000 images were randomly selected 
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for training and 40,000 images were randomly selected for validation. �e images in this 

data set contain 11 possible FAUs. Since an image can be positive for more than one 

FAU, the authors treated the classification problem as a set of 11 binary problems. Sev-

eral FAUs are present in less than 1% of the data set, e.g. nose wrinkler, chin raiser, and 

upper lid raiser. �e lip stretcher FAU is only present in 0.01% of the data, creating a max 

imbalance ratio to ρ = 10, 000 . Six deep CNN architectures are compared, all of which 

include 3 × 3 convolution filter layers and are trained for 100 epochs:

(A) Handcraft: 6-layer CNN

(B) Plain34: 34-layer CNN

(C) Res10: 10-layer ResNet CNN

(D) Res18: 18-layer ResNet CNN

(E) Res34: 34-layer ResNet CNN

(F) Res50: 50-layer ResNet CNN.

F1-scores from the first experiment are presented in Table 12. �e shallow network (A) 

was unable to capture classes containing high imbalance, e.g. AU2–AU5, during the 100 

training epochs. �e non-residual 34-layer CNN (B) saw a large boost in performance 

compared to the shallow network (A), with average F1-score increasing from 0.29 to 

0.48. It can also be observed that the 10-layer ResNet (C) achieved an equal F1-score of 

0.48. �e FAU with the largest imbalance, i.e. lip stretcher (AU20), received an F1-score 

of 0.0 in all experiments. �ere is no noticeable difference in F1-scores between the net-

works with 10 layers or more (B–F). �e 34-layer ResNet (E) won first place at the first 

track EmotioNet Challenge in 2017 [116].

In a second experiment, Ding et  al. compare the convergence rate of a very-deep 

18-layer CNN to a shallower 6-layer CNN across 100 epochs. �e experiment shows 

that the very-deep 18-layer CNN converges faster than the shallower network, as the 

error decreases at a faster rate. �e authors suggest that the shallower network will con-

tinue to converge, provided additional epochs.

�e experiments by Ding et  al. show that additional hidden layers can increase the 

convergence rate on facial action recognition. Training very-deep neural networks 

Table 12 Comparing very-deep CNNs on FAU recognition (F1-score) [92]

FAU class Imbalance level (A) Handcraft (B) Plain34 (C) Res10 (D) Res18 (E) Res34 (F) Res50

AU1 2.5% 0.05 0.43 0.46 0.44 0.44 0.46

AU2 1.5% 0.00 0.42 0.44 0.45 0.45 0.46

AU4 1.1% 0.00 0.44 0.42 0.41 0.40 0.42

AU5 0.9% 0.00 0.42 0.41 0.42 0.40 0.46

AU6 3.6% 0.41 0.52 0.51 0.55 0.52 0.51

AU9 0.6% 0.00 0.41 0.36 0.38 0.40 0.44

AU12 45.7% 0.89 0.89 0.90 0.89 0.90 0.90

AU17 0.4% 0.00 0.19 0.20 0.26 0.27 0.24

AU20 0.01% 0.00 0.00 0.00 0.00 0.00 0.00

AU25 29.9% 0.79 0.85 0.86 0.86 0.86 0.85

AU26 25.6% 0.64 0.73 0.74 0.73 0.74 0.73

Average – 0.29 0.48 0.48 0.49 0.49 0.50
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comes at a cost, however, as it increases the total number of matrix operations and the 

memory footprint. Additional experiments are required to determine if this increased 

convergence rate is observed with alternative deep learning architectures and data sets. 

With the convergence rate in question, other methods that have been shown to impact 

convergence rates should be included in future studies, e.g. alternative optimization 

methods, dynamic learning rates, and weight initialization.

Summary of algorithm-level methods

�is section included eight algorithm-level methods for addressing class imbalance 

with DNNs. �e MFE and MSFE loss functions presented by Wang et  al. outperform 

the standard MSE loss on several image and text data sets. Lin et al.’s focal loss, which 

down-weights easy-to-classify samples, was used to outperform several state-of-the-

art one-stage and two-stage object detectors on the COCO data set. Nemoto et al. also 

explored focal loss for the purpose of detecting rare building changes, but the results 

were somewhat contradictory. A cost-sensitive method that incorporates pre-defined 

misclassification costs into the CE loss function was used by  Wang et al. to predict hos-

pital readmissions. Khan et al. proposed a cost-sensitive deep CNN (CoSen) that jointly 

learns network parameters and cost matrix parameters during training. Overall accuracy 

was used to show that the CoSen CNN outperforms a baseline CNN, multiple sampling 

methods, and multiple cost-sensitive methods consistently across six image data sets. 

