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Abstract

Federated learning is a machine learning paradigm that emerges as a solution to the
privacy-preservation demands in artificial intelligence. As machine learning, federated
learning is threatened by adversarial attacks against the integrity of the learning model
and the privacy of data via a distributed approach to tackle local and global learning.
This weak point is exacerbated by the inaccessibility of data in federated learning, which
makes harder the protection against adversarial attacks and evidences the need to fur-
therance the research on defence methods to make federated learning a real solution for
safeguarding data privacy. In this paper, we present an extensive review of the threats
of federated learning, as well as as their corresponding countermeasures, attacks versus
defences. This survey provides a taxonomy of adversarial attacks and a taxonomy of de-
fence methods that depict a general picture of this vulnerability of federated learning and
how to overcome it. Likewise, we expound guidelines for selecting the most adequate
defence method according to the category of the adversarial attack. Besides, we carry
out an extensive experimental study from which we draw further conclusions about the
behaviour of attacks and defences and the guidelines for selecting the most adequate de-
fence method according to the category of the adversarial attack. This study is finished
leading to meditated learned lessons and challenges.
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1. Introduction

Data-driven machine learning methods currently dominate artificial intelligence. This re-
liance on data allows us to stand out three artificial intelligence challenges. The former
is the preservation of data privacy, since artificial intelligence methods process personal
and sensitive data, such as health [1] and financial data [2]. Likewise, the growing inter-
est in data privacy safeguarding is reflected in emerging legal frames such as the General
Data Protection Regulation (GDPR) [3]. The second challenge is related to the increas-
ing availability of data, which, on the one hand, is furthering the progress of artificial
intelligence [4], and, on the other hand, it arises new challenges related to its storage and
processing that are even exacerbated when data stemmed from distributed sources, as in
IoT scenarios [5]. The latter challenge emerges from the need to distributively process
data when it is not possible to transfer it to a central server, because of legal or regulatory
restrictions, communication costs or other kind of technical limitations. Due to this dis-
tributed scenario, new difficulties appear linked to dissimilar data distributions from the
same domain and the likely large size of data sources [6].

Federated learning (FL) is a machine learning paradigm proposed as a possible response
to the three previous challenges, and especially for the demand of preserving data pri-
vacy, together with a distributed approach to tackle local and global learning [7]. FL aims
at generating a collaboratively trained global learning model without sharing the data
owned by the distributed data sources. Frequently, it requires a coordinator agent, which
is in charge of managing the information exchange required to train the global learning
model. In this way, the data is protected from unauthorised access, either by other data
sources or the coordinator party.

Machine learning is vulnerable to adversarial attacks mainly focused on impairing the
learning model or violating data privacy [8]. Likewise, FL is exposed to the same jeop-
ardy, since it is an specific machine learning setting. Some of those attacks are grounded
in the maliciously manipulation of the training data [9], which are inaccessible in FL and,
then, we cannot rely on the use of data inspection techniques for detecting that altered
data. Therefore, one of the weak points of FL is being exposed to adversarial attacks that
may violate the integrity of the learning model or the privacy of data.

The evidence that adversarial attacks are a weak point of FL is built upon the fact of
the large volume of publications centred on the identification of vulnerabilities in the
form of adversarial attacks [10, 11, 12, 13], and on the corresponding large volume of
defence proposals against to those attacks [14, 15, 16, 17]. This effervescent quantity of
publications is the cause of the publication of several survey works on adversarial attacks
that attain to review and summarise the latest papers related to this weak point. These
surveys lack of an holistic view of FL and the review of the defences against adversarial
attacks, because of the following reasons: (1) most of them are only focused on one kind
of adversarial attacks, namely there are surveys reviewing attacks to the federated model
[18, 19, 20] or privacy attacks [21, 22, 23], but any of them encompass both sort of attacks;
(2) the vast majority does not include any experimental study [24, 25, 26, 27, 28], so it is
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not possible to compare the strength of the attacks and the robustness of the defences in
a common evaluation framework; and (3) by default they only focus on horizontal FL
ignoring vertical and federated transfer learning.

Due to the mentioned facts, we propose a new survey on FL threats, and additionally we
provide several taxonomies on adversarial attacks and defences, an experimental study
and a final discussion about lessons learned and challenges. This survey differs from
previous ones due to the following contributions:

1. To provide a general picture of the field of adversarial attacks and defences by con-
sidering the threats to the learning model and to the integrity of the privacy of data.

2. To review the threats and the defences of horizontal FL, vertical FL and federated
transfer learning.

3. To define a taxonomies of adversarial attacks and their corresponding defensive
countermeasures. These two taxonomies encompass the different categories of ad-
versarial attacks and defences, which will shed light in this crucial field of making
FL a robust learning paradigm.

4. To provide a guidelines for selecting the right defence category according to the
threatening adversarial attack.

5. To compare in a common evaluation framework the strength of the most relevant
adversarial attacks, and the defence capacity of the most prominent defence meth-
ods.

6. To expound some learning lessons stemmed from the literature review and the ex-
perimental study conducted.

7. To also expound their relations to the challenges in the field of adversarial attacks.

The rest of the paper is organised as follows: the following section introduces the
propaedeutic concepts necessary for this survey to be illustrative. Section 3 presents the
taxonomy of adversarial attacks in FL, while Section 4 expounds the taxonomy of de-
fences against them. We conduct the experimental study in Section 5. In Section 6 we
provide the guidelines for selecting the right defence category. Finally, we discuss the
lessons learned and challenges in Section 7 and 8, and include some conclusions in Sec-
tion 9.

2. Background concepts on Federated Learning threats

The concepts described throughout this paper require the knowledge of some propaedeu-
tic concepts related to FL and its threats. Accordingly, we introduce FL and the categories
of FL in Section 2.1, we formally define differential privacy (DP) in Section 2.2, since a con-
siderable amount of defence methods are based on DP, and we detail the categorization
of the attacks in terms of the threat model in Section 2.3.
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2.1. Federated Learning
FL is a distributed machine learning paradigm with the aim of building a ML model
without explicitly exchanging training data between parties [7]. It consists in a network
of clients or data owners {C1, . . . , Cn}, who participate in two main processes:

1. Model training phase: each client exchange information without revealing any of their
data to collaboratively train a ML model,M f , which may reside at one client or may
be shared between a few clients.

2. Inference phase: clients collaboratively apply the jointly trained model,M f , to a new
data instance.

Both processes can be either synchronous or asynchronous, depending on the data avail-
ability of the clients and the trained model.

It must be highlighted the fact that privacy is not the only motivation of this paradigm,
there should be a fair value-distribution mechanism to share the profit gained by the
collaboratively trained model,M f .

The distribution of characteristics of the data among clients in FL shapes the procedure
to follow in the two main processes of FL, particularly we focus on the following distri-
butions: (1) clients share the feature space but not the sample space, (2) clients share the
sample space but not the feature space, and (3) clients share only a small overlap in fea-
ture space. These distributions allow us to present three categories of FL [7] in terms of
the feature space (X), the label space (Y) and the sample ID space (I) as follows:

Horizontal Federated Learning (HFL). In this scenario, clients data share the feature and
labels space, but differ in the sample space. Formally, we can define as:

Xi = Xj, Yi = Yj, Ii 6= Ij, ∀Di, Dj, i 6= j

where the feature and labels space of the clients (i, j) is depicted by (Xi, Yi) and (Xj, Yj)
and it is assumed to be the same, while the samples Ii and Ij are not the same. Di and Dj
depict the data of the clients i and j.

Vertical Federated Learning (VFL). In this scenario, clients share the sample space but nei-
ther the feature space nor the label space. Formally, we can define as follows:

Xi 6= Xj, Yi 6= Yj, Ii = Ij, ∀Di, Dj, i 6= j

Federated Transfer Learning (FTL). This scenario is similar to the traditional transfer learn-
ing. The clients share neither the feature space, nor label space, nor the sample space.
Formally, we can define as follows:

Xi 6= Xj, Yi 6= Yj, Ii 6= Ij, ∀Di, Dj, i 6= j
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Although the feature spaceand the label space are not the same, in FTL there is a certain
overlap or similarity, since the aim is to transfer knowledge from one client to another
securely. FTL was presented in [29] and it represents higher difficulty than HFL and VFL,
since it implies the use of techniques that preserve the data privacy. We represent the
different categories of FL in Figure 1.

Figure 1: Representation of the different categories in FL. Source [7].

FL is a learning setting composed of a set of key elements. Since FL is a specific configu-
ration of a machine learning environment, it shares with machine learning some of those
key elements, such as the data and the learning model. Nonetheless, the particularities
of FL make necessary additional key elements, such as clients and a learning coordinator
that orchestrates the two main processes of FL. A detailed description of FL key elements
focused on HFL is in [30], and here we describe the common ones to all the FL categories.

Data. It plays a central role in machine learning. In FL, data is distributed among the
different clients according to two possibilities: (1) IID (Independent and Identically Dis-
tributed), when the data in each client is independent and identically distributed, as well
as representative of the population data distribution; and (2) Non-IID (non Independent
and Identically Distributed), when the data distribution in each client is not independent
no identically distributed from the population data distribution. These data distributions
are mainly relevant to HFL. In VFL and FTL categories, clients do not share neither the
feature space nor the label space, and consequently the data distribution among clients is
relegated to a second place.

In most HFL scenarios, each client only stores the data generated on the client itself, en-
suring the non-IID property of the global data. Moreover, even if the IID scenario were
present, it would not be known because of the data privacy properties of FL. Hence, the
non-IID scenario is the best choice and it represents a real challenge.

Clients. Each client of a federated scenario plays a key role in a federated paradigm, as a
data owner and as a part of the distributed scheme. Typical clients in FL could be servers,
smartphones, IoT devices, connected vehicles, hospitals, banks or insurance companies.
Privacy is not their only motivation, they also want to profit from the model training phase.
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As a consequence, a reward mechanism is expected, such as owning the collaboratively
trained model,M f , in HFL or the outputs of the inference phase in VFL and FTL.

Learning coordinator. The learning coordinator orchestrates the communication among
the clients in the two main processes of FL. While it is not strictly necessary, when present,
it also plays the role of a trusted authority. In VFL, the learning coordinator receives and
combines partial updates from clients and shares the corresponding part of the combined
update with each client in the model training phase. Moreover, in the inference phase it helps
to perform the inference by combining the outputs of each client as the collaboratively
trained model,M f , is split among them. In contrast to VFL, in HFL the learning coordi-
nator is usually known as th federated server and it only participates in the model training
phase: (1) receiving the trained parameters of the local models, (2) aggregating the trained
parameters of each client model using federated aggregation operators and (3) updating
every learning model with the aggregated parameters.. Moreover, the inference phase is
not performed in a collaborative way as the collaboratively trained model,M f is stored
in each client and in the federated server.

2.2. Differential Privacy
DP allows retrieving information, rigorously bounding the harm caused to individuals
whose sensitive data are stored in the database [31, 32]. Basically, it hides the presence
of an individual in the database. To achieve this, DP adds random noise to the outputs.
Such noise is calibrated to the magnitude of the largest contribution that can be made to
the output by an individual. It is important to note that DP assumes that the adversary
owns arbitrary external knowledge.

DP is the key property used to provide a certain level of privacy to any sensitive data
access, in a way it is both, secure and measurable. It is secure because it has a theoretical
background which supports it. It is measurable as every access to private data has a
privacy cost either in terms of ε or in terms of (ε, δ).

This interpretation naturally leads to define the distance between databases: two databases
x, y are said to be n-neighbouring if they differ by n entries. In particular, if the databases
only differ in a single data element (n = 1), the databases are simply addressed as neigh-
bouring.

Differential Privacy definition. A database access mechanism,M, preserves ε-DP if for
all neighbouring databases x, y and each possible output ofM, represented by S , it holds
that:

P[M(x) ∈ S ] ≤ eε P[M(y) ∈ S ] (1)

If, on the other hand, for 0 < δ < 1 it holds that:

P[M(x) ∈ S ] ≤ eε P[M(y) ∈ S ] + δ (2)

then the mechanism possesses the property of (ε, δ)-DP, also known as approximate DP.
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In other words, DP specifies a ”privacy budget” given by ε and δ. The way in which it
is spent is given by the concept of privacy loss. The privacy loss allows us to reinterpret
both, ε and δ in a more intuitive way:

• ε limits the quantity of privacy loss permitted, that is, our privacy budget.
• δ is the probability of exceeding the privacy budget given by ε, so that we can ensure

that with probability 1− δ, the privacy loss will not be greater than ε.

DP has some interesting properties, which makes it even more appealing in a privacy
context.

1. DP is immune to post-processing. if an algorithm protects an individual’s privacy,
then there is not any way in which privacy loss can be increased.

2. DP can be used to protect the privacy of groups. LetM be a ε-differentially private
mechanism, thenM is Kε-differentially private for groups of size K.

