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Abstract—Edge computing is a (r)evolutionary extension of
traditional cloud computing. It expands central cloud infrastruc-
ture with execution environments close to the users in terms of
latency in order to enable a new generation of cloud applications.
This paradigm shift has opened the door for telecommunications
operators, mobile and fixed network vendors: they have joined
the cloud ecosystem as essential stakeholders considerably in-
fluencing the future success of the technology. A key problem
in edge computing is the optimal placement of computational
units (virtual machines, containers, tasks or functions) of novel
distributed applications. These components are deployed to a
geographically distributed virtualized infrastructure and hetero-
geneous networking technologies are invoked to connect them
while respecting quality requirements. The optimal hosting envi-
ronment should be selected based on multiple criteria by novel
scheduler algorithms which can cope with the new challenges of
distributed cloud architecture where networking aspects cannot
be ignored. The research community has dedicated significant
efforts to this topic during recent years and a vast number of the-
oretical results have been published addressing different variants
of the related mathematical problems. However, a comprehensive
survey focusing on the technical and analytical aspects of the
placement problem in various edge architectures is still missing.
This survey provides a comprehensive summary and a structured
taxonomy of the vast research on placement of computational
entities in emerging edge infrastructures. Following the given
taxonomy, the research papers are analyzed and categorized
according to several dimensions, such as the capabilities of the
underlying platforms, the structure of the supported services,
the problem formulation, the applied mathematical methods,
the objectives and constraints incorporated in the optimization
problems, and the complexity of the proposed methods. We
summarize the gained insights and important lessons learned, and
finally, we reveal some important research gaps in the current
literature.

Index Terms—edge/fog computing, MEC, cloudlets, resource
orchestration, function placement optimization, offloading

I. INTRODUCTION

C
LOUD computing has written a plenty of success stories
for the last two decades. The amazing technological

evolution together with the solid theoretical background es-
tablished by the research community enabled several new
applications and services to run in extremely large scale on
top of different cloud platforms. Either public cloud platforms,
such as Amazon Web Services [1], Google Cloud Platform [2],
Microsoft Azure [3], or private ones based on open-source
technologies, such as OpenStack [4], Docker [5] or Kuber-
netes [6], are capable of providing an “arbitrary” amount
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of virtual resources on demand by using recent virtualiza-
tion techniques and resource management mechanisms. Well
designed data centers encompass all the necessary physical
assets, including thousands of blade servers and network
devices, while the burden of operational tasks is delegated to
the cloud providers.

However, during the last decade, the centrally placed phys-
ical resources started to move closer to the users in order to
enable the operation of novel types of applications, such as
latency sensitive ones. This paradigm shift has opened the door
for telecommunications operators, mobile and fixed network
vendors: they have joined the ecosystem to be part of the
success story. Various concepts and paradigms appeared to
designate the proper way how to leverage computing resources
deployed in the vicinity of customers and end devices. Edge
computing, fog computing, Multi-Access (formerly called as
Mobile) Edge Computing, cloudlets are distinct concepts,
nevertheless they share several common objectives and fea-
tures [7]–[13]. Different technological and business use cases
are addressed by these concepts but the telecommunications
stakeholders are crucial players in all scenarios as standalone
entities or federated with cloud providers. This paper does
not attempt to excavate the precise distinction among these
approaches, rather we focus on a key aspect central to all
paradigms, i.e., placement methods.

We assume that the central cloud is extended with edge
resources providing execution environments close to the users
in terms of latency, e.g., in mobile base stations. By these
means, customers’ devices can offload computational tasks to
this environment instead of consuming their local resources.
Latency critical functions can also be offloaded from central
clouds to the edge, enabling e.g., critical machine type com-
munication or real-time applications with strict delay bounds.
As a result, novel types of services and distributed applications
can be realized on top of a novel platform which tightly
integrates network and cloud domains. Tactile Internet, remote
surgery, augmented/virtual/mixed reality (AR/VR/MR) appli-
cations, future manufacturing based on Industry 4.0 are just
highlighted examples which can reshape our digital society.

In addition, the emerging cloud platforms and the exposed
capabilities have transformed the software running atop and
also changed the corresponding software development tech-
niques. Starting from monolithic applications running in ded-
icated virtual machines (VMs), microservices have emerged:
consisting of loosely coupled, inter-communicating software
modules running in separate containers or as distinct functions
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managed by the underlying cloud system. At the end of the
day, developers and service providers can obviously benefit
from this shift, however, several new challenges arise on the
platform side.

A key problem, i.e., the optimal placement of computational

units, stems from the geographically distributed nature of the
virtualized infrastructure. Computational units can be VMs,
software containers, tasks or functions as well, and the optimal
hosting environment for them should be selected based on
multiple criteria. The scheduler or the resource orchestrator is
in charge of making that decision. Traditional cloud infras-
tructures are based on carefully designed data centers where
the resources (compute, storage, network) are accommodated
close to each other at central premises. The customized net-
work topology of data centers provides extreme high bisection
bandwidth. To put it simply, we have virtually zero delay
and infinite throughput between the servers. Therefore the
scheduler algorithms widely used in data centers cannot be
invoked for novel edge systems as they do not take the wide-
area network characteristics into consideration. Hence, novel
mechanisms are required to cope with the new challenges of
distributed cloud architectures where delays cannot be ignored.
Similar techniques can be invoked by telecommunications
operators to construct their own compound network services
on demand over distributed edge environments.

The mathematical problem under the hood is generally a
multi-criteria decision problem, where the optimal placement
option must be selected for each computational unit. Specifi-
cally, multiple virtual compute infrastructures with different
capacities and characteristics are available for hosting the
computational units, and those entities should be able to
communicate with each other with predefined quality dictated
by the applications. The selection criteria include, but are not
limited to the operating cost of the VM, the available com-
puting and network capacity, hardware specific requirements
(e.g., GPU is needed by the VM), the network delay and the
available bandwidth between the VM and the end device, the
battery status of the end device, the latency and the available
bandwidth between the VM and another already deployed
service component. Obviously, VMs, software containers or
functions have to be instantiated differently and the network
configuration also requires various methods, however, the
formal mathematical problem of placement is similar in all
cases. The careful placement of the computational building
blocks may result in significant benefits in terms of application
QoS, resource provisioning costs, or both.

Therefore, the research community has dedicated significant
efforts to this topic during recent years and a large number
of theoretical results have been published addressing different
aspects and variants of the related mathematical problems. Var-
ious techniques of several scientific fields were applied from
mathematical programming across graph theory to machine
learning. In this paper, we provide a comprehensive survey
focusing on the placement problem in the edge, which helps
to categorize the proposed solutions and defines an adequate
taxonomy to get a better understanding on the current status
and on remaining research gaps.

A. Scope of this survey

The scope of the survey involves all research results on the
optimal placement of any type of computational units over

multiple options of virtual compute infrastructure that differ in
the provided resources and/or in attributes that affect the QoS

of the deployed application. The emphasis is on the three terms
in italic: optimal placement over multiple options that affect
the QoS. Our focus is on the main technical and mathematical
aspects of placement of computational units. We consider this
architecture agnostic task as a core problem with significant
importance affecting both the user experience and the related
operation costs.

There are closely related and pertinent works that are worth
mentioning in order to clearly define what falls out of the scope
of our survey. Research results on deploying infrastructure ele-
ments instead of placing services on existing infrastructure are
considered off-topic. Therefore, papers proposing analytical
approaches for identifying the most attractive locations to in-
stall edge nodes [14], [15], fog nodes [16], [17] or data centers
[18] based on impacting factors and key challenges to reduce
the costs associated with their deployment and maintenance,
or to support the requirements of mobile and latency-sensitive
applications are not in our focus. Furthermore, papers that
describe and solve cloud scheduling problems within a single
data center, e.g., [19], are also omitted from this survey. Even
if the scope of the research involves multiple data centers or
edge clouds, we do not cover those papers that do not devise
any optimization problem out of the placement challenge over
edge and/or cloud resources. Hence, papers that focus on a
framework description without in-depth algorithmic analysis
[20]–[23] are not included.

Research studies that propose placement solutions of com-
putational units whose effectiveness depend on the result
of another prior allocation scheme are also considered off-
topic. Hence, e.g., papers from the field of Coded Distributed
Computing (CDC) [23] are not included, since the compu-
tation function allocation is impracticable without the prior
placement of the files to be processed.

We have found related works that comply with the condition
of containing a formal optimization problem, tackling it with
an algorithmic approach, although they do not formulate a
placement decision involving more than one edge node [24]–
[28], or do not interpret the offloading problem in its widely
understood form [29]–[31]. We argue that offloading problems
that are defined as binary decisions [32]–[35], i.e., to offload or
not to offload, should not be compared to research results that
face a significantly larger decision space, therefore we exclude
those research efforts as well. These optimization problems
and their comparison to our considered scope are illustrated
in Figure 1.

The decision of omitting these related papers serves the
goal of making this survey comprehensive in the selected
topic. First, by adding the excluded cloud scheduling and
binary offloading papers, a comprehensive survey would be
intractable due to the sheer amount of related papers. Second,
although those work that fall in the aforementioned domains
and contain algorithmic solutions might seem, at a first glance,
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Figure 1: Illustration of the optimization problem considered in this survey,
and the problems considered in out-of-scope research areas.

similar to the selected papers, their optimization goals and
constraints are inherently and significantly different. There-
fore, the insightful comparison we provide in the next sections
could have been impossible for such research results. Third,
although we consider the practical implications and outcomes
of academic research very important, we place the primary
focus on mathematical modeling and problem solving in this
survey, rather than on architectural design and implementation
achievements.

B. Contribution

This survey provides a comprehensive summary on the
mathematical problem of placement of computational units in
emerging edge infrastructures operated by either mobile/fixed
network operators or cloud providers or a federation of them.
This article surveys the related literature over the period 2015-
2020. The main contributions are the following:

• First, we define a hierarchical taxonomy suitable for
the classification, categorization and understanding of
placement methods proposed by researchers in the revo-
lutionary age of edge computing.

• Second, the surveyed papers are analyzed and catego-

rized according to the dimensions of our taxonomy. The
main features, capabilities and limitations of different
approaches and mathematical tool sets are gathered and
summarized, which might be useful in product develop-
ment by mobile or fixed network vendors, operators or
cloud providers.

• Third, important research gaps and future research di-
rections are revealed. Those that formulate theoretical
problems are relevant to academic researchers, others
raise practical issues for network vendors, operators and
cloud providers.

taxonomy Section

platform IV

components IV-A

cloud-edge IV-A1

multi-cloud IV-A2

multi-edge IV-A3

edge-terminal IV-A4

cloud-edge-terminal IV-A5

policy IV-B
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application V

type

security & privacy

structure

single component V-A

offloading V-A1
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multiple components V-B
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edge/fog computing V-B2

multiple connected components V-C

offloading V-C1

multi-cloud V-C2
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mathematical optimization VI

problem formulation VI-A

applied methods VI-B

objectives VI-C

constraints VI-D

complexity VI-E

Figure 2: Our proposed taxonomy.

• Finally, the gained insights and important lessons learned

are summarized as a result of a thorough comparison and
investigation.

The structure of our proposed taxonomy is shown in Fig-
ure 2. We have identified three top level dimensions that deter-
mine the placement problem and the methods that can be ap-
plied to solve the problem. Namely, i) the platform capabilities
including the cloud-edge architecture, the placement controller
policy and the placement request types (offline vs. online pro-
cessing), ii) the application characteristics encompassing the
types of supported applications, the structure of the services
(single vs. multiple components, isolated vs. interconnected
components), and the supported level of security & privacy,
and finally iii) the mathematical aspects covering the problem
formulation, the applied optimization methods, the objectives
and constraints of the optimization models and the complexity
of the proposed solutions.

The outcomes of the analysis and the detailed insights
can be beneficial to researchers in multiple ways. First, the
collected and summarized mathematical tool set provides a
good starting point for related problems in other research
fields. The pros/cons of different approaches can be identified
in advance based on the lessons learned and suitable methods
can be selected from a restricted search space for further inves-
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tigation. By these means, the design time of the algorithms for
emerging but related problems are shortened and the pointers
to the technical details of promising, exploitable solutions are
available. Second, this survey delivers a comprehensive catalog
on the mathematical apparatus for the placement problem,
which can be beneficial for applied research and product
development. For example, this catalog can foster the design
and implementation of an orchestrator software of an arbitrary
edge cloud platform. For relevant solutions, the complexity
characteristics are also revealed which helps to assess the
feasibility of the approach in the targeted environment. Third,
the revealed research gaps outline promising future research
directions which could trigger dedicated activities on challeng-
ing topics.

C. Outline

The rest of the paper is organized as follows. In Section II,
the background is introduced via the state-of-the-art of edge
computing. In Section III, we provide a detailed description on
the taxonomy that we follow in the paper. Section IV presents
our analysis according to the first dimension of our taxonomy,
focusing on the characteristics of the cloud platform. Section V
is devoted to the second dimension addressing the application
related features and properties. The third dimension targeting
the mathematical aspects is investigated in Section VI: in
Section VI-A, the papers are grouped according to the problem
formulation, while in Section VI-B we analyze the papers in
terms of the applied mathematical methods; in Section VI-C
and Section VI-D, we review the optimization goals and con-
straints used in the collected papers, respectively; Section VI-E
describes the complexity aspects of the proposed algorithms
in the reviewed papers. Section VII highlights the revealed
research gaps and potential future research directions, while
Section VIII provides a summary on the lessons learned and
concludes the paper.

II. STATE-OF-THE-ART OF EDGE COMPUTING

We devote this section to describing the background of
the domain that our survey covers. To this end, we briefly
present other surveys that have partly touched upon the topic
in our focus. Together with the descriptions, we make a clear
separation from those works to clarify the exact scope of the
present survey. For easier tractability, we provide a summary
of acronyms used throughout the paper in Table I.

Traditional Mobile Cloud Computing (MCC) combines
cloud computing and mobile computing. As a result, the
computational capacity of the mobile devices is augmented
making use of different types of cloud resources. The original
MCC concept assumes distant data centers enriching available
mobile services, however, its generalized form encompasses
other types of cloud elements, such as proximate data centers
(e.g., cloudlets) and mobile computing entities with shared
resources. The surveys in [39], [40] summarize and categorize
the efforts of executing mobile applications external to the
mobile device in the concept of MCC. Although, the papers
focus on leveraging cloud resources for single computation
offloading, they also shed light on complex offloading decision

Table I: Summary of important acronyms used in this paper

Acronym Definition

4G Fourth-Generation Mobile Telecommunications Technology
5G Fifth-Generation Mobile Telecommunications Technology
AI Artificial Intelligence
API Application Programming Interface
AR Augmented Reality
AWS Amazon Web Services
BS Base Station
BW Bandwidth
CC Cloud Computing
CDC Coded Distributed Computing
CPS Cyber-Physical System
CPU Central Processing Unit
DAG Directed Acyclic Graph
E2E End-to-End
EH Energy Harvesting
ETSI European Telecommunications Standards Institute
FaaS Function-as-a-Service
FDMA Frequency-Division Multiple Access
GA Genetic Algorithm
GPU Graphics Processing Unit
HDFS Hadoop Distributed File System
ILP Integer Linear Program
INLP Integer Nonlinear Program
IoT Internet of Things
LP Linear Program
LSTM Long Short-Term Memory
MANO Management and Orchestration
MCC Mobile Cloud Computing
MEC Multi-Access Edge Computing / Mobile Edge Computing
MILP Mixed-Integer Linear Program
MINLP Mixed-Integer Nonlinear Program
MIQCP Mixed-Integer Quadratically Constrained Program
ML Machine Learning
MR Mixed Reality
NF Network Function
NFV Network Function Virtualization
NP Non-Polynomial
QCQP Quadratically Constrained Quadratic Program
QoE Quality of Experience
QoS Quality of Service
RAN Radio Access Network
RG Resource Graph
SA Simulated Annealing
SAP Service Access Point
SAT Boolean Satisfiability Problem
SC Service Chain
SDN Software-Defined Networking
SFC Service Function Chain
SGE Service Graph Embedding
SINR Signal-to-Interference-plus-Noise Ratio
SLA Service Level Agreement
SNR Signal-to-Noise Ratio
UAV Unmanned Aerial Vehicle
UE User Equipment
VM Virtual Machine
VNE Virtual Network Embedding
VNF Virtual Network Function
VR Virtual Reality
WiFi Wireless Fidelity
WPT Wireless Power Transfer

problems over heterogeneous resources including proximate
cloudlets and multi-tenant clouds.