Similarly,  Zhang et al. combined a DBN with an evolutionary algorithm that searches 

for optimal misclassification costs, but results were again reported with the accuracy 

metric and are difficult to interpret. Buda et al. demonstrated how prior class probabili-

ties can be used to adjust DNN output thresholds to improve overall accuracy in classi-

fying image data.  Zhang et al. presented category centers, a method that addresses class 

imbalance by combining transfer learning, deep CNN feature extraction, and a nearest 

deep feature cluster discrimination rule. Finally, Ding et al. experimented with very-deep 

neural networks ( > 10 layers) and showed that deeper networks may converge faster due 

to changes in the error surfaces that allow for faster optimization.

Unlike data sampling methods, the algorithm-level methods presented do not alter the 

training data and do not require any pre-processing steps. Compared to ROS, which was 

recommended by multiple authors in the  "Data-level methods" section, algorithm-level 

methods are less likely to impact training times. �is suggests that algorithm-level meth-

ods may be better equipped for big data problems. With the exception of defining mis-

classification costs, the algorithm-level methods require little to no tuning. Fortunately, 

two methods were presented for automatically learning cost parameters. Methods which 

are able to adapt to different problems with minimal tuning are preferred, as they can 

be quickly applied to new problems and do not require specific domain knowledge. �e 

focal loss function and CoSen CNN demonstrate this flexibility, and we believe they will 

generalize well to many complex problem domains.

In general, there is a lack of research that appropriately compares deep learning algo-

rithm-level methods to alternative class imbalance methods. �is is due to poor choices 

in baseline models, insufficient performance metrics, and domain-specific experiments 

that fail to isolate the proposed class imbalance method. Similar to the surveyed deep 



Page 36 of 54Johnson and Khoshgoftaar  J Big Data            (2019) 6:27 

learning data-level methods, most of the methods in this section were evaluated on 

image data with deep CNNs. We are most interested in understanding how deep learn-

ing methods for addressing class imbalance compare to each other and to traditional 

machine learning techniques for class imbalance. We believe that filling these research 

gaps and properly evaluating these methods will have a great impact on future deep 

learning applications.

Hybrid-methods

�e deep learning techniques for addressing class imbalance in this section combine 

algorithm-level and data-level methods. Huang et al. [22] use a novel loss function and 

sampling method to generate more discriminative representations in their Large Mar-

gin Local Embedding (LMLE) method. Ando and Huang [117] presented the first deep 

feature over-sampling method, Deep Over Sampling (DOS). Finally, class imbalance in 

large-scale image classification is addressed by Dong et al. [118] with a novel loss func-

tion and hard sample mining.

Large Margin Local Embedding (LMLE)

Huang et  al. [22] proposed  the LMLE method for learning more discriminative deep 

representations of imbalanced image data. �e method is motivated by the observa-

tion that minority groups are sparse and typically contain high variability, allowing the 

local neighborhood of these minority samples to be easily invaded by samples of another 

class. By combining a new informed quintuplet sampling method with a new triple-

header hinge loss function, deep feature representations that preserve same class locality 

and increase inter-class discrimination are learned from imbalanced image data. �ese 

deep feature representations, which form well-defined clusters, are then used to label 

new samples with a fast cluster-wise K-NN classification method. �e proposed LMLE 

method is shown to achieve state-of-the-art results on the CelebA [119] data set, which 

contains high imbalance levels up to ρ = 49.

�e quintuplet sampling method selects an anchor and four additional samples based 

on inter-class and intra-class cluster distances. During training, each mini-batch selects 

an equal number of quintuplets from both the minority and majority classes. �e five 

samples obtained by the quintuplet sampling method are fed to five identical CNNs, 

and their outputs are aggregated into a single result. �e triple-header hinge loss is then 

used to compute the error and update the network parameters accordingly. �is regular-

ized loss function constrains the deep feature representation such that clusters collapse 

into small neighborhoods with appropriate margins between inter-class and intra-class 

clusters.

�e CelebA data set contains facial images annotated with 40 attributes, with imbal-

ance levels as high as ρ = 49 (Bald vs not Bald). A total of 160,000 images are used to 

train a CNN, and the learned deep representations are then fed to a modified K-NN 

classifier. �e Balanced Accuracy (Eq.  9) metric is calculated for each facial attribute. 

�e LMLE-kNN model is compared to three state-of-the-art models in the facial attrib-

ute recognition domain: Triplet-kNN [120], PANDA [121], and ANet [122]. Results 

in Table 13 show that the LMLE-kNN performs as good as, or better than, alternative 

methods for all facial attributes. Performance gains over alternative methods increased 
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as levels of imbalance increased, e.g. LMLE increased accuracy on the Bald attribute 

from 75 to 90 when compared to its runner-up. �e authors achieved similar results 

when comparing the LMLE-kNN to 14 state-of-the-art models on the BSDS500 [123] 

edge detection data set.