3. DP mechanisms can be composed multiple times and remain differentially pri-
vate. LetM1 andM2 be ε1-differentially private mechanism and ε2-differentially
private mechanism, respectively. Then, their composition output given by the con-
catenation of the output ofM1 andM2 over the same input is ε1 + ε2-differentially
private

2.3. Threat Model
Threat models in machine learning are structured representation of information, which
help to identify and define potential security issues. They can be defined in terms of the
information available and the scope of action of the attacker. In this regard, we define the
following set of mutually exclusive terms that allow us to define the FL threat model.

Insider vs. Outsider. One of the key elements of any distributed system is the commu-
nication between different parts. The communication is very vulnerable, since it can be
compromised by agents from outside the learning system, which are known as outsider
attackers. When the attack is carried out by one of the participants in the distributed sys-
tem, either one or more clients, or the server, it is known as an insider attacker. Clearly,
the scope of the two attacks is very different: insider attacks are more harmful and may be
aimed at modifying the behaviour of the model or inferring valuable information from
other clients, while those carried out by outsiders are usually aimed only at inferring
information about the data or the resulting learning model. Outsider attacks mainly fo-
cus on sniffing information of the communication channels between the involved agents.
They are either side-channel attacks, when the attacker gains information from the imple-
mentation of the FL scenario, or man-in-the-middle attacks, when the attacker intercepts
the communication channel by disguising herself as the receiver part. Both attacks are
related to the protocols used to establish communication and their implementation.

We focus on insider attacks, in which we highlight the following categorisations:
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• Byzantine attacks. They consist in sending arbitrary updates to the server, so it
compromises the performance of the global learning model.

• Sybil attacks. They consist of collaborative attacks, either by several attackers join-
ing together or by simulating fictitious clients in order to be more disruptive.

Client vs. Server. Regarding insider attacks, in HFL it is natural to differentiate between
two types of attacks, depending on whether they are carried out by a client or by a server.
The main point of difference lies in the amount of information available. While the attacks
carried out by clients only have information of one or several clients, the server holds
information about the model architecture and the updates of the clients in each round
of learning. Even, in cryptographic implementations of the federated communication
among the federated server and the clients, the server owns more information than the
clients, as it is the only one with enough knowledge to decipher the models.

Attacker knowledge. In centralised settings, the white-box attacker has full access to the
target model, including the model architecture, the parameters and its internal state. In
contrast, the black-box attacker does not have any access to the target model and addi-
tionally, she might have some additional information about the architecture of the target
model or its training procedure. These two classifications of attacker knowledge are too
general to represent every type of attacker, because there is no middle ground to consider
attackers whose knowledge in the black box setup is too restricted, and in the white box
setup is not enough constrained. To address this issue, a grey-box attacker was intro-
duced in [33], which is a black-box attacker with some specific statistical knowledge not
publicly available that concerns her victim. This description of attacker knowledge is tai-
lored for a centralised learning setting, and as a consequence it does not fit other learning
settings as the attack surface changes. In a FL system, white-box, grey-box or black-box
attackers can be any node, either the clients or the server. Moreover, the exposed attack
surface is greater than in centralised settings. Most attacks are related to the data owned
by the clients and the communication among the federated server and the clients, there-
fore, we also require including the information available regarding the federated training
process and to the client’s private data. In order to address such requirements, we define
the following classification of the attacker’s knowledge suited for HFL and VFL:

In a standard HFL system, an attacker which owns a client has client-side knowledge:

• White-box access to the aggregated model.
• White-box access to the client’s locally trained model.
• Access to the owned client’s dataset.

If the attacker has access to local data of other clients or their labels, she has extra client-side
knowledge.

An attacker which owns a federated server has server-side knowledge:

• White-box access to the aggregated model after each communication round.
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• White-box access to trained models shared by the clients or, alternatively, access to
their gradients.

• The identifiers of the clients aggregated in each communication round.
• The labels owned by each client and, optionally, the size of their dataset.

In a standard VFL system, an attacker which owns a client has party-side knowledge:

• White-box access to the parameters related to the features of the owned client.
• Access to the client’s private dataset.
• The partial output of the parameters, when an inference is requested.

Additionally, if the attacker has access to information related to the features of the other
clients, she has extra party-side knowledge.

An attacker which owns the learning coordinator in a VFL system has third party-side
knowledge:

• The gradients shared by each client.
• The computed loss.
• The partial output of each client, when an inference is requested.

If only a subset of the specified knowledge is available to the attacker, then she has partial
knowledge, and we specify the content of that subset of knowledge. Moreover, defences
are expected to reduce the attacker knowledge, therefore in the presence of a defence an
attacker is expected to have partial knowledge.

In both HFL and VFL systems, if the attacker only have access to the outputs of the fed-
erated model, she has outsider-side knowledge.

We highlight the fact that the categories stated are not mutually exclusive, that is, an
attacker can own multiple types of knowledge at the same time. Realistic attack scenar-
ios tend to require lesser attacker knowledge, while more complex and specific attacks
require knowledge from multiple participants of a FL task.

Honest-but-curious vs. Malicious. A malicious (or active) attacker tries to interfere in
the training process of the learning model with the aim of corrupting the target model,
for example, damaging its performance or injecting a secondary task. On the contrary,
an honest-but-curious (or passive) attacker does not interfere in the training process and
follows the federated learning protocols, but try to obtain private information about other
clients from the received information.

Collusion vs. No-collusion. The collusion threat lies in the fact that the attacker who con-
trols more clients has more power in a distributed system. There are two collusion types:
(1) server-participants, in which the attacker controls some benign participants and the
server, and it aims to infer information about the rest of the clients; and (2) participan-
t-participant, in which the attacker controls a fraction of the benign clients and aims to
infer information about benign clients, the server or to harm the learning model.
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3. Adversarial Attacks in Federated Learning: Taxonomies

Adversarial attacks represent one of the more challenging problems in FL, due to the large
number of existing attacks and the difficulty of defending against them. Moreover, the
distribute nature of FL makes it vulnerable to wide variety of adversarial attacks aiming
at different objectives and using different ways to achieve these objectives. Due to this
wide variety in the nature and target of attacks, it is difficult to establish a common tax-
onomy for all types of adversarial attacks. For this reason, we propose the first broadly
classification by differentiating between:

• Attacks to the federated model, which aim at modifying its behaviour.
• Privacy attacks, whose purpose is to infer sensitive information from the learning

process.

In Figure 2 we represent this first categorisation of the adversarial attacks in FL.

Adversarial
attacks in FL

Attacks to
the feder-

ated model
Privacy attacks

Figure 2: First, categorisation of the adversarial attacks in FL into two broad categories: attacks to the
federated model and privacy attacks.

Once this initial classification into these two main categories of attacks has been estab-
lished, we further examine each category by proposing a taxonomy based on different
criteria and review the most relevant works on each topic. In Section 3.1 we focus on
attacks to the federated model and the Section 3.2 is dedicated to the privacy attacks.

3.1. Adversarial attacks to the federated model
One of the main limitation of FL, and more specifically of the HFL, in terms of adversarial
attacks, is that clients have the ability to harm the model by sending poisoned updates,
while the server cannot inspect the training data stored on the clients. This fact makes the
adversarial attacks to the federated model become one of the most significant challenges
in FL.

In general, these attacks are carried out by clients and the white-box feature of these at-
tacks correspond to the situation in which the attacker has client-side knowledge, either
there are one or several adversarial clients (attackers). In some situations attackers are
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According
to the attack

moment

Inference-
time

attacks

Training-
time

attacks

According to
the frequency

Multiple

One shot

According to
the objective

Targeted Untargeted

According
to the poi-
soned part

Data-
poisoning

Model-
poisoning

Taxonomy of
attacks to the

federated model

Figure 3: Representation of the attack taxonomies to the federated model according to the different criteria.
The grey links represent the possibility of combination of both categories. For the sake of clarity, we don’t
show redundant connections between categories already connected with other links.

considered to have access to more white-box information, for example about the aggre-
gation mechanism used on the server, which is not a realistic situation. We therefore
highlight those attacks that only require information from the adversarial client.

Within this broad category, we propose a taxonomy that encompasses a range of attacks
according to different criteria, which we depict in Figure 3. Thus, each type of attack
in the literature belongs to four different categories, one for each criterion. From the
main taxonomy, we additionally propose four more taxonomies linked to each criterion,
namely: (1) the attack moment in Section 3.1.1, (2) the objective in Section 3.1.2, (3) the
poisoned part of the FL scheme in Section 3.1.3 and (4) the frequency in Section 3.1.4.
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3.1.1. Taxonomy according to the attack moment
We present the taxonomy according to the time at which the attack is carried out, which
completely determines the ability of the attack to influence the federated model. We
classify the following two types of attacks:

Training time attacks. The training time phase includes from data collection and data
preparation to model training. These attacks are carried out during this phase, either
continuously or as a single attack. They are the most common in the literature since they
have the ability to modify the federated model that is still being trained [10, 34, 35] and
to infer some information from training data [36] (see Section 3.2).

Inference time attacks. These attacks are carried out in the inference phase when the model
has been trained. They are called evasion or exploratory attacks [25]. Generally, the ob-
jective is not to modify the trained model, but to produce wrong predictions or to collect
information about the characteristics of the model.

3.1.2. Taxonomy according to the objective
The most widely used categorisation in the literature, which makes it the most significant
criteria is based on the target of the attack. Although all the attacks in this section are
gathered under the scope of modifying the model, the modifications can be quite diverse.
We distinguish two broad groups depending on the target of the attack:

Targeted or backdoor attacks [37, 38, 10]. The main task is to inject a secondary or back-
door task into the model. In other words, a backdoor attack is successful as long as it
succeeds in preserving its performance in the original task while injecting a second task.
These attacks are very stealthy, since they generally do not affect the performance of the
original task [39], which makes them hard to detect. Note that although they do not pose a
danger to the FL main task, they do represent a danger to the integrity of the system, since
the attacker takes advantage of the federated infrastructure to perform a certain backdoor
action, representing a security breach. The nature of such attacks is broad, given the great
variety of secondary tasks. We present a taxonomy based on different criteria, which is
shown in Figure 5, with the following categories being the most frequent:

• Input-instance-key strategies. The objective is that the model labels specific input ex-
amples with a specific target label different from the original one. For example,
in a face recognition system that allows access to a house, to identify five specific
people from the input set, who originally did not have access (negative label as ori-
gin label) as people who can access (positive label as a target label). Some works
which implement this kind of the attack are [18] where the authors analyse the im-
pact of different attacks scenarios, [40] where the authors prove that you can really
backdoor FL even using existing defences and [41] where the aim is to present the
data-poisoning attacks.

• Pattern-key strategies. The objective is that the model associates a particular pattern
in an input sample with a particular target label. For example, in the face recogni-

12



TARGET LABEL

Figure 4: Representation of an attack using pattern-key strategy based on associate the blue cross with some
prefixed target label.

tion system above, to allow access to any person wearing a polka-dot bow. In this
way the system would identify the pattern "polka-dot bow" with the target label
(positive label). In practice, a simple pattern of a cross or similar mark are chosen
for association with a target label [38, 10]. In Figure 4, we depict an attack using the
pattern-key strategy of associating the blue cross with the target label.

Additionally, these attacks can also be categorised according to different criteria
about the injected pattern as shown in Figure 5.

Regarding the design of the pattern in [37] the authors introduce the following ter-
minology with the aim of classifying pattern attacks. Although this classification is
not usually specified in other FL work, it is common in ML, and we believe it would
be useful to use this notation in FL attacks as well.:

– Blended injection strategy. This strategy generates backdoor instances by blend-
ing a benign input instance with the key pattern using a blend ratio. The pat-
tern can be any image, for example cartoon images or randomly generated
patterns. The main limitation is that this mechanism requires to modify the
entire sample during both training and testing, which may not be feasible.

– Accessory injection strategy. This attack arises as a solution to the main limitation
of the Blended injection strategy and proposes to generate backdoor images
adding patterns to some regions of the original images. They are equivalent to
wearing an accessory in real life.

– Blended accessory injection strategy. It takes advantage of both strategies by com-
bining the accessory and the blended approach.

Regarding the number of patterns:

– Single pattern attack. It refers to when all adversarial clients inject the same
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Targeted/
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instance-
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Pattern-key

Design of
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Injection

Blended-
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Injection

Accessory
Injection

Number
of patterns

Single

Multiple

Variability

Static

Dynamic

Figure 5: Representation of the taxonomy of backdoor attacks.

pattern into the model. They are usually more successful as they are a collective
attack on the same target, but at the same time easier to identify on the server.
This situation is the most common one and some works such as [10, 37] where
the authors focus on presenting the vulnerabilities of FL to such attacks, or
[15] where the aim is to propose a defence mechanism against them implement
single pattern attacks.

– Multi-backdoor attack [10]. It is composed of several coordinated adversarial
clients (sybils), where each of them injects a different pattern or part of a com-
mon pattern to the model [42]. On the contrary, they are more difficult to detect
on the server because the distribution of the pattern across clients enhances the
stealth. Though, it is more complicated for clients to inject backdoor tasks into
the model, due to the diversity of secondary tasks.