Multi-Access Edge Computing (MEC), originally known



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3101460, IEEE

Communications Surveys & Tutorials

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 5

Table II: Categories of the referred survey papers in terms of the covered computing paradigm

Computing paradigm
Multi-Access Edge Computing Edge/Fog Computing Mobile Cloud Computing NFV/SDN

Covered area

Holistic approach to the topic [7]–[9], [36]–[38] [10]–[13] [39], [40] [41], [42]
Focused on placement problems [43]–[45] [46] [47] [48]

as Mobile Edge Computing, is an evolved version of MCC
and it is also a well-studied computing paradigm where the
focus is on providing computation capabilities within the radio
access network (RAN) in close proximity to mobile users.
In the literature, the borders are not sharp and sometimes
MEC features are also implied in the MCC concept. One of
the most recent and extensive study on leveraging distributed
resources at the mobile network edge is the work in [7]. The
survey covers a comparison of recently emerged computation
paradigms for delay sensitive and context-aware Internet-of-
Things (IoT) services, as well as a state-of-the-art research
related to “end-edge-cloud” orchestrated networks with special
attention to computation offloading, caching, security, and
privacy. Another recent study [36] provides a holistic overview
of the MEC technology and its potential use cases in terms
of integration with 5G enabler technologies. The authors also
discuss the applicability of many leading-edge technologies
with MEC, such as wireless power transfer (WPT) and en-
ergy harvesting (EH), Unmanned Aerial Vehicles (UAVs) and
machine learning (ML), in great details. Another review on
the exploitation of the MEC paradigm by the realization of
IoT applications is presented in [37], in which the emphasis
is placed on the technical aspects of MEC-IoT synergy and
on other integration technologies for 5G, mentioning service
deployment/resource allocation in coarse details. The survey in
[38] also presents a holistic overview on the MEC-IoT interac-
tion with increased focus on the performance of the different
edge network architectures and IoT reference applications in
terms of latency, bandwidth and energy consumption, along
with the potential security challenges. Other comprehensive
surveys summarizing and categorising the efforts on MEC
from an overarching point of view are published in [8] and
[9], where the main focus is on the research issues related to
the joint radio and computation resource allocation, including
different computation offloading and mobility management
scenarios. Both papers discuss the advancements in the process
of MEC standardisation, as well as defining and examining
reference applications and their major use cases.

Similarly to MEC, fog computing has also gained significant
attention over the recent years as an alternative approach to
the centralized cloud computing model, leveraging fog node
resources at the edge of the network along with the manage-
ment of connected communication resources. The authors in
[10] compile a comprehensive survey of recent efforts about
fog-enabled architectures in the context of IoT applications,
including the major similarities and differences compared to
other computing paradigms. They provide a large-scale and
thorough overlook on the state-of-the-art publications, as well
as designating the open research challenges and future direc-
tions, partially reviewing placement-oriented articles. There
are other surveys [11]–[13] that also discuss the concept of fog

computing in the light of infrastructural, Quality of Service
(QoS), Quality of Experience (QoE), resource management
and allocation challenges, mostly about architectural and non-
placement decision problems.

Compared to these aforementioned surveys, in our work we
cover all architectural solutions that have been proposed in
the literature for deploying services in the Cloud Continuum,
and we steer our focus to the technical and analytical aspects
of function placement. In this sense, the current survey is
broader in scope regarding the architectures than any of the
related surveys, and digs deeper in the analysis of service
orchestration, which we consider to be one the main technical
challenges of such platforms.

Besides the aforementioned holistic surveys of edge-related
computing paradigms, there are several publications which
investigate and review optimization problems related to edge
resource utilization in more details, typically from the per-
spective of either the end devices or that of the central/remote
cloud. Based on recent works in edge computing, the authors
of [48] examine and classify the existing solutions for virtual
machine and Virtual Network Function (VNF) placement
based on their static/dynamic nature and performance metrics.
Although, the survey thoroughly analyzes the recent algo-
rithmic approaches of cloud-based multi-component service
placement, the research challenges related to edge resource
management and their solution techniques are only addressed
partially. The recent study of [46] defines a taxonomy for
the categorization of architectures related to edge resource
management in terms of resource type, management objective,
location and utilization purposes. While the study discusses
many articles in a wide range from edge resource discovery
through resource allocation up to resource sharing, it leaves
out several important placement-specific aspects including e.g.,
cloud-to-edge offloading scenarios. Comparably, the related
survey of [43] presents a comprehensive review on MEC-
related orchestration complemented with the analysis of the
MEC reference architecture, standardization activities and
open research challenges. The paper provides an overview on
specific orchestration scenarios considering individual services
and an edge-cloud platform network, but other edge-related
service deployment approaches are not addressed.

A few surveys summarize the field of MEC-related resource
optimization from a different perspective. The authors of [44]
state the importance of machine learning algorithms in MEC
scenarios, where the massive number of end devices, varying
characteristics of applications and user mobility exceedingly
increase the dimensionality of task offloading and resource
allocation problems. The survey offers an insight into machine
learning solutions for MEC systems, excluding other relevant
optimization techniques. In [45], the authors investigate the
application of game theory techniques on the major challenges
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imposed by MEC services, in which several game models are
considered for resource constrained optimization problems.
The survey in [47] explores the challenges and algorithmic
methods of multi-objective decision-making for time-, and
energy-aware task offloading, however, it mainly takes the
MCC paradigm into account and refers to MEC only in the
context of hybrid decision-making.

Away from the edge, the authors of [41] provide a com-
prehensive survey on the advancements of Network Function
Virtualization (NFV) with an extensive and in-depth discus-
sion on VNF algorithms. They examine relevant use cases,
including VNF placement, scheduling, and migration, but
omit the analysis of VNF-based service placement problem
considering resources at the edge. In their extensive survey of
[42], researchers analyze and classify resource provisioning
algorithms based on their mathematical formalization, opti-
mization objectives, constraints and efficiency. They discuss
topics related to our focus, such as VM migration and multi-
cloud scenarios, however, the survey focuses only on the long-
established cloud computing (CC) paradigm.

Many of the aforementioned surveys, which are catego-
rized in Table II, investigate algorithmic problems and their
literature in connection with edge resource allocation, such
as task offloading, content-caching, VM migration and server
partitioning, but none of them address explicitly the challenges
regarding placement problems in the edge, in which a number
of computation nodes are available at the edge of the network.
This is one of the distinguishing features that characterizes our
survey.

III. TAXONOMY

We provide a taxonomy concerning the most important as-
pects of research on placement in clouds. We create three main
groups of dimensions that we later use to characterize the body
of work. The groups of dimensions determine the structure of
the comprehensive view that we provide: in Sections IV, V
and VI, the presented analysis of the related work follows
the same grouping. The dimension groups touch upon the
following aspects in this order: i) cloud/edge platform features,
ii) application-specific details, iii) mathematical modeling of
the placement problem. In this section we summarize the
dimensions that constitute the three groups.

A. Platform characteristics

Within the group of cloud/edge platform-related character-
istics, we define the following three dimensions: i) platform
components, i.e., what type of infrastructure elements are
assumed, ii) the entity responsible for placement logic, i.e.,
which platform element decides where to place the service
components, iii) placement request processing, i.e., either
batch or online processing. We provide an in-depth discussion
of the options of all these dimensions in Section IV with the
respective classification of the collected papers.

Platform components: The collected research papers differ
in the set of layers they focus on in terms of potential platforms
for the placement of computational units. We illustrate the
whole set of layers in Figure 3. Some components and features

are related to the cloud providers while others are under the
control of the network operators (either mobile or fixed ones).

In the top layer we consider the clouds, in plural to account
for the multi-cloud setting, i.e., a number of data centers.
In general, those are public clouds, assuming quasi-infinite
compute resources, to be leased for a relatively low price,
while a high level of availability is guaranteed by strict
service level agreements (SLAs). Besides the three giants
providing the leading public platforms, i.e., Amazon Web
Services [1], Google Cloud Platform [2], Microsoft Azure [3],
other stakeholders have also entered the market. Typically,
these platforms expose only restricted APIs to control the
placement decisions. For example, the larger geographic re-
gions or availability zones can be defined for the applications
to be deployed. However, the connections between the regions
are typically out-of-scope for the cloud providers which is
a severe limitation regarding the supported applications. A
straightforward solution is to establish a dedicated business
collaboration among the cloud providers and the involved
network operators. In multi-cloud scenarios, a higher level
orchestrator makes the placement decisions, selects the ap-
propriate cloud domains from the available ones and triggers
the deployment via the corresponding APIs. In this case, the
business relations among the participating stakeholders can be
quite complex and new business models and pricing schemes
are required. On the other hand, private cloud platforms
built from open source components, such as OpenStack [4],
Docker [5] or Kubernetes [6], enable finer granularity in
the placement control. Moreover, the available APIs and the
underlying capabilities can easily be extended and tailor-made
features, policies and custom algorithms can be implemented.
In addition, public and private solutions are mixed in hybrid
platforms posing new challenges to the placement, especially
in terms of security and privacy.

In the middle layer there is the edge, generally either at
base stations (BS) and central offices of mobile networks, i.e.,
mobile edge, or at dispersed locations of a wired network’s
infrastructure. In any case, the edge nodes are assumed to be
limited in compute power, expensive to operate and maintain,
prone to errors and downtimes. On the other hand, the edge
computing infrastructure offers low latency for the end users
due to its physical proximity. The “edge realm” is the key area
for network operators to enter the ecosystem because they
have the physical footprint close to the potential customers.
The ownership of the edge infrastructure has important impact
on the placement control, as well. The edge resources can
be owned either by the cloud provider (managing the central
cloud resources as well) or by other operators (e.g., mobile
network operators) or even by the customers. Furthermore,
the concerned network infrastructure plays a crucial role in
the quality of the provisioned services. It can either belong to
the network operator owning the edge resources or dedicated
connectivity services with configurable quality parameters are
provided for the edge provider in order to be able to control the
quality of the connections. When all resources are managed
from a single administration domain, a central entity can be in
charge of orchestrating both central cloud and edge resources,
and also the networks. For example, in case of OpenStack,
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Figure 3: Architecture and the features of a distributed computing system.

edge servers can be added as distinct compute nodes, however,
the default orchestration service has to be extended in order
to be aware of the underlying network topology and network
characteristics. If the cloud and edge resources are owned and
managed by different stakeholders and network operators are
also involved, more complex mechanisms and workflows are
required. For example, a dedicated orchestrator is needed on
the top to calculate the optimal placement and to enforce the
appropriate deployment of service components and network
configuration making use of lower level orchestrators and
exposed APIs. As these interfaces are mainly technology
dependent ones, it is worth noting that the implementation
could be cumbersome, especially when different technologies
have to be integrated.

At the bottom layer we have the myriad of terminals that
include mobile user equipment (UE), i.e., cellphones, indus-
trial robots, self-driving cars, smart buildings, IoT devices, etc.
These terminals are considered to be the targeted users of the
applications, of which the operations are optimized with the
placement methods proposed in the collected research papers.
Terminals are assumed to have limited power, usually running
on battery, and they are considered to be poor in terms of
computation capacity. The access network type is out-of-scope
in this survey, although the collected papers predominantly
assume wireless access to the applications deployed in the
cloud/edge platforms, e.g., MEC applications. While telco
NFV use cases operate over wired networks, the end users of
those are in the end accessing the service via mobile networks.

Location of placement logic: When the overall computing
infrastructure contains only cloud and edge layers, then the
question of authority does not arise: the silent assumption

is made that the cloud (or edge) operator orchestrates its
own technological domain and also manages the involved
network infrastructure. However, if a research work considers
the possibility of running computation on terminals as well,
then the task placement policy may be dictated by one of two
parties: either by the cloud (or edge) operator, or by the owner
of the terminal. This ambiguity is also reflected in the term of
offloading that is used sometimes in terms of delegating tasks
from terminals to the edge, sometimes vice versa.

Processing placement requests: Similarly to data process-
ing big data engines, in the field of placement methods we can
make a differentiation in regard to the way placement requests
are processed. There are solutions proposed for the batch
processing of all the requests at once, called offline methods.
The other large group of approaches is that of the streaming-
like methods, which process each and every incoming request
individually. We call this group as online methods, and we
distinguish those that apply migration of computation units
that have been already placed if the placement of the actual
request deems it necessary, e.g., in order to free up resources.
The online placement algorithms are aware of the current
(and past) state of the system in terms of resources, but they
have no certain knowledge of the future, e.g., future service
requests or failures. Therefore, in most cases allocations are
made without any assumption of resource requests that arrive
in the future. In the intersection of the two groups, there are
the hybrid methods, which are adaptive solutions that place
the components, i.e., tasks, VMs, containers, etc., into the
edge and/or the cloud infrastructure in an offline manner,
but migrate them dynamically if required. The continuously
changing conditions, e.g., the mobility of end devices or edge
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nodes, trigger the online changes in the placement for achiev-
ing various goals, e.g., to follow mobile users, to maximize the
coverage, or to minimize the processing time of the offloaded
tasks.

B. Application related aspects

The second group of distinctive dimensions contains appli-
cation related aspects. Our taxonomy defines three dimensions
here: i) the use case of the application, ii) application structure,
i.e., how many computation entities are built from the applica-
tion’s code implementation, iii) security and privacy features.
These dimensions seem to be independent from one another
(and also from those in the other dimension groups), but as
we delve into the details in Section V, we show that certain
patterns can be observed.

Application type: The emergence of edge and fog com-
puting has been partially driven by specific use cases, along
with the appearance of novel applications. In the research
papers related to our survey scope these applications are often
specifically determined. If the application type is not empha-
sized, the researchers assume general applications and the
proposed solutions are application agnostic to some extent. We
argue that the application type for which service components
must be appropriately placed in a cloud/edge infrastructure
bears great importance. Consequently, we make a separation
of the processed research papers along this dimension later in
Section V. The main application types are Internet of Things,
Industry 4.0, big data analytics, and telco (or telco-related)
NFV.

