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ABSTRACT 

Cloud Computing is emerging as a new computational 
paradigm shift. Hadoop-MapReduce has become a powerful 
Computation Model for processing large data on distributed 
commodity hardware clusters such as Clouds. In all Hadoop 

implementations, the default FIFO scheduler is available 
where jobs are scheduled in FIFO order with support for other 
priority based schedulers also. In this paper we study various 

scheduler improvements possible with Hadoop and also 
provided some guidelines on how to improve the scheduling 
in Hadoop in Cloud Environments.   
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1. INTRODUCTION 
Cloud computing [1] refers to the use of shared computing 
resources to deliver computing as a utility, and serves as an 
alternative to having local servers handle computation. Cloud 
computing groups together large numbers of commodity 

hardware servers and other resources to offer their combined 
capacity on an on-demand, pay-as-you-go basis. The users of 

a cloud have no idea where the servers are physically located 
and can start working with their applications. This is the 
primary advantage of cloud computing which distinguishes it 
from grid or utility computing. The primary concept behind 
Cloud Computing isn't a new idea. John McCarthy within the 
sixties imagined that “processing amenities is going to be 
supplied to everyone just like a utility”. The word “cloud” has 
already been utilized in numerous contexts such as explaining 

big ATM systems within the 1990s. Nevertheless, it had been 
following Google’s BOSS Eric Schmidt utilized the term to 
explain the company type of supplying providers over the 
Web within 2006. Since then, the term “cloud computing” has 
been used mainly as a marketing term. Lack of a standard 
definition of cloud computing has generated a fair amount of 
uncertainty and confusion. For this reason, significant work 

has been done on standardizing the definition of cloud 

computing.  There are over 20 different definitions from a 
variety of sources. In this paper, we adopt the definition of 
cloud computing provided by The National Institute of 
Standards and Technology (NIST), as it covers, in our 
Opinion, all the essential aspects of cloud computing: 

NIST definition of cloud computing[2]: “Cloud computing 

is a model for enabling convenient, on-demand network 

access to a shared pool of configurable computing resources 

(e.g., networks, servers, storage, applications, and services) 

that can be rapidly provisioned and released with minimal 

management effort or service provider interaction”.  

Cloud computing concept is motivated by latest data demands 
as the data stored on web is increasing drastically in recent 

times. The computing resources (e.g. servers, storage and 
services) in a cloud can automatically be scaled up to meet the 
dynamic demands of users by its virtualization and distributed 

system technology. In addition to that, it also provides 
redundancy and backup features to overcome the hardware 
failure problems. In cloud environments data processing has 

become an important research problem. As cloud is a proper 
distributed system platform, parallel programming model like 
MapReduce [4] is widely used for developing scalable and 
fault tolerant applications deployable on cloud. Rest of the 
paper is organized as follows: In section 2 Hadoop is 

summarized and various current schedulers are discussed in 
section 3. Hadoop scheduler improvements are discussed in 
section 4. Finally we conclude with discussion of future work 

in section 5. 

2. HADOOP 
Hadoop has been successfully used by many companies 
including AOL, Amazon, Facebook, Yahoo and New York 
Times for running their applications on clusters. For example, 
AOL used it for running an application that analyzes the 
behavioral pattern of their users so as to offer targeted 

services. Apache Hadoop [3] is an open source 
implementation of the Google’s MapReduce [4] parallel 
processing framework. Hadoop hides the details of parallel 

processing, including data distribution to processing nodes, 
restarting failed subtasks, and consolidation of results after 
computation. This framework allows developers to write 
parallel processing programs that focus on their computation 
problem, rather than parallelization issues. Hadoop includes 

1) Hadoop Distributed File System (HDFS): a distributed file 
system that store large amount of data with high throughput 
access to data on clusters and 2) Hadoop MapReduce: a 

software framework for distributed processing of data on 
clusters. 
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Fig1: Hadoop Distributed File System [6] 