Regarding the variability over time of the pattern:

– Static attack. When the pattern of the attack is maintained over time regardless
of the frequency of the attack. This situation is the most common one and some
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works cited before such as [10, 37, 15] implement static attacks.

– Dynamic attack. The pattern changes over time, which is a challenge both for
the defences, as the pattern to be identified changes, and for the adversarial
clients, as they have to continuously adapt to new secondary tasks increasing
the computation required. Salem et al. [43] propose to use meta-learning in
order to speed up the adaptation of clients to the new backdoor tasks, and
design a "symbiosis network" in which the clients weight the update of the
model weights with the global model, instead of completing replacement in
order to maintain the performance on the backdoor tasks.

Some works question the strength of backdoor attacks, since the most naive approaches
are mitigated by simple defences [38]. However, the potential of these attacks is shown in
Wang et al. [40], where they demonstrate that poisoning samples belonging to the tails of
the data distribution is enough to compromise the federated global model. In addition,
Liu et al. [44] show that even attackers with no access to training labels can inject backdoor
attacks in feature-partitioned collaborative learning. In conclusion, preliminary studies
show that backdoor attacks are a real threat to FL, which further increases the interest in
this research area.

Untargeted attacks [45, 46]. As opposed to targeted attacks, the only goal of untargeted
attacks is to impair the performance of the model on the original task. The most ex-
treme scenario is known as Byzantine attacks [47, 48], in which adversarial clients share
randomly generated model updates or train over randomly modified data, generating
random model updates as well. Clearly, these attacks are inherently less stealthy than
targeted attacks, and can be detected merely by analysing the performance of the local
models updates on the server, although it is sometimes difficult to differentiate them from
clients with very particular training data distributions.

It is worth mentioning the free-riders attacks. It is common in FL systems for clients to
be awarded rewards for participation, as they provide crucial and necessary information.
These rewards may tempt some clients to pretend that they are participating in the local
training process and send updates to their models. To this end, they generate their "model
updates" randomly resulting in the same effect as Byzantine attacks [49].

3.1.3. Taxonomy according to the poisoned part of the FL scheme
Most training-time model attacks are based on poisoning client’s information in order to
corrupt the global learning model. Depending on which part of the client’s information
is poisoned, we differentiate between data-poisoning and model-poisoning attacks, and
we refer both attacks as poisoning attacks. Figure 6 shows the taxonomy presented in the
rest of the section. In the following, we detail each one of them:

Data-poisoning attacks [50, 51]. The attacker is assumed to have access to the training
data of one or more clients and to be able to modify it. Depending on the characteristics
of the poisoning, we distinguish between the following attacks:
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Figure 6: Representation of the taxonomy of backdoor attacks according to the poisoned part of the FL
scheme.

• Label-flipping attack [52]. This attack consists of modifying the labels of a portion of
the training data. It can be either targeted, by exchanging some specific labels [50],
or untargeted [48], by random label shuffling.

• Poisoning samples attack. Unlike the previous one, this attack consists of modifying
part of the training data samples. The poisoning can be of different types, such as
including patterns in the samples and associate it with some target class, or normal-
izing the samples and adding uniform noise with the aim of impairing the perfor-
mance of the model. In recent years, the use of Generative Adversarial Nets (GANs)
[53] to generate these poisoned samples has become popular, to maximize the target
of the attack on the one hand, and on the other hand, to maximize the disguise of
the attack to overcome the possible defences of the server on the other [54]. A fur-
ther clear example is the case of the attack proposed in [55], which consists in: (1)
the attacker first behaves as a benign client and trains a GAN to mimic prototypical
samples of other benign clients and, then, (2) the attacker generates the poisoned
samples using these generated samples in order to compromise the global model by
sending scaled poisoning updates as their local model updates.

• Out-of-distribution attack. This attack is similar to the poisoning samples attacks,
although they differ in that the poisoned training samples are not modifications of
the original ones, but samples from outside the input distribution [56]. It is possible
to use either samples from another domain with the same characteristics or samples
made of random noise.

One of the key factors for the success of a data poisoning attack is the proportion of adver-
sarial clients, and the amount of data they poison. In [51], they experiment with different
data-poisoning attacks and conclude that: (1) the attack success increases linearly with
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the number of poisoned samples; (2) the increment of the number of attackers could im-
prove the attack success without changing the total number of poisoned samples; and (3)
the attack success increases faster with the number of poisoned samples than when there
are more attackers involved.

The goal of most data-poisoning attacks is to impair the global model and thus the local
models of all clients. However, it is also possible that the goal of the attackers is not to
impair of the local models, but only a specific subset of them. In Sun et al. [41], they
define a set of target nodes as those nodes (clients or server) to be compromised by the
attack. According to this definition, we may differentiate between the following three
types of data-poisoning attacks depending on the access level the attackers have to the
target nodes:

• Direct attack. The attackers have access to target nodes, so they inject poisoning
samples directly on them.

• Indirect attack. The attackers have no access to target nodes, so they have to employ
further mechanisms such training themselves (in case they are clients) on the poi-
soned samples to poison the global model, which will then shared with the target
clients.

• Hybrid attack. When the attackers combine both previous attacks.

In the vast majority of the attacks in the literature, the attackers are supposed to have
access to the target nodes, so the most common attacks are direct attacks.

Model-poisoning attacks. These attacks consist of directly poisoning the model updates
sent by the clients to the server. Although data-poisoning attacks naturally lead to model-
poisoning attacks, in this section we focus only on those attacks that directly modify the
local update weights. Depending on how these model weights are generated, we distin-
guish between:

• Random weights generation. These attacks are based on generating the model weights
as a vector of randomly generated values of the same dimension as the model
weights received from the server. Two specific examples are: (1) the random weights
attack [19], in which an interval [-R,R] is inferred from the global learning model and
the weights randomly generated in that interval; and (2) the Gaussian attack [11], a
white-box attack, which chooses as model weights a sample from the Gaussian dis-
tribution resulting of the other clients’ model updates. By construction, the random
weights attacks are more harmful while being easier to detect, so depending on the
scenario it would be more dangerous one or the other.

• Optimization methods. They consist of maximizing performance in the backdoor task,
while minimizing the differences of the poisoned model with respect to the shared
model by the server in the last round, thus maximizing effectiveness and stealth.
This challenge is approached as a multi-objective optimization problem [57]. This
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methodology is quite versatile and can be used to attack in special situations. For
example, it is widely used to attack specific defences by introducing new criteria
to be optimized [11] in order to overcome defences discarding conditions specific
to each defence. In addition, in [57] they also prove that regularization techniques
decrease the impact of the training data in the resulting model. For that reason, they
propose to train adversarial clients without any regularization mechanism in order
to increase the impact of the poisoned samples. This kind of attack is probably the
most efficient approach to perform targeted attacks on the model.

• Information leakage. A particular use case of model-poisoning attacks in FL is infor-
mation leakage, where the objective is not to compromise the global model, but the
communication among the attackers through a secure protocol [58]. It consists in the
fact that certain clients are coordinated in such a way that they know common rules
and by modifying small parts of the model weights they can communicate. In [58]
is proposed to adjust the training data strategically so that the weight of a particular
dimension in the global model will show a pattern known by the rest of the mali-
cious clients. Along very similar lines, Costa et al. [59] put forward a novel attacker
model aiming at turning FL systems into covert channels to implement a stealth
communication infrastructure by means of modifying certain bits of the models.

In FL, with the assumption that the proportion of adversarial clients is significantly lower
than that of benign ones, the effect of the attack is expected to be dissipated in the ag-
gregation. Therefore, model-replacement techniques [39, 38, 10] are used, which consist of
weighting the contribution of adversarial clients using boosting techniques in order to
replace the aggregated model with its local updates. Formally, if we consider the update
of the global model in the learning round t is computed as follows in Equation 3:

Gt = Gt−1 +
η

n

n

∑
i=1

(Lt
i − Gt−1), (3)

where Gt is the aggregated model at the learning round t, Lt
i the model update of the

client i at the learning round t, n the number of clients participating in the aggregation
and η the server’s learning round.

In this context, we consider the local model update of the adversarial client trained on the
poisoned training data as follows in Equation 4:

L̂t
adv = β(Lt

adv − Gt−1), (4)

where β = n
η is the boost factor. After that, replacing Equation 4 in Equation 3 we have1

1We assume that the adversarial client is client 1.
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Gt = Gt−1 +
η

n
n
η
(Lt

adv − Gt−1) +
η

n

n

∑
i=2

(Lt
i − Gt−1). (5)

According to the definition of FL [60], eventually the FL model will converge to a solution,
so we can assume that Lt

i − Gt−1 ≈ 0 for benign clients. Hence, we rewrite Equation 5 as
follows

Gt ≈ Gt−1 +
η

n
n
η
(Lt

adv − Gt−1) = Lt
adv, (6)

which replaces the global model with the model updates of the adversarial clients. If there
is more than one adversarial client, the boosting factor is divided among all of them.

Boosting techniques depends on knowing the number of clients participating in the ag-
gregation, which is a much more restrictive client-side knowledge condition. In practice,
clients estimate this value by making several tests with different values and analysing the
model updates returned by the server. However, in the vast majority of the experimental
works it is assumed the worst situation in which the adversarial clients know the number
of clients of each aggregation for a better behaviour of the attack and a fair comparison
between the proposed defences [10].

3.1.4. Taxonomy according to the frequency
As training-time phase is maintained over long periods of time, training-time attacks
can be carried out at any time of the training and on one or several occasions [10]. We
differentiate between the following two categories:

• One-shot attack. The attack is carried out in a single moment of the training, in a spe-
cific learning round. In Bagdasaryan et al. [10] the authors experiment with back-
door attacks at different stages of convergence and conclude that converged model
attacks are more effective over several learning rounds, since the learning model
does not vary and the secondary task remains injected into the global model.

• Multiple or adaptive attack. The attacks are carried out continuously during the train-
ing process, either during all the learning rounds or a portion of them. They are
more elaborate as the attackers have to become part of the aggregation in several
rounds, but this kind of attack can be more effective and stealthy [61].

3.2. Privacy attacks
Privacy attacks are designed to disclose information about the participants of a machine
learning task. Not only they pose a threat to the privacy of the data used to train the
machine learning models, they also pose a privacy risk to those people who agreed to
share their private data. FL was thought of as a privacy preserving distributed machine
learning paradigm, however the learning process exposes a broad attack surface. While
the private data never leaves their owner, the exchanged models are prone to memoriza-
tion of the private training dataset. In this section, we present a wide taxonomy which
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aims to ease the understanding the diversity of privacy attacks. It is designed around the
objective of the privacy attacker, a summary of it is shown in Figure 7.

Privacy attacks

Property
Inference

Individual
distri-
bution

Population
distri-
bution

Membership
Inference

Feature
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Reconstruction

Parameter
based

Gradient
based

Figure 7: Representation of the taxonomy of privacy attacks in terms of the objective of the privacy attacker.

3.2.1. Feature inference attacks
Also known as Reconstruction attacks when referring only to HFL. The aim of these attacks
is recovering the dataset of a client who participates in a FL task. Usually the recovered
data are images or plain text. An example of the capabilities of such attacks can be seen
in Figure 8. Particularly, in VFL the extracted data are the private features owned by the
parties.

Accounting only for HFL, we can partition the Feature inference attacks according to the
federated clients attack surface, that is, the information exchanged between the clients
and the federated server:

• Gradient based: selected clients share their gradients with the federated server in the
communication rounds, that is, a federated SGD based training procedure. There-
fore, the attack surface is the clients’ gradients. To our knowledge, Zhu and Han
[12] are the first ones to exploit this setting. Their proposed passive attack is able
to recover images and text owned by the target client. The attacker requires partial
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Figure 8: Gradient based Feature inference attack from Zhu and Han [12] applied to CIFAR10, CIFAR100
and SVHN datasets.

client-side knowledge, that is, accessing the gradients shared by the attacked client.
However, their attack depends on its initialization and has stability issues. Zhao
et al. [62] fixes the initialization and stability problems, but the attacker requires the
batch size of the clients to be 1. With the same attacker knowledge, Li et al. [63]
propose a framework to measure the effectiveness of passive Feature inference at-
tacks on logistic regression models, whose inputs are binary. Geiping et al. [64] and
Ren et al. [65] propose different approaches to solve the initialization and stability
problems of [12] and their attacks can handle batches of up to 100 and 256 elements,
respectively. With the same attacker knowledge, Wei et al. [66] propose an exten-
sive study to measure the capabilities of passive reconstruction attacks focused on
recovering images. They also propose a new attack which combines the attacks pro-
posed in [12, 62]. To our knowledge, Jin et al. [67] are the first ones to extend and
improve the attack proposed by Zhu and Han [12] to a VFL setting, having the at-
tacker third party-side knowledge. In such setting, the attacker can handle batches
of up to 160 elements. When it comes to their HFL setting, the attacker requires
server-side knowledge. Their proposed attack seems to be slightly better than the
one proposed by Geiping et al. [64], but further experimentation is required to con-
firm their superiority. The same can be applied to Ren et al. [65], whose comparison
with others than Zhu and Han [12] remains undone.