Huang et  al. were one of the first to study deep representation learning with class 

imbalanced data. �e proposed LMLE method combines several powerful concepts, 

achieves state-of-the-art results on a popular image data benchmark, and shows poten-

tial for future works in other domains. �e high-performance results do come with a 

cost, however, as the system is both complex and computationally expensive. �e data 

must be pre-clustered before quintuplet sampling can take place, which may be dif-

ficult if a suitable feature extractor is not available for the given data set. �e authors 

do suggest that the initial clustering is not important, because the learning procedure 

can be used to re-cluster the data throughout training. Furthermore, each forward pass 

through the system requires computation from five CNNs, one for each of the quintu-

plets sampled. We are in agreement with the statement made by Ando and Huang [117], 

that adapting LMLE to new problems will require many task and model specific con-

figurations. �is will likely deter many practitioners from using this method when trying 

to solve class imbalanced problems, as most will resort to simpler and faster methods. 

Results provided by Dong et al. in the  "Class rectification loss (CRL) and hard sample 

mining" section will show that LMLE outperforms ROS, RUS, thresholding, and cost-

sensitive learning on the CelebA data set.

Deep over-sampling (DOS)

Ando and Huang [117] introduced over-sampling to the deep feature space produced 

by CNNs in their DOS framework. �e proposed method is extensively evaluated by 

generating imbalanced data sets from five popular image benchmark data sets, including 

MNIST, MNIST-back-rot, SVHN [124], CIFAR-10, and STL-10 [125]. Class-wise preci-

sion and recall, F1-scores, and AUC are used to evaluate the DOS framework against 

alternative methods.

�e DOS framework consists of two simultaneous learning procedures, optimizing the 

lower layer and upper layer parameters separately. �e lower layers are responsible for 

acquiring the embedding function, while the upper layers learn to discriminate between 

classes using the generated embeddings. In order to learn the embedding features, the 

CNN’s input is presented with both a class label and a set of deep feature targets, an 

in-class nearest neighbor cluster from deep feature space. �en the micro-cluster loss 

computes the distances between each of the deep feature targets and their mean, con-

straining the optimization of the lower layers to shift deep feature embeddings towards 

the class mean. Ando and Huang state that shifting target representations to their cor-

responding local mean will induce smaller in-class variance and strengthen class distinc-

tion in the learned representations. �e upper layers used for discriminating between 

classes are trained by taking the weighted sum of the CE losses, i.e. the CE loss for each 

deep feature target.

�e deep over-sampling component is the process of selecting k in-class neigh-

bors from deep feature space. In order to address class imbalance, the number of in-

class neighbors to select should vary between classes. For example, using k = 3 for the 
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minority class, and k = 0 for the majority class, will supplement the minority class with 

additional embeddings while leaving the majority class as is.

In the first DOS experiment, they compare the DOS framework with two alternative 

methods for handling class imbalance, Large Margin Local Embedding (LMLE) [22] and 

Triplet re-sampling with cost-sensitive learning (TL-RS-CSL). MNIST back-rotation 

images were used to create three data sets with class reduction rates of 0%, 20%, and 

40%. It was shown that the DOS framework outperformed TL-RS-CSL and LMLE for 

reduction rates of 20% and 40%, and that DOS performance deteriorates slower than 

both TL-RS-CSL and LMLE as imbalance levels increase. For example, on imbalanced 

MNIST-back-rot data (40% reduction), DOS scored an average class-wise recall of 75.43, 

compared to the LMLE score of 70.13.

Table 14 DOS with varying imbalance [117]

Model Reduction rate Class MNIST MNISTbr SVHN

Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC 

CNN 0.90 mnr 0.98 0.93 0.96 0.99 0.31 0.76 0.43 0.68 0.62 0.77 0.55 0.78

mjr 0.96 0.99 0.97 1.00 0.77 0.56 0.65 0.77 0.80 0.76 0.75 0.89

0.95 mnr 0.99 0.89 0.94 0.99 0.27 0.76 0.23 0.57 0.13 0.86 0.21 0.61

mjr 0.93 0.98 0.95 0.99 0.52 0.69 0.58 0.67 0.89 0.61 0.71 0.87

0.99 mnr 0.65 0.98 0.77 0.96 0.31 0.71 0.43 0.68 0.50 0.72 0.42 0.74

mjr 0.99 0.82 0.89 0.99 0.78 0.56 0.65 0.77 0.73 0.67 0.60 0.81

CNN-CL 0.90 mnr 0.99 0.90 0.94 1.00 0.22 0.77 0.31 0.69 0.59 0.60 0.42 0.78

mjr 0.94 0.99 0.96 0.98 0.78 0.53 0.63 0.78 0.77 0.75 0.73 0.86

0.95 mnr 0.99 0.83 0.90 0.97 0.28 0.77 0.24 0.60 0.04 0.68 0.07 0.61

mjr 0.89 0.99 0.94 1.00 0.52 0.68 0.57 0.69 0.89 0.60 0.70 0.84

0.99 mnr 0.75 0.98 0.85 0.95 0.22 0.72 0.31 0.69 0.47 0.71 0.37 0.72

mjr 0.99 0.86 0.92 0.99 0.78 0.53 0.63 0.78 0.71 0.57 0.56 0.78

DOS
(k = 5)

