
International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

28

Survey on Improved Scheduling in Hadoop MapReduce

in Cloud Environments

B.Thirumala Rao
Associate Professor

Dept. of CSE
Lakireddy Bali Reddy College of Engineering

Dr. L.S.S.Reddy
Professor & Director

Dept. of CSE
Lakireddy Bali Reddy College of Engineering

ABSTRACT

Cloud Computing is emerging as a new computational
paradigm shift. Hadoop-MapReduce has become a powerful
Computation Model for processing large data on distributed
commodity hardware clusters such as Clouds. In all Hadoop

implementations, the default FIFO scheduler is available
where jobs are scheduled in FIFO order with support for other
priority based schedulers also. In this paper we study various

scheduler improvements possible with Hadoop and also
provided some guidelines on how to improve the scheduling
in Hadoop in Cloud Environments.

Keywords

Cloud Computing, Hadoop, HDFS, MapReduce

1. INTRODUCTION
Cloud computing [1] refers to the use of shared computing
resources to deliver computing as a utility, and serves as an
alternative to having local servers handle computation. Cloud
computing groups together large numbers of commodity

hardware servers and other resources to offer their combined
capacity on an on-demand, pay-as-you-go basis. The users of

a cloud have no idea where the servers are physically located
and can start working with their applications. This is the
primary advantage of cloud computing which distinguishes it
from grid or utility computing. The primary concept behind
Cloud Computing isn't a new idea. John McCarthy within the
sixties imagined that “processing amenities is going to be
supplied to everyone just like a utility”. The word “cloud” has
already been utilized in numerous contexts such as explaining

big ATM systems within the 1990s. Nevertheless, it had been
following Google’s BOSS Eric Schmidt utilized the term to
explain the company type of supplying providers over the
Web within 2006. Since then, the term “cloud computing” has
been used mainly as a marketing term. Lack of a standard
definition of cloud computing has generated a fair amount of
uncertainty and confusion. For this reason, significant work

has been done on standardizing the definition of cloud

computing. There are over 20 different definitions from a
variety of sources. In this paper, we adopt the definition of
cloud computing provided by The National Institute of
Standards and Technology (NIST), as it covers, in our
Opinion, all the essential aspects of cloud computing:

NIST definition of cloud computing[2]: “Cloud computing

is a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal

management effort or service provider interaction”.

Cloud computing concept is motivated by latest data demands
as the data stored on web is increasing drastically in recent

times. The computing resources (e.g. servers, storage and
services) in a cloud can automatically be scaled up to meet the
dynamic demands of users by its virtualization and distributed

system technology. In addition to that, it also provides
redundancy and backup features to overcome the hardware
failure problems. In cloud environments data processing has

become an important research problem. As cloud is a proper
distributed system platform, parallel programming model like
MapReduce [4] is widely used for developing scalable and
fault tolerant applications deployable on cloud. Rest of the
paper is organized as follows: In section 2 Hadoop is

summarized and various current schedulers are discussed in
section 3. Hadoop scheduler improvements are discussed in
section 4. Finally we conclude with discussion of future work

in section 5.

2. HADOOP
Hadoop has been successfully used by many companies
including AOL, Amazon, Facebook, Yahoo and New York
Times for running their applications on clusters. For example,
AOL used it for running an application that analyzes the
behavioral pattern of their users so as to offer targeted

services. Apache Hadoop [3] is an open source
implementation of the Google’s MapReduce [4] parallel
processing framework. Hadoop hides the details of parallel

processing, including data distribution to processing nodes,
restarting failed subtasks, and consolidation of results after
computation. This framework allows developers to write
parallel processing programs that focus on their computation
problem, rather than parallelization issues. Hadoop includes

1) Hadoop Distributed File System (HDFS): a distributed file
system that store large amount of data with high throughput
access to data on clusters and 2) Hadoop MapReduce: a

software framework for distributed processing of data on
clusters.