• Parameter based: selected clients share their local model parameters with the feder-
ated server in the communication rounds. Therefore, the attack surface is the clients’
parameters. Focused on reconstructing training images, Hitaj et al. [68] presents a
GAN-based active attack, where the key to train the GAN is using the global model
as discriminator. The attacker requires client-side knowledge as well as extra client-
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side knowledge. The latter gathers the assumption that the target client and the at-
tacker share a label, so that the inference can occur on a non-shared target label. We
highlight that the attacker tricks the target client to release more information about
the target label, by mislabelling the generated samples of the non-shared target label
as the shared label. In the same line, Wang et al. [69] changes the attacker knowledge
to server-side knowledge and changes the GAN architecture to a proposed multi-
task GAN. To further improve the effectiveness of their attack, the active attacker
isolates the target client, so it does not receive global model updates.

Steeping out of GAN-based attacks, Yuan et al. [70] focuses on reconstructing text
from natural language processing tasks, particularly, language modelling tasks. The
passive attacker is an observer of the federated train procedure, then she requires
access to the global model at each communication round and one of the following:
(1) to know whether the target client is selected for the communication round or
(2) to inject a record into the target client’s training data. That is, she requires par-
tial server-side knowledge and optionally partial client-side knowledge. Their pro-
posed attacks rely on the correlation between the privacy exposure and the clients
selected in each federated aggregation step.

The popularity of deep learning models in HFL cannot be denied, however in VFL a wider
range of machine learning models benefit from this setting. Luo et al. [71] designed pas-
sive attacks for decision tree, logistic regression, random forest and neural network mod-
els. The attacker requires from the target client the feature names, types and their value
range, that is, partial party-side knowledge, in addition to outsider-side knowledge. In
two clients VFL setting, focusing on logistic regression and XGBoost models with party-
side knowledge Weng et al. [72] propose a passive attacker that can reconstruct the fea-
tures from the other client. Although, the logistic regression attack also requires partial
third party-side knowledge to gather some coefficients.

3.2.2. Membership inference attacks
The main objective of these attacks is to determine whether the provided data was used
to train the victim model given a client’s model and some data. In federated settings,
they are commonly carried out in the model training phase. Truex et al. [33] study the
application of Membership inference attacks to both non-federated and HFL settings. In
the HFL setting, their passive attack, inspired by Shokri et al. [73], considers two different
attacker knowledge: (1) where the attacker owns client-side knowledge and (2) where
the attacker owns outsider-side knowledge. Shokri et al. [73] show that the first form
of knowledge is more effective than the second one. Nasr et al. [36] propose an attack
with active and passive versions, each one with two options for attacker knowledge. The
attack can have either client-side knowledge or server-side knowledge, where the latter
is the most powerful one. Their attack consist in training a meta-classifier on the hidden
layers output, the gradients, and outputs of the target client model. Such meta-classifier
is a neural network with a custom architecture suited for each part of the internal state of
the victim model. In the federated setting, the attack is not as effective as in the centralised
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scenario, so two techniques are introduced to boost the effectiveness of the attack. The
first one is known as Gradient Ascent. It consists in nullifying the effect of the gradient
descent on the instances used to test the attack. As a result, it broadens the difference
between the data points used to train the victim model and the data points not used to
train the victim model. The second one is known as Client Isolation. The objective of this
technique is overfitting the victim model by not sharing with the victim client the global
learning model, that is, isolating the victim client from any update. Overfitting makes the
victim model retain more information about its training dataset.

As data is a scarce resource, these attacks can be boosted by means of Feature inference
attacks to improve the data availability [74, 75, 76]. Zhang et al. [75] is a great example of
using a GAN architecture for data augmentation to boost the effectiveness of the passive
attacker with client-side knowledge from Nasr et al. [36]. Increasing the attacker knowl-
edge from client-side knowledge to client-side and server-side knowledge, and making
the attacker active, Mao et al. [74] propose a similar use of a GAN with an attack inspired
by the shadow models attack of Shokri et al. [73]. Chen et al. [76] reduces the attacker
knowledge to client-side knowledge and extra client-side knowledge, that is, the labels
owned by each client. In addition, the attacker is passive. However, they add a new
restrictive assumption, clients do not share any label.

VFL is not free from Membership inference attacks. In a two-client VFL setting, Li et al.
[77] proposes a passive attacker with party-side knowledge in a federated binary classifi-
cation task.

3.2.3. Property inference attacks
This kind of attacks, which are also known as attribute inference attacks, aims at extracting
whether a property of a client or a property of the population of participants in a FL task,
which might be uncorrelated with the main task of the machine learning model, is present
in the FL model. In other words, the aim is to infer some property of an individual or the
population which is not expected to be shared. An example of inferring an uncorrelated
property is the following: consider a machine learning model whose objective is to detect
faces, then the objective of the attack is inferring whether there are training images with
blue-eyed faces. As stated, we can categorise these attacks according to the target of the
attacker:

• Population distribution: the attacker tries to infer the distribution of a feature in a
population of federated clients. In a federated SGD environment, Wang et al. [78]
proposes a set of passive attacks. In conjunction, they can be used to infer the pro-
portion of each label in a communication round. This attacker requires client-side
knowledge and partial server-side knowledge, that is, the approximate number of
clients selected by the server in a single training round, the average number of labels
owned by each participant and the probable number of data samples per label. In
a general HFL setting, Zhang et al. [13] reduces the attacker knowledge to outsider-
knowledge to perform a passive attack capable of inferring the distribution of a
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sensitive attribute in the training population.

• Individual distribution: the attacker objective is to reveal whether a target client has a
property which might not be related with the main FL task. Mo et al. [79] provide
a formal framework to evaluate the property leakage of each layer of a deep learn-
ing model in a federated SGD environment. In the same federated environment,
Melis et al. [80] develops both passive and active Property inference attacks, whose
attacker requires only client-side knowledge. We highlight that the active attack is
powered by multitask learning [81]. Sharing the same attacker knowledge, Xu and
Li [82] switches the environment to a standard FL setting to propose an attack with
passive and active versions. The active attack employs the CycleGAN [83] to re-
construct gradients with the target attribute. Chase et al. [84] propose a Property
inference attack by means of a poisoning attack. The poisoning attack requires that
the attacker can modify the dataset of the target client, that is, partial client-side
knowledge. Additionally, it requires the attacker to have outsider-side knowledge.
In a more exotic FL environment, blockchain assisted HFL, Shen et al. [85] propose
an active attack with the requirement of server-side knowledge.

4. Defence methods against adversarial attacks: Taxonomy

At the same time that the diversity and complexity of adversarial attacks against FL is en-
larging, new defences are emerging to mitigate their malicious effects. While adversarial
attacks can be split into disjoint categories, the same is not true for their defences as some
of them are effective for more than one type of attack category. Consequently, instead of
grouping defences according to the attack defended, we categorise them into three main
groups according to the federated scheme they are implemented in: the client, the server
or the communication channel. Additionally, we specify for each type of defence the at-
tacks it can defend. In this section, we propose a taxonomy for each of these three groups
of defences and highlight the most representative proposals of the state-of-the-art, which
is shown in Figure 9.

4.1. Server defences
The federated server is usually assumed to be reliable, because it is a controlled and ac-
cessible federated element by FL experts, in contrast to clients that are independent and
inaccessible elements. Accordingly, most of defence mechanisms are implemented on the
federated server. Within this type of defences, we present the following taxonomy. Note
that some defences may combine characteristics of two categories of the taxonomy. In
this taxonomy, we have classified the defences according to the category that we consider
best represents them.

4.1.1. Robust aggregation operators
The first and most common approach to defend against poisoning attacks to the federated
model is to use estimators that are statistically more robust than the mean to outliers
or extreme values. Some aggregation operators, such as FedAvg [86], are susceptible to
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Figure 9: Representation of the taxonomy of defences against adversarial attacks.

outliers. For that reason, many aggregation operators based on more robust estimators
have been proposed. We highlight the following ones:

• Median [87]: It is a robust-aggregation operator based on replacing the arithmetic
mean by the median of the model updates, which choose the value that represents
the centre of the distribution.

• Trimmed-mean [87]: It is a version of the arithmetic mean, consisting of filtering a
fixed percentage k-% of extreme values both below and above the data distribution.

• Geometric-mean [88, 89]: It represents the central tendency or the typical value of the
data distribution by using the product of their values. In other words, it chooses a
reliable vector to represent the local model updates through majority voting.

• Norm thresholding [38]: It is a robust-aggregation operator, where the norm of the
model updates is clipped to a fixed value, effectively limiting the contribution of
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each individual update to the aggregated model.

• Krum and Multikrum [90]. This aggregation operator is designed ad-hoc to prevent
attacks to the federated model, so it is based on filtering out the model updates of
the clients which present and extreme behaviour. For that, it sorts the clients ac-
cording to the geometric distances of their model updates distributions and chooses
the one closest to the majority as the aggregated model. Multikrum incorporates a
d parameter, which specifies the number of clients to be aggregated (the first d after
being sorted) resulting in the aggregated model.

• Bulyan [91]. The authors design an federated aggregation operator to prevent poi-
soning attacks, combining the MultiKrum federated aggregation operator and the
trimmed-mean. Hence, it sorts the clients according to their geometric distances,
and according to a f parameter filters out the 2 f clients of the tails of the sorted
distribution of clients and aggregates the rest of them.

• Adaptive Federated Averaging (AFA) [92]. Proposal of a defence mechanism against
Byzantine attacks based on the weighting of each client using Hidden Markov
model by means of the cosine similarity to measure the quality of model updates
during training. The authors report that it discards both poor and malicious clients,
improving the computational and communication efficiency.

• Residual-based Reweighting [93]. They propose an improvement of the median-based
aggregation operator combining repeated median regression with the reweighting
scheme in Iteratively Reweighted Least Squares (IRLS) based on reweighting each
parameter by its vertical distance (residual) to a robust regression line.

• Sageflow [14]. A defence based on staleness-aware grouping with entropy-based
filtering and loss-weighted averaging, to handle both stragglers and adversaries
simultaneously. They establish a theoretical bound to provide key insights into its
convergence behaviour.

• Game-theory approach [94]. The authors design the aggregation process with a mixed-
strategy game played between the server and each client, where the valid actions of
each client are to send good or bad model updates while the server can accept or
ignore them. They weight the contribution of each client by means of the probability
of providing good updates, determined employing the Nash Equilibrium property
[95]. The main limitation is that it works only on IID training data distributions,
which is unusual for real-world federated data.

4.1.2. Anomaly detection
These defence methods consist in identifying adversarial clients as anomalous data in
the distribution of local model updates and remove them from the aggregation. For this
purpose, multivariate or adaptations of univariate anomaly detection machine learning
techniques are applied.
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In Shen et al. [96], the authors propose AUROR, a defence mechanism against poisoning
attacks in collaborative learning based on K-Means with k = 2, thus distinguishing be-
tween benign and suspicious clusters. Although it was a promising proposal, the main
problem is that in the presence of a non-IID distribution of data between clients it could
fail to identify clusters. In Andreina et al. [61], they experiment with different anomaly de-
tection mechanisms and combine the results with adaptive clipping and noise. Along the
same lines, in Sattler et al. [97] the authors propose to divide the model updates into clus-
ters according to the cosine distance and Preuveneers et al. [98] proposed an incremental
defence based on unsupervised deep learning anomaly detection system integrated in a
blockchain process. In a similar vein, Hei et al. [99] proposed an alert filter identification
module in the blockchain FL process. Also in a blockchain domain, HoldOut SGD is pro-
posed in [100], which uses the holdout estimation technique in order to select the model
updates that are likely to be adversarial ones. It consists in selecting two groups of clients:
(1) the ones that use their private data to training in order to send their model updates and
(2) a voting committee that use their private data as holdout data for selecting the best
model update proposals using a voting scheme. This Graph-based anomaly detection
has also been proposed in [51], where the authors propose Sniper, a defence mechanism
built upon the graph whose vertices are the updates of the local models and the edges
exists only if the two vertices are close enough. They finally identify benign local models
by solving a maximum clique problem in this graph. Another example is Nguyen et al.
[101], where the authors propose an anomaly based system based on a Gated Recurrent
Unit (GRU) and test it on Internet of Things (IoT) specific databases. Along the lines of
using deep learning to detect anomalies, Zhao et al. [102] employ GANs by using partial
classes data to reconstruct the prototypical samples of client’ training data for auditing
the accuracy of each client’s model.