Internet of Things (IoT) applications encompass a vast
number of IoT devices, such as various sensors generating a
massive amount of data or smart devices taking part in bidirec-
tional communications, and different types of processing units
capturing, pre-processing the data and also implementing the
main business logic. In a typical setup, the IoT sensors provide
continuous data streams which are eventually processed by re-
mote applications in a consistent way. Usually a dedicated IoT
gateway bridges the communication gap between the devices
and the cloud/edge domain: it is in charge of pre-processing,
aggregating and filtering the data, and also routing the traffic
towards the next level processing entities. The gateway can
include hardware related elements managing the communi-
cation, but the other aforementioned functionalities can be
implemented in software and the corresponding components
could be orchestrated similarly to other processing functions.
Typically, the gateway modules need to be placed in proximate
hosting nodes with limited processing, storage, battery and
bandwidth capacity which should be taken into account in
the placement decision. In addition, the IoT devices and the
characteristics of the generated data vary over a wide range.
For example, a data stream from an environmental monitoring
system or from a smart plant application significantly differs
from a video stream which is used by, e.g., an online face
recognition or object detection application. Both the sending
(or retrieving) frequency and the amount of the transferred data
vary yielding different requirements on the underlying network
and compute resources. The application itself also implies

specific requirements. For example, critical IoT applications,
such as autonomous vehicles, require strict and low response
latency which affects the placement of the processing units.
In general, the placement algorithms are expected to be
capable of i) resolving arbitrary latency constraints defined
between given components of the IoT application or end-to-
end latency bounds, ii) taking different bandwidth/throughput
profiles into account, iii) optimizing energy consumption to
prolong battery life of the devices and the IoT gateway (by
these means optimizing operational costs as well), and finally,
iv) dynamic mapping and placement which is required in case
of mobility support (e.g., intelligent transportation) when the
IoT nodes are in constant motion.

Industry 4.0 is a name for the current trend of automation
and data exchange in manufacturing technologies and it also
includes a special subset of IoT, referred to as Industrial
IoT (IIoT). Industry 4.0 applications pose strict QoS re-
quirements in order to guarantee real-time operation and to
ensure time-optimized service delivery. The placement task
is challenging due to the diversified data sensing frequency
of different industrial IoT devices and their reported data
size. For example, robot or UAV navigation applications are
essential components of future manufacturing environments
which require sophisticated image processing based on live
video streams. The control commands must arrive with strict
timing at the robots therefore the careful selection of the
execution environments (running the controller codes) and the
network paths (conveying the commands) is crucial. These
mission and safety-critical applications require additional fea-
tures to be offered by the orchestration system. For example,
dependability and reliability can be guaranteed by duplicated
controller instances (replicas) deployed to physically different
servers which are connected to the controlled plant via disjoint
paths. The theoretical constraints under the hood are generally
referred to as anti-affinity rules which are respected by the
embedding algorithms.

Big data analytics is another relevant application type. As
the amount of data collected in various IT systems has grown
exponentially in the recent years, capturing, storing, process-
ing, querying, updating and analyzing data while fulfilling
strict time criteria and effective resource consumption are chal-
lenging tasks. Big data platforms provide versatile solutions
typically designed for single data centers. However, big data
applications can also benefit from recent edge/fog computing
technologies. For example, data processing performed at the
edge can provide faster actuation and can also reduce the
network load. In a hybrid edge/cloud environment, where
the application components consume compute and storage
resources from the central cloud and edge infrastructures, the
task (and data) placement algorithms have significant impact
on the performance. On the one hand, generally a large amount
of data is moved among the task executors which requires
careful network path selection and proactive bandwidth al-
location. On the other hand, sophisticated placement of the
executors can largely reduce the overall network load and the
end-to-end processing latency which is crucial for time-critical
stream analytics often demanding real-time responses (e.g.,
within 100 ms in case of computer vision applications).
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NFV based telco (and telco-related) services have been
important drivers of the evolution of the MCC and MEC
paradigms. Telco services (e.g., mobile multimedia applica-
tions) are generally provisioned for a very large costumer base
while respecting strict SLAs, including availability, reliability,
bandwidth, delay and mobility requirements. These network
services are described and deployed in the form of Service
Function Chains (SFCs), each consisting of an ordered set
of VNFs. Certain requirements can be defined for the overall
service (e.g., availability, reliability) while other ones target
specific scopes (e.g., delay bound between two VNFs, mini-
mum bandwidth for a given path including multiple VNFs).
Other constraints related to dependability, such as anti-affinity
and link anti-affinity rules, pose additional challenges to the
orchestration system and the placement algorithms. Moreover,
as telco VNFs serve thousands of customers, these VNFs
are usually shared among multiple SFCs in order to save
resources, improve utilization and reduce operational costs.
The underlying infrastructures follow multi-tier hierarchy
and encompass heterogeneous resources from different cloud
and network domains. In order to enable the dynamic and
flexible provisioning of compound telco services consisting
of multiple constituent VNFs, telecommunications operators
need sophisticated placement methods. These mechanisms are
implemented (or more precisely, will be implemented) in
the orchestrator products of different vendors. The ultimate
optimization objectives from the operators’ perspective are the
operational cost and the revenue which drive the design (or the
configuration) of the placement methods and the orchestration
mechanisms. In case of telco services, the consumers are
typically human end users whose behavior (e.g., mobility, daily
profile) can be predicted and used as an input in the placement
algorithms.

Service structure: After the dimensions that characterize
the compute infrastructure and the placement logic, we define
a dimension to describe the application to be placed, as well.
From the perspective of placement, we argue that it is essential
whether the application is monolithic, or it can be divided into
components for which placement decisions might be made
separately. In addition to those two categories, we make the
distinction of the latter’s sophisticated variants, which consider
some type of dependence between the components, should it
be latency budget, affinity (collocation), anti-affinity (requiring
physically different underlying resources), or the like. Telco
services typically fall into this latter group. In Section V we
give a survey of the collected research works following these
categories.

Security and privacy: For certain applications it is in-
evitable to consider security and privacy aspects as early as
in the design phase of the orchestration platform. Several
researchers have done so, and we decided to emphasize and
acknowledge their effort, so we define the third dimension of
this group based on the security and/or privacy aspects taken
into account in the related papers. Unfortunately, only a small
fraction of the related papers give these important aspects any
consideration.

C. Mathematical modeling

As stated in Section I-A, only those papers are considered in
the scope of this survey that provide a mathematical model and
an in-depth algorithmic analysis of the placement challenge.
The third group therefore constitutes the evaluation criteria
of the papers in terms of analysis and algorithmic design. Re-
spectively, the dimensions in this group cover the i) formalized
model, ii) approach to the problem, iii) optimization goal, iv)

constraints that are taken into account, and v) complexity of
the proposed algorithms. Detailed explanation, evaluation, and
summarizing tables are given in Section VI on the covered
papers along these dimensions.

Placement problem formalization: Beside the dimensions
that characterize the infrastructure and the application com-
position, we also account for the mathematical tool set the
researchers propose to apply. First and foremost, the formal
model of the optimization problem is what characterizes the
theoretical contribution of a research paper. We therefore
discuss all the applied modeling frameworks in Section VI-A.
As a foreword, we can state that the prevalent formalization
technique is the family of linear programming, as the clear
majority of papers apply some kind of variant of those for
transforming the quest for optimal placement into the words
of mathematics.

Problem solving approach: In addition, perhaps as the
most interesting part for fellow researchers, we also describe
the content of the collected papers by listing the approaches
they chose to solve the optimization problems. This is the
dimension that shows the largest heterogeneity over the related
work, demonstrating that researchers have considered the
placement problem interesting and thus made the effort to
tackle it in innovative ways. In Section VI-B we present all
the algorithms that we have seen in the related work.

Optimization objective(s): Essentially all the collected
research papers strive to optimize some kind of notion with
the careful placement decisions. Therefore, it is obvious that a
categorization based on the optimization goal is of paramount
importance. In Section VI-C we introduce those goals in
details, here we just briefly list the most widely applied ones:
delay, energy, revenue, resource utilization.

Optimization constraint(s): Along with the optimization
come the constraints. Throughout the papers we studied, the
variety of constraints considered is much richer than that of
the optimization goals. We devote Section VI-D to discussing
those; in general, many researchers take into account network
and compute limitations, e.g., delay and bandwidth capacity
for the former, available CPU cores and memory for the latter.
Papers addressing MEC tend to form constraints on radio
resources, e.g., radio channels, carriers, signal-to-noise ratio
(SNR), and user mobility.

Complexity analysis: Finally, we summarize the complex-
ity characteristics of the proposed solutions in the correspond-
ing papers. Several research works provide detailed complexity
analysis on the presented algorithms and explicit formulas are
derived. In Section VI-E, we introduce a common notation
to make those results comparable to each other. In addition,
some papers conclude only textual characterization and specify
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the final complexity to be polynomial or exponential, while
only sub-problems or sub-steps of the proposed solutions are
analyzed in details. Other works define the complexity of their
heuristics in terms of the complexity of external algorithms,
such as LP solvers.

IV. THE CLOUD ARCHITECTURE

In this section, we start the characterization and catego-
rization of the collected research papers along the first group
of dimensions defined in Section III. Specifically, we draw
the high level system architecture of edge cloud and fog
systems in order to roughly position each of the collected
papers regarding the type of infrastructure they address, and
how the placement decisions are made therein. As a reminder,
we indicate the taxonomical aspects studied in this section by
bold fonts in Figure 4.

taxonomy

platform

components

cloud-edge

multi-cloud

multi-edge

edge-terminal

cloud-edge-terminal

policy

requests

application

...

mathematical optimization

...

Figure 4: The taxonomy angle analyzed in Section IV.

A. Platform components

We first characterize each research paper by the position
the published solution takes in the cloud-edge architecture that
exhibits three major layers in our understanding. We depict an
illustration of the overall infrastructure of virtual computation
in Figure 3 with these layers. On top, we model the datacenters
in the core of the Internet as the cloud layer. At the edge of the
Internet, there are various types of edge computation nodes.
Edge servers deployed at mobile base stations or any other
wireless access points, edge servers close to the last mile of
wired networks, even compute resources mounted on vehicles,
like the movable servers built on UAVs. At the bottom, we
find the end-user devices and terminals: mobile/cell phones,
tablets, smart watches, laptops, sensors, IoT devices, industrial
robots, connected or autonomous vehicles, etc. One common
attribute of these devices is that they have a demand for
computation resources: either by generating important data, or
by requiring the results of some computation to actuate upon
or just visualizing those. The other characteristic these devices
share is that in most cases they are connected by wireless
technology to the cloud-edge infrastructure.

We make five distinct categories for the catalogue of col-
lected papers on the combination of the three layers. These are

the following: i) central cloud and edge nodes are considered
for task placement, ii) only the cloud, but numerous data
centers offer placement options, iii) similarly, only edge sites
are assumed, but many of them, iv) edge nodes are available
for offloading some of the tasks from devices, v) both central
cloud and edge servers can be selected for offloading. We
briefly discuss all these options.

1) Cloud-edge: When papers consider the two-layer infras-
tructure of central cloud, i.e., a data center with abundant
resources but at a remote location from the perspective of the
users, and edge computing nodes at the edge of the network
close to the users, although low on computational resources
and expensive to operate, then the primary question is usually
to move delay-sensitive operations from the cloud to the edge.
Vice versa, papers might approach the same placement option
by moving computation from the edge to the cheaper cloud
for tasks that are indifferent to the latency this step adds to the
application’s quality of experience. The opposing effects that
create the optimization problem are often costs and delay, i.e.,
it is considered to be less costly to operate a remote data center
than to operate the same amount of computational capacities
in edge nodes, however this comes at the price of increased
end-to-end latency between the end user and the cloud.

2) Multi-cloud: Although, intra-cloud scheduling is out-of-
scope, we argue that inter-cloud task placement, possibly in
a multi-operator setting, leads to algorithmic problems that
are similar and thus comparable with those in the cloud-
edge setting. Therefore, we decided to keep those papers that
attack multi-cloud placement problems in scope. We list the
papers into this category that primarily do not leverage on any
infrastructure options in the edge and/or on the devices. In
case they do, the distinctive characteristics being edge nodes
and end devices are not taken into account in the problem
statement. In this category, usually the research problem is
induced by the difference in cloud service offerings: price,
SLA, VM flavors.

3) Multi-edge: We list the papers into this category that ad-
dress placement options solely on edge nodes, i.e., no cloud or
end devices are assumed to be available. Similar to the multi-
cloud category in the sense that all placement options fall in
one layer in our architecture view, this category however inher-
ently differs in the reasons that lead to the placement problem.
The most frequent reason is the heterogeneity of application
latency requirements: edge nodes are dispersed geographically,
therefore provide different delay characteristics from a given
user. On the other hand, applications’ delay requirements are
also heterogeneous, which creates a complex setting when
tasks are to be mapped to edge servers, exacerbated by the
often made assumption on limited resources in edge nodes.

4) Edge-terminal: We create a category for the traditional
MEC offloading papers in which user devices delegate pro-
cessing tasks to the edge computing infrastructure, usually for
battery conserving purposes. In the papers that belong to this
class there is no cloud option to offload tasks to. On the other
hand, there are multiple options of edge nodes in the collected
papers, because we omit research results on binary offloading
decisions. Usually the challenges addressed in these papers
stem from the choice of edge nodes, the latency requirements,
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Table III: Categories in terms of platform components, owner of placement logic and temporal placement decision-making

Platform components
Multi-cloud Cloud-edge Multi-edge

Cloud-edge-terminal Edge-terminal
Policy logic in cloud platform in terminal in edge platform in terminal

Offline [49]–[53] [54]–[77] [78]–[98] [99]–[107] [108]–[116] [117]

Online
[52],

[118]–[124]
[59],

[125]–[128] [129]–[140] [100], [141]–[146]
[141], [143],
[147]–[153]

[109], [111],
[154]–[160] [113]

Online with migration [161]–[167] [168]–[170]
Hybrid [171], [172] [173]–[179] [180]–[182] [183]

and compute capabilities.
5) Cloud-edge-terminal: Finally, the last category might be

considered as an extension of the previous one by adding
remote clouds as options to the offloading decision. Naturally,
only those computational tasks can be offloaded to the central
cloud that are less sensitive to delay, so it is beneficial to
offload them to the cloud, instead of consuming precious edge
resources.

B. Location of placement logic

In Table III, we sort the collected papers into the aforemen-
tioned five categories, represented in columns of the table.
Within those columns, for the MEC offloading categories
we further distinguish papers based on the placement deci-
sion maker the papers assume: whether the policy logic is
performed by the cloud-edge platform provider, or the user
terminal. In the former case, the application running in the
bottom two or all three layers of the architecture of Figure 3
is marshalled by the cloud-edge service provider and the end
device is assumed to be under its control. An illustrative
example for this is the case of industrial robots, where a
robot control application is deployed in the infrastructure slice
overarching all layers. The latter case is best represented by
an autonomous mobile/cell phone user that buys cloud-edge
resources in order to prolong the battery life of its device.

C. Processing placement requests

In the rows of Table III, we further divide the set of papers
along the dimension of the temporal aspect of placement deci-
sions, as introduced in Section III. In the “Offline” row those
papers are depicted that assume a one-shot batch placement
of all the tasks in hand. In the “Online” row, on the other
hand, those solutions are gathered that solve the placement
of each task one-by-one, preparing for a sequential arrival of
requests for placement. The third category in this dimension,
the row “Online with migration”, groups those papers that
apply task migrations while placing new tasks separately.
This feature resembles to a re-optimization attempt, partially
offline optimizing the already deployed tasks. Finally, making
a complete step in this direction, “Hybrid” solutions fully
re-optimize the placement status periodically, during which
periods they operate as online methods.