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

29

Fig1: Hadoop Distributed File System [6]

2.1 HDFS- Distributed file system
Google File System (GFS) [5] is a proprietary distributed file

system developed by Google and specially designed to
provide efficient, reliable access to data using large clusters of

commodity servers. Files are divided into chunks of 64 MB,
and are usually appended to or read and only extremely rarely
overwritten or shrunk. Compared with traditional file systems,
GFS is designed and optimized to run on data centers to
provide extremely high data throughputs, low latency and
survive individual server failures. Inspired by GFS, the open

source Hadoop Distributed File System (HDFS) [6] stores
large files across multiple machines. It achieves reliability by
replicating the data across multiple servers. Similarly to GFS,

multiple replicas of data are stored on multiple compute nodes
to provide reliable and rapid computations. Data is also

provided over HTTP, allowing access to all content from a
web browser or other types of clients. HDFS has master/slave
architecture.

As shown in Fig.1 HDFS consists of a single NameNode and

multiple DataNodes in a cluster. NameNode is responsible for

mapping of data blocks to DataNodes and for managing file
system operations like opening, closing and renaming files
and directories. Upon the instructions of NameNode,
DataNodes perform block creation, deletion and replication of
data blocks. The NameNode also maintains the file system
namespace which records the creation, deletion and
modification of files by the users. NameNode decides about

replication of data blocks. In a typical HDFS, block size is

64MB and replication factor is 3 (second copy on the local
rack and third on the remote rack).

2.2 Hadoop MapReduce Overview
MapReduce is one of the parallel data processing paradigm

designed for large scale data processing on cluster-based
computing architectures. It was originally proposed by Google
to handle large-scale web search applications. This approach

has been proved to be an effective programming approach for
developing machine learning, data mining, and search
applications in data centers. Its advantage is that it allows
programmers to abstract from the issues of scheduling,
parallelization, partitioning, replication and focus on

developing their applications. As shown in Fig.2 Hadoop
MapReduce programming model consists of data processing
functions: Map and Reduce. Parallel Map tasks are run on

input data which is partitioned into fixed sized blocks and
produce intermediate output as a collection of <key, value>
pairs. These pairs are shuffled across different reduce tasks
based on <key, value> pairs. Each Reduce task accepts only
one key at a time and process data for that key and outputs the

results as <key, value> pairs. The Hadoop MapReduce

architecture consists of one JobTracker (Master) and many
TaskTrackers (Workers). The JobTracker receives job
submitted from user, breaks it down into map and reduce
tasks, assigns the tasks to Task Trackers, monitors the
progress of the Task Trackers, and finally when all the tasks

are complete, reports the user about the job completion. Each
Task Tracker has a fixed number of map and reduce task slots
that determine how many map and reduce tasks it can run at a
time. HDFS supports reliability and fault tolerance of
MapReduce computation by storing and replicating the inputs
and outputs of a Hadoop job. Since Hadoop jobs have to share
the cluster resources, a scheduling policy is used to determine
when a job can execute its tasks. Earlier Hadoop had a very

simple scheduling algorithm operates on First-in First-out
(FIFO) basis for scheduling users’ jobs by default. Later
significant amount of research took place in developing more
effective and environment-specific schedulers. All those
schedulers were discussed in the next section.

3. SCHEDULING IN HADOOP
The default Scheduling algorithm is based on FIFO where
jobs were executed in the order of their submission. Later on
the ability to set the priority of a Job was added. Facebook

and Yahoo contributed significant work in developing
schedulers i.e. Fair Scheduler [7] and Capacity Scheduler [8]

respectively which subsequently released to Hadoop
Community.

3.1 Default FIFO Scheduler
The default Hadoop scheduler operates using a FIFO queue.
After a job is partitioned into individual tasks, they are loaded

into the queue and assigned to free slots as they become
available on TaskTracker nodes. Although there is support for
assignment of priorities to jobs, this is not turned on by
default. Typically each job would use the whole cluster, so
jobs had to wait for their turn. Even though a shared cluster
offers great potential for offering large resources to many
users, the problem of sharing resources fairly between users
requires a better scheduler. Production jobs need to complete

in a timely manner, while allowing users who are making

smaller ad hoc queries to get results back in a reasonable time.

