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Abstract. The development of microprocessors design has been shifting
to multi-core architectures. Therefore, it is expected that parallelism will
play a significant role in future generations of applications. Throughout
the years, there has been a myriad number of parallel programming mod-
els proposed. In choosing a parallel programming model, not only the per-
formance aspect is important, but also qualitative the aspect of how well
parallelism is abstracted to developers. A model with a well abstraction
of parallelism leads to a higher application-development productivity. In
this paper, we propose seven criteria to qualitatively evaluate parallel
programming models. Our focus is on how parallelism is abstracted and
presented to application developers. As a case study, we use these criteria
to investigate six well-known parallel programming models in the HPC
community.
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CUDA, MPI, UPC, Fortress.

1 Introduction

The aim of parallel computing is to increase an application’s performance by
executing the application on multiple processors. While parallel computing has
been traditionally associated with the HPC (high performance computing) com-
munity, it is becoming more prevalent for the mainstream computing due to the
recent development of commodity multi-core architecture. The multi-core archi-
tecture, and soon many-core, is a new paradigm in keeping up with the Moore’s
law. It is motivated by challenges to traditional paradigm of continuously in-
creasing CPU frequency: physical limit of transistors size, power consumption,
and heat dissipation [1,2]. Consequently, it is expected that future generations
of applications would heavily exploit the parallelism offered by the multi-core
architecture.

There are two main approaches to parallelize applications: auto parallelization
and parallel programming; they differ in terms of the achievable application per-
formance and ease of parallelization. The auto-parallelization approach, e.g. ILP
(instruction level parallelism) or parallel compilers [3], automatically parallelizes
applications that have been developed using sequential programming models.
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The advantage of this approach is that existing/legacy applications need not
be modified, e.g. applications just need to be recompiled with a parallel com-
piler. Therefore, programmers need not to learn new programming paradigms.
However, this also becomes a limiting factor in exploiting a higher degree of
parallelism: it is extremely challenging to automatically transform algorithms
with a sequential nature into parallel ones. In contrast to auto parallelization,
with the parallel programming approach, applications are specifically developed
to exploit parallelism. Generally, developing a parallel application involves parti-
tioning workload into tasks and mapping of tasks into workers. Parallel program-
ming is perceived to result in higher performance gain than auto parallelization,
but at the expense of more parallelization efforts.

Throughout the years, there have been a myriad number of parallel program-
ming models proposed. A typical consideration in choosing a model is the perfor-
mance of the resulted applications.However, it is equally important to also consider
qualitative aspects of models. One such qualitative aspect is how parallelism is ab-
stracted and presented to application developers. To evaluate this aspect, we pro-
pose that each model is evaluated based on seven criteria: (i) system architecture,
(ii) programming methodologies, (iii) worker management, (iv) workload parti-
tioning scheme, (v) task-to-worker mapping, (vi) synchronization, and (vii) com-
munication model. Out list of criteria is inspired by Asanovic et. al. [4].

In this paper, we describe seven qualitative criteria to evaluate parallel pro-
gramming models. Our goal is to emphasize to people new to parallelism that
apart from performance of resulted applications, one should also consider how
the chosen programming model affects the productivity of software develop-
ment. The contributions of this paper are two fold. Firstly, we extend the four
criteria in Asanovic et. al. [4] with three new criteria (i.e. system architecture,
programming methodologies and worker management). Secondly, we present an
investigation of six parallel programming models in the HPC community: three
well-established models (i.e. Pthreads [5], OpenMP [6,7], and MPI [8]) and three
relatively new models (i.e. UPC [9,10], Fortress [11], and CUDA [12]).

The remainder of this paper is organized as follow. Section 2 defines the seven
criteria and Section 3 present a study of six parallel programming models based
on the criteria. Finally, Section 4 summarizes this paper.

2 The Seven Criteria

In this section, we describe seven criteria to qualitatively evaluate a parallel
programming model.

