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Abstract—Human activity recognition is an important area of 

machine learning research as it has many utilization in different 

areas such as sports training, security, entertainment, ambient-

assisted living, and health monitoring and management. Studying 

human activity recognition shows that researchers are interested 

mostly in the daily activities of the human. Therefore, the general 

architecture of HAR system is presented in this paper, along with 

the description of its main components. The state of the art in 

human activity recognition based on accelerometer is surveyed. 

According to this survey, Most of the researches recently used 

deep learning for recognizing HAR, but they focused on CNN 

even though there are other deep learning types achieved a 

satisfied accuracy. The paper displays a two-level taxonomy in 

accordance with machine learning approach (either traditional 

or deep learning) and the processing mode (either online or 

offline). Forty eight studies are compared in terms of recognition 

accuracy, classifier, activities types, and used devices. Finally, the 

paper concludes different challenges and issues online versus 

offline also using deep learning versus traditional machine 

learning for human activity recognition based on accelerometer 

sensors. 
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I. INTRODUCTION 

Human Activity recognition (HAR) is the root of many 
applications, such as those which deal with personal biometric 
signature, advanced computing, health and fitness monitoring, 
and elder-care, etc. [1]. The input of HAR models is the 
reading of the raw sensor data and the output is the prediction 
of the user's motion activities [2]. 

A. Sensor Approaches 

There are two types of sensors to recognize the human 
activities; using external or wearable sensors. In the past, the 
sensors were settled in predetermined points of interest, 
therefore the detecting of activities is essentially based on the 
interaction of the users with the sensors. One of the examples 
of external sensors applications is the intelligent home [3-7], 
which has a capability to identify the complicated activities, 
eating, taking a shower, washing dishes, etc., because they 
depend on data that is collected from various sensors which are 
placed in specific objects. Those objects are supported by 
peoples’ interaction with them (e.g., stove, faucet, washing 
machine, etc.). However, there is no useful response if the user 
is out of the sensor area or the activities of the user do not need 

to interact with those objects. Moreover, the composition and 
servicing of sensors require high costs. 

Also, some of the extensive researches [8-11] have been 
focused on the recognition of activities and gestures from video 
sequences. This is most appropriate for security and interactive 
applications. Microsoft developed the Kinect game console 
that let the user interact with the game using the gestures 
without any controller devices. However, there are some issues 
in video sequences of HAR such as [2]:  

 The privacy, as no one wants to be always monitored 
and recorded by cameras.  

 The pervasiveness, it is difficult to attach the video 
recording devices to the target of individuals in order to 
collect the images of their entire body during daily 
living activities. 

 Video processing techniques are comparatively costly 
and consuming time. 

The above-mentioned limitations motivate to use a 
wearable sensor in HAR. Where the measured attributes almost 
depend on the following: environmental variables (such as 
temperature and humidity), movement of the user (such as 
using GPS or accelerometers), or physiological signals (such as 
heart rate or electrocardiogram). These data are indexed over 
the time dimension. 

Accelerometer sensors sense the acceleration event from 
mobile phone, WII remote, or wearable sensors. The raw data 
stream from the accelerometer is the acceleration of each axis 
in the units of g-force. The raw data is represented in a set of 
3D space vectors of acceleration. A time stamp can also be 
returned together with the three axes readings. Most of the 
existing accelerometers provide a user interface to configure 
the sampling frequency so that the user have to choose the best 
sampling rate which match his needs. There are many causes 
that encourage to develop new techniques for enhancing the 
accuracy under more factual conditions. However, the first 
works on HAR date back to the late 90’s [12], [13]. 

B. Challenges Face HAR System Designers 

Any HAR system design relies on the activities to be 
recognized. The activities kinds and complexity are able to 
affect the quality of the recognition. some of challenges which 
face researches are (1) how to select the attributes to be 
measured, (2) how constructing the system with portable, 
unobtrusive, and inexpensive data acquisition, (3) how 
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extracting the features and designing the inference methods, 
(4) how collecting the data in the real environment, (5) how 
recognizing activities of the new users without the need of re-
training the system, and (6) how can be implemented in the 
mobile devices which meeting energy and processing 
limitations [14]. 

Oscar et al. [2] distinguished activities into seven groups 
such as Ambulation, Transportation, Phone usage, Daily 
activities, Exercise/Fitness, Military and Upper body. 
However, according to our survey eight different groups of 
activities can be distinguished by reorganizing the activities 
categorization in [2] such as the activities of phone usage were 
combined into Daily activities category, upper body and 
military categories are removed because they were not used in 
our survey, Household activities, Kitchen activities, Self-care 
activities, and Transitional activities were added. Those eight 
categories and the individual activities that belong to each 
category are summarized in Table I. The abbreviations and 
acronyms are defined in Table V. 

C. Offline Versus Online HAR Systems 

The recognition of human activity could be done using 
offline or online techniques. Whenever online processing is not 
necessary for the application, the offline processing can always 
be used. For example, if the tracking of person’s daily routine 
is the goal such as in [15], the data was collected during the 
day by using the sensors and then it could be uploaded to a 
server at the end of the day. The data can be processed offline 
for classification purposes only. 