0.90 mnr 0.99 0.97 0.98 1.00 0.66 0.77 0.71 0.79 0.71 0.82 0.72 0.84

mjr 0.98 0.99 0.98 1.00 0.75 0.68 0.71 0.81 0.85 0.79 0.81 0.92

0.95 mnr 0.98 0.96 0.97 1.00 0.56 0.75 0.63 0.72 0.40 0.89 0.55 0.73

mjr 0.97 0.99 0.98 1.00 0.64 0.74 0.69 0.78 0.90 0.69 0.78 0.91

0.99 mnr 0.91 0.99 0.95 0.99 0.61 0.73 0.66 0.75 0.51 0.91 0.64 0.80

mjr 0.98 0.94 0.96 1.00 0.77 0.70 0.73 0.82 0.89 0.68 0.77 0.90

Table 15 DOS with varying k [117]

Classi�er k Class MNIST MNISTbr SVHN

Pr Re F1 AUC Pr Re F1 AUC Pr Re F1 AUC 

CNN mnr 0.65 0.98 0.77 0.96 0.31 0.76 0.43 0.68 0.50 0.72 0.42 0.74

mjr 0.99 0.82 0.89 0.99 0.78 0.56 0.65 0.77 0.73 0.67 0.60 0.81

CNN-CL mnr 0.75 0.98 0.85 0.95 0.22 0.77 0.31 0.69 0.47 0.71 0.37 0.72

mjr 0.99 0.86 0.92 0.99 0.78 0.53 0.63 0.78 0.71 0.57 0.56 0.78

DOS 3 mnr 0.91 0.98 0.95 0.99 0.65 0.77 0.70 0.78 0.67 0.77 0.66 0.83

mjr 0.99 0.94 0.96 1.00 0.75 0.68 0.71 0.80 0.80 0.74 0.74 0.86

5 mnr 0.91 0.99 0.95 0.99 0.66 0.77 0.71 0.79 0.51 0.91 0.64 0.80

mjr 0.98 0.94 0.96 1.00 0.75 0.68 0.71 0.81 0.89 0.68 0.77 0.90

10 mnr 0.91 0.99 0.95 0.99 0.61 0.73 0.66 0.75 0.40 0.89 0.55 0.73

mjr 0.99 0.94 0.96 1.00 0.77 0.70 0.73 0.82 0.90 0.69 0.78 0.91
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In a second experiment, the DOS framework is compared to a basic CNN and a K-NN 

classifier that is trained with CNN deep features (CNN-CL). �ree different data sets 

are used to generate imbalanced data sets with reduction rates of 90%, 95%, and 99%, 

producing imbalance ratios up to ρ = 100 . �e results in Table 14 show again that the 

improved performance of the DOS framework becomes more apparent as the level of 

class imbalance increases. �e third level of imbalance, with reduction rates of 99%, 

show that the DOS framework clearly outperforms both the CNN and CNN-CL across 

all data sets and all performance metrics.

�e final experiment uses balanced data sets to examine the sensitivity of DOS param-

eter k, which defines the number of deep feature in-class neighbors to sample. Table 15 

shows that when k is increased to 10 the performance on the minority group begins to 

deteriorate. �ese results also show that the proposed DOS framework outperforms the 

baseline CNN and CNN-CL on balanced data sets.

�e DOS method displayed no visible performance trade-offs between the majority 

and minority groups, or between precision and recall. Its ability to outperform alterna-

tive methods when class imbalance is not present is also very appealing, as this qual-

ity is not common among class imbalance learning methods. Most importantly, some 

of the performance gains observed when comparing the CNN or CNN-CL to the DOS 

model on the minority group were very large, e.g. MNIST-back-rot and SVHN F1-scores 

increasing from 0.43 to 0.66 and 0.42 to 0.64, respectively, under an imbalance reduc-

tion rate of 99%. Like other hybrid methods, DOS is more complex than more common 

data-level and algorithm-level methods, which may discourage statisticians from using 

it. We agree with Ando and Huang, however, that the DOS method is generally extend-

able to other domains and deep learning architectures. Future works should evaluate the 

DOS method in these new contexts and should compare results to other class imbalance 

methods presented throughout this survey.

Class recti�cation loss (CRL) and hard sample mining

Dong et al. [118] present an end-to-end deep learning method for addressing high class 

imbalance in large-scale image classification. �ey explicitly distinguish their work 

from more traditional small-scale class imbalance problems containing small levels of 

imbalance, suggesting that this method may not generalize to small-scale problems. 

Experimental results compare the proposed method against data sampling, cost-sen-

sitive learning, threshold moving, and several relevant state-of-the-art methods. Mean 

sensitivity scores are used as the primary performance metric by averaging together 

class-wise recall scores. �e proposed method combines hard sample mining from the 

minority groups with a regularized objective function, the class rectification loss (CRL).