1. System Architecture
We consider two architectures: shared memory and distributed memory.
Shared memory architecture refers to systems such as an SMP/MPP node
whereby all processors share a single address space. With such models, appli-
cations can run and utilize only processors within a single node. On the other
hand, distributed memory architecture refers to systems such as a cluster of
compute nodes whereby there is one address space per node.
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Fig. 1. Six Programming Models and their Supported System Architecture

Fig. 1 illustrates the supported system architecture of the six programming
models. As can be seen, Pthreads, OpenMP and CUDA support shared
memory architecture, and thus can only run and utilize processors within
a single node. On the other hand, MPI, UPC and Fortress also support
distributed memory architecture so that applications developed with these
model can run on single node (i.e. shared memory architecture) or multiple
nodes.

2. Programming Methodologies
We look at how parallelism capabilities are exposed to programmers. For
examples, API, special directives, new language specification, etc.

3. Worker Management
This criteria looks at the creation of the unit of worker, threads or proces-
sors. Worker management is implicit when there is no need for programmers
to manage the lifetime of workers. Rather, they need to only specify, for
example, the number of unit of workers required or the section of code to be
run in parallel. In explicit approach, programmer needs to code the creation
and destruction of workers.

4. Workload Partitioning Scheme
Worker partitioning defines how the workload are divided into smaller chunks
called tasks. In implicit approach, typically programmers needs to only spec-
ify that a workload can be processed in parallel. How the workload is actually
partitioned into tasks need not be managed by programmers. In contrast,
with the explicit approach, programmers need to manually decide how work-
load is partitioned.

5. Task-to-Worker Mapping
Task-to-worker mapping defines how tasks are map onto workers. In the
implicit approach, programmers do not need to specify which worker is re-
sponsible for a particular task. In contrast, the explicit approach requires
programmers to manage how tasks are assigned to workers.

6. Synchronization
Synchronization defines the time order in which workers access shared data.
In implicit synchronization, there is no or little programming effort done
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by programmers: either no synchronization constructs are needed or it is
sufficient to only specify that a synchronization is needed. In explicit syn-
chronization, programmers are required to manage the worker’s access to the
shared.

7. Communication Model
This aspect looks at the communication paradigm used by a model.

3 Parallel Programming Model

In this section, we evaluate six parallel programming models using the criteria
presented in Section 2. The overall summary is shown in Table 1.

Table 1. Evaluation of Six Parallel Programming Models

(a) Shared Memory

Criteria MPI UPC Fortress

Unit of Workers Thread Thread Thread
Programming Methodologies API, C, Fortran API, C, Fortran API, Extension to C
Worker Management Explicit Implicit Implicit
Workload Partitioning Explicit Implicit Explicit
Worker Mapping Explicit Implicit Explicit
Synchronization Explicit Implicit Explicit

Communication Model
Shared Address
Space

Shared Address
Space

Shared Address
Space

(b) Distributed Memory

Criteria MPI UPC Fortress

Unit of Workers Process Thread Thread
Programming Methodologies API, C, Fortran API, C New Language
Worker Management Implicit Implicit Implicit/Explicit
Workload Partitioning Explicit Implicit/Explicit Implicit/Explicit
Worker Mapping Explicit Implicit/Explicit Implicit/Explicit
Synchronization Implicit Implicit/Explicit Implicit/Explicit

Communication Model Message Passing
Partitioned Global
Address Space

Global Address
Space

3.1 Pthreads

Pthreads or Portable Operating System Interface (POSIX) Threads is a set of C
programming language types and procedure calls [5]. Pthreads is implemented
as a header (pthread.h) and a library for creating and manipulating each of the
workers called threads.
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Worker management in Pthreads requires programmer to explicitly create and
destroy threads by making use of pthread create and pthread exit function.
Function pthread create requires four parameters: (i) the thread used to run
tasks, (ii) attribute, (iii) tasks to be run by thread in routine call, and (iv) routine
argument. The thread created will run the routine until pthread exit function
has been called.

Workload partitioning and task mapping are explicitly specified by program-
mers as arguments to pthread create. The workload partitioning is specified by
programmers on the third passing parameter in the form of a routine call, while
task mapping is specify on the first passing parameters in the pthreads create
function. A thread can join other threads using pthread join. When the func-
tion is called, the calling thread will hold its execution until the target thread
finish before joining the threads.