However, some of the applications such as fitness coach 
where the user applies the given program which contains on a 

set of activities with sequence and duration. It is widely 
required to identify what the user is currently doing [16]; 
therefore it requires to use online technique. 

Another application can be the recruitment for participatory 
sensing applications [17]. For instance, the application aimed 
to collect the information from users during walking in a 
specific location in the city. Thus, online recognition of 
activities becomes significant. Some researches on human 
activities, which works on offline recognition, are using 
machine learning tools such as WEKA [18-20]. Nowadays, 
some of clouding systems are being used for online recognition 
[21] [22]. 

D. Machine Learning Techniques 

The success of HAR process depends on which machine 
learning technique is suitable in the problem case. There are 
two different approaches: first approach depend on traditional 
machine learning such as KNN, Naïve Bayes, Bayes Net, IBK, 
J48, Random forest, SVM, DTW, etc., the second approach 
depend on deep learning such as convolution neural network, 
recurrent neural network, vanilla RNN forward, and Gated 
Recurrent Unit RNNs, etc. 

Recognize the human activity is mission. The paper 
surveys the state of the art traditional machine learning and 
deep learning for HAR. Section II presents the general 
components of HAR system. Section III explores the difference 
between online and offline systems.  Section IV compares 
between traditional and deep learning techniques. Section V 
shows the main issues for recognizing activities and the most 
important solutions to each one of them. Finally, a general 
conclusion is presented in Section VI. 

TABLE I. THE CATEGORIZATION OF ACTIVITIES 

Category Activities Related Ref. 

Daily Activities 
Ironing, Eating, Drinking, Using phone, Watching TV, Using computer, Reading 
book/magazine, Listening music/radio, Taking part in conversations, Getup bed, Sleeping, 
Note-pc, Carrying a box, Getting up 

[29][32-35][46][53][56][60][64][77] 

ousehold Activities 
Sorting files on paperwork, Wiping tables, Vacuuming, Taking out trash, Cleaning a dining 
table, Washing dishes, Sweeping with broom, Cleaning up 

[29][32][33][42][53][55-56][60][64] 

Transportation Riding a bus, Cycling, Driving 
[24][28][38][40][47][53][55-
56][58][61][63-64][67] 

Ambulation 
Running, Sitting, Standing, Lying, Ascending stairs, Descending stairs, Riding escalator, 
Riding elevator, Falling, Stopping, Casual movement 

[23][24][26-28][36-50][52-
56][58][59][61-71][75][76] [77] [81] 

Kitchen Activities 

Fill kettle, Pour boiling water into the mug, Add tea-bag, Add sugar, Add milk, Remove tea-
bag, Pour milk outside the mug, Pour boiled water outside the mug, Making coffee , Making 
tea, Making oatmeal, Frying eggs, Making a drink, Cooking, Checking tools and utensils in 
the kitchen, making a sandwich, cooking pasta, cooking rice, Feed Fish. 

[32-35][42][46][53][57][60][64]  

Exercise/fitness 
Walking in treadmill, Running in treadmill, Aerobic dancing, Jumping, Jogging, Playing 
basketball, Playing football, Rowing 

[23][24][26][37][42][45][47][48][50] 
[53] [56][68][70][75][77] 

Self-care Activities 
Applying makeup, Brushing hair, Shaving, Toileting, Flushing the toilet, Getting dressed, 
Brushing teeth, Washing hands, Washing face, Washing clothes, Drying hair, Taking 
medication 

[29] [32-35][53][60] 

Transitional Activities lying down and getting up, Sitting down and getting up, walking up and down stairs [52][53] 
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II. GENERAL STRUCTURE OF HAR SYSTEMS 

The Human Activity Recognition process consists of four 
main phases: Data Acquisition, Pre-Processing, Feature 
Extraction, and Classification. As shown in Fig. 1, HAR 
systems consist of several phases which are: 

Data Acquisition: It is the first phase in the activity 
recognition for collecting the data by using the sensors. 

Pre-processing: It is the second phase after the data is 
collected. It has important roles such as removing the noise of 
the raw data, using windowing or segmentation schema on the 
collected data. Using the raw sensor data in the classification 
process may be not a suitable decision, therefore, the raw data 
needs some transformations such as breaking the continuous 
raw sensor data into the windows of a certain duration. For the 
sake of the energy efficiency, it is serious to take a low 
sampling frequency in order to reduce the time of sensors 
working. The work time for the powerful sensor is low when 
the low sampling frequency is used. However, using of the low 
sample frequency to recognize the activities is still an open 
question. According to Kwapisz et al. [23], the sampling rate 
might be no less than 20 Hz for detecting daily activities. Some 
of the sampling data may be lost when using a low sampling 
frequency as well as it is hard to recognize the activities when 

the sensing device has low-resolution. Thus there is a trade-off 
between consumption of the energy and the rate of recognition.  
Liang et al. [24] proposed a method for energy-efficient. That 
method is based on tri-axial accelerometer which embedded in 
a smartphone in order to recognize the user's activities. They 
aimed to reduce the likelihood of time-consuming frequency-
domain features for lower computational complexity and 
modify the sliding window size for improving the accuracy of 
recognition. 