One can find the same paper in multiple columns or multiple
rows in Table III. The reason for that is the multi-facet results
those papers contain. In a few cases, for example, researchers
propose both an online and an offline method to address the
placement challenge, without integrating them into a hybrid
solution. The most usual reason for multi-column papers is

that placement policy logic can be tied to both the cloud-edge
provider and to the user device.

V. DEPLOYED APPLICATIONS

We present several collected papers in detail, and we under-
line the interesting specifics of the work published there. For
tractability, we split the body of work into categories based
on the second dimension group introduced in our taxonomy
in Section III, i.e., service-related aspects, such as service
composition the research papers assume, application type and
security. As a reminder, we indicate the taxonomical aspects
studied in this section by bold fonts in Figure 5.

taxonomy

platform

...

application
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security & privacy

structure

single component

offloading

edge/fog computing

multiple components

offloading

edge/fog computing

multiple connected components

offloading

multi-cloud
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mathematical optimization

...

Figure 5: The taxonomy angle analyzed in Section V.

We use the dimension Service structure as major cat-
egorization. The subsections are named respective to the
possible compositions: most of the researchers consider single-
component monolithic services, and there are research papers
that address the placement of services that can be decomposed
into sub-tasks, or must be replicated. We call these latter
multi-component services. Recent works consider such multi-
component services that also involve some notion of relations
between the components: either network requirements are
imposed, or data movement characteristics are modelled. The
addressed service structures are illustrated in Figure 6 and all
papers are listed in Table IV within their respective category.
Listing the references within Table IV is meant to illustrate the
balanced cut of the related papers via this choice of catego-
rization, and helps the reader to query the respective category
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Figure 6: Categories in terms of components and relations between them.

of any cited paper. Moreover, the distribution of the presented
papers are presented graphically in Figure 7 as a section map
with relevant statistics. In addition, a chronological overview
of the surveyed papers is also given in Figure 9 highlighting
the trends how the hot topics changed during the last six years.
Within each subsection we further group the selected papers
according to the Application type in focus, and pinpoint those
that touch upon any Security and privacy aspects, following
the other two dimensions in the second characteristic group
defined in Section III. Papers addressing specific application
types or security and privacy aspects are also highlighted and
categorized in Tables V and VI, respectively.

A. Single component

We split the papers targeting the placement of single com-
ponent services in two classes. First, we group classic MEC
offloading use cases together, second, we classify general edge
or fog computing platforms’ methods in one large group.

1) Offloading in MEC: In terms of Platform components,
the papers that tackle offloading decisions always involve
terminals, e.g., IoT devices, mobile user equipment. However,
we can make a distinction among the collected papers, whether
they focus only on edge servers in MEC, e.g., [81], [85], [94],
[112], [113], [115], [117], [154], [157]–[160], [173], [183],
or they also consider the possibility to offload computational
tasks to a central cloud, e.g., [101]–[104], [148], [151], [152].
Furthermore, one can find papers in the related literature that
apply moving devices, e.g., UAVs [84], or robots [173], as
edge nodes in order to position them to optimal locations
anytime the terminals change their location. In these latter the
optimization usually involves finding those optimal locations,
besides the offloading decisions. For example, in [84] the
authors formulate a computational offloading problem among
a swarm of UAVs acting as small flying cloudlets that receive
compute-intensive tasks from IoT devices via the FDMA
technique. UAVs, as MEC resources, aim to optimize their
energy consumption while satisfying the requirements of the
IoT tasks under execution. Similarly, related to the notion of
cloudlet [79], [84], [173], a few papers aim at optimizing
the location of edge nodes, hence performing the connected
network design [79], [173]. The authors of [79] find the
near-optimal places of the network elements and offloaded
VMs for minimizing the overall network element installation
costs and cloudlet access latency. Also in [173] a cloudlet

placement problem is tackled in which mobile cloudlet robots
are positioned such that they cover as many devices as possible
to minimize the task processing time. The proposed model
takes devices’ mobility into account, so it determines the new
locations for cloudlets and the shortest paths to get there. Not
to confuse with the UAV-mounted edge servers, in [85] the
authors propose cooperative computation offloading for UAVs
into a heterogeneous edge platform, and they solve a latency
constrained optimization problem by leveraging simulated
annealing based particle swarm optimization approach.

In terms of subjects to optimization, the offloading decisions
are often complemented with additional aspects, other than the
aforementioned positioning of mobile edge nodes. Therefore,
next to the research results about offloading decision optimiza-
tion, e.g., [84], [94], [115], [148], [157], [160], [183], there
are several works that propose to jointly optimize offloading
and compute resource allocation in the edge infrastructure,
e.g., [101], [102], [112], [113]. In these papers the authors
strive to optimize the operation of the overall MEC system
while end users and/or terminals aim at minimizing their
own battery usage or the processing time that constitutes
the service latency. In several papers network resources are
also taken into consideration as subject of the optimization.
In [144] the authors model the wireless channel, where the
heterogeneous access points’ capacities are derived from the
dynamically allocated width of the spectrum and the signal
strength. Similarly, radio transmit power [81], transmission
data rate [85], momentary SINR [158], [159], wireless back-
haul bandwidth partitioning [154], wireless link capacity [143]
can be included in the optimization objective, or constraints
when tackling the offloading decision making from the holistic
system perspective.

The third dimension group of our taxonomy in Section III
stands for the mathematical apparatus and formal modeling of
the collected body of research. The Optimization objective(s)

therein is one of the most important characteristics that define
a research effort. In the MEC offloading papers the goal is
selected from a rather limited set of inherent choices: energy
and processing time. One can find papers in which one of
these two goals are set out, e.g., energy in [84], [85], [102],
processing time in [94], [104], [115], [148], [152], [157],
[173], and there are also related works in which the goals
are targeted jointly, e.g., in [81], [103], [112], [113], [117],
[183]. While the former goal aims at preserving the limited
battery capacity of terminals, e.g., IoT sensors, mobile phones,
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Table IV: Categories in terms of service structure

Service structure
Single component Multiple components Multi components with connection

(e.g. VM, container, task) (e.g. backups, replicas) (e.g. SFC, DAG)

Papers

[49], [54]–[57], [60], [63], [69], [74], [78],
[79], [81], [82], [84]–[87], [90], [93], [94],

[98], [101]–[104], [112], [113], [115],
[117], [130], [143], [144], [148], [151],
[152], [154], [157]–[160], [165], [166],
[168], [173], [177], [181], [183], [184]

[51], [59], [64], [68], [70], [71],
[75], [77], [80], [95], [105],

[108], [110], [114], [127], [129],
[131]–[133], [135]–[137], [140],

[155], [161], [169], [170],
[174], [176], [178], [180], [182]

[50], [52], [53], [58], [61], [62], [65]–[67],
[72], [73], [76], [83], [88], [89], [91], [92],
[96], [97], [99], [100], [106], [107], [109],

[111], [116], [118]–[126], [128], [134], [138],
[139], [142], [145]–[147], [149], [150], [153],
[156], [162]–[164], [171], [172], [175], [179]

the latter strives to reach a desired QoS level in terms of
service response latency leveraging the compute capabilities
of edge nodes in the proximity of the terminals. A few papers
formulate general optimization goals as well, e.g., cost in
[101], [148], revenue in [113], [158] where the authors propose
to prioritize users with maximum utility to maximize the
provider’s revenue. In [148], the authors propose to optimize
both the perceived latency and the service migration cost based
on the computation demand and current position, assuming un-
available future system information and unknown system dy-
namics. They apply a contextual multi-armed bandit problem
and a Thompson-sampling based online learning algorithm to
explore the dynamic system environment. Also focusing on
the experienced delay caused by invoking the migration of
a VM, in [159] a VM placement with path selection and
a migration scheduling using user mobility information are
proposed. User mobility is modeled by the evolving SINR
maps therein. Being an unusual optimization goal, in [160] the
authors strive to solve the aggregating IoT gateway’s capacity
fragmentation issue caused by binary decisions of offloading
the whole task or computing the whole task on the device.
Instead of losing capacity due to this coarse-grained allocation,
their optimization makes fine-grained offloading decisions at
any stage of the process, also considering the energy required
to send the data for processing on a nearby server. In [144] the
optimization of resource allocation and computation offloading
is extended with that of content caching for maximizing the
profit of MEC system operators facing the end users, renting
communication resources from mobile network operators. In-
spired by a similar idea, in [94], [115] a cache-enabled fog
computing network is proposed where fog nodes own storage
capacities to proactively cache the popular tasks’ results to
minimize the computation time of the future task requests by
returning the cached value. Further developing the potential of
caching in the edge, the authors of [158] combine MEC and
information-centric network architectures for optimizing the
profit of a mobile virtual network operator by effective video
transcoding, caching and multicast optimization.

When optimization affects multiple parts of the ecosystem,
the researchers have to deal with even higher complexity than
what is reached with a single objective optimization problem.
The authors of [81] therefore split the main optimization
task into the offloading decision and resource allocation sub-
problems and sequentially solve them by leveraging one-to-
many and one-to-one matching techniques. In [112] a cen-
tralized controller entity is suggested which decides about
the tasks that should be offloaded and about the amount
of resources to be assigned to them individually. The au-

thors also decompose the original problem into a resource
allocation problem with fixed task offloading decisions and
a task offloading problem that optimizes the optimal-value
function corresponding to the resource allocation problem. As
the wide-area MEC architecture’ backhaul link is assumed
to be wireless in rural areas by the authors of [154], they
propose an iterative algorithm to the offloading as a matching
problem, the node capacity allocation as a linear programming
problem, and finally, the bandwidth allocation as a univariate
function minimization. As a great example for a distributed
algorithmic solution, in [143] a distributed trading game is
proposed in which the wireless devices are interacting with
the network operator through a Stackelberg game for network
and computing resources. Resource allocation and offloading
decisions are made in the devices and the operator, while
ensuring the preservation of the required wireless link capacity.
The distributed offloading and resource allocation is proven to
be efficient in the paper, which is used for the design of an
approximation algorithm for the decision making.

In terms of Application type, IoT use cases, e.g., [160]
[84], are over-represented in this MEC offloading collection of
papers due to the low power nature of IoT devices in general.
Accordingly, some papers assume static users, e.g., [81], but
those research results that target mobile terminals naturally
take into account mobility as well, e.g., [157], [159], [173].

The remaining dimension of the second group in our tax-
onomy, Security and privacy appear in [102], [151], [183].
The authors of [183] points out that two potential privacy
issues are induced by the wireless task offloading feature of
MEC: location privacy and usage pattern privacy. Hence they
propose a privacy-aware offloading mechanism to avoid the
chance of being detected. Their solution decides where to
run the tasks to achieve the best possible delay and energy
consumption performance while maintaining the prespecified
level of privacy. Somewhat different idea is investigated in
[151]: the authors introduce a distributed auctioning model
for the capacities, where low-latency applications are deployed
with privacy constraints. The edge devices buy resources from
their immediate neighbors, if their tasks are to be considered
private. In [102] the authors consider different user-defined
QoS requirements in terms of delay, compatibility and security.
They apply Bender decomposition techniques to decompose
the original offloading problem into a master problem and sub-
problems that can be solved in parallel at fog nodes.

2) Resource allocation in edge and fog computing systems:

In this section we overview the research papers that focus
on edge systems without considering the terminals’ compute
capabilities. In these papers the underlying infrastructure as-
sumes a multi-cloud [49], a cloud-edge [54]–[57], [60], [63],
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Table V: Categories in terms of application type

Application type IoT Industry 4.0
Big data
analytics

Telco (or
related) NFV

Papers

[55], [68], [73], [78],
[84], [86], [88], [106],

[111], [145], [153], [160],
[163], [167], [175], [177]

[54], [76],
[124], [146]

[59], [66],
[67], [125]

[74], [95],
[97], [124],
[170], [180]

Table VI: Papers considering security or privacy
aspects

Security Privacy
Papers [86], [102] [151], [183]

[69], [74], [98], [165], [166], [177], [184], or a multi-edge
scenario [78], [82], [86], [87], [90], [93], [130], [168], [181].
These choices belong to the Platform components dimension,
and highly determine the optimization intention the researchers
set out. When both a central cloud and edge computing are
considered, in many cases the researchers assume that the
workload is initially placed in the cloud, and the edge system
needs to determine where to replicate and how to distribute
the user load among them [55], [82]. Therefore they propose
a framework to push the resource-intensive applications to the
edge, to minimize average data traffic in the edge network
among the base stations by replicating services from the cloud
to a subset of the edge servers. The workload allocation
over heterogeneous computing systems must take into account
different resource availability [56], and when distributing
the workload between fog and cloud, the goal might be to
minimize the energy consumption of both of them, such that
delay demands of the services are fulfilled [60]. If a given
research work does not suppose the usage of a central cloud,
i.e., tackles multi-edge scenarios, the challenge may stem from
the joint optimization of device-to-base station association,
task distribution, VM placement and resource allocation [57],
[93]. The authors of [69] go further: they strive to minimize
the user traffic load by addressing the joint service placement
and user association, the joint allocation of computing and
radio resources and the correlation of adjacent base stations’
placement decisions.

While, in terms of Optimization objective(s), most of the
papers that fall into this category share the same target, i.e.,
latency of service completion [57], [60], [74], [78], [93], [166],
[168], [181], [184], several research initiatives have been
made to tackle the trade-off between power consumption and
transmission delay as well, e.g., [56], [60]. Besides providing
fast service completion to the users, researchers also try to
cover as many users with the edge system as possible; the
challenge is exacerbated by the fact that users move [49],
[130], [181]. In order to do so, the authors of [130] formalize
a time-variant and mobility-related optimization problem that
accounts for varying position of the users leading to user
re-allocations among different base stations to sustain user-
perceived QoS. Their migration-enabled and mobility-aware
approach, in which user migration is considered between
adjacent base stations, aims to maximize the user cover-
age rate, to minimize the number of re-allocations and to
yield refined dynamic allocations. A containers placement
and migration strategy is proposed in [168] to maximize
the number of satisfied users requests, with respect to delay
QoS requirements and resources limits. Also recognizing the
challenge caused by migrations, in [181] an energy-aware
optimization scheme is proposed that minimizes the latency

and the involved reallocation costs due to the limited edge
server budget and user mobility. In general, cost minimization
is a widely applied formalization in the research on edge
computing platforms, and the cost can stand for different
aspects, either resource consumption or service quality and
its related revenue: in [93] the total deployment cost takes
into account the wireless communication cost (link delay
parameters are derived from the amount of data to be sent and
the allocated wireless channel capacity) and the computation
cost of function placement, in [63], [177] the cost is due to
hiring edge servers that can ensure the required QoS for a
maximized number of allocated users or requests, in [87], [98],
[165] the cost is predicted for future service migration related
to the mobile users within a look-ahead time window, and in
[57] the service provisioning cost includes the number of VNF
instances in the network (VNF sharing is enabled to lower the
costs), and the transport bandwidth consumption as well.

The authors of [55] propose a placement and load distri-
bution scheme for edge systems serving as many application
requests as possible before their respective processing dead-
lines, minimizing the cost of task running, and maximizing
the reliability of the provided applications. Reliability is
emphasized in many other research papers [55], [74], [90],
[166], [184] in this domain: edge nodes are, in general, prone
to failures and it is considered to be slow and expensive
to maintain them due their scattered geographic locations.
Therefore authors of [166], [184] prepare for probable edge
node failures by reserving backup placeholders for VNFs.
The authors search the minimum amount of edge resources
to be reserved in order to provide the necessary redundancy
in the system for high reliability of services. In [184] they
offer a Kubernetes-based solution for edge infrastructure, in
which delay-sensitive applications can be deployed by the
custom Kubernetes scheduler that makes its decisions with
applications’ delay constraints and edge reliability in mind. In
[90] the authors maximize the total revenue collected by the
service provider applying user ranking and admission control
policy, and taking reliability requirements into consideration.