�e hard sample mining selects minority samples which are expected to be more 

informative for each mini-batch, allowing the model to learn more effectively with less 

data. Dong et al. strive to rectify, or correct, the class distribution bias in an incremental 

manner, resulting in progressively stronger minority class discrimination through train-

ing. Unlike LMLE [22], which attempts to strengthen the structure of both majority and 

minority groups, this method only enhances minority class discrimination. To identify 

the minority classes, all classes are sorted by their size and then selected from smallest 

to largest until they collectively sum up to at most half the size of the data set, ensuring 
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that the minority classes account for at most half the training batch. Both class-level and 

instance-level hardness metrics are considered when performing hard sample mining. At 

the class-level, hard positives refer to weak recognitions, the correctly labelled samples 

with low prediction scores. Alternatively, hard negatives are the obvious mistakes, the 

samples incorrectly labelled with high prediction scores. At the instance-level, hard posi-

tives are defined by correctly labelled images with far distances in feature space distance, 

while hard negatives are the images incorrectly labelled which are close in feature space.

�e CRL loss function (Eq. 17), where α = η�imb is linearly proportional to the level 

of class imbalance, places a batch-wise class balancing constraint on the optimization 

process. �is reduces the learning bias caused by the majority group’s over-represen-

tation. �e CRL regularization imposes an imbalance-adaptive learning mechanism, 

applying more weight to the more highly imbalanced labels, while reducing the weight 

for the less imbalanced labels. �ree different loss criteria Lcrl are explored through 

experimentation, where the Triplet Ranking loss [126] is selected as the default for 

many of the experiments.

Experiments are conducted by extending state-of-the-art CNN architectures with the 

proposed method and performing classification on three benchmark data sets. �e Cel-

ebA data set contains a max imbalance level of ρ = 49 . �e X-Domain [127] data set 

contains 245,467 retail store clothing images that are annotated with 9 multi-class attrib-

ute labels, 165,467 of which are set aside for training. �e X-Domain contains extreme 

class imbalance ratios of ρ > 4000 . Several imbalanced data sets are generated from the 

CIFAR-100 set, with imbalance ratios up to ρ = 20 , to demonstrate how CRL handles 

increasing levels of imbalance.

Table  16 contains the CelebA facial attribute recognition results. All class imbal-

ance methods presented were implemented on top of the 5-layer CNN, DeepID2, 

[128]. Referring to the bottom half of the data attributes, with imbalance ratios ρ ≥ 6 , 

under-sampling almost always performs worse than over-sampling, cost-sensitive 

learning, and threshold moving. According to the mean sensitivity scores, over-sam-

pling and cost-sensitive learning perform the same, outperforming thresholding and 

under-sampling by 3% and 4%, respectively.

When compared to the best non-imbalanced learning method (DeepID2) and the 

best imbalanced learning method (LMLE), the proposed CRL method improves the 

mean sensitivity by 6% and 3%, respectively. By analyzing the attribute-level scores, 

we can see that LMLE outperforms CRL in many cases where class imbalance lev-

els are low, e.g. outperforming CRL on the attractive attribute by 7%. Dong et  al. 

acknowledge that LMLE appears to handle low-level imbalance better than CRL. For 

many of the high-imbalance attributes, the non-imbalance method DeepID2 outper-

forms the LMLE method. It is when class imbalance is highest that the proposed CRL 

method performs its best and achieves its most significant performance gains over 

alternative methods.

In another experiment with the X-Domain data set, CRL outperforms LMLE on 

all categories, achieving a mean sensitivity performance gain over LMLE of almost 

5%. Cost-sensitive learning, thresholding, and ROS all score roughly 6% below CRL, 

(17)Lbln = αLcrl + (1 − α)Lce, α = η�imb
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while RUS again performs very poorly. When experimenting with balanced distribu-

tions from the CIFAR-100 data set, the CRL method is applied to three state-of-the-

art CNN models: CifarNet [129], ResNet32 [98], and DenseNet [130]. For each model, 

the CRL method consistently improves upon the baseline, increasing mean sensitivity 

by 3.6%, 1.2%, and 0.8%, respectively. Additional cost analysis by Dong et  al. shows 

that CRL is significantly faster than LMLE, taking just 27.2 h to train versus LMLE’s 

166.6 h on the given test case.

�e advantages of CRL over alternative methods on large-scale class imbalanced 

image data were demonstrated through comprehensive experiments. It was shown 

to efficiently outperform many popular class imbalanced methods, including ROS, 

RUS, thresholding, cost-sensitive learning, and LMLE. It was also shown to train sig-

nificantly faster than the LMLE method. �e authors were clear to distinguish this 

method as effective in large-scale image data containing high levels of imbalance, and 

results on facial attribute detection showed that LMLE performed better for many 

facial attributes with lower levels of imbalance. �is suggests that the CRL method 

may not be a good fit for class imbalance problems containing low levels of class 

imbalance. Despite this initial observation, CRL should be evaluated on a wide range 

of data sets with varying levels of complexity to better understand when it should 

be used. Exploring the CRL method’s ability to learn from non-image data is also of 

interest.