2.1 HDFS- Distributed file system 
Google File System (GFS) [5] is a proprietary distributed file 

system developed by Google and specially designed to 
provide efficient, reliable access to data using large clusters of 

commodity servers. Files are divided into chunks of 64 MB, 
and are usually appended to or read and only extremely rarely 
overwritten or shrunk. Compared with traditional file systems, 
GFS is designed and optimized to run on data centers to 
provide extremely high data throughputs, low latency and 
survive individual server failures. Inspired by GFS, the open 

source Hadoop Distributed File System (HDFS) [6] stores 
large files across multiple machines. It achieves reliability by 
replicating the data across multiple servers. Similarly to GFS, 

multiple replicas of data are stored on multiple compute nodes 
to provide reliable and rapid computations. Data is also 

provided over HTTP, allowing access to all content from a 
web browser or other types of clients. HDFS has master/slave 
architecture.  

As shown in Fig.1 HDFS consists of a single NameNode and 

multiple DataNodes in a cluster. NameNode is responsible for 

mapping of data blocks to DataNodes and for managing file 
system operations like opening, closing and renaming files 
and directories. Upon the instructions of NameNode, 
DataNodes perform block creation, deletion and replication of 
data blocks. The NameNode also maintains the file system 
namespace which records the creation, deletion and 
modification of files by the users. NameNode decides about 

replication of data blocks. In a typical HDFS, block size is 

64MB and replication factor is 3 (second copy on the local 
rack and third on the remote rack). 

2.2 Hadoop MapReduce Overview 
MapReduce is one of the parallel data processing paradigm 

designed for large scale data processing on cluster-based 
computing architectures. It was originally proposed by Google 
to handle large-scale web search applications. This approach 

has been proved to be an effective programming approach for 
developing machine learning, data mining, and search 
applications in data centers. Its advantage is that it allows 
programmers to abstract from the issues of scheduling, 
parallelization, partitioning, replication and focus on 

developing their applications. As shown in Fig.2 Hadoop 
MapReduce programming model consists of data processing 
functions: Map and Reduce. Parallel Map tasks are run on 

input data which is partitioned into fixed sized blocks and 
produce intermediate output as a collection of <key, value> 
pairs. These pairs are shuffled across different reduce tasks 
based on <key, value> pairs. Each Reduce task accepts only 
one key at a time and process data for that key and outputs the 

results as <key, value> pairs. The Hadoop MapReduce 

architecture consists of one JobTracker (Master) and many 
TaskTrackers (Workers). The JobTracker receives job 
submitted from user, breaks it down into map and reduce 
tasks, assigns the tasks to Task Trackers, monitors the 
progress of the Task Trackers, and finally when all the tasks 

are complete, reports the user about the job completion. Each 
Task Tracker has a fixed number of map and reduce task slots 
that determine how many map and reduce tasks it can run at a 
time. HDFS supports reliability and fault tolerance of 
MapReduce computation by storing and replicating the inputs 
and outputs of a Hadoop job. Since Hadoop jobs have to share 
the cluster resources, a scheduling policy is used to determine 
when a job can execute its tasks. Earlier Hadoop had a very 

simple scheduling algorithm operates on First-in First-out 
(FIFO) basis for scheduling  users’ jobs by default. Later 
significant amount of research took place in developing more 
effective and environment-specific schedulers. All those 
schedulers were discussed in the next section. 

 

3. SCHEDULING IN HADOOP 
The default Scheduling algorithm is based on FIFO where 
jobs were executed in the order of their submission. Later on 
the ability to set the priority of a Job was added. Facebook 

and Yahoo contributed significant work in developing 
schedulers i.e. Fair Scheduler [7] and Capacity Scheduler [8] 

respectively which subsequently released to Hadoop 
Community.  