A recurring pattern specific to this category of the papers
is the placement of gateways [49], [54], [78] within the edge
platform. The trade-off between the insurance of QoS via the
placement of VNFs of data anchor gateways closer to user
devices and the avoidance of the relocation of mobility anchor
gateways via the placement of their VNFs far enough from
user devices is analyzed in [49]. The authors of [78] place fog
nodes to the possible sites in a way that the overall latency
between user gateways to fog nodes is minimized.

In terms of Application type, IoT [55], [78], [86], [177],
Industry 4.0 [54], telco [74] and e-health [93] use cases
revolve around the body of research in this domain. In the
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collected papers that fall into this category, only one tackles
Security and privacy: in [86] the utilized bandwidth, required
storage and the specified task security parameters are taken
into consideration as constraints in the optimization.

B. Multiple components

In this section we discuss those items of the related work
that consider such edge applications that comprise multiple
components. Those components can be, in general, deployed
separately to different nodes, even in different layers, i.e., end
device, edge, cloud. Similarly to Section V-A, we divide the
papers targeting the placement of multi-component services
in two classes. We group MEC offloading use cases in the
first, and we classify general edge or fog computing platforms’
methods in the second group.

1) Offloading: A relatively low number of published papers
fall into this category. In each of the papers cited in this
section, the resource allocation on edge servers is the main
element of the study, and an optimal decision is sought for
offloading some parts of the software from the end user device
to the edge, so a centralized placement logic is designed for
a cross-edge orchestration.

We divide the papers into two groups depending on how
the authors model the application components to be placed.

In the first group, instead of directly placing VNFs, the
workloads are modeled as individual tasks [71], [108], [114],
[136], [155]. Within these models the service requests are
single entities to be placed onto a heterogeneous edge com-
puting network. The edge node’s capacity can be segmented
into slots, which is used to allocate the services [114]. Al-
ternatively, the set of distributed task queues are matched to
sparsely distributed cloudlets in a standard MCC architecture
[71], or to execution nodes of a hybrid MCC environment
consisting of a local cloudlet and other feasible mobile devices
[136], or to UAV-mounted cloudlets [108], where the authors
optimize not only task partitioning, task-to-UAV associations,
and the allocated resources, but also the UAVs’ positions. In
all these related work the ultimate goal of the authors is to
maximize the number of admitted tasks in the system. In [108],
the optimization is performed subject to their required latency
and reliability: the latency requirements are ensured by the
locations of the UAVs, by the parallel computation of the
split parts of the tasks, and by the radio and computational
resources allocated for subtasks; reliability is provided by the
number and size of the diverse subtasks and their associations
to the UAV cloudlets. The authors in [136] consider the
dynamic characteristics of both the incoming tasks and the
computation providers, where the collaborating mobile devices
with limited resources can join and leave the system arbitrary.

In the second group, the papers consider partitioned appli-
cations to be placed in the edge system [105], [110]: at the
same time, multiple edge sites are able to work in parallel
to get the result of the offloaded computational tasks. While
the software is partitioned into unit blocks, the coordination
to deploy and run those induces some edge site coordination
cost. Moreover, mobile users may connect to various edge sites
during their movement [110]. In terms of optimization goals,

in [105] the authors strive to find the most energy efficient
deployment of tasks, with the respective allocation of radio
parameters, as the transmission costs of wireless end devices
are mainly characterized by their energy consumption.

2) Resource allocation in edge and fog computing systems:

This section is devoted to the research works addressing
services consisting of multiple components, such as VMs,
containers or tasks, but there is no relation among the con-
stituent elements taken into account. Following our Platform

components dimension, the underlying infrastructure, where
the service components are mapped to, can be multi-edge [80],
[95], [129], [131]–[133], [135], [137], [140], [169], [180],
[182], cloud-edge [59], [64], [68], [70], [75], [127], [161],
[170], [174], [176], [178] or multi-cloud [51] but the core
problem to be tackled, i.e., component placement, is similar.

Some research works deal with the optimization of the
virtual infrastructure itself including e.g., the placement of
service-hosting VMs, or clustering of the fog resources. At a
first glance, some parts of this problem are related to the task
of network planning (which is out-of-scope of this survey),
however, if the optimization happens on a shorter time scale
assuming highly dynamic environments, that moves those
research papers into the focus of this survey due to the similar
characteristics of the underlying mathematical problem. For
example, in [137], [180], the authors target the problem of
dynamic placement of service-hosting nodes over a SDN-
based, NFV-enabled MEC architecture in order to minimize
operational costs. Authors of [137] focus on VNF replication
capabilities, while [180] focuses on satisfying the service-
level response time requirements. The latter paper presents
an online adaptive greedy heuristic algorithm, which is also
capable of managing the service elasticity overhead that comes
from auto-scaling and load balancing with a proposed capacity
violation detection mechanism. A similar infrastructure-related
approach is followed in [174]. That study focuses on the
medium-term planning of an edge cloud network in a MEC en-
vironment. The authors define a link-path formalization along
with a heuristic approach for the placement of virtualization
infrastructure resources and user assignments, i.e., determining
where to install cloudlet facilities among sites, and assign
access points, such as base stations, to them. In a similar
vein, researchers in [75] suggest game-theoretic techniques for
VM placement to ensure application’s performance while they
aim to jointly minimize infrastructure energy consumption and
cost. Dedicated telco use cases are addressed with similar ob-
jectives, where the management cost of Telecom infrastructure
vendors’ network [170] and the 5G infrastructure [95] is to be
optimized. In [95], researchers propose to formulate the edge
device placement problem as a VNF placement task for reli-
able broadcasting in 5G RAN. The problem is formulated as a
multi-objective optimization problem constraining bandwidth,
service latency and processing capacity and minimizing the
composite objective function for reliability, deployment cost
and service response time. The particle swarm optimization
and genetic algorithmic meta-heuristic approaches are used to
solve the optimization problem.

The majority of the research works categorized into this
section focus on service placement. However, some papers
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V. Deployed applications
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Figure 7: Distribution of the presented papers in the sections and some corresponding keywords.

combine the optimization of the virtual infrastructure with the
placement of service components. For example, the authors of
[51] focus on the reliability aspects of placing VMs and their
backup duplicates in a distributed cloud computing network.
After the VM placement, as a second step, the service pro-
cessing tasks are allocated to the reliably placed VMs using a
maximum weight matching algorithm for bipartite graphs. The
graph matching also takes into account the possible failure re-
covery strategies to assign tasks to VMs. In [135], the authors
consider a coordinated planning of edge node location and
VNF placement based on modeling the spatial and temporal
mobile network usage over a geographic area. The proposed
network slice planning framework has a modular structure,
responsible for user mobility, service usage and edge cloud
location. The predictive algorithm uses the spatio-temporal
model for QoS-aware and load efficient VNF placement.
A different approach is presented in [80]. The researchers
propose a balanced clustering and joint resource allocation
algorithm to achieve minimized response delay and energy
consumption. They assume that the tasks are partitionable, and
as such, they can be processed in parallel. The studied model
contains multiple fog nodes communicating with each other
via wireless channel. The proposed algorithm firstly clusters
the fog nodes according to their wireless and computational
resource and workloads to create balanced groups of servers.
Secondly, it determines how to split the tasks into partitions
and jointly allocates the wireless and computational resources
in each cluster in parallel. The objective of their proposed
method is to minimize the weighted latency and energy
consumption cost of the worst offloaded task partition.

The surveyed research papers dealing with the placement of
multi-component services take different aspects into consider-
ation. A large part of the research efforts target applications
realized by a configured number of replicas of given service
components [51], [64], [70], [77], [132], [133], [137]. Replicas
can increase the reliability, availability, dependability, and
coverage of a service. However, in this context, the main
goal of using replicas is to provide latency constrained service
access for customers. For example, in [64] the authors assume
that initially all the applications run in the cloud as VMs
and the issue is how to deploy VM replica copies supporting
multiple applications among numerous MEC servers in edge
networks. Their objective is minimizing the average response

time with various request demand and limited capacity of
MEC servers in mobile edge networks by placing the VM
replicas close to the users. Due to the edge environment, cus-
tomers are generally connected via mobile networks, therefore,
considering user mobility can also be essential. In several
research papers [75], [131]–[133], [135], [140], [174], [180],
[182], mobility patterns are incorporated in the models and the
service deployment and/or resource allocation are optimized
either proactively based on predictions or reactively based on
measurements. For example, utilizing user mobility to meet the
extreme low service latency requirements is studied in [132],
where the trade-off of resource footprint versus application
delay is formalized. Taking the user mobility pattern informa-
tion and prediction as input, the most useful neighboring base
stations are used as VM replication locations. The authors pro-
pose two algorithms, which reactively and proactively deter-
mine the replication locations, minimizing the service quality
degradation due to on-demand VNF relocation. The authors in
[131], [140] formulate both the offline and online versions of
the corresponding optimization problem. The online algorithm
determines the best matching between application components
and edge/core servers using the Hungarian method, and then
applies a local search procedure to consider the communica-
tion requirements along with the users’ movements and the
previous placement result to improve their solution. Another
related aspect is migration which is considered by various
models [133], [161], [169], [174]. The authors in [161] for-
malize the placement problem for microservices constructed
from smaller containerized components. Their main objective
is to minimize the total response time, considering eventual
migration times of the microservice containers. The applied
method is a Bayesian optimization-based reinforcement learn-
ing algorithm, which requires minimal monitoring and it is
robust to noise. Combination of the aforementioned aspects is
in the focus of [182], where the authors discuss the proactive
deployment of service instance replicas among multiple edge
nodes for managing the cost-efficient service migration based
on the mobile users’ movement trajectories.

The vast of the research works assume a dedicated central
entity which is in charge of calculating the efficient placement
of the service components. However, researchers in [127],
[129] propose distributed algorithms. Authors of [129] provide
a distributed resource assignment and orchestration algorithm
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which runs an agent on each involved computation node, and
the application placement is determined as a result of a voting
and election procedure. In [127], researchers propose a set
of practical, uncoordinated strategies for service placement in
edge-clouds and demonstrate that these techniques can per-
form well compared to optimal solutions in terms of response
latency. The authors invoke the well-investigated problem area
of resource storage allocation and the principles of different
cache management techniques are applied advantageously to
edge-computing environments.

In terms of Application type, a telco use case is addressed
in [95], more specifically, reliable broadcasting services in
5G RAN are investigated. Another telco-related application is
targeted in [180] and the proposed system supports mobile
multimedia applications with low latency requirement. The
authors of [170] also assume telco services and examine the
problem of dynamic application placement considering vari-
able user mobility patterns and a multi-tier cloud infrastructure
incorporating cloud augmented Telecom nodes. A locally
optimal algorithm is also proposed to reduce the operational
cost by placing or moving the resident applications between
different datacenters. The authors of [68] study the orchestra-
tion of IoT applications in cloud-fog computing environment.
They assume a simple two-container cascade model which can
cover a large set of IoT applications. The fog application is
a cascade of a cloud module and a fog module. Research
presented in [59] focuses on the service placement problem
with data-intensive applications. To address this, the authors
consider the data required for a latency-sensitive task as part
of the service components to be placed.

The papers in this category, focusing on resource allocation
in edge and fog computing systems, mainly consider revenue,
utilization and/or delay as Optimization objective(s). From
the operators’ perspective, optimizing for revenue, e.g., in [59],
[68], [174], [180], or for utilization, e.g., in [127], [170], [176],
[178], or for both revenue and utilization, e.g., in [129], [131],
[140], is a straightforward decision. Some research works,
such as [64], [132], [161], take the delay as the main subject
of the optimization, which is also a reasonable choice as the
quality of experience of the targeted edge applications are
mainly determined by the perceived latency. Other researchers
combine the delay with energy [80], with utilization [51],
[70], [169] or with load balancing [135]. Alternatively, in
[137] VNF replication is considered as the most characteristic
operational cost. In [95], which is driven by a telco use case,
reliability is also taken into account besides revenue and delay,
which stems from the special requirements of such services.
Not a usual objective is used in [133]. More exactly, the
authors strive to minimize the overall backhaul traffic for
wireless fog networks using strategies like VM migration
and replication, focusing on the long term operation of the
network. Another unique aspect of the optimization problem is
emphasized in [176], [178]. Researchers argue that non-trivial
amounts of data need to be stored in storage constrained edge
servers to enable service execution, and that many emerging
services exhibit asymmetric bandwidth requirements. To fill
this gap, they study the joint service placement and request
routing in MEC-enabled multi-cell networks with overlapping

coverage regions of BSs and multi-dimensional (storage, com-
putation and communication) constraints. The special needs
are formalized in the optimization constraints.

C. Multiple components with connection

In recent years more and more researchers turned towards
complex application models, in which the application is com-
posed of multiple components, e.g., services, tasks, sub-tasks,
and there is a relation to be modelled among them. This
trend is also confirmed by the increasing number of references
in the top right cells of Figure 9. The connection between
components is generally tied to network resources, it can be,
e.g., maximum allowed delay, average amount of network
traffic, etc. Here we list those papers that fall into this category
of application modeling. We observe the trend that by the
time researches started to build such models, the hype of task
offloading diminished, hence the lower number of papers in
the next Section V-C1. On the other hand, the first wave of
such models appeared in context of multi-cloud, either with
a single-, or in a multi-operator setting. This is the reason
why we dedicate the separate Section V-C2 even though we
have not done the same for single-, and multi-component
applications in Sections V-A and V-B. The chronological
distribution of these papers is visualized in the top three rows
in Figure 9.

1) Offloading: In this section, we overview the research
papers addressing the offloading of distributed applications
constructed by multiple connected (or more generally, re-
lated) components. Two types of underlying infrastructure
are assumed by these papers. According to our Platform

components dimension, the majority of the works focus on
the more complex cloud-edge-terminal scenario, [99], [100],
[106], [107], [142], [145], [147], [149], [150], [153], some
others target the edge-terminal setup, [109], [111], [116],
[156], while [139] presents a multi-edge scenario.

In the papers, two important aspects are considered: from
the user’s perspective, the experience is to be “maximized” by
e.g., minimizing the perceived latency or respecting a delay
constraint; from the operator’s point of view, the efficient
utilization of resources (compute and network resources) is
the main target. The research works presented in [100], [106],
[111], [142], [145], [147], [153], [156] focus on the customers’
aspects and optimize the user experience. For example, the
authors of [142] propose a fine-grained computation offloading
model, where parts of a computation task are considered for
delegating to nearby computation nodes. An adaptation of
the convex optimization, the alternating direction method of
multipliers, is designed and detailed, which optimizes for user
perceived QoS. The overall average service response delay of
all users are minimized over the cooperative fog computing
infrastructure model. Strategies of the cooperating nodes are
also analyzed and the authors propose a solution based on their
optimization. Other research works [99], [107], [109], [116],
[139], [149], [150] jointly handle both the users’ and oper-
ators’ aspects and besides offloading decisions, the resource
allocation is also considered. For example, in [149] researchers
consider to integrate optimization of multi-tier offloading with
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resource allocation. In their first scenario, a two-tier offloading
mechanism is assumed where the end devices’ workload can
only be processed either locally or in the cloud. The second
scenario introduces the option to offload to the nearby edge
computation nodes, making the offloading optimization three-
tiered. In both scenarios the selection of the VNF deployment
site is also chosen together with the offloading decisions.
Multiple users’ service requests are optimized simultaneously,
where the wireless access capacity is divided among the
tenants. In [150] the work of [149] is extended to support
user requirements with strict delay constraints. The authors
in [139] besides placement constraints, consider precedence
constraints among the offloaded tasks for describing inter-task
data communication in a multi-edge environment.