The main problem with anomaly-based approaches is that the model updates are likely to
be very high dimensional, coming from neural networks in most cases. In Tolpegin et al.
[50], they propose to apply Principal Components Analysis (PCA) for dimensionality re-
duction before anomaly detection. In Li et al. [103] they also propose a spectral anomaly
detection, which detects abnormal model updates based on their low-dimensional em-
beddings. The main idea is to embed both original and poisoned samples into a low-
dimensional latent space and find these that differs significantly. Although these ap-
proaches reduces the problem to a low-dimensional problem, they have the limitation
of losing information during the dimensionality reduction.

4.1.3. Based on Differential Privacy
Even though privacy is a topic out of the scope of adversarial attacksto the federated
model, DP has been proven to be a viable defence method against these attacks [104, 38].
However, it is also known that DP greatly deceives the performance of the model un-
der circumstances of data imbalance [105, 106], which is expected to happen in most
federated scenarios. Applying DP to the aggregation operator overcomes it to some ex-
tent. DP-FedAvg [107], also known as Central DP, is a differentially private aggregation
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operator which stems from the FedAvg operator. It shares some ideas with the robust-
aggregation operators, given that it removes extreme values by clipping the norm of the
model updates, like the Norm thresholding operator, and then adds Gaussian noise cali-
brated to the clip. To provide guarantees of (ε, δ)-DP, the order of Gaussian noise required
is high enough to reduce significantly the accuracy of the federated task. In Sun et al.
[38], they introduce an alternative to Central DP aggregation operator, known as Weak
DP, which shares the same aggregation procedure, but it does not guarantee (ε, δ)-DP nor
any known privacy preserving property. It adds sufficient Gaussian noise to defeat the
adversarial attack and preserve the accuracy of the federated task.

4.1.4. Modification of the learning rate
One of the advantages of the server is that it sets the learning rate that controls the weight-
ing between the previous version of the global model and the aggregate of the client
model updates by means of

Gt = Gt−1 + η∆(Lt
1, . . . , Lt

n) (7)

where Gt is the global model in the learning round t, η is the learning rate, ∆ the aggre-
gation operator and Lt

i the model update of the client i in the learning round t. It can also
decompose η in a vector of learning rates, one per dimension. Thus, the server controls
the participation in each dimension of the model updates. This decomposition approach
has been used in the literature as a defence mechanism against adversarial attacks to the
federated model.

Ozdayi et al. [15] propose Robust Learning Rate (RLR) as an improvement of signSGD [108].
It is a defence based on adjusting the server’s learning rate η, per dimension, at each
learning round according to the sign information of the clients model updates. For each
dimension, they examine whether the clients agree on the direction of the model update
using a predefined threshold. If the agreement is higher than required by the threshold,
the learning rate is maintained, otherwise the sign of the learning rate is changed. It can
also be combined with other defences, such as those based on DP.

4.1.5. Less is more
Another defence approach in the literature against adversarial attacks to the federated
model is based on the fact that original task knowledge will be located in most of the
weights in the model, while the weights affected by poisoning attacks will be a small
portion of them. Based on this assumption, a post-training defence is proposed in [109],
which consists of pruning the resulting global model in order to protect it against attacks
that may have taken place during training. Specifically, the authors design a federated
pruning method to remove redundant neurons from the neural network and to adjust the
outliers of the model. They propose two pruning approaches based on majority vote and
ranking vote. The main limitation is that it is usually necessary to perform fine-tuning
afterwards on a validation set to compensate for the loss of accuracy caused by pruning.
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In [110], the authors highlight that previous works ignore the issue of unbalanced data
or assume that the server owns this information. They focus on this issue and propose a
practical weight-truncation-based preprocessing method, which achieves quite a balance
between model performance and Byzantine robustness. The novel truncation process is
based on an element-wise truncation in function of some pre-fixed parameters. Although
the choice of parameters is a disadvantage, the authors propose procedures for selecting
them.

4.2. Client defences
Server defences assume that the federated server is trusted as a data collector and aggreg
ator. However, this assumption might be too strong, therefore there is a requirement for
defences when the assumption of a trusted server is removed. In such situation, defences
at client level must be deployed and as a consequence, at least a portion of the clients is
supposed to be benign. In contrast to server-side protection which protects clients as a
whole, client-side defences are thought to be strongest as they provide protection for each
client individually.

4.2.1. Based on Differential Privacy
Generally, these defences are designed to defend against server-side privacy attacks, al-
though some may prevent clients from adversarial attacks. Local DP [107] based on the
DP-SGD algorithm presented in Abadi et al. [111], is the main client-side defence based
on DP. Subsequently authors have proposed improvements to Local DP in terms of DP
relaxations, such as the f-DP [112]. Bu et al. [113] applies f-DP to a HFL setting, achiev-
ing a better privacy analysis than Abadi et al. [111], that is, it provides a tighter usage of
the privacy budget. Its effectiveness against adversarial attacks have been studied [104],
and in Bagdasaryan et al. [10] the reduction in performance of this technique has been
related to the reduction of the effectiveness of the adversarial attack. Moreover, Cao et al.
[114] designed a successful adversarial attack aimed at Local DP protocols for frequency
estimation and heavy hitter identification. In order to stop the gradient leakage, that is,
privacy attacks in federated SGD settings, Yadav et al. [115], Hao et al. [116] and Wei et al.
[117] made the shared gradients differentially private to protect them. If instead of ex-
changing parameters or gradients in HFL, clients share predictions of unlabelled data, it
is possible to apply DP to protect from privacy attacks. Such setting is known as Knowl-
edge Transfer model [118], and it provides privacy with a great preservation of utility
using voting based approaches [119, 120, 121].

Regarding defences against privacy attacks based on DP in VFL, Wang et al. [122] propose
to perturbate the intermediate outputs shared between parties in the model training phase
of a Generalized Linear Model. Additionally, such perturbation removes the requirement
of a learning coordinator and the necessity of costly Homomorphic Encryption schemes,
as they are already private. However, it is a field to be explored in more depth because,
to our knowledge, it is the only publication inside it.

Bhowmick et al. [123] step out of the standard Local DP protocol, to relax it and provide

29



only defence against Feature inference attacks, that is, they assume that the attacker does
not have any background data about her victim.

4.2.2. Perturbation methods
They are an alternative approach to provide defences against privacy attacks that are not
based on DP. Its main aim is to introduce noise to the most vulnerable components of
the federated model, such as shared model parameters or the local dataset of each client,
to reduce the amount of information an attacker can extract. Zhu and Han [12] not only
propose a Feature inference attack, they also propose some defences against it, such as
gradient compression, which prunes gradients which are below a threshold magnitude.
Lee et al. [124] perturb the local client data with a multitask-based neural network. It
preprocesses the data to increase the distance with the original data while preserving
useful features for the model training phase.

In the same line of multitask based defences, Fan et al. [125] perturb the local training
by means of a special loss in conjunction with an additional hidden neural network. Sun
et al. [16] perturb only the parameters related to fully connected layers as they build a re-
construction procedure that can effectively reconstruct data from such layers. Zhang and
Wang [126] propose to use the technique known as Random Sketching [127] applied to
shared client’s parameters to defend against client-side privacy attacks. Trying to protect
from the same type of client-side attacks, Yang et al. [128] add a kind of perturbation to
the parameters that can be removed by the server, so attackers that intercepts them are
not able to recover information.

4.2.3. Optimised training
The optimisation of the benign clients training may be one way to prevent the federated
system from adversarial attacks. Chen et al. [129] propose to perform fine-tuning in be-
nign clients in order to increase the impact of these clients in the aggregation. They decide
which clients are benign ones by means of “matching networks”, which consist of mea-
suring the similarity between some inputs (the model updates) and a support set (the
last global model). This way, they succeed in identifying allegedly benign clients and can
conduct fine-tuning. In their experimental study, they succeed at filtering out backdoor
tasks at the cost of reducing the performance of the original task.

One of the most recent works in this line presents the client-based defence named White
Blood Cell for Federated Learning (FL-WBC) [17], which aims to mitigate model poisoning
attacks that have already poisoned the global model. The author based the proposal on
identifying the parameter space where long-lasting attacks effect on parameters resides
and perturb that space during the local training of each client.

The most widespread training approach aimed at preventing adversarial attacks to the
federated model is adversarial training. These defences consist in taking advantage of the
robustness obtained from adversarial training in an FL setting. For example, in [130] the
authors propose to use pivotal training, which enables a learning model to pivot on the
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sensitive attributes with the aim of making the predictions independent of the sensitive
attributes embedded in the training data.

4.3. Communication channel defences
These defences cover the space of secure implementations of FL. They enable multiple
clients or parties to perform a global task, assuming the presence of some malicious actors
that try to deter it. For our purposes, such actors can be embodied as the attackers that
perform some adversarial attacks mentioned before. While the privacy of inputs of the
global computing task is preserved, the output is revealed to some parties, if not all.
Therefore, the privacy of the output is not assured, although some privacy attacks are
stopped because the attacker loses access to the intermediate outputs of the global task
such as the parameters or gradients shared by the clients. In other words, these defences
are capable of reducing server-side knowledge to partial server-side knowledge, given
that the server can only access the aggregated model or the aggregated gradients.

Secure Multi-Party Computation. Secure Multi-Party Computation (SMPC) protocols
are tightly related to Secure FL (SFL) protocols [131]. Note that We refer to SFL proto-
cols as FL protocols that attains the security in the simulation-based framework used to
formalize the notion of security [132, 133, 134]. SMPC rely on Homomorphic Encryp-
tion (HE) as a key component to provide security. Consequently, HE can be regarded
as the building blocks of any SMPC protocol. It provides multiple cryptographic primi-
tives which allows for secure computations such as Secret Sharing [135], Zero Knowledge
Proofs [136] and Garbled Circuits [137]. Most HE based protocols only support single key
encryption, which might pose a risk if the key is compromised, that is, a single point of
failure. This situation has been addressed in [138, 139], where the authors have developed
SFL systems with multiple encryption keys.

VFL settings heavily rely on SMPC protocols to perform at the beginning of the training
the private entity alignment. Additionally, when training and performing inference, par-
tial updates and predictions are shared and the final update and prediction is computed
by means of SMPC protocols.

The complexity of SMPC grows with the number of parties involved in the computation.
This fact reduces the feasibility of SFL as the number of parties in a FL task can be huge
[106]. As a consequence, the idea of full-fledged SMPC protocols that involve the entire
federated training procedure are abandoned in favour of SMPC protocols that involve the
communication steps in FL. As a remarkable example, a key step in HFL protocols, where
SMPC protocols can ensure security and efficiency, is the aggregation step. Bonawitz et al.
[140] defined an efficient and robust SMPC protocol for the aggregation procedure and,
later on, studied its parameter selection [141]. Similar ideas and improvements have been
explored by multiple authors [142, 143, 144].

To provide complete protection for both, adversarial and privacy attacks, some additional
protection such as DP must be provided. SFL protocols which include DP as an addi-
tional security measure have been developed [145, 146, 147, 148]. In addition, secure
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aggregation schemes have been improved in terms of privacy with the addition of DP
mechanisms [149, 150, 151, 152] .

Blockchain based FL. In contrast to SFL protocols, Blockchain based FL enables a decen-
tralized FL environment without single point of failure risks and improved scalability
[153, 154]. However, this emerging approach inherits the already existing security issues
of the blockchain: 51% attacks [155], forking attacks [156], double spending and reen-
trancy attacks on smart contract [157] amongst others. In addition, it requires a way to
encourage users to join the federated tasks to compensate the storage and computational
usage [158].

5. Experimental study

The aim of the experimental study is to analyse how attacks behave under certain circum-
stances and which defences are effective for which attacks, in a comparative way. For this
purpose, we choose the highest-impact attack of each kind,1 according to the previous
taxonomies, and we set the same experimental framework for each attack and test the
performance of the defences in this framework.

For each attack, we test the effectiveness of the defences in three different classification
images datasets:

• EMNIST Digits (Extended MNIST [159])2 [160]: it is an extension of the handwritten
digits dataset, MNIST. It has approximately 400,000 samples, of which 344,307 are
training samples and 58,646 are test samples.

• The Fashion MNIST3 [161]: it contains a balanced set of the 10 different classes of
images of clothes, containing 7,000 samples of each class. The dataset thus consists
of 70,000 samples, of which 60,000 are training samples and 10,000 test samples.

• The CIFAR-104 dataset is a labelled subset of the 80 million tiny images dataset
[162]. It consists of 60,000 32x32 colour images in 10 classes, with 6,000 images per
class. The classes are: airplace, automobile, bird, cat, deer, dog, frog, horse, ship and
truck. There are 50,000 training images and 10,000 test images, which correspond to
1,000 images of each class.

For EMNIST and Fashion-MNIST we employ a standard convolutional network used in
Sun et al. [38] depicted in Figure 10: two convolutional layers with 3x3 kernel of 32 and 64
units followed by a 2x2 max pooling layer and a fully connected layer with 128 units with

1The implementation of the adversarial attacks considered in the experimental study is the provided by
the authors in some cases, and the one developed by the authors of this paper thoroughly following the
description of the attack on its corresponding paper.