When multiple threads access the shared data, programmers have to be aware
of data race and deadlocks. To protect critical section, i.e. the portion of code
that accesses shared data, Pthreads provides mutex (mutual exclusion) and
semaphore [13]. Mutex permits only one thread to enter a critical section at
a time, whereas semaphore allows several threads to enter a critical section.

3.2 OpenMP

OpenMP is an open specification for shared memory parallelism [6,7]. It consists
of a set of compiler directives, callable runtime library routines and environment
variables that extend Fortran, C and C++ programs. OpenMP is portable across
the shared memory architecture. The unit of workers in OpenMP is threads.

The worker management is implicit. Special directives are used to specify
that a section of code is to be run in parallel. The number of threads to be used
is specified using an out-of-band mechanism which is an environment variable.
Thus, unlike Pthread, there is no need for programmers to manage the lifetime
of threads.

Workload partitioning and task-to-worker mapping require a relatively few
programming effort. Programmers just need to specify compiler directives to
denote a parallel region, namely (i) #pragma omp parallel {} for C/C++,
and (ii) !$omp parallel and !$omp end parallel for Fortran. OpenMP also
abstracts away how workload (e.g. an array) is divided into tasks (e.g. sub-arrays)
and how tasks are assigned to threads.

OpenMP supports several constructs to support implicit synchronization
where programmers specify only where synchronization occurs (Table 2). The ac-
tual synchronization mechanism is thus relieved from the programmers’
responsibility.

3.3 CUDA

CUDA (Compute Unified Device Architecture) is the extension of C programming
language designed to support of parallel processing on Nvidia GPU (Graphics Pro-
cessing Unit) [12]. CUDA views a parallel system as consisting of a host device (i.e.
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Table 2. Synchronization Constructs in OpenMP

C
¯
onstruct Description

Barrier Allow synchronization on all threads within the same group
Atomic Allow all threads execute, but only one of load or store at a time
Ordered Allow the block of code to be execute sequentially
Flush Ensure all threads have a consistent view of certain objects in memory

Fig. 2. CUDA Architecture

CPU) and computation resource (i.e. GPU). The computation of tasks is done in
GPU by a set of threads that run in parallel. The GPU architecture for threads
consist of two-level hierarchy, namely block and grid (Fig. 2). Block is a set of
tightly coupled threads where each thread is identified by a thread ID, while grid
is a set of loosely coupled of blocks with similar size and dimension.

Worker management in CUDA is done implicitly; programmers do not man-
age thread creations and destructions. They just need to specify the dimension
of the grid and block required to process a certain task. While workload parti-
tioning and worker mapping in CUDA is done explicitly. Programmers have to
define the workload to be run in parallel by using Global Function<<<dimGrid,
dimBlock>>> (Arguments) construct where (i) Global Function is the global
function call to be run in threads, (ii) dimGrid is the dimension and size of the
grid, (iii) dimBlock is the dimension and size of each block and (iv) Arguments
represent the passing value for the global function. The task to worker map-
ping of CUDA programming is defined on <<<dimGrid, dimBlock>>> within
the command call mentioned before.



272 H. Kasim et al.

Synchronization for all threads in CUDA is done implicitly through function
syncthreads(). This function will coordinate communication among threads

of the same block. The function requires a minimum of 4 clock cycles as the
overhead, i.e. when no thread is waiting for other threads.

3.4 MPI

Message Passing Interface (MPI) is a specification for message passing operations
[8]. It defines each worker as a process. MPI is currently the de-facto standard
for developing HPC applications on distributed memory architecture. It provides
language bindings for C, C++1, and Fortran. Some of the well-known MPI
implementation includes OpenMPI [14], MVAPICH [15], MPICH [16], GridMPI
[17], and LAM/MPI [18].

Worker management is done implicitly whereby it is not necessary to code
the creation, scheduling, or destruction of processes. Instead, one only needs
to use a command-line tool, mpirun, to tell the MPI runtime how many pro-
cesses are needed, and optionally the mapping of processes to processors. Based
on this information, the runtime infrastructure will then carry out the worker
management on behalf of users.