 

3.1 Default FIFO Scheduler 
The default Hadoop scheduler operates using a FIFO queue. 
After a job is partitioned into individual tasks, they are loaded 

into the queue and assigned to free slots as they become 
available on TaskTracker nodes. Although there is support for 
assignment of priorities to jobs, this is not turned on by 
default. Typically each job would use the whole cluster, so 
jobs had to wait for their turn. Even though a shared cluster 
offers great potential for offering large resources to many 
users, the problem of sharing resources fairly between users 
requires a better scheduler. Production jobs need to complete 

in a timely manner, while allowing users who are making 

smaller ad hoc queries to get results back in a reasonable time. 

 

3.2 Fair Scheduler 
The Fair Scheduler [7] was developed at Facebook to manage 
access to their Hadoop cluster and subsequently released to 
the Hadoop community. The Fair Scheduler aims to give 

every user a fair share of the cluster capacity over time. Users 

may assign jobs to pools, with each pool allocated a 
guaranteed minimum number of Map and Reduce slots. Free 
slots in idle pools may be allocated to other pools, while 
excess capacity within a pool is shared among jobs. The Fair 
Scheduler supports preemption, so if a pool has not received 

 

Fig 2: Hadoop MapReduce 
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its fair share for a certain period of time, then the scheduler 
will kill tasks in pools running over capacity in order to give 
the slots to the pool running under capacity. In addition, 
administrators may enforce priority settings on certain pools. 
Tasks are therefore scheduled in an interleaved manner, based 

on their priority within their pool, and the cluster capacity and 
usage of their pool. As jobs have their tasks allocated to Task 
Tracker slots for computation, the scheduler tracks the deficit 
between the amount of time actually used and the ideal fair 
allocation for that job. As slots become available for 
scheduling, the next task from the job with the highest time 
deficit is assigned to the next free slot. Over time, this has the 
effect of ensuring that jobs receive roughly equal amounts of 

resources. Shorter jobs are allocated sufficient resources to 
finish quickly. At the same time, longer jobs are guaranteed to 
not be starved of resources. 
 

3.3 Capacity Scheduler  
Capacity Scheduler [3] originally developed at Yahoo 
addresses a usage scenario where the number of users is large, 
and there is a need to ensure a fair allocation of computation 

resources amongst users. The Capacity Scheduler allocates 
jobs based on the submitting user to queues with configurable 
numbers of Map and Reduce slots. Queues that contain jobs 
are given their configured capacity, while free capacity in a 
queue is shared among other queues. Within a queue, 

scheduling operates on a modified priority queue basis with 
specific user limits, with priorities adjusted based on the time 
a job was submitted, and the priority setting allocated to that 

user and class of job. When a Task Tracker slot becomes free, 
the queue with the lowest load is chosen, from which the 
oldest remaining job is chosen. A task is then scheduled from 
that job. Overall, this has the effect of enforcing cluster 
capacity sharing among users, rather than among jobs, as was 
the case in the Fair Scheduler. 

 

4. SCHEDULER IMPROVEMENTS 
Many researchers are working on opportunities for improving 
the scheduling policies in Hadoop. Recent efforts such as 
Delay Scheduler [9], Dynamic Proportional Scheduler [10] 
offer differentiated service for Hadoop jobs allowing users to 

adjust the priority levels assigned to their jobs. However, this 
does not guarantee that the job will be completed by a specific 
deadline. Deadline Constraint Scheduler [11] addresses the 

issue of deadlines but focuses more on increasing system 
utilization. The Schedulers described above attempt to 
allocate capacity fairly among users and jobs, they make no 
attempt to consider resource availability on a more fine-
grained basis. Resource Aware Scheduler [12] considers the 
resource availability to schedule jobs. In the following 

sections we compare and contrast the work done by the 
researchers on various Schedulers. 