Feature extraction: The segmented data is collected as a 
series of pattern containing three values 3D acceleration 
components. It converts the signal into the most significant 
features which are unique for the activity. It is better to extract 
features of the data which is based on a temporal window 
rather than using the raw data which depend on classifying 
every single data point. Using the features, rather than the raw 
data, leads to reduce the effects of noise and also reducing the 
computational load of classification algorithms. Standard 
features are divided into time and frequency domain. 
Janidarmian et al. [25] stated that the time or frequency domain 
and heuristic features are the most effective in the context of 
activity recognition. Table II displays the details of those 
features. 

TABLE II. LIST OF FEATURES 

Feature Description Feature Description 

Mean       ∑   
    Skewness 

     ∑(     )  
    

Minimum    (         ) Kurtosis 
     ∑(     )  

    

Maximum    (         ) Signal Power ∑    
    

Median       (         ) Root Mean Square √  ∑    
    

Stadard Deviation    √  ∑(     )  
    Peak Intensity 

                                                           
Coefficients of 
Variation 

     Person’s Correlation Cofficient 
   (   )     

Peak-to-Peak 
Amplitude 

   ( )     ( ) Inter-axis Cross-Correlation 
∑ (     )    (     )∑ (     )     ∑ (     )      

Percentiles           (    )  (   )         Autocorrelation  ( )   (   )   ∑(    )   
   (      )   

Interquartile Range          (    )            (    ) Trapezoidal Numerical 
Integration 

∫  ( )                                           
  

Pitch Angle       (   √      ) Signal Magnitude Area 
  ∑(|  |  |  |  |  |) 
    

Roll Angle       (   √      ) Signal Vectot Magnitude 
  ∑√            
    

Median crossings 

          ( )    ∑   (       ) 
       (   )  *     (   )         (   )   + Power Spectral Density 

  ∑(          )  (          )    
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Fig. 1. Human Activity Recognition Flow. 

Classification: It is the final phase of the human activity 
recognition process. The trained classifiers are used for 
classifying the various activities. The classification can be done 
either offline or online. A machine learning tool build on 
powerful processing may be used offline processing and the 
mobile phone itself or the cloud server may be used in the 
online processing. 

III. ONLINE VS. OFFLINE HAR SYSTEMS 

In the first, the training data are used for training the 
classifiers [25]. The human activities classifier can be trained 
online or offline as well as the classification process itself can 
be done online or offline. Offline classification (non-real-time) 
is sufficient solution when the user does not find an urgent 
need to receive immediate feedback. In the other side real-time 
classification (online) assists user for receiving real-time 
feedback. Liang et al. [24] proposed a framework for activity 
recognition using offline data training and online classification. 

A. Online vs. Offline Training Phase 

Online training means that the classifiers are trained on the 
hosting device, such as mobile, cloud, or Raspberry Pi, in real 
time. On the other hand, on offline training, a desktop machine 
is usually used for training the classifiers beforehand. As well 
as the raw data of the activities, which is collected by sensors, 
is stored and in later time these data are used for training the 
classification model as shown in Fig. 2. In the online training 
phase the raw data are not stored for later use but instead they 
are immediately processed for training to save time. 

According to our readings, as shown in relevant references 
in Fig. 2, most of researchers prefer offline training. Only 8 
out of all 45 studies were using online training in real time. 
One of the reasons for using offline method is that the training 
process is computationally expensive. 

 

Fig. 2. Two Approaches of Training Phase. 

B. Online vs. Offline Classification 

In the final stage of classification, there are two ways to 
classify the activity for a specific label, which are online or 
offline, according to the training data. The most semi-
supervised classification has been implemented and evaluated 
offline [2]. As well as there are more studies for supervised 
classification online and offline. All studies of the online and 
offline classification, which are described in details in the 
following two sections, are summarized in Fig. 3. 

Fig. 3 shows the body sensors positions and related sensor 
type, device type, classifier type, and reference noted. The 
circles in Fig. 3 display two pieces of information, the types of 
devices which are used and the interior sensors. For example 
point 6 (the palm of the right hand) have three shapes which 
means some of the studies were used in this position for 
classification human activities by using three devices that are 
described in the following: 

a) A red circle contains (A): Smartphone was used for 
sensing the accelerometer data in the reference [26] and [27]. 
The reference [26] used NB and KNN for classification 
human activities but the reference [27] used logitBoost 
classifier. 

b) A red circle contains (A and G): Smartphone was 
used to collect Accelerometer and Gyroscope data for 
classifying human activities. 

c) A green circle contains (A): WAS device was used 
for collecting the Accelerometer data. 

The lines in Fig. 3 display two pieces of information, the 
point number and the location. For example point 20 has a red 
line which means this point is in a position on the back of the 
body. But when the line is a black color this means the point is 
in the front of the body position. The point 18 has a yellow line 
because the studies used the side pocket for holding the 
devices. The back pockets (point 10 and 11) were used in the 
same studies; therefore, their lines are merged. 