Summary of hybrid methods

�is section analyzed three hybrid deep learning methods for addressing class imbal-

ance. �e LMLE method proposed by Huang et al. outperformed several state-of-the-art 

models on the CelebA and BSDS500 image data sets. Ando and Huang introduced the 

DOS method, which learns an embedding layer that produces more discriminative fea-

tures, and then supplements the minority group by over-sampling in deep feature space. 

DOS was shown to outperform LMLE and baseline CNNs on multiple class imbalanced 

image data sets. Lastly, Dong et al.’s CRL loss function was shown to outperform four 

state-of-the-art models, ROS, RUS, cost-sensitive learning, output thresholding, and 

LMLE on the CelebA data set.

�e results provided by Dong et  al. are most informative, as they compare their 

CRL method to LMLE and several other data-level and algorithm-level deep learning 

methods for addressing class imbalance. Not only did they show that the CRL method 

outperforms alternative methods as class imbalance levels increase, but they also illus-

trated the effectiveness of RUS, ROS, thresholding, and cost-sensitive learning. From 

their results on the CelebA data set, we observe that ROS and cost-sensitive learning 

outperform RUS and threshold moving on average. �ese results are consistent with 

those from the  "Data-level methods" section, suggesting that ROS is generally a good 

choice in addressing class imbalance with DNNs. Dong et al. also confirmed our original 

observation, that LMLE is rather complex and resource intensive, by showing that CRL 

is capable of training 6× faster than LMLE. Comparing DOS and CRL directly will prove 

useful, as both methods were shown to outperform the LMLE method.

In general, hybrid methods for learning from class imbalanced data will be more 

complex, and more difficult to implement than algorithm-level methods and data-level 



Page 45 of 54Johnson and Khoshgoftaar  J Big Data            (2019) 6:27 

methods. �is is expected, since both algorithm-level and data-level methods are being 

combined for the purpose of improving classification performance. As learners become 

more complex, their flexibility and ease of use will decrease, which may make them more 

difficult to adapt to new problems.

Class-wise performance scores on the CelebA data set in Table  16 show that differ-

ent methods perform better when subjected to different levels of class imbalance. �is 

observation supports our demand for future research that evaluates multiple deep learn-

ing methods across a variety of class imbalance levels and problem complexities. We 

expect to see similar trade-offs between models when they are evaluated across a variety 

of data types and DNN architectures. Filling these gaps in current research will help to 

shape future deep learning applications that involve class imbalance, class rarity, and big 

data.

Discussion of surveyed works

To provide a high-level summary and better compare the current deep learning meth-

ods for class imbalance, the surveyed works and their data sets have been summarized 

in Tables  17 and 18. �e methods presented by each group have been categorized in 

Table 17 Summary of deep learning class imbalance methods

Method Network type Method type Description

ROS [23, 79] CNN Data ROS of minority classes until class balance is 
achieved

RUS [23] CNN Data RUS of majority classes until class balance is 
achieved

Two-phase learning [20, 23] CNN Data Pre-training with RUS or ROS, then fine-tuning 
with all data

Dynamic sampling [21] CNN Data Sampling rates adjust throughout training based 
on previous iteration’s class-wise F1-scores

MFE and MSFE loss [18] MLP Algorithm New loss functions allow positive and negative 
classes to contribute to loss equally

Focal loss [88, 103] CNN Algorithm New loss function down-weights easy-to-classify 
samples, reducing their impact on total loss

CSDNN [89] MLP Algorithm CE loss function modified to incorporate a pre-
defined cost matrix

CoSen CNN [19] CNN Algorithm Cost matrix is learned through backpropagation 
and incorporated into output layer

CSDBN-DE [90] DBN Algorithm Cost matrix is learned through evolutionary algo-
rithm and incorporated into output layer

Threshold moving [23] CNN Algorithm Decision threshold is adjusted by dividing output 
probabilities by prior class probabilities

Category centers [91] CNN Algorithm Class centroids are calculated in deep feature 
space and K-NN method discriminates

Very-deep NNs [92] CNN Algorithm CNN network depths of up to 50 layers are used to 
examine convergence rates

LMLE [22] CNN Hybrid Triple-header hinge loss and quintuplet sampling 
generate more discriminative features

DOS [117] CNN Hybrid Minority class over-sampled in deep feature space 
using K-NN and micro-cluster loss

CRL loss [118] CNN Hybrid Class Rectification loss and hard sample mining 
produce more discriminative features
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Table  17 as one of three types: data, algorithm, or hybrid. All of the general methods 

for handling class imbalance in traditional machine learning have been extended to 

deep learning, including: random sampling, informed sampling, cost-sensitive learning, 

thresholding, and hybrid methods.

Data-level techniques for addressing class imbalance in deep learning include ROS 

[23, 79], RUS [23], two-phase learning with sampling [20, 23], and performance-based 

dynamic sampling [21]. �e ROS experiments reported that over-sampling to the level 

of class balance works best on imbalanced image data. �e two-phase learning method 

uses RUS or ROS to pre-train a DNN with class balanced data sets, then fine-tunes the 

network using all data. �e dynamic sampling method uses class-wise F1-scores to 

determine sampling rates, allowing the model to sample difficult classes at a higher rate.