In terms of Optimization objective(s), usually delay or
utilization is targeted. In [100], [142], [156], the authors
optimize solely for the delay, while in [149], [150] delay and
energy are jointly controlled. The authors of [107], [109](on-
line algorithm), [139], [153] optimize the utilization in their
models while the delay is considered in the constraints. Of
course, the two parameters can be combined, for example, in
[99], [147], the delay and the utilization are jointly optimized.
Moreover, in [99], [106], the revenue is also part of the
optimization objective. Besides the delay, some works [99],
[100], [106], [107], [111], [149], [150], [153] also take the
bandwidth into consideration in the optimization problem as a
constraint. In [109](offline algorithm), [111], the authors’ goal
is to maximize the revenue.

In terms of Application type, performance-sensitive IoT
applications [106], [111], [145], [153] and delay sensitive
online games [107] are explicitly addressed by the surveyed
papers, while most of the works assume general application
models. An interesting use case is given in [147], the authors
propose a cooperative artificial intelligence (AI) platform,
where the tasks are deep neural networks, and the proposed
solution calculates for all neural network layers the edge node
where it should run, in order to provide the task’s result as
soon as possible.

2) Multi-cloud: This section is devoted to the research
papers falling into the multi-cloud category according to our
Platform components dimension, while addressing complex
services composed by connected/related elements. The typical
problem to be solved is illustrated in Figure 8 (borrowed
from [123]). The problem is referred to as Service Graph
Embedding (SGE) or Service Function Chain (SFC) Embed-
ding which is a generalized variant of the Virtual Network
Embedding (VNE) problem.

Services or applications are modeled as graphs (service
graph), where the network functions are the nodes of the graph
and the connections/relations between the network functions
are described by edges. A service graph (SG) is shown in
the upper part of Figure 8 which consists of three network
functions (nf1, nf2 and nf3) indicated by blue boxes. The
attributes of these nodes describe the compute resource needs
(e.g., cpu, memory, storage) of the corresponding computa-
tional units. The traffic flow between adjacent functions is
represented by directed edges with unique IDs which can
describe network related requirements, such as delay and band-

Figure 8: Service Graph Embedding (SGE): a generalized variant of the Virtual
Network Embedding (VNE) problem [123]. The goal is to find the optimal
mapping of the service graph to the underlying resource graph.

width constraints. A request can optionally include Service
Chains (SC), which define QoS requirements, such as maximal
allowed latency or minimal bandwidth, on specific end-to-end
paths of the service graphs. In Figure 8, SCs are denoted by
red continuous lines and yellow dashed lines. The compute
and network resources and related attributes are modeled by
another graph, namely the resource graph (RG). An example
RG consisting of five hosting nodes is depicted in the lower
part of Figure 8. Users or other domains are connected by
Service Access Points (SAPs). These SAPs indicate physical
attachment points which are also referred to in the SG by
special purpose nodes (sap1, sap2 and sap3 in the example).
The overall goal is to find a mapping of the (virtual) nodes
and edges of service graphs onto the shared physical substrate
network, such that the cumulative resource allocations on
any physical node or edge does obey capacity (and other)
requirements. In Figure 8, an example mapping of the SG to
the RG is shown, e.g., nf1 and nf2 are collocated on host2,
while nf3 is mapped to host5, and the virtual links of the SG
are assigned to indicated paths in the RG (the same link IDs
are used as in the SG illustrating how given logical links are
mapped to physical paths).

The vast of the papers [50], [52], [53], [72], [120]–[123],
[171], [172] assume single-operator scenarios, i.e., the re-
sources are owned and managed by a single provider, but some
works [118], [119], [124] address the more complex and more
challenging multi-operator setups. Of course, the later environ-
ments require business related questions as well to be investi-
gated. Moreover, in order to enable multi-provider scenarios,
Security and privacy aspects should also be considered. More
exactly, the frameworks and data models should support hiding
internal resource information between cooperating operators,
for example, the internal network topology of a provider is not
shared with the others and only abstract, high level resource
information is exchanged. The surveyed research papers deal
with general applications and service structures and they do
not define limitations with respect to the Application type.

The majority of the proposed algorithms are online methods
and only the authors of [50], [52], [53], [72] provide an offline
mechanism. In addition, the researchers in [171], [172] pro-
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pose an online-offline (hybrid) orchestration system, which re-
ceives and processes the incoming request in an online manner,
and occasionally re-optimizes the total accumulated service
deployment. The SGE problem is formalized as a mixed-
integer linear program, solved using a greedy backtracking
heuristic (online) and as an integer program (offline). For
interleaving the simultaneous operation of the two algorithms,
a framework is proposed where the strategic decision points
are identified.

In terms of Optimization objective(s), usually delay, rev-
enue and utilization or some combination of them is targeted.
In [120], [121], [172] only the revenue, in [118] only the delay,
in [119] both delay and revenue are considered. In [171] delay
and utilization, while in [123], [124] delay, utilization and
revenue are taken into account in the optimization objective.
Interestingly, in [50] the authors optimize for the bandwidth
and in [72] the device power consumption is also included in
the objectives. Authors in [52] study bandwidth optimization
from multiple perspectives by minimizing aggregate band-
width and minimizing the maximal link capacity utilization.
Furthermore, the paper [53] studies cost minimization provid-
ing performance guarantees in relation to the optimal solution.
In all papers, the constraints describe the capacity limits of the
compute and network resources.

3) Resource allocation in edge and fog computing systems:

A similar embedding problem has to be addressed when the
underlying infrastructure includes dedicated edge resources.
Following our Platform components dimension, we distin-
guish the cloud-edge and the multi-edge scenarios depending
on the placement options. The authors of [58], [61], [62], [65]–
[67], [73], [76], [125], [126], [128], [162]–[164], [167], [175],
[179] consider the cloud-edge scenario where the service
components can be run either in the available edge domains
or in the central cloud. Other research papers [83], [88], [89],
[91], [92], [96], [97], [134], [138] investigate the multi-edge
option where the central cloud cannot be used as a runtime
environment.

Most of the papers assume single-operator scenarios where
all resources, operated in central clouds or deployed to edge
domains, are owned, managed and maintained by a single
provider. This seems to be a realistic assumption and the first
generation of edge and fog computing infrastructures follow
(or will follow) this model. However, envisioned large scale,
e.g., global scale, service deployments require compute and
network resources from multiple providers and only a federa-
tion of operators can provision these services and applications.
For example, in [58], [167], novel mechanisms for multi-
provider scenarios are proposed and investigated.

There are several theoretical solutions proposed by the
collected research papers, but some of them also provide
prototypes or extensions to available cloud platforms. These
extensions typically enable taking the network related as-
pects also into consideration, which is crucial in edge/fog
computing systems. For example, the authors of [162]–[164],
[167] (first architecture option) extend the widely used open
source cloud management system, namely OpenStack, with
network-awareness. More specifically, a novel online service
placement solution is proposed that merges all the necessary

functionalities for geographically distributed cloud-edge com-
puting system under one common OpenStack domain. Their
solution is capable of i) measuring the bandwidth and delay
characteristics of the underlying physical network among
compute nodes, ii) creating a topology model that contains
both compute-, and network-related features, iii) mapping
the incoming service requests, and re-mapping already de-
ployed services to the underlying resources with their novel
orchestration algorithm, iv) deploying and migrating services
via OpenStack API calls. In an analogous manner, network-
awareness has been added to different big data platforms. For
example, the authors of [125] propose solving the resource
allocation in the heterogeneous cloud-edge computing envi-
ronment by extending the open source Apache Storm real-
time computation system with delay-aware task placement.
The paper details the correspondence of the request topology
to a directed acyclic graph, built of Apache Storm platform
components. It provides a good example of how theoretical
results on service placement can be deployed on top of an
adopted architecture. Similar extensions to HDFS and Spark
are proposed in [66] and [67], respectively.

In terms of Application type, the previously highlighted
papers describing extensions to big data platforms [66], [67],
[125] can enable novel big data analytics applications. Other
papers [73], [76], [88], [146], [163], [167], [175] focus on IoT
or Industrial IoT applications. For example, the authors of [88]
aim to jointly place the data processing IoT application and its
subsidiary VNFs over a set of cloudlets and gateway nodes in
a cost efficient way. Authors of [146] consider a cloud robotics
warehousing use case, falling in the Industry 4.0 application
type. Coverage and battery consumption constraints are mod-
eled and taken as input to the optimization, so the usage of
excess mobile computation capacity is enabled. However, most
research works target general applications and service struc-
tures. The work in [65] focuses on modeling the characteristics
of application-specific network slices for 5G use cases, and
applying it to VNF placement optimization. They model VNF
interference as the negative effect of collocated VNFs to their
individually provided services. The performance degradation is
studied in terms of increasing number of collocated VNFs, and
a heuristic algorithm is proposed, which exploits this knowl-
edge for VNF placement optimization. Evaluation scenarios of
video streaming and autonomous driving are considered over
a virtualized, software-controlled 5G network. Researchers in
[97] investigate another telco use case and devise an energy-
saving and resource-efficient VNF placement algorithm for
network operators’ architectures based on the ETSI MANO
framework. Their proposed solution strives for saving energy
and satisfying the placement demands by adjusting the scale
of the substrate network and powering on or off the servers
according to real-time load.

The Optimization objective(s) in the surveyed papers
addressing cloud-edge and multi-edge platforms are slightly
different from the ones applied for multi-cloud systems. As
edge resources are scarce and expensive, therefore the main
objective terms are utilization and revenue, while delay is con-
sidered mainly as a constraint. Interestingly, in [62], [73], [76],
[91], [125], [138], the target of the optimization is solely the
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Figure 9: Chronological overview of the surveyed research papers categorized according to the structure of the service (followed in Section V). The references
in corresponding cells are randomly distributed and the exact publication dates within the given year are not reflected by the placement of the identifiers.

delay. For example, the authors of [91] focus on delay-critical
services, while in [125] big data applications are addressed,
where delay is the most important factor explaining the special
role of that in the optimization problem. (The authors of [67],
also dealing with big data use cases, combine delay, utilization
and bandwidth in their optimization objective.) Researchers in
[73] examine the optimal joint placement of data processing
operators and pub/sub brokers in an IoT use case, where the
sum of the end-to-end delays perceived by the subscribers
is to be minimized. The authors of the paper [62] targeting
the delay as the optimization objective follow a different way
than other works. They propose using constraint programming
to address the service placement problem in fog computing
infrastructures, instead of integer linear programming and
heuristic solutions. They argue that constraint programming is
more generic and easy-to-upgrade model for an adaptive sys-
tem, where constraints and objectives can change dynamically.
They assume that the services can be written as a service graph
and between the service components exist network constraints,
like the minimum bandwidth or maximum latency that the
application tolerates. The authors show that their proposed
implementation provides a good trade-off between resolution
times and solutions quality.

VI. ALGORITHMIC MODELS AND SOLUTIONS

In this section, we present the mathematical achievements
of the collected papers, somewhat abstracted from their actual
use cases, in terms of architecture and service choices. We
first list the formalization tool sets of problem statements the
researchers opted for. Second, partly related to the problem
formulation, we set out the types of methods researchers
applied to solve those problems. Third, again related both

to the problem formulation and the targeted use case, we
specify the exact optimization goals, and fourth, we briefly
present the considered constraints, as well. Finally, for those
collected papers in which the authors disclose algorithmic
complexity along the presented methods, we show their high
level summary for comparison. As a reminder, we indicate
the taxonomical aspects studied in this section by bold fonts
in Figure 10.

taxonomy

platform

...

application

...

mathematical optimization

problem formulation

applied methods

objectives

constraints

complexity

Figure 10: The taxonomy angle analyzed in Section VI.

A. Problem formulation

The problem formulation leads to abstract models that turn
the applications or services, or even functions and tasks of
those, into entities that need placement. In some papers, these
entities are VMs, containers, or for example, pods in the
realm of Kubernetes [6]. Nevertheless, the models are the
abstract translations of the actual entities into, most often,
combinatorial problems, in which the placement decision is
to be made on possibly multiple layers of our architecture
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Table VII: Categories in terms of mathematical problem formulation and applied techniques (part 1: Mathematical programming)

Formalizations Applied methods in papers and specific techniques

Category Specific model Method Papers Specific technique (if given/relevant)

Linear programming

LP

Solver [104]

Convex optimization
[80] Interior-point method
[142] Alternating direction method of multipliers

Assignment method [126], [128] Hungarian method

ILP

Solver [58], [63], [120], [175]
Linear programming [88], [176], [178] LP with fractal solution rounding

Graph theory
[118] Shortest path
[51], [136] Bipartite graph matching

Game theory
[84] Best response search
[97] Matching game

Search algorithms [73], [106] Tabu search
Evolutionary algorithms [182] Particle swarm optimization

Other heuristic solution
[54], [58], [74], [83], [90],
[103], [105], [107], [111],
[121], [163], [177], [180]

n/a [49]

MILP

Solver [57]

Linear programming
[59] LP with fractal solution rounding
[52], [53] Column generation

Convex optimization [117] Semidefinite relaxation
Stochastic control [127] Cache replacement policies
Assignment method [131], [140] Hungarian method
Search algorithms [79] Branch and bound

Other heuristic solution
[91], [146], [169], [171],
[172], [174]

Nonlinear
programming

INLP Other heuristic solution [100]
QCQP Convex optimization [149], [150] Semidefinite relaxation

MINLP

Solver [86]
Assignment method [56], [60] Hungarian method

Convex optimization
[56], [112] Convex and quasi-convex optimization
[101] Geometric programming
[60] Interior-point method

Linear programming
[60], [102], [116] Benders decomposition
[86] LP with fractal solution rounding

Stochastic control [108] Sine cosine algorithm

Other heuristic solution
[68], [81], [93], [112], [139],
[154]

n/a [113]
MIQCP Other heuristic solution [166]

Mathematical programming (general)

Solver [151]

Graph theory
[165], [173] Shortest path
[156] Constrained graph partitioning

Machine learning [78], [173] k-means clustering

Evolutionary algorithms

[55], [70], [95], [99], [119],
[137], [138]

Genetic algorithms

[85], [95], [179] Particle swarm optimization
[71] Hybrid queue Ant-Bee colony optimization

Search algorithms
[109] Backward induction
[170] Iterative local search

Stochastic control [161] Bayesian optimization
Linear programming [114] LP with fractal solution rounding
Game theory [89] Iterative combinatorial auction

Matching theory
[69] Deferred acceptance
[76]

Other heuristic solution

[64], [72], [77], [82], [96],
[122], [129], [130], [132],
[133], [135], [144], [159],
[160]

of Figure 3, and from a number of nodes/hosts within those
layers. The placement options to select from range from
devices, across edge nodes to cloud data centers.