Online Offline 

Sensors data 

Pre-processing 

Training Online 

Classification 

Sensors data 

Pre-processing 

Training Offline 

Classification 

Relevant Ref. 

[28] [55] [95-99]  [1] [24] [26] [57-
58][60-71] [100-119]  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

88 | P a g e  
www.ijacsa.thesai.org 

 

Fig. 3. Locations and Specifications of Different Sensors Devices, Interiors Sensors, and Classifiers which used in the HAR Studies. 
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1) Online classification: Online HAR systems are needed 
in the healthcare field for continuously monitoring to the 
patients with physical or mental pathologies in order to their 
protection, safety, and recovery. A lot of studies are based on 
giving real-time feedback for assisting people; some of them 
are summarized in Table III. In this survey, 20 studies in 
Table III were compared for displaying the activities which 
were classified, the classifier that was used, and accuracy 
which was achieved by using that classifier, the window 
length, overlap, and latency time of feedback, the type of 
training, reference of used dataset, and finally the type of 
devices which were used in collecting data. 

According to our reading, there are 14 studies out of 20 
focused to recognize the physical daily activities such as 
walking, running, sitting, and standing. One study [28] from 20 
reviewed studies depends on online training. The mobile phone 
has become more robust in the available resources, such as 
battery, memory, CPU. 

In online activity recognition, the mobile phone is used 
locally for collecting the data, pre-processing and 
classification; therefore, there are 12 out of 20 reviewed studies 
using the smart phone. 

TABLE III. ON-LINE CLASSIFICATION OF HAR 

Ref Activities Classifier Accuracy Wind. length Overlap Training DS Device 
Latency 

time 

[55] AMB (2),HOS(1),TRSP(1) RF 89.6 ± 3.9% 13 S 90% offline  WAS  

[56] 
AMB(5),DLY(4), HOS(3), 
TRSP(1), EXF(1) 

SVM 95% 12.8 s 50% offline  Wocket 4s 

[57] KIT(8) HMM 85.6% - 75% offline - 
CogWatch 
, Kinect 

1s 

[26] AMB(4), EXF(1) NB, KNN 78%, 69% 10s - offline  Smartphone - 

[58] AMB(3), TRSP(1) NB 97% 1s - offline - Smartphone  

[59] AMB(4) NB,KNN 47.6%,92% 1s  offline  Smartphone  

[60] 
KIT(6),SELF(9), DLY(8), 
HOS(3)  

KNN+DTW 18% 1s - offline  IMOTE2,RFID 5.7s 

[61] AMB(7), TRSP(1) DT 80% 4.2S 50% offline  5 WAS  

[62] AMB(6) KNN 80% - - offline  Smartphone  

[63] AMB(4), TRSP(2) KNN, QDA 94.9%, 95% 7.5S - offline  Smartphone  

[64] 
AMB(4), TRSP(1), DLY(3), 
HOS(1), KIT(1) 

NB, NN, DT, 
RF, SVM, KNN 

The better 
MLP and RF 

6S - offline 
[20] 
[72] 

Smart phone 
Smart watch 

 

[28] 
 

AMB(2), TRSP(1) 
RF, NB, KNN, 
SVM 

90.3%, 79% 
83.7%, 70.2% 

4s  online  Smartphone 2S 

[65] AMB(6) 
DNN,KNN,RF 
SVM, NN, DT. 

98.6%, 97.6% 
96%, 95.4%, 
95.9%, 91.3% 

8s 50% offline  Smart phone 133ms 

[66] AMB(3) DT 92.6% 5s 50% offline  Smartphone 395 ms 

[67] AMB(4), TRSP(2) SVM 90% 3.5 s  offline  Smartphone  

[68] AMB(5), EXF(1) DT 92.3% 3S - offline  Smartphone  

[69] AMB (3) RBM 93% 2S 50% offline [73] smartwatch  

[70] AMB(5), EXF(1) CNN 97% 3S - offline 
[23] 
[74] 

Smart phone 3S 

[71] AMB(5) DT 90.8% 1s - offline - WAS - 

[24] AMB(7), TRSP(2), EXF(1) DT 85% variable - offline  smartphone  
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2) Offline classification: When the online activity 
recognition (real-time activity recognition) is not critical for 
the application, the offline recognition is the best choice. In 
the offline classification, the user doesn’t wait for the 
feedback of the recognition system in real-time. The user 
receives the results of the recognition after offline analysis and 
classification. For example, if the goal is monitoring the 
elderly person’s activities of daily living [29], the data were 
collected during the day using sensors and then at the end of 
the day, it can be uploaded to a server for analysis and sending 
feedback to care manager or relatives etc.  A lot of researchers 
use offline HAR system as a research base for examining their 
new techniques that are proposed to be used in the designing 
of an efficient HAR system, such as the techniques which are 
proposed for data collecting, pre-processing, feature 
extraction, or classification. 