 

4.1 Longest Approximate Time to End 

(LATE) - Speculative Execution  
It is not uncommon for a particular task to continue to 
progress slowly. This may be due to several reasons like–high 
CPU load on the node, slow background processes etc. All 
tasks should be finished for completion of the entire job. The 
scheduler tries to detect a slow running task to launch another 

equivalent task as a backup which is termed as speculative 
execution of tasks. If the backup copy completes faster, the 
overall job performance is improved. Speculative execution is 
an optimization but not a feature to ensure reliability of jobs. 
If bugs cause a task to hang or slow down then speculative 

execution is not a solution, since the same bugs are likely to 
affect the speculative task also. Bugs should be fixed so that 
the task doesn’t hang or slow down. The default 
implementation of speculative execution relies implicitly on 
certain assumptions: a) Uniform Task progress on nodes b) 

Uniform computation at all nodes. That is, default 
implementation of speculative execution works well on 
homogeneous clusters. These assumptions break down very 
easily in the heterogeneous clusters that are found in real-
world production scenarios. Zaharia et al [13] proposed a 
modified version of speculative execution called Longest 
Approximate Time to End (LATE) algorithm that uses a 
different metric to schedule tasks for speculative execution. 

Instead of considering the progress made by a task so far, they 
compute the estimated time remaining, which gives a more 
clear assessment of a straggling tasks’ impact on the overall 
job response time. They demonstrated significant 
improvements by Longest Approximate Time to End (LATE) 
algorithm over the default speculative execution. 
 

4.2 Delay Scheduling 
Fair scheduler is developed to allocate fair share of capacity to 
all the users. Two locality problems identified when fair 
sharing is followed are – head-of-line scheduling and sticky 
slots. The first locality problem occurs in small jobs (jobs that 
have small input files and hence have a small number of data 

blocks to read). The problem is that whenever a job reaches 
the head of the sorted list for scheduling, one of its tasks is 
launched on the next slot that becomes free irrespective of 

which node this slot is on. If the head-of-line job is small, it is 
unlikely to have data locally on the node that is given to it. 
Head-of-line scheduling problem was observed at Facebook 
in a version of HFS without delay scheduling. The other 
locality problem, sticky slots, is that there is a tendency for a 
job to be assigned the same slot repeatedly. The problems 

aroused because following a strict queuing order forces a job 
with no local data to be scheduled.  

To overcome the Head of line problem, scheduler launches a 
task from a job on a node without local data to maintain 
fairness, but violates the main objective of MapReduce that 
schedule tasks near their input data. Running on a node that 
contains the data (node locality) is most efficient, but when 
this is not possible, running on a node on the same rack (rack 

locality) is faster than running off-rack. Delay scheduling is a 

solution that temporarily relaxes fairness to improve locality 
by asking jobs to wait for a scheduling opportunity on a node 
with local data.  When a node requests a task, if the head-of-
line job cannot launch a local task, it is skipped and looked at 
subsequent jobs. However, if a job has been skipped long 
enough, non-local tasks are allowed to launch to avoid 
starvation. The key insight behind delay scheduling is that 

although the first slot we consider giving to a job is unlikely 

to have data for it, tasks finish so quickly that some slot with 
data for it will free up in the next few seconds. 

 

4.3 Dynamic Priority Scheduling 
Thomas Sandholm et al [10] proposed Dynamic Priority 
Scheduler that supports capacity distribution dynamically 
among concurrent users based on priorities of the users. 

Automated capacity allocation and redistribution is supported 
in a regulated task slot resource market. This approach allows 
users to get Map or Reduce slot on a proportional share basis 
per time unit. These time slots can be configured and called as 
allocation interval. It is typically set to somewhere between 10 

seconds and 1 minute. For example a max capacity of 15 Map 
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slots gets allocated proportionally to three users. The central 
scheduler contains a Dynamic Priority Allocator and a Priority 
Enforcer component responsible for accounting and schedule 
enforcement respectively. This model appears to favor users 
with small jobs than users with bigger jobs. However Hadoop 

MapReduce supports scaling down of big jobs to small jobs to 
make sure that fewer concurrent tasks runs by consuming the 
same amount of resources. 