Usually the combinatorial placement problem, i.e., match-
ing entities to places, is coupled with and/or triggers deci-

sions about offloading, resource provisioning, and scheduling.
Therefore, in general, the addressed problems are multi-
faceted, and therefore they inspire researchers to apply various
tool sets for mathematical formalization. In Table VII and VIII,
we list the formalization approaches we have encountered
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Table VIII: Categories in terms of mathematical problem formulation and applied techniques (part 2)

Formalizations Applied methods in papers and specific techniques

Category Specific model (if relevant) Method Papers Specific technique (if given/relevant)

Constraint programming
Solver [62]
Other heuristic solution [158]

Graph theory Virtual network embedding

Linear algebra [50] Eigendecomposition
Graph theory [145] Graph partitioning

Other heuristic solution
[65]–[67],
[123], [124],
[162], [167]

Game theory

Game theory Game theory
[84] Best response search
[75] Auction theory

n/a [49]

Stackelberg games
Other heuristic solution [143]
n/a [152]

Stochastic optimization

Multi-armed bandit Search algorithms [148](on) Thompson sampling
Optimal stopping theory n/a [157]

Markov decision process
Machine learning [168] Deep reinforcement learning
n/a [183]

Stochastic knapsack problem Other heuristic solution [134]
Multi-stage stochastic programming Approximation [181] Sample average approximation

Optimal control
Lyapunov optimization

Machine learning
[110] Sampling and classification
[87], [98] Recurrent neural network

Graph theory [87] Shortest path
n/a [155]

Job shop scheduling Evolutionary algorithm [147] Genetic algorithms

Matching theory
Matching theory [115] Deferred acceptance
Other heuristic solution [81]

in the collected papers, and we assign each paper to its
respective specific model type. The left-most two columns in
both Tables VII and VIII depict the large categories and the
specific models of problem formalization, respectively.

As it is reflected by the number of papers in those cate-
gories linear and nonlinear programming are the most widely
used formalizing frameworks. Both categories are considered
special cases of mathematical programming (also known as
mathematical optimization), particularly linear programming,
in which the goal is the optimization of a linear objective
function, subject to linear equality and linear inequality con-
straints. In nonlinear programming some of the constraints or
the objective function itself are nonlinear. By looking further
into the specific models in the second left-most column of
Table VII, one can learn that combinatorial optimization is the
most prominent formalization researchers choose to define the
placement problem. This choice is straightforward given the
nature of the problem in focus, i.e., how discrete structures, the
tasks and the infrastructure hosts, can be arranged together. All
the integer programming models listed in the table, i.e., ILP,
MILP, INLP, MINLP, MIQCP, are some sort of combinatorial
problems: mathematical optimizations in which some or all of
the variables are restricted to be integers. An illustrative MILP
formalization example is highlighted at the end of this section.

In the papers that we classify into the General mathemat-
ical programming category in Table VII, the authors do not
state whether their formalization falls into linear or nonlinear
programming, instead, the formalization is described in a
general form of mathematical optimization. Contrary to those,
in Table VIII we group those papers that explicitly name the
chosen formalization category. Among the selected mathe-
matical frameworks, we find constraint programming, graph

theory, game theory, stochastic optimization, optimal control
and matching theory. The paper using a formalization of any of
these categories constitute the minority of the body of related
work. Many of those are combinatorial in nature, e.g., graph
and matching theory, constraint programming. For example, in
[62], the authors propose constraint programming instead of
ILP and related heuristics and they argue that constraint pro-
gramming yields a more generic and easy-to-upgrade model
for an adaptive system, where constraints and objectives can
change dynamically. Furthermore, there are several papers that
involve stochastic components in their model, e.g., a randomly
defined process of job arrivals, mobile users’ movements, etc.,
and hence they turn to some sort of stochastic optimization
approach. The variety of the specific models is rich, among
those Optimal stopping, Markov decision process and Multi-
stage stochastic programming are all concerned about making
the optimal decision at a time or state or stage, respectively,
of the process with the goal of optimizing the expected value
of the reward, i.e., target function, in the future. For example,
the authors of [157] apply optimal stopping theory to minimize
the execution delay in a sequential decision manner. The other
two models, i.e., Multi-armed bandit and Stochastic knapsack
problem, tackle the stochastic nature of imperfect information
about the model parameters. In the former, the reward, i.e.,
the target function, is only partially known at the time of
allocation, in the latter the rewards are deterministic but the
sizes are random, therefore the uncertainty is modelled on
the constraints’ side. Also tackling the temporal aspect of
placement decisions, authors of a few papers apply optimal
control theory for finding a control law for the dynamical
system over a period of time such that an objective function
is optimized. Specific models include Lyapunov optimization
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Table IX: Harmonized notations used in [171] and [124]

Notation Description

R= (VR, ER), S= (VS , ES) Resource and service graph
P(S) Power set of set S

R, T
Set of node resources and VNF
types of R and S

cR : VR ×R 7→ R+ Resource capacity of a node in R

cS : VS ×R 7→ R+ Resource requirement of a VNF
τR : VR 7→ P(T ) Supported VNF types of a node
τS : VS 7→ T Functional type of a VNF

dR, bR : ER 7→ R+ Delay and bandwidth characteris-
tics of R links

dS , bS : ES 7→ R+ Delay and bandwidth requirement
of S links

C
S
⊂ P(ES)× R+ Path delay requirements of S

ej , j ∈ ES × VS = ΨS Leg, the unit orchestration step
µ : ΨS ∪ VS 7→ VR Hosting node of service node
λ : ΨS ∪ ES 7→ P(ER) Hosting path of service link

N : P(E) 7→ P(V )
Nodes of a path (in resource or
service graph)

and Job shop scheduling, the latter being one of the best known
combinatorial optimization problems. As a few examples for
the former, Lyapunov optimization techniques are proposed to
obtain asymptotic optimum with battery capacity of mobile
devices stabilizing around a positive constant in [110], to
minimize the upper bound of a queuing system in [155], for
location prediction combined with the deep learning method
of long short-term memory (LSTM) in [87], [98].

Besides these traditional problem formulating frameworks,
several papers include game theory in their modeling section,
a rarely seen model in placement problems. In those papers,
placement decisions are made as a result of a strategic in-
teraction among rational decision-makers, e.g., task owners
and computing host providers. When the interaction involves
sequential decision making from the participating players, then
a Stackelberg game is applied for the model. For illustrative
examples, we list a few of those papers. In [84] a potential
game is formulated, and solved by an iterative algorithm,
resulting in a pure-strategy Nash equilibrium, at which no par-
ticipating player can reduce its cost by unilaterally changing its
strategy. The authors of [94], [115] propose a matching game,
in which a cost function of computing delay is minimized
under latency and reliability constraints. The study in [152]
comprises a two-tier trading game, in which data service
subscribers pay for the resources of massive data center
operators, while disclosing their QoS requirements, in turn,
the latter purchase resources from the fog nodes if needed,
which can provide data services with low delays to the former.
For the resulting Stackelberg games a distributed price setting
and purchasing strategy is designed for each actor, which
is proven to reach Nash equilibrium, realizing an efficient
resource allocation. [49] two solutions favor one objective over
the other, whereas the third one aims at finding a fair trade-
off between the two objectives by the use of bargaining Nash
theory.

Table X: Mathematical notations used in Formulation 1 [171]

xi
u ∈ {0, 1} Variable indicating mapping of i ∈ VS on u ∈ VR

yi,ju,v ∈ {0, 1} Variable indicating mapping of (i, j) ∈ ES on (u, v) ∈ ER

au,r ∈ R≥0 Variable equaling total node allocations for u ∈ VR and r ∈ R

au,v ∈ R≥0 Variable equaling total bandwidth allocations on (u, v) ∈ ER

Umin
VR

∈ [0, 1] Variable indicating the minimum node utilization

α, β, γ Coefficients for normalizing and weighting objective function
pi,u ∈ R≥0 Price for placing service node i ∈ VS on resource node u ∈ VR

pu,v ∈ R≥0 Price for using bandwidth along resource edge (u, v) ∈ ER

1) An illustrative mathematical programming example: As
an illustration, the MILP formalization proposed in [171] is
summarized here briefly, which is the offline part of a hybrid
optimization method. The general notations and the MILP
variables are introduced by Tables IX and X, respectively,
while the MILP is described by Formulation 1.

Resource and Service Graphs are denoted by R = (VR, ER)
and S = (VS , ES) which describe the substrate infrastructure
and the incoming request, respectively. It is worth noting
that the model used in [171] assumes that service nodes (or
functions) have types which can be hosted by only resource
nodes supporting the given types. Available types are given
by set T while the set of resources (available or requested
cpu, memory or storage) is indicated by R. For the power
set of set S, we use the regular P(S) notation. cR and cS
denote the resource capacity of a node in R and the resource
requirement of a VNF in S, respectively. The functional type
of a VNF is given by τS , while the supported types of a
hosting node is indicated by τR. The network characteristics
(link delay and bandwidth) are described by edge attributes dR
and bR in the substrate graph. The counterparts are the delay
(dS) and bandwidth (bS) requirements in the request graph.
Delay requirements can also be defined for arbitrary paths in
S, which are collected by CS . Each node of a path is referred
to as N . The mapping result is defined by µ and λ describing
the hosting nodes for VNFs and the hosting paths for logical
links. ej , j are explained in Section VI-B.

As we have illustrated in Section V-C2, the general task
of SGE/VNE is to find a mapping of the service graph
S = (VS , ES) to the resource graph R = (VR, ER). In the
MILP formulation of [171], the node and link mappings are
represented by binary variables xi

u ∈ 0, 1 and yi,ju,v ∈ 0, 1,
i.e., xi

u = 1 indicates that service node i is mapped on
resource node u and yi,ju,v = 1 indicates that the resource link
(u, v) ∈ ER is used to establish the service link (i, j) ∈ ES .
The objective function is defined by Equation (1) in Formu-
lation 1, where the first two summands describe the costs for
resource allocations on edges and nodes respectively, while
the third one is used for load balancing. A specific scaling
factor is used for each summands (α, β, γ ≥ 0) in order to
(i) normalize and (ii) weight the different components of
the objective. The first summand expresses costs for using
bandwidth by employing prices p(u, v) ≥ 0 which can be set
by the provider according to the importance of the respective
links. The second summand expresses costs for mapping a
service node i ∈ VS onto a resource node u ∈ VR using prices
p(i, u) ≥ 0. For the last term, controlling the load balancing,
an additional variable Umin

VR
≥ 0 is used, which denotes the
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Formulation 1: Service Embedding MILP from [171]

min











α ·
∑

(u,v)∈ER
au,v · p(u, v) +

β ·
∑

i∈VS ,u∈VR
xi
u · p(i, u) +

γ · (1− Umin
VR

)











(1)

∑

u∈VR,τS(i)∈τR(u)

xi
u= 1 ∀i ∈ VS (2)

∑

u∈VR,τS(i)/∈τR(u)

xi
u= 0 ∀i ∈ VS (3)

∑

(u,v)∈δ+u

yi,ju,v −
∑

(v,u)∈δ−u

yi,jv,u= xi
u − xj

u ∀(i, j) ∈ ES , u ∈ VR (4)

∑

i∈VS

xi
u · cS(i, r)= au,r ∀u ∈ VR, r ∈ R (5)

∑

(i,j)∈ES

yi,ju,v · bS(i, j)= au,v ∀(u, v) ∈ ER (6)

au,r/cR(u, r)≥Umin
VR

∀u ∈ VR, r ∈ R (7)

au,r≤ cR(u, r) ∀u ∈ VR, r ∈ R (8)

au,v≤ bR(u, v) ∀(u, v) ∈ ER (9)
∑

(i,j)∈p,(u,v)∈ER

yi,ju,v · dR(u, v)≤Dp ∀(p,Dp) ∈ CS (10)

minimum (node) resource load among all resource nodes and
resource types. Constraint (7) upper bounds this variable by
the allocations au,r of resource r ∈ R on node u ∈ VR

divided by the respective capacity. Hence, Umin
VR

must be less
than the (relative) load with respect to any node and resource.
Hence, by minimizing (1−Umin

VR
), the minimum load shall be

increased, leading to distributing load more evenly.

Typical constraints are formalized in Equations (2)-(10).
Constraints (2) and (3) enforce that each service graph node is
mapped onto a suitable resource graph node while forbidding
mappings to nodes that do not support the respective function
type. Constraint (4) induces a unit-flow for each service link
(i, j) ∈ ES using the flow variables yi,ju,v ∈ {0, 1} for
all resource edges (u, v) ∈ ER. The left-hand side of the
constraint states flow preservation, while the right-hand side
enforces the sending of a unit flow from the node onto which
the tail node i is mapped while the node onto which the head
j is mapped must receive a unit of flow. Note that, when
both i and j are mapped to the same node u ∈ VR, then no
network path needs to be established in the resource graph.
Constraints (5) and (6) compute the allocations induced by
the node and link mapping, respectively, and Constraints (8)
and (9) enforce that these allocations are upper bounded by the
capacities of the respective resource graph elements. Assigned
nodes consume computation resources (e.g., CPU, memory,
storage), while embedded links result in assigned bandwidth
on respective substrate links. To enforce latency constraints
for the set of chains CS , Constraint (10) is used. For each
tuple (p,Dp) ∈ CS , the sum of delays of all resource edges
used by any of the service links is computed (left-hand side)
and is upper bounded by the maximum allowed latency Dp

(right-hand side).

Formulation 2: Optimization problem from [124]

∀(i, j) ∈ ES :µ(i) = λ(i, j).first and (11)

µ(j) = λ(i, j).last

∀i ∈ VS : τS(i) ∈ τR
(

µ(i)
)

(12)

∀u ∈ VR,∀r ∈ R : (13)
∑

{i|µ(i)=u, i∈VS}

cS(i, r) ≤ cR(u, r)

∀(i, j) ∈ ES :
∑

(u,v)∈λ(i,j)

dR(u, v) ≤ dS(i, j) (14)

∀(u, v) ∈ ER, M(u, v) := {(i, j)|(u, v) ∈ λ(i, j) (15)

and (i, j) ∈ VS} :
∑

(i,j)∈M(u,v)

bS(i, j) ≤ bR(u, v)

∀(p,Dp) ∈ CS :
∑

(i,j)∈p

∑

(u,v)∈λ(i,j)

dR(u, v) ≤ Dp (16)

minµ,λ

∑

ej ,j∈ΨS

CALCOBJECTIVEVALUE

(

λ(ej , j), (17)

µ(ej , j), ej , j
)

2) An illustrative VNE example: Besides mathematical
programming, invoking graph theory is reasonable especially
for services consisting of multiple components with connec-
tions (and e.g., latency requirements) among them. When
the underlying infrastructure also exhibits specific delay and
bandwidth characteristics, then the mathematical problem is to
find the mapping / embedding between two graphs, namely,
the service graph and the resource graph. Generally, the formal
models considering all practical aspects and constraints yield
quite complex optimization problems, thus, a great variety
of heuristic algorithms have been proposed by the research
community to approximate the optimal solutions. Here, we
highlight the main ideas from [124]. The paper proposes
an efficient online embedding algorithm which operates in a
multi-layer orchestration hierarchy and supports several types
of constraints, such as end-to-end QoS characteristics, cost
limits and reliability requirements. The mathematical problem
is formulated as a variant of VNE, where the underlying
topology, resources and capabilities are modeled by a resource
graph R = (VR, ER), while the service deployment requests,
encompassing multiple constituent components with connec-
tions and constraints among them, are modeled by service
graphs S = (VS , ES). Formulation 2 presents the online
VNE problem from [124], where only a single service graph
is considered and some requirements (e.g., node and link
(anti-)affinity) are omitted. The notations are summarized in
Table IX.