For example in [30], the offline classification was used for 
comparing seven classifiers in order to find the optimal one. 
Also in [31], a new classifier was developed for achieving 
appropriate accuracy in the child’s behaviors detection. Some 
of researchers used offline classification for studying the 
efficiency of using accelerometer alone or to be combined with 
another sensor in the data collection phase. Studies included in 
our survey mainly used triaxial acceleration signal, while some 
of them used additional signals to improve recognition 
accuracy such as [29], [32-34]. 

The acceleration signal, which is recorded from the object, 
depends on the location of sensor and the activity being 
performed. In general, the magnitude of acceleration signal 
increase from the head to ankle. Vertical accelerations 
produced during level walking range from −2.9 m/s2 to 7.8 
m/s2 at the lower back, to 16.7 m/s2 to 32.4 m/s2 at the tibia 
[51]. What is an appropriate position for a single tri-axial 
accelerometer to detect the kind of activities? This is an open 
question and some of the researchers tried to answer that 
question [52] [53]. Cleland et al. [52] collected the data from 

six various locations on the body, (lower back, chest, left wrist, 
left hip, left thigh, and left foot). SVM is used to determine 
which position is best to place accelerometers for detecting the 
activities. 

The training dataset affects the classification efficiency; 
therefore, some of the researchers used offline classification to 
focus on developing a methodology to extract the appropriate 
candidates for building the training dataset such as in [54]. 
Davila et al. proposed a new method to classify human 
activities (e.g., sit, walk, lie and stand) by using a data-driven 
architecture which depends on an iterative learning framework. 
Their suggested solution optimizes the performance of the 
model by selecting the most appropriate training dataset for 
non-linear multi-class classification that makes use of an SVM 
classifier, while also reducing the computational load. They 
achieved 76.1% when using WAV-F in the pre-processing 
phase. As well as they tried to improve the accuracy and 
reached to 81.9% when using band-pass Finite Impulse 
Response (FIR) with a WAV-F [36]. Table IV displays the 
activities, Pre-processing and feature extraction techniques, 
classifier and its accuracy, and devices which are used in the 
activity recognition for some of offline researches. 

IV. TRADITIONAL AND DEEP LEARNING TECHNIQUES 

In recent years the intelligent machine techniques is 
advanced very quickly such as smartphones, smartwatch, and 
wearable sensors. Those devices can now use applications 
provided with Artificial Intelligence for predicting human 
activity, depending on the raw accelerometer sensor signal. 
The primary goal of HAR is using machine learning models 
with high accuracy when predicting the human activity. Many 
traditional learning techniques like Decision Tree, Random 
Forest, AdaBoost, Support Vector Machine, K-nearest 
neighbor, Naïve Bayes, etc. achieved good accuracy. However, 
deep learning is highly used in HAR. After studying a lot of 
researches we found that there are three different strategies for 
building machine learning model as shown in Fig. 4. 

 

Fig. 4. General Structure of Traditional and Deep Learning Models. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 10, No. 3, 2019 

91 | P a g e  
www.ijacsa.thesai.org 

 Traditional model flow: The data is collected by the 
sensors, extracting the features, then using one of 
traditional techniques, and finally extract the activity 
label. 

 Deep learning model flow: Collecting the data, 
extracting the features, then using one of deep learning 
technique, and finally extract the activity label such as 
in [32] [34] [49] 

 Deep feature extraction and model building flow: 
Collecting the data, then deep learning technique for 
automatic extracting features, and finally using softmax 
layer such as in  [35] [37-39] [45] to predict the label of 
activity. 

Arifoglu et al. [86] compared three variants of Recurrent 
Neural Networks, Which is one of deep learning algorithm, 
With 5 traditional techniques, SVMs, Naïve Bayes, HMMs, 
Hidden Semi-Markov Models, and Conditional Random Fields 
(CRFs), on public dataset collected by van et al. [87]. The data 
capture daily-life activities such as sleeping, cooking, leaving 
home, etc. using sensors placed at the homes in less than a 
month. The results obtained indicate that deep learning is 
competitive with those traditional methods. 

By investigating 48 different research, it is found 56.25% 
of researches focused on using traditional algorithms for 
classification, some of those researches adapting the traditional 
algorithm for achieving high accuracy, 33.33% using deep 
learning, and 10.4% using algorithms (deep learning or/and 
traditional) for examining their proposed system but they 
didn’t focus on the algorithm  such as in [33][26]. Maekawa et 
al. [33] compared two traditional algorithms, AdaBoost and 
DT, for examining the efficiency of classifier when collecting 
the data from heterogeneous sensors. Hayashi et al. as well as 
Hammerla et al. [41] proposed a new method that called the 
empirical cumulative distribution function (ECDF) to 
representing sensor data for improving the efficiency of feature 
extraction phase. Ayu et al. [26] proposed a system for real-
time activity recognition and compared two traditional 
classifiers (NB and KNN) for exploring the influence of 
training data size on recognition accuracy. Nhac et al. [28] 
comparing four traditional classifiers (RF, NB, KNN, SVM) 
for examining their proposed Mobile Online Activity 
Recognition System (MOARS) to automatically recognize 
several activities of smartphone users. Kwapisz et al. [23] 
focused on developing a public dataset that is collected with 
the smartphone for human activity recognition. DT, MLP, and 
Logistic Regression are compared for testing the quality of 
their collected dataset. The average accuracy of all traditional 
algorithms, which are listed in Table III and Table IV, is 

displayed in Fig. 5 as well as the frequency of applying each 
algorithm. The algorithm frequency means the number of using 
algorithm. 