Table 18 Summary of data sets and class imbalance levels

Images from CelebA and EmotioNet are treated as a set of binary classi�cation problems, because they are each annotated 

with 40 and 11 binary attributes, respectively. The COCO data class imbalance arises from the extreme imbalance between 

background and foreground concepts

Paper Data sets Data type Class count Data set size Min class size Max class size ρ (Eq. 1)

[79] CIFAR-10 Image 10 60,000 2340 3900 2.3

[20] WHOI-Plankton Image 103 3,400,000 < 3500 2,300,000 657

[21] Public cameras Image 19 10,000 14 6986 499

[18] CIFAR-100 (1) Image 2 6000 150 3000 20

CIFAR-100 (2) Image 2 1200 30 600 20

CIFAR-100 (3) Image 2 1200 30 600 20

20 News Group (1) Text 2 1200 30 600 20

20 News Group (2) Text 2 1200 30 600 20

[88] COCO Image 2 115,000 10 100,000 10,000

[103] Building changes Image 6 203,358 222 200,000 900

[89] GHW Structured 2 2565 406 2159 5.3

ORP Structured 2 700 124 576 4.6

[19] MNIST Image 10 70,000 600 6000 10

CIFAR-100 Image 100 60,000 60 600 10

CALTECH-101 Image 102 9144 15 30 2

MIT-67 Image 67 6700 10 100 10

DIL Image 10 1300 24 331 13

MLC Image 9 400,000 2600 196,900 76

[90] KEEL Structured 2 3339 26 3313 128

[91] CIFAR-10 Image 10 60,000 250 5000 20

CIFAR-100 Image 100 60,000 25 500 20

[22] CelebA Image 2 160,000 3200 156,800 49

[117] MNIST Image 10 60,000 50 5000 100

MNIST-back-rot Image 10 62,000 12 1200 100

CIFAR-10 Image 10 60,000 5000 5000 1

SVHN Image 10 99,000 73 7300 100

STL-10 Image 10 13,000 500 500 1

[118] CelebA Image 2 160,000 3200 156,800 49

[92] EmotioNet Image 2 450,000 45 449,955 10,000

[23] MNIST Image 10 60,000 1 5000 5000

CIFAR-10 Image 10 60,000 100 5000 50

ImageNet Image 1000 1,050,000 10 1000 100
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Algorithm-level methods were explored by nine studies, and can be further broken 

down into new loss functions, cost-sensitive methods, output thresholding, and a deep 

feature 1-NN rule. MFE and MSFE loss functions [18] are modifications of the MSE loss 

that allow the positive and negative class to equally contribute to the loss. �e focal loss 

function [88, 103] improves classification by down-weighting easy-to-classify samples, 

preventing easily-classified negative samples from dominating the loss.   Wang et  al. 

modified the CE loss slightly to incorporate pre-defined class costs into the learning pro-

cess, creating an optimization process that minimizes total cost. �e final two cost-sen-

sitive methods evaluated are unique in the sense that they iteratively improve the cost 

matrix throughout training, instead of requiring pre-defined costs. �e CoSen CNN [19] 

uses an additional loss function to learn the cost parameters through backpropagation, 

while the CSDBN-DE [90] utilizes an evolutionary algorithm to produce increasingly 

better cost values. Buda et al. used class prior probabilities to adjust deep CNN output 

thresholds and reduce bias towards the majority group. �e category centers method 

[91] uses CNN-generated features to calculate class centers in feature space, then uses 

the 1-NN rule to classify new data by its nearest class centroid. Very-deep CNNs (> 10 

layers) were explored by Ding et  al. to determine if deeper networks would converge 

faster than shallow networks when trained on imbalanced data.

�ree hybrid methods that combine data-level and algorithm-level changes to address 

the class imbalance problem were compared to baselines and alternative methods. 

LMLE [22] combines quintuplet sampling with the triple-header hinge loss to learn 

more discriminative features. �e CRL loss function combined with hard sample mining 

[118] was shown to improve representation learning and outperform LMLE. Ando and 

Huang were the first to explore over-sampling in deep feature space, showing that DOS 

is able to outperform LMLE on imbalanced image data.

Two-phase learning [20] and dynamic sampling [21] both outperformed transfer 

learning and augmentation methods in classifying imbalanced image data. Buda et  al. 

presented conflicting results, however, that suggested that plain ROS performs better 

than both two-phase learning and RUS. Dong et  al. showed that ROS and cost-sensi-

tive learning methods perform equivalently on the CelebA dataset, both outperforming 

RUS and thresholding methods. Experiments by Khan et al., evaluated over six data sets, 

showed that a cost-sensitive CNN can outperform data sampling methods with neural 

networks and cost-sensitive SVM and RF learners.  Wang et al. deployed a state-of-the-

art hospital readmission predictor built using a cost-sensitive DNN that outperformed 

existing models. A class balanced version of the MSE loss, MFE and MSFE [18], showed 

improvements in classifying imbalanced image and text data. In [117], over-sampling in 

the deep feature space is used to perform classification on five data sets, showing that 

the DOS framework can outperform LMLE and TL-RS-CSL. �e focal loss [88] function 

was shown to outscore leading one-stage and two-stage detectors on the COCO data 

set. �e CRL loss [118] outperformed LMLE, data sampling, cost-sensitive learning, and 

thresholding on the CelebA facial attribute detection task.