To avoid starvation, queue blocking and to respond to user 
demand fluctuations more quickly preemption is also 
supported. In this mechanism task slots that were allocated 
may be preempted and allocated to other users if they were 

not used for long time. As a result of variable pricing 

mechanism users to get guaranteed slot during demand 
periods has to pay more. This scheme discourages the free-
riding and gaming by users. However, the Hadoop 
MapReduce scheduling framework allows jobs to be split up 
in finer grained tasks that can run and possibly fail and 
recover independently. So the only thing the end users would 
need to worry about is to get a good enough average capacity 

over some time to meet their deadlines. This introduces the 

difficulty of making spending rate decisions to meet the SLA 
and deadline requirements. Possible starvation of low-priority 
(low-spending) tasks can be mitigated by using the standard 
approach in Hadoop of limiting the time each task is allowed 
to run on a node. Moreover, this new mechanism also allows 
administrators to set budgets for different users and let them 
individually decide whether the current price of preempting 

running tasks is within their budget or if they should wait until 

the current users run out of their budget. The fact that Hadoop 
uses task and slot level scheduling and allocation as opposed 
to job level scheduling also avoids many starvation scenarios. 
If there is no contention, i.e. there are enough slots available 
to run all tasks from all jobs submitted, the cost for excess 
resources essentially becomes free because of the work 
conserving principle of this scheduler. However, the 

guarantees of maintaining these excess resources are reduced. 
To see why, consider new users deciding whether to submit 

jobs or not. If they see that the price is high they may wait to 
preempt currently running jobs, but if the resources are 
essentially given out for free they are likely to lay claim on as 
many resources they can immediately. We note that the 
Dynamic Priority scheduler can easily be configured to mimic 
the behavior of the other schedulers. If no queues or users 

have any credits left the scheduler reduces to a FIFO 
scheduler. If all queues are configured with the same share 

(spending rate in our case) and the allocation interval is set to 
a very large value the scheduler reduces to the behavior of the 
static fair-share schedulers. 

4.4 Deadline Constraint Scheduler 
Deadline Constraint Scheduler [11] addresses the issue of 

deadlines but focuses more on increasing system utilization. 

Dealing with deadline requirements in Hadoop-based data 
processing is done by (1) a job execution cost model that 
considers various parameters like map and reduce runtimes, 
input data sizes, data distribution, etc., (2) a Constraint-Based 
Hadoop Scheduler that takes user deadlines as part of its 
input. Estimation model determines the available slot based a 
set of assumptions:  

 All nodes are homogeneous nodes and unit cost of 

processing for each map or reduce node is equal 

 Input data is distributed uniform manner such that 

each reduce node gets equal amount of reduce data 
to process 

 Reduce tasks starts after all map tasks have 

completed; 

 The input data is already available in HDFS. 

 
Schedulability of a job is determined based on the proposed 

job execution cost model independent of the number of jobs 
running in the cluster. Jobs are only scheduled if specified 
deadlines can be met. After a job is submitted, schedulability 
test is performed to determine whether the job can be finished 
within the specified deadline or not. Free slots availability is 

computed at the given time or in the future irrespective of all 
the jobs running in the system. The job is enlisted for 
scheduling after it is determined that the job can be completed 

within the given deadline. A job is schedulable if the 
minimum number of tasks for both map and reduce is less 
than or equal to the available slots. This Scheduler shows that 
when a deadline for job is different, then the scheduler assigns 
different number of tasks to TaskTracker and makes sure that 

the specified deadline is met. 

 

4.5 Resource Aware Scheduling 
The Fair Scheduler [7] and Capacity Scheduler described 
above attempt to allocate capacity fairly among users and jobs 
without considering resource availability on a more fine-
grained basis. As CPU and disk channel capacity has been 

increasing in recent years, a Hadoop cluster with 
heterogeneous nodes could exhibit significant diversity in 
processing power and disk access speed among nodes. 