The most frequently traditional classifier that is used in 
those studies is KNN as illustrated in Fig. 5. KNN may be used 
more frequently for classifying the researcher’s proposed 
system or just for comparing with the main classifier. 
However, the frequency (the number of papers that used KNN 
classifier) of applying KNN reached 90.1%, its average 
accuracy is 75.48%. QDA and SR achieved high average 
accuracy, 95% and 96.1% respectively, in spite of the number 
of papers that used them are small. Some of researchers 
developed a new classifier based on combining different 
traditional classification algorithms such as in [27] [60] [75] 
and that is called “Hybrid T”. Neural networks are a powerful 
biologically-inspired programming paradigm which enables a 
computer to learn from observational data and Deep learning, a 
powerful set of techniques for learning in neural networks. 
Neural network (NN) achieved accepted average accuracy 
93.23% as shown in Fig. 5. 

Deep learning has various architectures such as DBN [37] 
[65] [69], RNN [43], CNN [38-40] [45] [49] [50] [70], etc. 
Therefore, Fig. 6 displayed the average accuracy of all kinds of 
deep learning architectures and its frequency in this study. It is 
found that the average accuracy of all deep learning 
architectures are mostly close however the most frequently 
used is CNN. 

According to this study, the overall average accuracy of 
traditional machine learning algorithms is 83.3%, which is less 
than the average accuracy of deep learning algorithms that can 
reach 94.9%, although the number of studies used traditional 
machine algorithms are more than those used deep learning.  

Traditional machine learning algorithms are typically 
linear, in that they can be represented by only one node that 
linearly transforms input to output. Previously called artificial 
neural networks, deep learning uses multiple nodes, organized 
like the neural networks to model how human brains work. The 
more nodes and layers in a neural network, the more 
sophisticated its learning capabilities can become. Although 
people still use the term “neural networks”, today deep 
learning networks represent how information flows across 
nodes which are like how information in the human brain flows 
across neurons. In the recent years, researches tend to use deep 
machine learning rather than traditional as illustrated in Fig. 7. 

According to all studies investigated in this paper, using 
deep learning appears in the year 2014 till 2018. After 2014 the 
using deep learning in activity recognition is more than using 
traditional algorithms up to now. 
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TABLE IV. OFF-LINE CLASSIFICATION OF HAR 

Ref Activities Pre-processing Feature Extraction classifier Accuracy Device DS 

[35] AMB(5),SELF(2),DLY(5),KIT(1) - NNMF AE Precision 99.6% WAS  
[46] 
 

[36] AMB(4) FIR, WAV-F PCA, RPY, NAC SVM 81.9% 12 WAS [78] 

[32] DLY(6),HOS(1), KIT(1), SELF(1) MED-F, SPINT 
MFCC, RMS, ZCR, MEN, 
VAR, ENG, ETP, CCO 

DNN,SVM 
DT,GMM, KNN 

f-measure 
92%,86% 
85%,77%,63% 

Smartphone  

[42] AMB(4),KIT(3), HOS(1),EXF(1) W-SEG Auto-FE Hybrid D F1 score 91% WAS [79] 

[23] AMB(4), EXF(1) W-SEG 
AVG,STD,AAD,ARA, 
TBP, BD 

DT, LR, NN 
85.1%,75.1%, 
91.7% 

Smartphone  

[29] SELF(4),HOS(2),DLY(1) - 
NAM, AVG, MIN, MAX, 
VAR  

SVM F-measure (91.4%) Smartphone  

[33] KIT(7),DLY(1),HOS(1),SELF(1) - 
MEN, ENG, FETP 
, FF 

AdaBoost, DT 
Precision 
58.1%,75% 

WAS in 
wrist 

 

[34] DLY(5),KIT(1),SELF(1) W-SEG 
MEN, VAR, ENG, 
FENT,CCO 

DNN, SVM, 
DT,GMM, KNN 

91.7%,86% 
85%,81.5%,62% 

Smartphone 
 
[80] 

[54]  AMB(4) WAV-F PCA , RPY, NAC SVM 76.1% 13 WAS [78] 

[53] 
AMB(3),DLY(3),EXF(2),HOS(2),KIT
(1),SELF(1),TRSI(2),TRSP(1) 

 VAR,ENT,FF KNN Precision 70% 6 WAS  

[27] AMB(5) LP-F 
MEN,TBP, APF, VAPF, 
RMS, SD, MIN 

NN+ SVM, 
LogitBoost. 