Multiple authors [19, 23, 79] suggested the use of deep learning with ROS to address 

class imbalance, showing that ROS outperforms RUS in almost all cases. Buda et al. 

and Hensman and Masko both suggest applying ROS until class imbalance is elimi-

nated in the training set, but experiments did not consider big data scenarios. We 
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believe that applying ROS to this level will not hold when subjected to big data or 

class rarity. Duplicating such large volumes of data may cause over-fitting and is very 

computationally expensive. In a contrastive example, Bauder et  al. [131] found RUS 

to be more effective than ROS when using traditional machine learning algorithms 

to detect fraud in big data with class rarity. Future work should consider these big 

data scenarios, and should experiment with RUS methods that remove duplicates and 

strengthen class boundaries.

Almost all (80%) of the surveyed works employed deep CNN architectures to 

address class imbalanced image data. Yet, all of the methods presented can be 

extended to non-CNN architectures and non-image data. �e popularity of CNNs, 

image classification, and object detection in the research community can be partly 

attributed to popular benchmark data sets like MNIST and CIFAR, and the continu-

ous improvements being driven by competitive events like LSVRC. Class imbalance 

is not limited to image data, and additional work must be done to evaluate the use of 

these deep learning class imbalance methods in other domains.

Approximately half of the studies used only one data set when evaluating their deep 

learning methods for addressing class imbalance. �e authors are not at fault for this, 

as most were focused on solving a specific problem or benchmark task. However, 

more comprehensive studies that evaluate these methods across a wider range of data 

sets, with varying levels of class imbalance and complexity, will better demonstrate 

their strengths and weaknesses. Also, only a third of the studies indicate the number 

of rounds or repetitions executed for each experiment. In other words, the remaining 

groups either did not perform multiple runs, or failed to include those details and pre-

sented the most favorable results. To their defense, training a deep learning model on a 

large data set can take days or even weeks, making it difficult to conduct several rounds 

of experiments. �is creates several avenues for future research, as comparing various 

deep learning methods on many data sets with repetition will increase confidence in 

results and help guide future practitioners in model selection.

Less than half of the surveyed works experimented with data sets larger than 100,000 

samples. Lee et al. were the only ones to work with more than a million samples con-

taining imbalanced data. Pouyanfar et al. provided a big data analytics workflow to clas-

sify fast-streaming network camera data, but their experiment was limited to just 10,000 

images. �is is an extremely important area of research that demands attention if we 

expect deep learning to provide big data analytics solutions. It is also very likely that the 

methods proposed throughout this survey, e.g. ROS and RUS, will behave very differ-

ently in the context of big data.

It is not currently possible to compare the methods which have been presented 

directly, as they are evaluated across a variety of data sets with varying levels of class 

imbalance, and results are reported with inconsistent performance metrics. In addition, 

some studies report contradictory results, further suggesting that performance is highly 

dependent on problem complexity, class representation, and the performance metrics 

reported. Overall, there is a lack of evidence which distinguishes any one deep learning 

method as superior for learning from class imbalanced data, and additional experiments 

are required before such conclusions can be made.
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Conclusion

To the best of our knowledge, this survey provides the most comprehensive analysis of 

deep learning methods for addressing the class imbalance data problem. Fifteen studies 

published between 2015 and 2018 are summarized and discussed, exploring a number of 

advanced techniques for learning from imbalanced data with DNNs. It has been shown that 

traditional machine learning techniques for handling class imbalance can be extended to 

deep learning models with success. �e survey also finds that nearly all research in this area 

has been focused on computer vision tasks with CNNs. Despite a growing demand for big 

data analytics solutions, there is very little research that properly evaluates deep learning 

in the context of class imbalance and big data. Deep learning from class imbalanced data is 

still largely understudied, and statistical evidence which compares newly published meth-

ods across a variety of data sets and imbalance levels does not exist.

Several areas for future work are apparent. Applying the newly proposed methods to a 

larger variety of data sets and class imbalance levels, comparing results with multiple com-

plementary performance metrics, and reporting statistical evidence will help to identify the 

preferred deep learning method for future applications containing class imbalance. Experi-

menting with deep learning methods for addressing class imbalance in the context of big 

data and class rarity will prove valuable to the future of big data analytics. More work is 

required with non-convolutional DNNs to determine if the methods presented will gener-

alize well to alternative architectures, e.g. MLPs and RNNs. Finally, research that evaluates 

the use of deep learning to address class imbalance in non-image data is limited and should 

be expanded upon.
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