3.2 Fair Scheduler
The Fair Scheduler [7] was developed at Facebook to manage
access to their Hadoop cluster and subsequently released to
the Hadoop community. The Fair Scheduler aims to give

every user a fair share of the cluster capacity over time. Users

may assign jobs to pools, with each pool allocated a
guaranteed minimum number of Map and Reduce slots. Free
slots in idle pools may be allocated to other pools, while
excess capacity within a pool is shared among jobs. The Fair
Scheduler supports preemption, so if a pool has not received

Fig 2: Hadoop MapReduce

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

30

its fair share for a certain period of time, then the scheduler
will kill tasks in pools running over capacity in order to give
the slots to the pool running under capacity. In addition,
administrators may enforce priority settings on certain pools.
Tasks are therefore scheduled in an interleaved manner, based

on their priority within their pool, and the cluster capacity and
usage of their pool. As jobs have their tasks allocated to Task
Tracker slots for computation, the scheduler tracks the deficit
between the amount of time actually used and the ideal fair
allocation for that job. As slots become available for
scheduling, the next task from the job with the highest time
deficit is assigned to the next free slot. Over time, this has the
effect of ensuring that jobs receive roughly equal amounts of

resources. Shorter jobs are allocated sufficient resources to
finish quickly. At the same time, longer jobs are guaranteed to
not be starved of resources.

3.3 Capacity Scheduler
Capacity Scheduler [3] originally developed at Yahoo
addresses a usage scenario where the number of users is large,
and there is a need to ensure a fair allocation of computation

resources amongst users. The Capacity Scheduler allocates
jobs based on the submitting user to queues with configurable
numbers of Map and Reduce slots. Queues that contain jobs
are given their configured capacity, while free capacity in a
queue is shared among other queues. Within a queue,

scheduling operates on a modified priority queue basis with
specific user limits, with priorities adjusted based on the time
a job was submitted, and the priority setting allocated to that

user and class of job. When a Task Tracker slot becomes free,
the queue with the lowest load is chosen, from which the
oldest remaining job is chosen. A task is then scheduled from
that job. Overall, this has the effect of enforcing cluster
capacity sharing among users, rather than among jobs, as was
the case in the Fair Scheduler.

4. SCHEDULER IMPROVEMENTS
Many researchers are working on opportunities for improving
the scheduling policies in Hadoop. Recent efforts such as
Delay Scheduler [9], Dynamic Proportional Scheduler [10]
offer differentiated service for Hadoop jobs allowing users to

adjust the priority levels assigned to their jobs. However, this
does not guarantee that the job will be completed by a specific
deadline. Deadline Constraint Scheduler [11] addresses the

issue of deadlines but focuses more on increasing system
utilization. The Schedulers described above attempt to
allocate capacity fairly among users and jobs, they make no
attempt to consider resource availability on a more fine-
grained basis. Resource Aware Scheduler [12] considers the
resource availability to schedule jobs. In the following

sections we compare and contrast the work done by the
researchers on various Schedulers.

4.1 Longest Approximate Time to End

(LATE) - Speculative Execution
It is not uncommon for a particular task to continue to
progress slowly. This may be due to several reasons like–high
CPU load on the node, slow background processes etc. All
tasks should be finished for completion of the entire job. The
scheduler tries to detect a slow running task to launch another

equivalent task as a backup which is termed as speculative
execution of tasks. If the backup copy completes faster, the
overall job performance is improved. Speculative execution is
an optimization but not a feature to ensure reliability of jobs.
If bugs cause a task to hang or slow down then speculative

execution is not a solution, since the same bugs are likely to
affect the speculative task also. Bugs should be fixed so that
the task doesn’t hang or slow down. The default
implementation of speculative execution relies implicitly on
certain assumptions: a) Uniform Task progress on nodes b)

Uniform computation at all nodes. That is, default
implementation of speculative execution works well on
homogeneous clusters. These assumptions break down very
easily in the heterogeneous clusters that are found in real-
world production scenarios. Zaharia et al [13] proposed a
modified version of speculative execution called Longest
Approximate Time to End (LATE) algorithm that uses a
different metric to schedule tasks for speculative execution.

Instead of considering the progress made by a task so far, they
compute the estimated time remaining, which gives a more
clear assessment of a straggling tasks’ impact on the overall
job response time. They demonstrated significant
improvements by Longest Approximate Time to End (LATE)
algorithm over the default speculative execution.