5819% Smartphone  

[46] AMB(4), DLY(2), KIT(1) MED-F 4GR, $AC DTW TN (81.8%) WAS  

[75] AMB(5),TRSP(1), EXF(1) - 
MEN,VAR,SKW,KUR,PF
P, SPF 

Hybrid T 89% WAS  

[43] AMB(5) W-SEG - RNN 96.7% Smartphone [81] 

[44] AMB(5) No-F, W-SEG 
SAE, DAE , PCA, FFT, 
STM 

SVM 92% Smartphone [81] 

[76] AMB(4) - AUTO-FE KNN 65% 12 WAS  

[47] AMB(7),EXF(4),TRSP  
MEN, MAD, SKW, and 
CCO,CPCO, APF 

DBN, DTW, LSM, 
KNN, SVM 

99.3%,83.2%,89.6
%,98.7%,98.8% 

5 WAS 
 

[82] 

[48] AMB(6), EXF(1) W-SEG 
MEN, VAR, CCO, ENT, 
ZCR,FOD,MOI, EGV 

SPR,NB, KNN,SVM 
96.1%,89.4%,91.3
%,94.8% 

WAS  

[37] AMB(4), EXF(1) W-SEG SPEC DBN 98.23% Smartphone [23] 

[45] AMB(3), EXF(1) W-SEG  CNN 96.88% Smartphone [83] 

[50] AMB(5), EXF(1) W-SEG skip feature extraction CNN 93.8% Smartphone  

[49] AMB(4) LP-F, SMO-F MEN, VAR CNN,KNN 85.5%,80% WAS [78] 

[38] AMB(5), TRSP(1) W-SEG SPEC CNN 95.1% Smartphone [84] 

[39] AMB(5) W-SEG DFT CNN 95.18% Smartphone [81] 

[77] AMB(6), EXF(1), DLY(1) NORM MEN, VAR, ENT 
LSM,SVM, ANN, 
DT,KNN 

95.6%,92.1%,92.9
%,91.9% 

WAS [85] 

[40] AMB(5), TRSP(1) W-SEG SPC and SHF CNN 95.7% Smartphone [84] 

[41] AMB(4) - ECDF KNN, DT 
F-measure 
0.62,0.43 

12 WAS [78] 

[52] AMB(5), TRSI(1) W-SEG 

MEN, AVG, SDs, AVG-
SD, SKW, AVG-SKW 
,KUR, AVG-KUR, ENG, 
AVG-ENG, CCO 

SVM 96.6% 6 WAS  
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TABLE V. LIST OF ABBREVIATIONS AND ACRONYMS 

4-Dimensional Features,  Gravity 
(Gx, Gy, Gz, K) 

4GR Hidden Markov Model HMM Statistical Metrics STM 

4-Dimensional Features, Body 
Acceleration (Bx, By, Bz, K) 

4AC Household Activities HOS Support Vector Machine SVM 

Ambulation AMB Hybrid Deep Hybrid D The Norm Of The Axial Components NAC 

Auto-Encoder AE Hybrid Traditional Hybrid T Time Between Peaks TBP 

Automatic Feature Extraction Auto-FE 
Kinematics Features, Such 
As Roll, Pitch, Yaw  

RPY Transitional Activities TRSI 

Average AVG Kitchen Activities KIT Transportation TRSP 

Average Absolute Difference AAD K-Nearest Neighbour KNN Variance VAR 

Average Energy  AVG-ENG Kurtosis KUR Variance Of APF VAPF 

Average Kurtosis   AVG-KUR Least Square Method LSM Wavelet Filter WAV-F 

Average Of Peak Frequency APF Logistic Regression LR Window Segmentation W-SEG 

Average Resultant Acceleration ARA Low Pass Filter LP-F Zero-Crossing Rate ZCR 

Average Skewness  AVG-SKW Maximum  MAX Restricted Boltzmann Machine RBM 

Band-Pass Finite Impulse Response  FIR Mean MEN Root Mean Square  RMS 

Binned Distribution BD Mean Absolute Deviation MAD Self-care Activities SELF 

Cepstrum Coefficients CPCO Median MED Shallow Features SHF 

Convolution Neural Network CNN Median Filter MED-F 
Signal Power In Different Frequency 
Bands 

SPF 

Correlation Coefficients CCO 
Mel Frequency Cepstral 
Coefficients 

MFCC Skewness SKW 

Daily Activities DLY Minimum MIN Smoothing Filter SMO-F 

Decision Tree DT Movement Intensity MOI Sparse Representation SPR 

Deep Belief Networks DBN Naïve Bayes NB Spectrogram Representation SPEC 

Discrete Cosine Transform DCT Namely NAM Spline Interpolation SPINT 

Discrete Fourier Transform DFT Neural Network NN Standard Deviation STD 

Dynamic Time Wrapper DTW Noise Filter No-F Frequency Entropy FETP 

Eigenvalues Of Dominant Directions EGV 
Non-Negative Matrix 
Factorization 

NNMF Average Standard Deviation over 3 axes AVG-SD 

Energy ENG Normalization NORM Wearable Accelerometer Sensor WAS 

Entropy  ETP 
Power Of The Frequency 
Peak  

PFP Recurrent Neural Network RNN 

Exercise/Fitness EXF Power Spectral Density PSD Gaussian Mixture GMM 

Fast Fourier Transform Coefficients FFTC 
Principle Component 
Analysis 

PCA Random Forest RF 

First-Order Derivative FOD 
Quadratic Discriminant 
Analysis 

QDA Frequency Features FF 
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Fig. 5. Traditional Classifiers: Average Accuracy and Frequency 
Percentage. 