Workload partitioning and task mapping have to be done by programmers,
similar to Pthread. Programmers have to manage what tasks to be computed
by each process. As an example, given a 2-D array (i.e. the workload), one can
use a process’ identifier (i.e. rank) to determine which sub-array (i.e. a task)
the process will compute. Communication among processes adopts the message-
passing paradigm where data sharing is done by one process sending the data to
other processes. MPI broadly classifies its message-passing operations as point-
to-point and collective. Point-to-point operations such as the MPI Send/MPI Recv
pair facilitate communications between processes, whereas collective operations
such as MPI Bcast facilitate communications involving more than two processes.

MPI Barrier is used to specify that a synchronization is needed. The barrier
operation blocks each process from continuing its execution until all processes
have enter the barrier. A typical usage of barrier is to ensure that global data
has been dispersed to appropriate processes.

3.5 UPC

UPC (Unified Parallel C) is a parallel programming language for shared
memory architecture and distributed memory architecture [9,10]. Regardless
of the system architecture, UPC adopts the concept of partitioned memory.
With this concept, programmers view the system as one global address space
which is logically partitioned into a number of per-thread address spaces. Each
thread has two types of memory accesses: to its own private address space or to
other threads’ address space. Accesses to both types of per-thread address space
use the same syntax. To improve the performance of memory accesses, UPC

1 Supported only on MPI-2.
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introduces the concept of thread affinity. With this feature, UPC optimizes
memory-access performance between a thread and the per-thread address space
where the thread has been bound.

In UPC, workload management is implicit, while workload partitioning and
worker mapping can be either implicit or explicit. For worker management, pro-
grammers just need to specify number of threads required during the call on the
command-line tools, upcrun. Implicit workload partitioning and task mapping
are supported through an API called upc forall which is similar to for iteration
in C programming, except that the content of the iteration will be run in paral-
lel. When this API is used, there is no need for additional programming effort
for programmers to map the task to threads. The explicit approach in UPC for
workload partitioning and worker mapping is similar to the one in MPI, where
programmers have to specify on what will be run by each threads.

In UPC, communication among threads adopt the Partitioned Global Address
Space (PGAS) paradigm by making use of pointers. There are three types of
pointer commonly used in UPC [10]: (i) private pointer where the private point-
ers point to their own private address space, (ii) private pointer-to-share where
the private pointers point to the shared address space, and (iii) shared pointer-
to-share where the shared pointers from one address space point to the other
shared address space.

UPC provides several synchronization mechanisms [9]. Table 3 briefly de-
scribes the synchronization mechanisms available in UPC together with the pro-
gramming effort require by programmers.

3.6 Fortress

Fortress is a specification programming language designed for High Performance
Computing [11]. The unit of worker is threads. Worker management, workload
partitioning and worker mapping in Fortress can be implicit or explicit. In the
implicitly approach, the iterative for loops is parallel by default. Programmer
does not have to specify which threads to be run on each iteration. In the explicit
approach, the creation of a thread can be done by using spawn keyword. As an ex-
ample, in t = spawn Global Function(Arguments), t denotes the thread cre-
ated, and Global Function denotes the tasks to be run by t. Note that apart
from a global function call, a task can be an expression as well. Stopping thread
t is achieved through t.stop(). The workload partitioning and worker mapping
for explicitly spawned threads are similar with in CUDA. One needs to decide how
a workload is partitioned into tasks and how tasks are assigned to threads.

To avoid abnormal behavior and data races in one program, programmers have
to specify the synchronization constructs explicitly. There are two synchroniza-
tion constructs called reductions and atomic expression. The use of reduction
is to avoid the need for synchronization by performing a computation as local
as possible. Second construct, atomic can be used to control the data among
the parallel executions. Atomic expression consists of atomic keyword follow by
body expression. In body expression, all data reads and writes will appear to
occur simultaneously in a single atomic step [11].
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4 Summary

Using seven criteria, we have reviewed the qualitative aspects of six represen-
tative parallel programming models. Our goal is to provide a basic guideline in
evaluating the appropriateness of a programming model in various development
environments. The system-architecture aspect indicates the type of computing
infrastructure (e.g. single node versus a cluster) supported by each of the pro-
gramming models. The remaining aspects, which complement the typical perfor-
mance evaluation, are meant to aid users in evaluating the ease-of-use of models.
It should be noted that the seven criteria are by no means exhaustive. Other
implementation issues such as debugging support should be considered as well
when evaluating a parallel programming models.
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