2https://www.nist.gov/itl/products-and-services/emnist-dataset
3https://github.com/zalandoresearch/fashion-mnist
4https://www.cs.toronto.edu/~kriz/cifar.html
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a dropout of 0.5. For the CIFAR-10 dataset, we employ a Transfer Learning approach
using an EfficientNetB0 [163] model pretrained on ImageNet. A fully connected layer
with 256 units is added to the pretrained model.

Figure 10: Convolutional network architecture used in the experimental study for processing the EMNIST
and Fashion-MNIST datasets.

In the following sections, we analyse the results obtained in the adversarial attacks to the
model in Section 5.1 and to the privacy model in Section 5.2.

5.1. Adversarial attacks to the federated model
Although the taxonomy of attacks on the model presented is broad, in this study we anal-
yse those ones most used in the literature. We assume that all the attacks are performed
at training time and are multiple and static attacks, that is, the same attack is repeated in
each round of learning.

For the whole experimentation of adversarial attacks to the federated model, we consider
the following federated distribution of the datasets:

• The federated version of the Digits dataset of EMNIST, Digits FEMNIST. The Digits
dataset of the federated version of EMNIST, where each client corresponds to an
original writer.

• In Fashion MNIST, we set the number of clients to 500 and distribute the training
data among them following a non-i.i.d distribution caused by the fact that each
client randomly knows a subset of the total number of labels in the set.

• In CIFAR-10, we set the number of clients to 100 and distribute the training data
among them following a non-i.i.d distribution caused by the fact that each client
randomly knows a subset of the total number of labels in the set.

For all the experiments carried out in this section, we use the accuracy as evaluation
measure.

Among the taxonomies presented, the one based on the existence of an specific target
objective is probably the most significant. We use this classification to divide this section
into the following two subsections, corresponding to untargeted (see Section 5.1.1) and
targeted attacks (see Section 5.1.2).
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Federated EMNIST Fashion MNIST CIFAR-10

1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50

No attack 0.965 0.965 0.962 0.871 0.871 0.869 0.835 0.835 0.823

FedAvg 0.159 0.421 0.400 0.191 0.366 0.432 0.118 0.143 0.244

Trim.-mean 0.942 0.873 0.837 0.867 0.832 0.861 0.823 0.734 0.822
Median 0.931 0.916 0.909 0.867 0.847 0.858 0.828 0.809 0.828

Krum 0.891 0.870 0.863 0.726 0.719 0.747 0.747 0.761 0.769
MultiKrum (5) 0.913 0.927 0.918 0.840 0.843 0.825 0.816 0.823 0.811
MultiKrum (20) 0.956 0.957 0.950 0.872 0.872 0.868 0.843 0.847 0.851

Bulyan (f=1) 0.952 0.781 0.580 0.868 0.783 0.787 0.826 0.659 0.645
Bulyan (f=5) 0.936 0.942 0.951 0.861 0.865 0.872 0.849 0.845 0.854

Table 1: Mean results for the label-flipping Byzantine data-poisoning attack in terms of accuracy. We also show,
in the first row, the expected accuracy with FedAvg but without any attack.

5.1.1. Experimental study of untargeted attacks
Within this kind of attacks, we differentiate between: (1) those attacks that modify clients’
training data, producing an alteration of the models (data-poisoning attacks) and (2) those
that directly modify the weights of the learning models (model-poisoning attacks). In
order to provide a variety of experimentation, we choose the following attacks:

• Data-poisoning attacks: Random label-flipping attack and Out-of-distribution at-
tack (see Section 3.1.3). Clearly, to make these attacks effective, we combine them
with model-replacement techniques.

• Model-poisoning attacks: Random weights (see Section 3.1.3), which we also com-
bine with model-replacement.

Regarding the ratio of adversarial clients, we considered different distributions in or-
der to analyse the influence on both the performance of the attack and the defences. In
particular, we name x-out-of-n the situation where x of the n clients participating in the
aggregation are adversarial ones.

We chose as defences those that have been shown to be state of the art in the literature. In
particular, we use the following ones (see Section 4.1):

• Median and Trimmed-mean [87].

• Krum and Multi-Krum [90] with different values for the parameter d, which detail
the number of client selected. We consider d = 5 and d = 20.

• Bulyan [91] different values for the parameter f , which determines the tails of the
distribution to be filtered. We consider f = 1 and f = 2.

In Tables 1, 2 and 3 we show the results of assessing the different defences in
label-flipping, out-of-distribution data-poisoning attacks and random weights model-
poisoning attack, respectively. In the following, we analyse the behaviour of both attacks
and defences in each situation from different effectiveness and behaviour of the defences.
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Federated EMNIST Fashion MNIST CIFAR-10

1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50

No attack 0.965 0.965 0.962 0.871 0.871 0.869 0.835 0.835 0.823

FedAvg 0.409 0.440 0.435 0.204 0.366 0.465 0.146 0.192 0.341

Trim.-mean 0.945 0.860 0.853 0.865 0.834 0.831 0.820 0.744 0.740
Median 0.934 0.920 0.914 0.866 0.846 0.845 0.822 0.801 0.807

Krum 0.869 0.866 0.862 0.736 0.706 0.728 0.720 0.731 0.740
MultiKrum (5) 0.916 0.933 0.919 0.849 0.843 0.834 0.830 0.819 0.802
MultiKrum (20) 0.954 0.954 0.950 0.874 0.871 0.873 0.860 0.851 0.852

Bulyan (f=1) 0.950 0.787 0.581 0.870 0.760 0.693 0.831 0.686 0.555
Bulyan (f=5) 0.935 0.938 0.950 0.871 0.865 0.875 0.844 0.849 0.848

Table 2: Mean results for the out-of-distribution Byzantine data-poisoning attack in terms of accuracy. We also
show, in the first row, the expected accuracy with FedAvg but without any attack.

Federated EMNIST Fashion MNIST CIFAR-10

1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50 1-out-of-30 5-out-of-30 10-out-of-50

No attack 0.965 0.965 0.962 0.871 0.871 0.869 0.835 0.835 0.823

FedAvg 0.099 0.099 0.100 0.100 0.101 0.099 0.099 0.099 0.100

Trim.-mean 0.953 0.103 0.099 0.875 0.100 0.099 0.860 0.099 0.099
Median 0.936 0.935 0.934 0.865 0.861 0.855 0.849 0.866 0.864

Krum 0.831 0.865 0.854 0.715 0.745 0.734 0.718 0.716 0.799
MultiKrum (5) 0.932 0.922 0.919 0.834 0.834 0.827 0.816 0.811 0.816
MultiKrum (20) 0.956 0.957 0.951 0.876 0.875 0.867 0.848 0.848 0.853

Bulyan (f=1) 0.959 0.099 0.099 0.099 0.100 0.099 0.852 0.099 0.099
Bulyan (f=5) 0.937 0.937 0.951 0.874 0.869 0.874 0.850 0.841 0.851

Table 3: Mean results for the random weights Byzantine model-poisoning attack in terms of accuracy. We also
show, in the first row, the expected accuracy with FedAvg but without any attack.

Effectiveness of the attack. If we compare the effectiveness of the attack in function of the
type of attack, we conclude that the most damaging attack is the random weights attack.
In fact, this attack manages to totally confuse the federated model, to the extent that it be-
haves as a most frequent label classification model. If we focus on the data-poisoning
attacks, we get that the label-flipping attack is sightly more effective than the out-of-
distribution attack. This is probably because the label-flipping attack learns miss-labelled
samples from within the distribution, while the out-of-distribution attack, theoretically,
only adds error to samples from outside the distribution.

Regarding the ratio of adversarial clients participating in each aggregation, we found that
there are significant differences, being the most effective one carried out by a single ad-
versarial client (1-out-of-30). While this may seem contradictory, there is an explanation.
When the attack is carried out by several clients, the boosting factor is divided among
these adversarial clients. This divides the strength of the attack among all the adversarial
clients, which thus weak the power of the attack, whereas when carried out by a single
client, all the boosting is reflected in a single attacker, making it more effective.

Behaviour of the defences. As a general rule, the defences that best mitigate the effect of the
attacks are Multikrum (20) and Bulyan (f=5), with MultiKrum (20) standing out slightly.
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As we have shown, although Bulyan is presented as an improvement of MultiKrum in
combination with trimmed-mean, if the pre-selected clients are benign clients, this trun-
cation is not necessary and even superfluous. On the other hand, the more basic defences
such as median and trimmed-mean show good enough behaviour in some experiments,
even outperforming MultiKrum and Bulyan with some parameters.

This superiority of the most basic defences over MultiKrum and Bulyan with specific pa-
rameters values evidences the high dependence of these defences on the values of the
input parameters. This behaviour matches with the assertion of the authors of Multi-
Krum and Bulyan, they are the most robust defences with the optimal value of the input
parameters. This dependency on the values of the input parameters represents an obsta-
cle for the use of this defences, since the value of some parameters is difficult to know,
like the number of adversarial clients. A clear example of this problem is Bulyan (f=1) in
the random weights Byzantine model-poisoning attack, whose results are comparable to
using no defence at all by filtering out too few adversarial clients.

To conclude, untargeted attacks are highly effective, especially those based on model-
poisoning, which achieve random behaviour in the federated model. The defences pro-
posed in the literature perform reasonably well, substantially improving the effect of the
attacks, even the simplest ones. However, none of them manage to completely dissipate
the attack, and the best-performing ones are highly dependent on configuration param-
eters, so there is still room for improvement in designing defences against Byzantine at-
tacks.

5.1.2. Experimental study of targeted attacks
In order to make a sufficiently broad experimental study, in this section we consider back-
door attacks from the two main groups presented: (1) Input-instance-key strategies and
(2) pattern-key strategies. With respect to attacks implementing input-instance-key strate-
gies, we perform a single attack where the target samples correspond to some samples
belonging to the adversarial clients for each dataset and associate them with a specific
target label. However, with respect to the pattern-key attacks, we choose for each dataset
a different static, single and accessory injection pattern.

We chose the state of the art against Backdoor attacks as baselines. In particular, we use
the following ones (see Section 5.1.1):

• Median and Trimmed-mean [87].
• Norm-clipping [38].
• Weak Differential Privacy (Weak DP) Sun et al. [38].
• Robust Learning Rate (RLR) Ozdayi et al. [15].

For these defences based on clipping and noise addition, we use M and σ to specify both
the clip factor and the noise added, respectively. For the experiments, we choose the
values recommended by the authors.
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Study of Input-instance-key attacks. In Table 4 we show the results obtained after testing
the input-instance-key attack and the different defences. For the implementation, we ran-
domly select some samples of the adversarial clients and associate them with the target
label "0". We evaluate the effectiveness of the attack, showing both the original and back-
door performances. We measure the original performance using the mean accuracy in the
original test dataset and the backdoor performance by means of the mean accuracy in the
set of selected samples for the attack.

Federated MNIST Fashion MNIST CIFAR-10

M σ Original Backdoor Original Backdoor Original Backdoor

No attack 0 0 0.965 - 0.871 - 0.835 -

FedAvg 0 0 0.866 0.823 0.804 0.944 0.612 0.903
Median 0 0 0.944 0.030 0.875 0.032 0.861 0.140
Trim.-mean 0 0 0.952 0.025 0.872 0.016 0.863 0.133
NormClip 3 0 0.960 0.876 0.863 0.144 0.843 0.115
Weak DP 3 2.5e-3 0.937 0.157 0.843 0.119 0.823 0.093
RLR 0.5/0.5/1 1e-4 0.954 0.012 0.863 0.002 0.853 0.014

Table 4: Mean results for the input-instance backdoor attack in terms of accuracy. We also show, in the first
row, the expected accuracy with FedAvg but without any attack.

If we first analyse the effectiveness of the attack (see row of FedAvg and Backdoor columns)
we find the attack is relatively effective, with the result in Fashion MNIST standing out,
and always being higher than 0.82 of accuracy. However, if we focus on the stealthiness
we note that this type of attack lacks this valuable quality, even affecting the performance
on the original task (see row of FedAvg and Original columns) in 22 points of accuracy
(CIFAR-10).

Regarding the performance of the defences, we find that every one of the defences leads
to a substantial improvement, both increasing the original task accuracy and reducing the
backdoor task accuracy. In addition, we would like to highlight the good performance of
the simpler defences, such as trimmed-mean, which achieves very competitive results.
If we analyse the state-of-the-art defences (Weak DP and RLR), we found the results to
be appropriate, but perhaps a mite disappointing on a complexity-performance trade-off
compared to the other defences. Moreover, there are likely to be other M and σ parame-
ters that optimize the results of these defences, but there are not known in advance, which
is the main weakness of such parameter-dependent defences.

To conclude, input-instance-key backdoor attacks are considerably powerful, performing
better in the backdoor task than in the original one, but being too eye-catching and detri-
mental to the original task. Moreover, although the defences mitigate the effect of the
attack, none of them completely dissipate it, so there is still plenty of scope for further
research.