 

Fig. 6. Deep Learning Models: Average Accuracy and Frequency 
Percentage. 

 

Fig. 7. Traditional and Deep Learning Algorithms used Per Year. 

V. ISSUES AND CHALLENGES 

Some of various sensors are used to collect the raw data for 
activities recognition. There are three categories of sensors: 
video sensors [8-11], environmental-based sensors [3-8], and 
wearable sensors. Camera is the video sensor which is located 
in the specific places. RGB camera received less focus in HAR 
research, probably because of its tradition in scene capture and 
Human movement in 3D space [88]. As well as identifying the 
human from the image requires more constraints because the 
process needs the high machine processing [89]. Therefore, the 
quality of the real-time HAR system should be affected [90]. 

The wearable sensor systems should deal with occlusion 
and restriction challenges that happen in HAR system which 
uses RGB camera. However, the main drawback of the 
wearable sensor is the accuracy of recognition. Because the 

HAR system, which based on a wearable sensor, needs to the 
subject for wearing and attaching with several sensors on the 
different body parts. That is too much of hassle, uncomfortable 
for the users. As well as VO et al., [91] mentioned that the 
quality of HAR system, which based on wearable sensors, 
could not be effective because the subject can forget to use the 
dedicated sensor. 

The location of wearable sensor or smartphone is more 
sensitive because it effects on the accuracy of the recognition. 
Reading raw data of accelerometer, which is embedded in the 
smartphone or wearable sensor, rely on the position and the 
orientation of the sensor on the subject's body. For example, 
the moving data reading is totally different when a user 
walking while holding a phone in his/her hand or pocket. 
Therefore many of the research faced this issue in their attempt 
to find the optimal solution [52]. 

Online HAR systems require continuous sensing and 
updating the classification model and both of them are energy 
consuming. Updating the data online may require significant 
computing resources (e.g., mobile phone memories). In 
general, various activities have different sampling frequency. 
There is a trade-off between sampling rate (which affects 
quality of feature extraction) and the efficiency of recognition. 
Ustev et al. [92] attempted to reduce both computing energy 
and resource cost by selecting the optimal sampling frequency 
and classification features. This enabled him to remove the 
calculation of time-consuming and frequency-domain features. 
Online classification system main concern is time consumed on 
the process as endpoint user is expecting an instant result. As 
for Offline systems are more concerned with processing power. 
Offline classification systems depends on the processing power 
of the setup in hand which - in case of mobile devices - very 
weak, while in Online systems classification is done on high 
processing servers that enables quick classification and instant 
result to the endpoint user. 

In traditional machine learning, the features have to be 
extracted from the raw sensor data by any domain expert to 
reduce the complexity of the data as well as making the 
patterns more clearly for learning algorithm. Deep learning try 
to learn high-level features from the data in an incremental way 
and that is the major advantage when using deep learning 
algorithms. Therefore there is no need for domain expertise 
and hard-core feature extraction. Regarding problem-solving 
approach, machine learning techniques break the problem into 
different parts to be solved first then their results are combined 
at the final stage while deep learning aims to solve the problem 
end to end. For example, for a multiple object detection 
problem, Deep Learning techniques like Yolov2 system [93] 
takes the image as input and provide the location and name of 
objects at the output. In the other side machine learning 
algorithms like SVM, a bounding box object detection 
algorithm is required first to identify all possible objects to 
have the specific object as input to the learning algorithm in 
order to recognize relevant objects. 

High-end machines are required for applying deep learning 
and that is the opposite requirements of traditional machine 
learning algorithms. The important part of executing deep 
learning is GPU which its algorithms take a long time because 
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there is a large number of parameter. For example Popular 
Deep Residual Networks algorithm takes about two weeks to 
train completely from scratch [94] while the training of 
traditional Machine Learning algorithms takes few seconds to 
few hours. In the testing phase, the scenario is completely 
opposite. Deep learning algorithm takes much less time to run 
in test time whereas, if you compare it with KNN (a type of 
traditional machine learning algorithm), testing time is 
increasing whilst the size of data is increasing. Although this is 
not applicable to all machine learning algorithms, as some of 
them have small testing times. 

VI. CONCLUSION 

This paper surveys the state-of-the-art in human activity 
recognition based on measured acceleration components. We 
stated the general structure of activity recognition system 
online and offline, traditional and deep learning machine 
learning algorithms. Moreover, those studies focus on 
recognizing the number of activities and different classification 
methods used for the recognition process. Forty-eight 
researches are qualitatively compared in regards to the 
activities, devices that are used, learning models, dataset, and 
recognition accuracy. Finally, we discuss the different 
challenges and issues of these studies. As well as this survey 
has shown that recently deep learning was used more than 
traditional machine learning, it also showed that CNN deep 
learning is mostly used; even though RNN [43] and AE [35] 
achieved a satisfying accuracy which is higher than 96%. 
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