4.2 Delay Scheduling
Fair scheduler is developed to allocate fair share of capacity to
all the users. Two locality problems identified when fair
sharing is followed are – head-of-line scheduling and sticky
slots. The first locality problem occurs in small jobs (jobs that
have small input files and hence have a small number of data

blocks to read). The problem is that whenever a job reaches
the head of the sorted list for scheduling, one of its tasks is
launched on the next slot that becomes free irrespective of

which node this slot is on. If the head-of-line job is small, it is
unlikely to have data locally on the node that is given to it.
Head-of-line scheduling problem was observed at Facebook
in a version of HFS without delay scheduling. The other
locality problem, sticky slots, is that there is a tendency for a
job to be assigned the same slot repeatedly. The problems

aroused because following a strict queuing order forces a job
with no local data to be scheduled.

To overcome the Head of line problem, scheduler launches a
task from a job on a node without local data to maintain
fairness, but violates the main objective of MapReduce that
schedule tasks near their input data. Running on a node that
contains the data (node locality) is most efficient, but when
this is not possible, running on a node on the same rack (rack

locality) is faster than running off-rack. Delay scheduling is a

solution that temporarily relaxes fairness to improve locality
by asking jobs to wait for a scheduling opportunity on a node
with local data. When a node requests a task, if the head-of-
line job cannot launch a local task, it is skipped and looked at
subsequent jobs. However, if a job has been skipped long
enough, non-local tasks are allowed to launch to avoid
starvation. The key insight behind delay scheduling is that

although the first slot we consider giving to a job is unlikely

to have data for it, tasks finish so quickly that some slot with
data for it will free up in the next few seconds.

4.3 Dynamic Priority Scheduling
Thomas Sandholm et al [10] proposed Dynamic Priority
Scheduler that supports capacity distribution dynamically
among concurrent users based on priorities of the users.

Automated capacity allocation and redistribution is supported
in a regulated task slot resource market. This approach allows
users to get Map or Reduce slot on a proportional share basis
per time unit. These time slots can be configured and called as
allocation interval. It is typically set to somewhere between 10

seconds and 1 minute. For example a max capacity of 15 Map

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

31

slots gets allocated proportionally to three users. The central
scheduler contains a Dynamic Priority Allocator and a Priority
Enforcer component responsible for accounting and schedule
enforcement respectively. This model appears to favor users
with small jobs than users with bigger jobs. However Hadoop

MapReduce supports scaling down of big jobs to small jobs to
make sure that fewer concurrent tasks runs by consuming the
same amount of resources.

To avoid starvation, queue blocking and to respond to user
demand fluctuations more quickly preemption is also
supported. In this mechanism task slots that were allocated
may be preempted and allocated to other users if they were

not used for long time. As a result of variable pricing

mechanism users to get guaranteed slot during demand
periods has to pay more. This scheme discourages the free-
riding and gaming by users. However, the Hadoop
MapReduce scheduling framework allows jobs to be split up
in finer grained tasks that can run and possibly fail and
recover independently. So the only thing the end users would
need to worry about is to get a good enough average capacity

over some time to meet their deadlines. This introduces the

difficulty of making spending rate decisions to meet the SLA
and deadline requirements. Possible starvation of low-priority
(low-spending) tasks can be mitigated by using the standard
approach in Hadoop of limiting the time each task is allowed
to run on a node. Moreover, this new mechanism also allows
administrators to set budgets for different users and let them
individually decide whether the current price of preempting

running tasks is within their budget or if they should wait until

the current users run out of their budget. The fact that Hadoop
uses task and slot level scheduling and allocation as opposed
to job level scheduling also avoids many starvation scenarios.
If there is no contention, i.e. there are enough slots available
to run all tasks from all jobs submitted, the cost for excess
resources essentially becomes free because of the work
conserving principle of this scheduler. However, the

guarantees of maintaining these excess resources are reduced.
To see why, consider new users deciding whether to submit

jobs or not. If they see that the price is high they may wait to
preempt currently running jobs, but if the resources are
essentially given out for free they are likely to lay claim on as
many resources they can immediately. We note that the
Dynamic Priority scheduler can easily be configured to mimic
the behavior of the other schedulers. If no queues or users

have any credits left the scheduler reduces to a FIFO
scheduler. If all queues are configured with the same share

(spending rate in our case) and the allocation interval is set to
a very large value the scheduler reduces to the behavior of the
static fair-share schedulers.

4.4 Deadline Constraint Scheduler
Deadline Constraint Scheduler [11] addresses the issue of

deadlines but focuses more on increasing system utilization.