Study of the pattern-key attacks. The Table 5 shows the results obtained after testing the
different pattern-key attacks with the considered defences. We implement the attacks by
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randomly selecting the adversarial clients and poisoning some of their samples with dif-
ferent patterns. In particular, we use the following patterns of different levels of difficulty
according to the number of pixels: (1) one single black pixel for Federated MNIST, (2) a
red cross of length 4 for Fashion MNIST (8-pixel pattern) and (3) a white pixel in each of
the corners of the image (4-pixel pattern) for CIFAR-10. We evaluate both the effective-
ness and the stealthiness of the attack. We measure the stealthiness of the attack by means
of the mean accuracy obtained in the original task (Original). We also evaluate the effec-
tiveness of the attack in terms of two additional tests: (1) Backdoor, which contains the
poisoned samples of the adversarial clients and (2) Test, which represents the test of the
backdoor task and is composed of test samples poisoned following the specific pattern.
Therefore, an attack will be more effective the higher performance it obtains in both the
original and the backdoor task, while a defence will be better if it manages to maintain the
performance in the original task while decreasing as much as possible the performance
in the backdoor task.

Federated MNIST Fashion MNIST CIFAR-10

M σ Original Backdoor Test Original Backdoor Test Original Backdoor Test

No attack 0 0 0.965 - - 0.871 - - 0.835 - -

FedAvg 0 0 0.974 1.0 1.0 0.843 0.999 0.944 0.413 1.0 0.99
Median 0 0 0.954 0.009 0.015 0.873 0.067 0.053 0.854 0.193 0.183
Trim.-mean 0 0 0.966 0.011 0.014 0.872 0.052 0.065 0.853 0.194 0.170
NormClip 1 0 0.968 0.055 0.053 0.843 0.143 0.164 0.834 0.143 0.131
Weak DP 1 2.5e-3 0.935 0.093 0.0175 0.869 0.053 0.074 0.859 0.144 0.170
RLR 1 1e-4 0.962 0.008 0.008 0.870 0.020 0.031 0.856 0.073 0.061

Table 5: Mean results for the pattern-key backdoor attack in terms of accuracy. We also show, in the first
row, the expected accuracy with FedAvg but without any attack. The best result for each of the test sets is
highlighted in bold.

Regarding the effectiveness of the attack without any defence (see row of the FedAvg and
Backdoor and Test columns), it reaches a performance of 100% or close to it of accuracy,
which shows it harmfulness. However, if we analyse the stealthiness of the attack (see
row of the FedAvg and Original columns), the conclusions depend on the dataset. While in
Federated MNIST and Fashion MNIST the performance in the original task is maintained
or even improved, the performance in the original task in CIFAR-10 is reduced by up to
half.

Regarding the behaviour of the defences, we also obtain a substantial improvement with
respect to the scenario without any defence with all of them. As in the untargeted attacks,
the simplest defences obtain competitive results, even outperforming the most complex
defences in some situations. In general, deciding which defence is superior is not a trivial
task. Since it is a matter of achieving the best trade-off between performance in the origi-
nal task and dissipation of the backdoor attack. For example, RLR achieves in Federated
EMNIST the best defence against the attack, but it is more detrimental to performance
on the original task. However, in general, we can affirm that it is the best performing
defence, standing out particularly in CIFAR-10.
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To conclude, pattern-key backdoor attacks are highly threatening attacks, as they achieve
almost 100% success in the backdoor task, without, in most cases, harming the perfor-
mance of the original task. Defences manage to dissipate the effect of the attack in the
backdoor task, but in most cases impair performance in the original task. Therefore, in
this case, the key is to find the trade-off between mitigating the attack and not harming
the performance of the model.

5.2. Privacy attacks
Even tough there is a wide range of privacy attacks, in this section we study those which
meet the following requirements:

1. The attack is performed while the federated model is being trained. As a conse-
quence, most defences are aimed to make the training secure from privacy attacks.
Alternatively, the defences mask or perturb the shared information to make it less
vulnerable.

2. The description of the attack and its setup in its publication is enough to implement
it or an implementation which matches the publication is publicly available. The
same applies for defences.

The found privacy attacks that matched our requirements allowed us to divide this sec-
tion into the following two subsections, corresponding to Membership inference attacks
(see Section 5.2.1) and Feature inference attacks (see Section 5.2.2), restricted to HFL sce-
narios.

5.2.1. Experimental study of Membership inference attacks
We choose to implement the federated white-box Membership inference attack from Nasr
et al. [36] using the source code publicly available for the white-box centralized setting1

as there is no public implementation of the federated version. Both clients and server can
be the attacker. On the one hand, when the attacker is the client, her objective is to infer
the membership of data points belonging to other clients. On the other hand, when the
attacker is the server every client is attacked individually, thus the objective is to infer the
membership of data points for each client. We mainly focus on their server side attack or
global attacker as it is the most powerful, that is, it poses the highest treat to privacy.

We make our federated scenarios the same as the ones proposed in Nasr et al. [36], which
represents a small population of clients with big amounts of sensitive data such as banks
or hospitals, willing to jointly train a privacy preserving deep learning model. As each
client owns great quantities of data, some records can be duplicated among them, that
is, the dataset owned by each client is sampled uniformly with replacement from the
following datasets: EMNIST, Fashion MNIST and CIFAR-10. Consequently, each of them
is divided between 4 clients and each client owns a sample of half the size of the entire
dataset, sampled with replacement.

1https://github.com/privacytrustlab/ml_privacy_meter
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Each federated task is run for 300 rounds where each client shares her local model after
each local training epoch, the attacker observes the rounds: 50, 100, 200, 250 and 300.
The attack is trained for 100 epochs and the model with best testing accuracy is selected.
The attacker training dataset is made of 4000 random samples belonging to each attacked
client, 4000 random samples which do not belong to any client and each one is labelled
according to its membership to the attacked client. For all the experiments, the batch size
is set to 32. We highlight that this federated setup is taken from Nasr et al. [36].

We report the averaged accuracy and AUC of the global attacker in the described settings
in Table 6. Note that, the membership inference attack is performed by a binary classi-
fier, therefore the choice of the classification threshold is key to separate between member
and non member instances. An attacker with background knowledge may have the abil-
ity of selecting a classification threshold that maximizes the separation between member
and non members, leading to a greater privacy leakage [164]. While the authors of the
attack focus on reporting the accuracy, we have found in our experiments that the AUC
metric better shows the capabilities of the attacker, due to the fact that AUC is indepen-
dent of the classification threshold used to perform the inference. This decision is also
driven by the fact that a single classification threshold only represents a possible attacker,
therefore we need a way of evaluating every possible attacker, including those with great
amounts of background knowledge. We can observe that in our experiments the attack
is barely effective, as both accuracy and AUC are close to 0.5. We also highlight that the
Gradient Ascent technique does not bring significant performance improvements, prob-
ably because it is hard to calibrate. While in the MNIST dataset we see that the attack is
not successful, in the other the membership of some instances is revealed, so there is a
privacy leak, although it is very small.

We also report the success of the attack with the state-of-the-art defence Local DP in Table
6. The privacy budget in each client of the Local DP is ε = 3, δ = 10−5, which is consid-
ered in the literature to be a high privacy budget. We employ the AutoDP framework1

to calibrate the differentially private Gaussian noise to the privacy budget using Renyi
DP [165]. We can observe that this defence is quite successful as it avoids leaking any
membership information, thus making the attack classifier behaves randomly.

In Table 7, we can see the accuracy of the federated task with the attack. As noted be-
fore, the Gradient Ascent technique degrades the accuracy of the federated task, mainly
due to the fact that some of the instances which were ascent belong to the federated test
set. While this is true for the MNIST and Fashion MNIST datasets, it is not true for the
CIFAR-10 dataset. It might be because of the transfer learning approach used for this
dataset being more resilient to gradient direction changes. As expected, DP based de-
fences reduce the accuracy of the federated task. The smallest reduction of federated task
accuracy is achieved with the CIFAR-10 dataset, which confirms that the transfer learning
approach is more resilient to gradient changes, moreover the Gradient Ascent technique

1https://github.com/yuxiangw/autodp
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Without Local DP defence With Local DP defence

Client Isolation
Client Isolation +
Gradient Ascent

Client Isolation
Client Isolation +
Gradient Ascent

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

MNIST 0.501 0.502 0.489 0.502 0.500 0.497 0.496 0.500
Fashion MNIST 0.513 0.546 0.511 0.516 0.500 0.499 0.497 0.500
CIFAR-10 0.540 0.551 0.500 0.528 0.500 0.500 0.500 0.500

Table 6: Accuracy and AUC of the global federated attack from Nasr et al. [36] with and without Local DP
defence.

does not change significantly the accuracy when applied.

Without Local DP defence With Local DP defence

Client Isolation
Client Isolation +
Gradient Ascent

Client Isolation
Client Isolation +
Gradient Ascent

MNIST 0.990 0.100 0.672 0.100
Fashion MNIST 0.910 0.100 0.579 0.100
CIFAR-10 0.862 0.862 0.686 0.668

Table 7: Federated task accuracy while the global federated attack from Nasr et al. [36] is performed with
and without Local DP defence.

In this experimental study, we have explored the performance of a Membership inference
attack on a federated setting of few clients with big amounts of data. We have found
that the success of the attack is small, even though the membership of some instances
was revealed. The DP based defence stopped these leakages of privacy, at the cost of
a considerable reduction of the federated task accuracy. Additionally, we have found
that using a transfer learning approach might reduce the impact of DP in the federated
task accuracy while also being resilient to the Gradient Ascent technique which have
drastically reduced the federated task accuracy with the other datasets and deep learning
approaches.

5.2.2. Experimental study of Feature inference attacks
We study multiple gradient based Feature inference attacks, which use stolen gradients
from the federated training procedure, particularly we focus on the attacks described in
Zhu and Han [12], Geiping et al. [64], Wei et al. [66]. In order to do it, we use the code
provided with each publication, which is publicly available.1,2,3

The federated scenario which fits these attacks is the following: clients with very little
data, such as IoT devices or smartphones, which run a federated task where they share
gradients from small batches. We study under which circumstances we can reconstruct

1https://github.com/mit-han-lab/dlg
2https://github.com/JonasGeiping/invertinggradients
3https://github.com/git-disl/CPL_attack
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images from gradients. Our study focus on three aspects to evaluate the success of these
attacks:

• The success rate. The approximate probability of convergence of each attack. The
majority of the attacks studied in this section are known to have stability issues,
that is, their convergence greatly depends on the initialization seed used to boot-
strap them. For Wei et al. [66] and Zhu and Han [12], we choose as initialization a
geometric pattern which improves both convergence rate and speed. It consists in
covering a small portion of the initialization space with a random image and du-
plicate it to fill the feature space. In our experiments, we choose 1/4 of the feature
space as in Wei et al. [66]. For the attack of Geiping et al. [64], we choose random
initialization, as it does not seem to be affected by the choice of the initialization
pattern.

• The training stage of the local model at which the attack can succeed. Most of the
studied attacks consider an untrained model as they claim that the attack can run
at any point of the training procedure, however this claim does not seem to have a
lot of experimental support. As a consequence, we want to confirm such claims and
find whether the stage of training of the local model is relevant to the success of the
attack.

• The success of the defences against Feature inference attacks. We study the per-
formance of two state-of-the-art defences: gradient compression and the addition
of Gaussian noise. Which are known to thwart the effectiveness of the attack from
Zhu and Jin [166], so we evaluate whether these defences are also applicable to the
other attacks.

We begin our study analysing the success rate of each attack, as they are known to suffer
from stability issues [66]. We run each attack with gradients from an untrained simple
convolutional model LeNet [167] as in [66, 12] with a batch size of 1. Each attack is run
until one of the following conditions is satisfied:

• Success condition: for the attacks [66, 12], we consider that the attack is successful
if the Mean Square Error (MSE) with respect to the target image to reconstruct is
smaller than 0.5 and the Multi-Scale Structural Similarity (SSIM) [168] is greater
than 0.5. The purpose of these criterions is twofold, the former ensures that the
reconstructed image is close enough to the target image and the latter ensures that
the reconstructed image is perceptibly similar to the target image.

• Failure condition: if the maximum number of epochs set for the attack is reached
without satisfying any of the conditions stated below, then we consider the attack is
marked as a failure. In other words, the attack as failed to converge.

Additionally, we want to study whether the training stage at which the attack is per-
formed is relevant. To do so, we run each attack at different moments of the local training
process: before any training, after 1, 5 and 10 rounds of training. Each attack is going to
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try to reconstruct an image that belongs to their training set, but it has not been used to
train the model previously. We report the success rate of each attack across 25 runs, using
the same end conditions specified before.