Performance could be affected if multiple processor-intensive 
or data-intensive tasks are allocated onto nodes with slow 
processors or disk channels respectively. This possibility 
arises as the Job Tracker simply treats each Task Tracker node 
as having a number of available task “slots”. Even the 
improved LATE speculative execution could end up 
increasing the degree of congestion within a busy cluster, if 
speculative copies are simply assigned to machines that are 

already close to maximum resource utilization.  

Resource Aware Scheduling in Hadoop has become one of the 
Research Challenges [14][15]  in Cloud Computing. 
Scheduling in Hadoop is centralized, and worker initiated. 
Scheduling decisions are taken by a master node, called the 

JobTracker, whereas the worker nodes, called TaskTrackers 
are responsible for task execution. The JobTracker maintains 
a queue of currently running jobs, states of TaskTrackers in a 

cluster, and list of tasks allocated to each TaskTracker. Each 
Task Tracker node is currently configured with a maximum 
number of available computation slots. Although this can be 
configured on a per-node basis to reflect the actual processing 
power and disk channel speed, etc available on cluster 
machines, there is no online modification of this slot capacity 

available. That is, there is no way to reduce congestion on a 
machine by advertising a reduced capacity. In this 

mechanism, each Task Tracker node monitors resources such 
as CPU utilization, disk channel IO in bytes/s, and the number 
of page faults per unit time for the memory subsystem. 
Although we anticipate that other metrics will prove useful, 
we propose these as the basic three resources that must be 
tracked at all times to improve the load balancing on cluster 

machines. In particular, disk channel loading can significantly 
impact the data loading and writing portion of Map and 

Reduce tasks, more so than the amount of free space 
available. Likewise, the inherent opacity of a machine’s 
virtual memory management state means that monitoring page 
faults and virtual memory-induced disk thrashing is a more 
useful indicator of machine load than simply tracking free 
memory. 
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Two possible resource-aware Job Tracker scheduling 
mechanisms are: 1) Dynamic Free Slot Advertisement-Instead 
of having a fixed number of available computation slots 
configured on each Task Tracker node, this number is 
computed dynamically using the resource metrics obtained 

from each node. In one possible heuristic, overall resource 
availability is set on a machine to be the minimum availability 
across all resource metrics. In a cluster that is not running at 
maximum utilization at all times, this is expected to improve 
job response times significantly as no machine is running 
tasks in a manner that runs into a resource bottleneck. 2) Free 

Slot Priorities/Filtering- In this mechanism, cluster 
administrators will configure maximum number of compute 

slots per node at configuration time. The order in which free 
TaskTracker slots are advertised is decided according to their 
resource availability. As TaskTracker slots become free, they 
are buffered for some small time period (say, 2s) and 
advertised in a block. TaskTracker slots with higher resource 
availability are presented first for scheduling tasks on. In an 
environment where even short jobs take a relatively long time 
to complete, this will present significant performance gains. 

Instead of scheduling a task onto the next available free slot 
(which happens to be a relatively resource-deficient machine 
at this point), job response time would be improved by 
scheduling it onto a resource-rich machine, even if such a 
node takes a longer time to become available. Buffering the 
advertisement of free slots allowed for this scheduling 
allocation. 

5. CONCLUSION & FUTURE WORK 
Ability to make Hadoop scheduler resource aware is one the 
emerging research problem that grabs the attention of most of 
the researchers as the current implementation is based on 
statically configured slots. This paper summarizes pros and 
cons of Scheduling policies of various Hadoop Schedulers 
developed by different communities. Each of the Scheduler 

considers the resources like CPU, Memory, Job deadlines and 

IO etc. All the schedulers discussed in this paper addresses 
one or more problem(s) in scheduling in Hadoop. 
Nevertheless all the schedulers discussed above assumes 
homogeneous Hadoop clusters. Future work will consider 
scheduling in Hadoop in Heterogeneous Clusters. 
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