Dealing with deadline requirements in Hadoop-based data
processing is done by (1) a job execution cost model that
considers various parameters like map and reduce runtimes,
input data sizes, data distribution, etc., (2) a Constraint-Based
Hadoop Scheduler that takes user deadlines as part of its
input. Estimation model determines the available slot based a
set of assumptions:

 All nodes are homogeneous nodes and unit cost of

processing for each map or reduce node is equal

 Input data is distributed uniform manner such that

each reduce node gets equal amount of reduce data
to process

 Reduce tasks starts after all map tasks have

completed;

 The input data is already available in HDFS.

Schedulability of a job is determined based on the proposed

job execution cost model independent of the number of jobs
running in the cluster. Jobs are only scheduled if specified
deadlines can be met. After a job is submitted, schedulability
test is performed to determine whether the job can be finished
within the specified deadline or not. Free slots availability is

computed at the given time or in the future irrespective of all
the jobs running in the system. The job is enlisted for
scheduling after it is determined that the job can be completed

within the given deadline. A job is schedulable if the
minimum number of tasks for both map and reduce is less
than or equal to the available slots. This Scheduler shows that
when a deadline for job is different, then the scheduler assigns
different number of tasks to TaskTracker and makes sure that

the specified deadline is met.

4.5 Resource Aware Scheduling
The Fair Scheduler [7] and Capacity Scheduler described
above attempt to allocate capacity fairly among users and jobs
without considering resource availability on a more fine-
grained basis. As CPU and disk channel capacity has been

increasing in recent years, a Hadoop cluster with
heterogeneous nodes could exhibit significant diversity in
processing power and disk access speed among nodes.

Performance could be affected if multiple processor-intensive
or data-intensive tasks are allocated onto nodes with slow
processors or disk channels respectively. This possibility
arises as the Job Tracker simply treats each Task Tracker node
as having a number of available task “slots”. Even the
improved LATE speculative execution could end up
increasing the degree of congestion within a busy cluster, if
speculative copies are simply assigned to machines that are

already close to maximum resource utilization.

Resource Aware Scheduling in Hadoop has become one of the
Research Challenges [14][15] in Cloud Computing.
Scheduling in Hadoop is centralized, and worker initiated.
Scheduling decisions are taken by a master node, called the

JobTracker, whereas the worker nodes, called TaskTrackers
are responsible for task execution. The JobTracker maintains
a queue of currently running jobs, states of TaskTrackers in a

cluster, and list of tasks allocated to each TaskTracker. Each
Task Tracker node is currently configured with a maximum
number of available computation slots. Although this can be
configured on a per-node basis to reflect the actual processing
power and disk channel speed, etc available on cluster
machines, there is no online modification of this slot capacity

available. That is, there is no way to reduce congestion on a
machine by advertising a reduced capacity. In this

mechanism, each Task Tracker node monitors resources such
as CPU utilization, disk channel IO in bytes/s, and the number
of page faults per unit time for the memory subsystem.
Although we anticipate that other metrics will prove useful,
we propose these as the basic three resources that must be
tracked at all times to improve the load balancing on cluster

machines. In particular, disk channel loading can significantly
impact the data loading and writing portion of Map and

Reduce tasks, more so than the amount of free space
available. Likewise, the inherent opacity of a machine’s
virtual memory management state means that monitoring page
faults and virtual memory-induced disk thrashing is a more
useful indicator of machine load than simply tracking free
memory.

International Journal of Computer Applications (0975 – 8887)

Volume 34– No.9, November 2011

32

Two possible resource-aware Job Tracker scheduling
mechanisms are: 1) Dynamic Free Slot Advertisement-Instead
of having a fixed number of available computation slots
configured on each Task Tracker node, this number is
computed dynamically using the resource metrics obtained

from each node. In one possible heuristic, overall resource
availability is set on a machine to be the minimum availability
across all resource metrics. In a cluster that is not running at
maximum utilization at all times, this is expected to improve
job response times significantly as no machine is running
tasks in a manner that runs into a resource bottleneck. 2) Free

Slot Priorities/Filtering- In this mechanism, cluster
administrators will configure maximum number of compute

slots per node at configuration time. The order in which free
TaskTracker slots are advertised is decided according to their
resource availability. As TaskTracker slots become free, they
are buffered for some small time period (say, 2s) and
advertised in a block. TaskTracker slots with higher resource
availability are presented first for scheduling tasks on. In an
environment where even short jobs take a relatively long time
to complete, this will present significant performance gains.