The experimental results of the study of the success rate and the training stage of the
local model at which the attack can succeed are shown in Tables 8, 9 and 10. First, we
highlight the results from Table 10 that show that the attack from Geiping et al. [64] is
independent of the considered training stage of the local model. The same is not true for
the results in Tables 8 and 9. In its first column of results, we can see that the attacks have
almost no issues to converge when the local model is not trained, so we can conclude that
if the appropriate initialization method is chosen, the attacks are almost 100% guaranteed
to converge. If we observe the remaining columns of the Tables 8, 9, the results change
considerably. The attack from Wei et al. [66] (Table 9) has slightly better convergence
rates than the attack from Zhu and Han [12] (Table 8), both show a similar trend: the
more trained is the model, the harder it is for the attacks to achieve success.

The complexity of the dataset has an important role in the success of the attacks from [66]
and Zhu and Han [12]. Both EMNIST and Fashion-MNIST are considered easier datasets,
as there are many works that achieve high training accuracy after few epochs of training
[169, 170]. The same is not true for CIFAR-10, as more complex models are required to
achieve a reasonable accuracy [171, 172]. EMNIST and Fashion-MNIST images are hard
to reconstruct after 1 training epoch, that is, the gradients after 1 training epoch leak little
information about the datasets. An example of such difficulties is shown in Figure 11.
In contrast, in CIFAR-10 the training model takes longer to converge and the gradients
leaks a lot of information, even after 10 epochs of training. The main reason that allow us
to understand this behaviour is the fact that both attacks try to mimic the structure and
content of the shared gradient (that is, minimizing the MSE between the shared gradient
and the reconstructed image), so the more information is stored in the gradient, the easier
is the reconstruction process. In other words, gradients that more significantly change the
weights of the model make the reconstruction process easier. This is not true for the attack
from [64], as its objective is to minimize the cosine similarity between gradient vectors.

Dataset Before training After 1 training epoch After 5 training epochs After 10 training epochs

EMNIST 1 0 0.04 0
Fashion-MNIST 1 0.28 0 0.08
CIFAR-10 0.96 0.80 0.60 0.68

Table 8: Success rate of 25 trials of reconstructing an image from a shared gradient of a local model with
the attack from Zhu and Han [12]. We run the attack at different stages of training of the local model. Before
training means that the local model has not been trained at all.
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Dataset Before training After 1 training epoch After 5 training epochs After 10 training epochs

EMNIST 1 0 0 0
Fashion-MNIST 1 0.32 0.12 0.24
CIFAR-10 1 0.96 0.84 0.80

Table 9: Success rate of 25 trials of reconstructing an image from a shared gradient of a local model with the
attack from Wei et al. [66]. We run the attack at different stages of training of the local model. Before training
means that the local model has not been trained at all.

Figure 11: From left to right, reconstruction using the attack of Wei et al. [66] of an image with label 0
from Fashion-MNIST dataset which correspond to the t-shirt/top category, after 1, 5 and 10 epochs of local
training.

Dataset Before training After 1 training epoch After 5 training epochs After 10 training epochs

EMNIST 1 1 1 1
Fashion-MNIST 1 1 1 1
CIFAR-10 1 1 1 1

Table 10: Success rate of 25 trials of reconstructing an image from a shared gradient of a local model with
the attack from Geiping et al. [64]. We run the attack at different stages of training of the local model. Before
training means that the local model has not been trained at all.

To end our study, we study the performance of two state-of-the-art defences:

• Gradient compression with 20% sparsity.
• The addition of Gaussian noise with variance of 10−2.

We run each attack with defences 25 times with a batch size of 1, with the model untrained
and report the success rate of each attack.

Attack of Zhu and Han [12] Attack of Wei et al. [66] Attack of Geiping et al. [64]

Dataset
Gaussian

noise
Gradient

compression
Gaussian

noise
Gradient

compression
Gaussian

noise
Gradient

compression

EMNIST 0 0 0 0 0 0.04
Fashion-MNIST 0 0 0 0 0 0.48
CIFAR-10 0 0 0 0 0 0.12

Table 11: Success rate of 25 trials of the reconstruction attacks from [12], [66] and Geiping et al. [64] with
Gaussian noise and Gradient compression defences.
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Figure 12: From left to right, reconstruction using the attack of Geiping et al. [64] of an image with label 0
from EMNIST dataset, without any defence, with Gaussian noise defence and with Gradient compresion
defence.

In Table 11, we can observe the stunning performance of both defences as they com-
pletely stop the attacks of [12, 66] from achieving success. While the addition of Gaussian
noise of this magnitude is known to reduce the performance of the task [12], the gradient
compression defence can handle higher compression rates without significantly hurting
performance [173]. When it comes to the attack of Geiping et al. [64], we find that the
Gaussian noise defence is as effective as in the other attacks. This might be due to the dif-
ferentially private properties of the Gaussian noise. However, the Gradient compression
defence fails to completely stop the attack of Geiping et al. [64]. Specially for the Fashion-
MNIST dataset, where almost half of the times the attack succeeded. An example of a
reconstruction trial with and without defences is shown in Figure 12, it gives an hint of
the behaviour of the attack. Gradient compression is the worst performing defence, prob-
ably due to the fact that compressing the gradient does not affect the task of minimizing
the cosine similarity between the shared and the reconstructed image gradient.

In conclusion, the Feature inference attacks studied in this section pose a high risk to
privacy, as there are many attacks that succeed at extracting private information from
gradients. Luckily, there are defences that can thwart the success rate of the attacks and
provide privacy without changing significantly the performance of the trained model.
However, this is not true for all the analysed attacks, there is still room for improvement
as the attack from Geiping et al. [64] seems to be able to escape them in some situations.
Additionally, this threat is not only related to FedSGD scenarios, it is also related to fed-
erated scenarios where parameters are exchanged between clients.

6. Guidelines for the application of defences against adversarial attacks

Due to the large number of attacks identified, and the wide variety of defences proposed
in the literature, it can be difficult to choose which type of defence is appropriate for each
situation. Moreover, most defences are designed with the objective of defending against
a particular adversarial attack. However, as a collateral benefit, they can prevent the
success of other types of adversarial attacks.

In this section we provide some guidelines in terms of a summary of which categories
of defences work to defend the identified categories of attacks, specifying the degree to
which they do so.
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In Table 12 we summarize which categories of defences are able to defend against attacks
to the model and privacy attacks, respectively. For the sake of clarity, we represent the
relationship between categories of attacks and categories of defences. Hence, when we
affirm that a category of defence is able to defend against a category of attacks means that
there are at least one defence belonging to that category who is able to defend against
them.

In this line, we differentiate between:

• Complete defence : the defence category is able to stop the attacks of the attack
category.

• Partial defence : the defence category is able to significantly reduce the perfor-
mance of the attacks of the attack category but not stop it.

• No defence : the performance of the attacks of the attack category is not affected
significantly by the defence category.

• Unknown defence : there is neither enough experimentation available nor theo-
retical support to assess the behaviour of the attacks of the attack category with the
defence category.

Attacks to the federated model Privacy attacks

Untargeted Targeted Property Membership Feature

Server defences

Mod. of learn-
ing rate
Robust agg.
Anomaly
detection
Based on DP
Less is more

Client defences
Based on DP
Optimized
training
Perturbations
methods

Comm. channel
Blockchain
SMPC

Table 12: Summary of application of the defences to adversarial attacks, both attacks to the federated model
and privacy attacks.

The summary of the state of the art provided in the Table 12 allows us to draw the follow-
ing conclusions:

1. In general, defences based on DP, which are designed to defend against privacy
attacks, partially defend against attacks to the model, specially those based on DP,
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but not the other way around.

2. Broadly speaking, the defence against attacks to the model is more settled than the
defences against privacy attacks. In particular, for property inference attacks, there
is no defence considered as complete.

3. There is still a long way to go in designing defences to prevent attacks in FL and,
crucially, to find a defence that prevents from all types of attacks at the same time.

7. Lessons learned

Based on the extensive research and analysis of the available works, we have built up the
taxonomy proposed in this paper. However, what has been learned goes beyond this. To
sum up, the lessons learned are:

1. The identification of vulnerabilities in the form of adversarial attacks and the pro-
posal of defences against them in FL is a field of research in continuous develop-
ment. The volume to date of scientific work covering these challenges is growing
and is not likely to diminish in the coming years.

2. Attacks to the federated model are easier to defend against than the privacy-attacks.
However, they have shown much greater effectiveness, with even the simplest at-
tacks being detrimental to the model.

3. Privacy attacks require very peculiar settings to achieve a reasonable success, that
is, most of the assumptions required to perform them are very hard to achieve in
real FL scenarios. Such scenarios are usually bounded by the lack of the following
resources: data, raw computing power and time.

4. Most defences against inference attacks, although designed for inference attacks,
dissipate the performance of attacks against the federated model, but not the other
way around. Therefore, the use of DP-inspired mechanisms will be crucial if we
want to defend against generic category attacks.

5. The implementation of defences based on DP and based on perturbation methods
require extensive fine-tuning in order to provide a nice trade-off between privacy
and performance. Most of the defences require access to big computational re-
sources or they will be too slow to apply. Therefore, such defences might not be
suitable for FL settings with low power devices. Additionally, to our knowledge,
there is not a consensus about how to measure the trade-off between privacy and
performance.

To finish, as a fundamental lesson learned is that the field of adversarial attacks and de-
fences in FL is a research area in steady development, which is not expected to change
in the forthcoming years. There are still many vulnerabilities which need to be faced in
order to ensure a truly secure and privacy-preserving learning environment.
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8. Challenges of addressing federated learning threats

Regarding the previous lessons learnt, we identified the following challenges that the
field will have to face up in the next years.

Defences vs. attacks. An identified trend is that for each defence proposed, it is possible
to identify a vulnerability that can be turned into an adversarial attack, and vice versa.
Therefore, one of the biggest challenges is to find both: (1) all vulnerabilities present in
a FL scenario that an attacker could exploit, and (2) a defence effective enough to de-
fend against any attack. For the time being, this seems a long way off, as the different
perspectives from which both problems have been approached are ad hoc to the type of
attack to be identified or defended. From our point of view, the study of defences is cru-
cial, since the final goal is to achieve a secure, robust and private learning environment.
Along this vein, the optimal defence will be the one that combines the best proposals in
each of the categories, in such a way that it manages to defend against all types of attacks
while maintaining performance in the original task. There are existing approaches that
combine client’s filtering with noise addition [15], although there is still a long way to go.

Trade-off in defences. In most defences, we find that it is difficult to strike a trade-off be-
tween preventing the model from attacking and not impairing performance in the original
task. For example, in those based on DP, we find that in order to ensure data privacy, a
large amount of noise has to be added, which significantly impairs the performance of
the model [105]. Therefore one of the main challenges would be the development of more
efficient DP methods, and the extension of DP to defences against all adversarial attacks.
This situation also occurs in defences based on client filtering when more clients than
necessary are filtered out, thus losing information in the aggregation process. In short, it
is difficult to strike a trade-off between preventing an attack and not losing or poisoning
the information received by clients.

Non-IID assumptions. The non-IID nature of the training data distributed among clients
often makes it difficult to differentiate between adversarial clients and those who have
had a very different from the rest, but still valuable, learning process. One common ap-
proach is to use anomaly detection algorithms suitable for non-IID distributions [174] or
approaches which not rely on data distribution [109], however, there are still problems in
differentiating between clients with a highly skewed distribution and adversarial clients
in most cases.

Generalised FL. The vast majority of adversarial attacks have been identified for HFL.
In particular, the adversarial attacks to the federated model. Although there is already
existing work on privacy attacks in VFL [77], there is still a long way to go in identifying
and analysing the vulnerabilities in terms of leakage of information of attacker possibil-
ities in other categories of FL wich are becoming widely used such as VFL or FTL [175].
Therefore, we believe that in the coming years, work on identifying attacks for VFL and
FTL and the research in defences against them will take centre stage.
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Combination with other trends. While ensuring data privacy is one of the main goals of
FL, there are other desirable features. For example, some of the most popular trends are
Personalised FL [176] or fairness in FL [177]. We believe that, at the end of the day, data
security and privacy must be a requirement in all other approaches. Therefore, several
future works will address this issue as a cross-cutting objective while developing propos-
als for more concrete desirable features. For example, a method of personalised FL that is
secure against adversarial attacks.

9. Conclusions

FL emerges as a solution to the computational costs and privacy-preserving demands of
the most groundbreaking ML. However, this new learning paradigm brings new chal-
lenges, particularly in terms of adversarial attacks and defending against them. Hence,
several proposals of new adversarial attacks or adaptations of centralised ones as well as
defences ad hoc to these attacks have been proposed in the recent years.

We proposed several taxonomies according to different criteria that eases the knowledge
of the wide field of FL threats. In addition, we conducted an extensive experimental study
which leads us to propose a guidelines for the application of defences against adversarial
attacks, and to highlight a set of lessons learned and challenges related to FL threats.

We conclude that the study of FL threats is an ongoing field of research, due to its impor-
tance in ensuring FL as a robust machine learning paradigm that safeguards data privacy.
There are still several challenges to be faced and directions to be studied in order to iden-
tify additional threats (or vulnerabilities) of FL, as well as the appropriate mechanisms to
make it a resilient and robust learning paradigm against those threats.
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