Instead of scheduling a task onto the next available free slot
(which happens to be a relatively resource-deficient machine
at this point), job response time would be improved by
scheduling it onto a resource-rich machine, even if such a
node takes a longer time to become available. Buffering the
advertisement of free slots allowed for this scheduling
allocation.

5. CONCLUSION & FUTURE WORK
Ability to make Hadoop scheduler resource aware is one the
emerging research problem that grabs the attention of most of
the researchers as the current implementation is based on
statically configured slots. This paper summarizes pros and
cons of Scheduling policies of various Hadoop Schedulers
developed by different communities. Each of the Scheduler

considers the resources like CPU, Memory, Job deadlines and

IO etc. All the schedulers discussed in this paper addresses
one or more problem(s) in scheduling in Hadoop.
Nevertheless all the schedulers discussed above assumes
homogeneous Hadoop clusters. Future work will consider
scheduling in Hadoop in Heterogeneous Clusters.

6. REFERENCES
[1] Cloud Computing on Wikipedia, en.wikipedia.org / wiki

/Cloudcomputing,

[2] NIST Definition of Cloud Computing v15,
csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-
v15.doc

[3] Apache Hadoop. http://hadoop.apache.org.

[4] J. Dean and S. Ghemawat. Mapreduce: Simplified data

processing on large clusters. OSDI ’04, pages 137–150,
2004

[5] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak
Leung.The Google file system. In 19th Symposium on
Operating Systems Principles, pages 29–43, Lake
George, New York, 2003.

[6] Hadoop Distributed File System,

http://hadoop.apache.org/hdfs

[7] Hadoop’s Fair Scheduler
http://hadoop.apache.org/common/docs/r0.20.2/fair_sche
duler.html

[8] Hadoop’s Capacity Scheduler:
http://hadoop.apache.org/core/docs/current/capacity_sche

duler.html.

[9] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma,

Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: a simple technique for achieving locality and
fairness in cluster scheduling. In EuroSys ’10:
Proceedings of the 5th European conference on
Computer systems, pages 265–278, New York, NY,
USA, 2010. ACM.

[10] Thomas Sandholm and Kevin Lai. Dynamic proportional
share scheduling in hadoop. In JSSPP ’10: 15th
Workshop on Job Scheduling Strategies for Parallel
Processing, April,2010

[11] K. Kc and K. Anyanwu, "Scheduling Hadoop Jobs to
Meet Deadlines", in Proc. CloudCom, 2010, pp.388-392.

[12] Mark Yong, Nitin Garegrat, Shiwali Mohan: “Towards a
Resource Aware Scheduler in Hadoop” in Proc. ICWS,
2009, pp:102-109

[13] M.Zaharia, A.Konwinski, A.Joseph, Y.zatz, and I.Stoica.

Improving mapreduce performance in heterogeneous
environments. In OSDI’08: 8th USENIX Symposium on
Operating Systems Design and Implementation, October

2008

[14] B.Thirmala Rao, N.V.Sridevei, V. Krishna Reddy,
LSS.Reddy. Performance Issues of Heterogeneous
Hadoop Clusters in Cloud Computing. Global Journal
Computer Science & Technology Vol. 11, no. 8, May
2011,pp.81-87

[15] V.Krishna Reddy, B.Thirumala Rao, LSS Reddy.

Research issues in Cloud Computing. Global Journal
Computer Science & Technology Vol. 11, no. 11, June
2011,pp.70-76

[16] K. Thirupathi Rao, P. Sai Kiran, Dr. L.S.S Reddy, V.
Krishna Reddy, B. Thirumala Rao, “Genetic Algorithm
For Energy Efficient Placement Of Virtual Machines In
Cloud Environment”, in proc IEEE International
Conference on Future Information Technology (IEEE

ICFIT 2010), China, December 2010, pp: V2-213 to V2-
217.

http://hadoop.apache.org/
http://hadoop.apache.org/hdfs
http://hadoop.apache.org/common/docs/r0.20.2/fair_scheduler.html
http://hadoop.apache.org/common/docs/r0.20.2/fair_scheduler.html
http://hadoop.apache.org/core/docs/current/capacity_scheduler.html
http://hadoop.apache.org/core/docs/current/capacity_scheduler.html