The mapping structures µ, λ describe a mapping solution,
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where each service graph node VS is mapped to a node in
the resource graph VR. The link mappings must be valid, i.e.,
their hosting paths must start and end at the hosts of their
ends as described by Equation (11). The node mapping must
respect the functional requirements of the VNFs i ∈ VS as
required by Equation (12). The constraints are quite similar to
the ones used in Formulation 1. More exactly, Constraint (13)
ensures that node capacity requirements mapped to a resource
node u ∈ VR do not exceed the total capacity of the
node for each resource type R. Link-wise delay requirements
must be respected by the link mapping function λ for each
VNF connection (i, j) ∈ ES as stated by Constraint (14).
Constraint (15) defines the set of all VNF connections using a
substrate network connection as M(u, v). This set is used to
summarize all the bandwidth capacity requirements bS(i, j),
which must be upper bounded by the resource link’s band-
width capacity bR(u, v). Besides the link-wise delays, path
delay requirements CS are also added which define maximal
allowed latency on multiple consecutive VNF connections
of ES (see Constraint 16). The general objective function,
which minimizes the sum of the objective value of each VNF
j ∈ VS and the adjacent service graph connection ej ∈ ES , is
formulated by Equation (17) and will be discussed later. Most
of the practically interesting variants of the VNE problem are
known to be NP-hard and strongly inapproximable [185].
This variant introduces more constraints, such as the path
delay requirement, so the same observations about complexity
apply to that VNE formulation, therefore, heuristic solutions
are needed.

B. Applied methods

A myriad of methods are proposed to solve the formulated
problems in the related papers. In the middle column of
Tables VII and VIII, we specify the large group of the applied
method for each paper, and if available, we denote the specific
technique in the rightmost column of both tables. Generally
speaking, most of the papers either use solvers or authors
propose their own heuristics to solve the modeled problem.
Similarly frequently seen, various well-known assignment,
e.g., Hungarian, and search, e.g., Branch and bound, methods
are applied either on their own, or as a basis for custom
heuristics. The third most often used group of methodologies
includes linear, e.g., Benders decomposition, and convex, e.g.,
Interior-point method, optimization approaches. There are also
paper in which the mixture of such method types is applied.
For example, in [56] the delay constrained primal problem is
decomposed based on the levels of the cloud-fog architecture,
and then the authors propose convex optimization, mixed-
integer nonlinear programming and Hungarian method for the
corresponding sub-problems.

We grouped the rest of the applied techniques into the
following method categories: Graph theory, Stochastic con-
trol, Machine learning, Evolutionary algorithms, Game theory,
Matching theory, Linear algebra and Approximation. Interest-
ingly, many of such techniques are applied to linear program-
ming models, e.g., Shortest path and Best response search,
Cache replacement strategies. For solving nonlinear and gen-
eral programming problems such methods are proposed as

Algorithm 1 Overview of the Embedding Algorithm [124]
Returns a set of complete mapping structures of service graph
S to resource graph R.

1: procedure MAP(S,R) → µ, λ
2: ΨS ← ORDERLEGSFORMAPPING(VS , ES)
3: while ∃ej , j ∈ ΨS where ∄µ(ej , j) or ∄λ(ej , j) do
4: while MAPONENF(ej , j) not successful do
5: ej′ , j

′
← GETBACKTRACKOPTION(ej , j)

6: UNDOGREEDYMAPPING(ej′ , j
′)

7: ej , j ← ej′ , j
′

8: end while
9: end while

10: return µ, λ
11: end procedure

Sine cosine algorithm, Constrained graph partitioning, Deep
Reinforcement Learning and Genetic algorithms.

Naturally, the game theoretical and matching theoretical
solving methods are also applied to problems defined in the
respective framework, in Table VIII. Moreover, unconventional
technique to problem pairings are also available in the related
literature, such as using Eigendecomposition for Graph theory
models, and Shortest path search to solve Optimal control
problems.

For example, the MILP problem introduced by Formula-
tion 1 is part of a hybrid, online-offline optimization frame-
work in [171] and the offline optimization task (addressed
by the MILP) is solved by Gurobi Mixed Integer Program-
ming solver, whereas the online part is realized by a custom
heuristic. Similarly, our other optimization example presented
by Formulation 2 is solved by a dedicated heuristic algo-
rithm in [124]. More specifically, the proposed orchestration
engine runs a heuristic-guided greedy backtracking search
on the resource graph structure. An overview on the formal
description of this approach is shown in Algorithm 1. Refer
to Table IX for a summary of the notations. An elementary
mapping step of the algorithm is the greedy allocation of
a VNF and an adjacent service graph link, called “leg”
(ej , j), onto a hosting (virtual) substrate node and path. An
embedding order among these elementary steps is calculated
by the function ORDERLEGSFORMAPPING(VS , ES). In case
a greedy step is not able to find a suitable host, while
respecting all service graph requirements, the most recent
greedy step is undone by freeing the temporarily reserved
resources. MAPONENF(ej , j) is the core function realizing
the greedy mapping of the leg while taking all the constraints
into consideration. In each greedy step, the hosting substrate
path and node pair with the lowest objective function value
is chosen for mapping, and the next couple of best ones are
stored for possible later exploration. The algorithm yields an
embedding (µ, λ giving the hosting node of each VNF and the
hosting path of each service graph link respectively), when all
elements of the service graph have been successfully mapped
respecting each aspect of the requirements or refuses the entire
request. The search space size of the greedy backtracking can
be tuned by the backtracking parameters (i) defining how
many hosting alternatives of an elementary step shall be stored
(branching factor), and (ii) how many consecutive greedy
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steps can be undone in the search tree (backtracking depth).
The overall complexity of the embedding algorithm proposed
in [124] including advanced features, such as end-to-end delay,
node and link (anti-)affinity requirements is

O

(

max
{

|VR|
2|ER|+ |ER|

2 + |VS |, b log b
} bk+1

b− 1

⌈

|VS |

k

⌉)

,

where b is the branching factor of the greedy backtrack search,
while k is the backtracking limit, which shows the polynomial
runtime in the input sizes R = (VR, ER), S = (VS , ES) with
low exponents.

We name a few examples here with the application field
of the mathematical method. The authors of [69] define and
solve a matching problem between BSs and UE. In [108],
to solve the presented complex problem in polynomial time,
the authors transform it into a more tractable form and then
solve it by a sine cosine iterative algorithm. In [78] the
applied k-means clustering not just determines the locations
of, but also decides the number of fog nodes to be placed
into the network. In [68], two-container cascade models are
assumed, where the fog application is a cascade of a cloud
and a fog module and the formulated mixed-integer nonlinear
program is solved by an iterative greedy heuristic algorithm
which is implemented and tested in the FogAtlas platform
[186]. Another iterative heuristic is used in [146], where the
fractional solution is rounded to a violating integer solution,
which is gradually improved to find a good feasible solution.
The scheduling is formalized as a shortest path problem in
the graph of possible time slot configurations in [165], and
it is solved by applying a dynamic programming approach.
Evolutionary meta-heuristics are popular applied methods to
solve placement problems [99], [119], [137], [138]. In [99],
genetic algorithms are combined with Monte Carlo simulations
for QoS optimizing, cost minimizing and utilization maximiz-
ing. Similarly, evolutionary algorithms are invoked in [119]
to solve the VM placement problem in a federated cloud
environment. The optimization problem is stated in a general
format, consisting of embedding solutions, and the fitness
function calculation is devised accordingly, defining all the
necessary components of the genetic meta-heuristic. In [137],
[138], the chromosome representation is a binary matrix,
encoding the VNF to MEC node placements, while the fitness
function is defined by the reciprocal of the solution costs [137],
or a simulated annealing-based function of average end-to-end
delay. The column generation method is used in [52], [53] to
generate partial solutions, which improves the execution times
of the large ILP and MILP formulations of the placement
problems. Column generation requires close interaction with
the ILP solver’s logic, resulting in approximation algorithms
with lower optimization times and performance guarantees.
For more details, please consult Table VII.

C. Optimization goals

Besides the modeling frameworks and the applied solving
techniques, we also collect the optimization goals that show a
heterogeneous picture. We depict the optimization goal(s) of
each paper in the left-hand side of Tables XI and XII.

The end-to-end delay of the application to be deployed is
the most widespread optimization goal, which is plausible,
as decreasing the latency is the foremost purpose of edge
computing platforms. Therefore the number of checkmarks
is the highest in the leftmost column among the objective
columns of Tables XI and XII.

The other three main objectives that occur among the
optimization goals are energy, revenue and utilization, i.e.,
of resources of the system, are all intertwined optimization
targets. Lower energy consumption in the fog infrastructure
leads to less operational cost, hence higher revenue; similarly,
if resource utilization is high, then larger revenue is generated
from the hosted services, while the extent of capital expendi-
ture, i.e., investment, in cloud infrastructure remains the same.
Interestingly, there are papers that strive to minimize resource
utilization, doing that with the ultimate goal of being capable
of accommodating more future applications to come, hence
higher revenue again on the long term. Nevertheless, we make
the distinction between these three optimization objectives,
and mark the ones addressed by each paper separately in
Tables XI and XII. The energy target is predominantly set
in mobile use cases, while the other objectives are general to
both mobile and fixed communication infrastructure scenarios.

Other goals that are less frequently set and do not belong
to any of the aforementioned four categories can be roughly
classified in three groups. In the first group, networking
aspects, other than latency, are optimized: either the throughput
is maximized, or the bandwidth used by the placed tasks is
minimized. In the second group, i.e., number of tasks and
number of users, the goals are directly related to the utilization
of the system, and directly or indirectly related to the revenue.
Since both compute and network resources are relatively
scarce and expensive in the edge, a few research papers handle
the latter, e.g., network traffic, as optimization goals, rather
than constraints. At last, there are the optimization goals
related to some QoS aspects other than delay. Such an aspect
is reliability, and the number of backups, that is strongly
related to the resilience of the deployed service. Similar QoS
consideration is availability, and all the related features and
characteristics, such as load balancing, number of migrations
and location.

It is important to emphasize that there are no primary and
secondary objectives in the target functions of the related
papers. Tables XI and XII depict tickmarks in multiple ob-
jective columns for cited papers that propose multi-variate
optimization: usually a weighting factor is applied in the multi-
variate function involved in the optimization.

For example, in the presented MILP problem (Formula-
tion 1), the objective function is defined by Equation (1). As
we have seen, the first term represents the costs for allocating
bandwidth on given links, while the second term describes the
costs for mapping a service node onto a resource node, and
finally the last term expresses the extent of load balancing in
the substrate network. The goal is to find the allocation with
the minimal cost assuming predefined weighting factors for
the constituent terms. (It is worth noting that the delay is not
part of this objective function, however, the online part of the
hybrid optimization framework proposed in [171] optimizes
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Table XI: Objectives and constraints of the optimization problems addressed by the surveyed research papers (part 1)

Objectives Constraints

Papers Delay Energy Revenue Utilization Other Delay BW Computation Radio Mobility Other
[49] X migration X X migration
[50] bandwidth X X

[51] X X X reliability
[52] X bandwidth X X X

[53] general cost X X

[54] X X X X

[55] X X availability X X reliability
[56] X X X X

[57] X X X X X X

[58] X X X X

[59] X X X cost
[60] X X X X

[61] X X X X

[62] X X X X location
[63] X #users X coverage
[64] X X #replicas
[65] throughput X X X

[66] reliability reliability
[67] X X bandwidth X X X

[68] X X X
storage,
processing rate

[69] throughput X X

[70] X X location X

[71] X X #tasks X X

[72] X X X X X

[73] X X X location
[74] X X X reliability
[75] X X X X X X

[76] X loadbalance X X storage
[77] X X location
[78] X #nodes
[79] X location X X X

[80] X X X X

[81] X X X X energy
[82] X X

[83] X throughput X X

[84] X X X

[85] X X X X X

[86] #tasks X X X storage, security
[87] X X migration
[88] X X X

[89] X bandwidth X location
[90] X X reliability

[91] X X X
(anti-)affinity,
processing rate

[92] X X X storage
[93] X X X X X

[94] X X

[95] X X reliability X X X data amount
[96] throughput X X

[97] X X X X X

[98] X X migration
[99] X X X X X

[100] X X X X X

[101] X X X X X reliability
[102] X X X X security
[103] X X X energy
[104] X X

[105] X X X X

[106] X X X X X

[107] X X X X user class
[108] X X X X X reliability
[109](on) X X

[109](off) X X X

[110] X X X X X energy
[111] X X X X

[112] X X X X

[113] X X X

[114] X X
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Table XII: Objectives and constraints of the optimization problems addressed by the surveyed research papers (part 2)

Objectives Constraints

Papers Delay Energy Revenue Utilization Other Delay BW Computation Radio Mobility Other
[115] X X X reliability
[116] X X X X X

[117] X X

[118] X X X X

[119] X X location general format
[120] X X X X

[121] X X X cost, location
[122] loadbalance X X

[123] X X X X X X

[124] X X X X X X (anti-)affinity
[125] X X

[126] X X X

[127] X X X

[128] X X X

[129] X X X

[130] #users X X

[131] X X X location
[132] X X X X

[133] throughput X X X

[134] X X X reliability
[135] X loadbalance X #users
[136] X X X X

[137] general cost X storage
[138] X X X

[139] X X X location
[140] X X X location
[142] X energy
[143] X X X X X

[144] X X X X

[145] X location X X X

[146] general cost X X X battery, coverage
[147] X X X

[148] X migration X location
[149] X X X X processing rate
[150] X X X X X processing rate
[151] X X privacy
[152] X X X X

[153] X X X X processing rate
[154] X X X X X

[155] X X X

[156] X

[157] X X

[158] X X X X

[159] X X X X

[160] X X

[161] X X

[162] X X X X

[163] X X X X

[164] X X X X

[165] general cost X X X migration
[166] X #backups X X reliability
[167]-1 X X X X

[167]-2 X X X X X X

[168] #users X X X

[169] X X migration X X X cost
[170] X loadbalance X X X X

[171] X X bandwidth X X X

[172] X X X X VM states
[173] X X coverage
[174] X X X X X

[175] X X X

[176] X X X storage
[177] X X X X X

[178] X X X storage
[179] X X X X X anti-affinity
[180] X X X X X

[181] X X X X energy
[182] X availability X X migration
[183] X X privacy
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Algorithm 2 Details of the Objective Value Calculation for
greedily choosing the locally most preferred resource node and
hosting path for a leg. [124]
Returns a real value, which is used to sort the hosting options
of a leg.

• Ωx, ρx are the value and weights of the bandwidth, resource,
latency, cost components, denoted by x ∈ {bw, res, lat,
cost} respectively.

• ωr are the weights of node resource component r.
• ξ1, ξ2 are the weights of the latency components.

1: procedure CALCOBJECTIVEVALUE(ej , j, pu;v, v)
2: Ωbw ← GETAVERAGEPATHBWUTIL(pu;v)
3: Ωres ←

∑
r∈R ωrGETNODERESUTIL(v, r)

4: Ωlat ← ξ1DISTANCEFROMLASTHOST(pu;v) +
ξ2DIRECTTOWARDSENDOFPATHLATENCY(ej , j, v, µ)

5: Ωcost ← GETCOSTOFLEGHOST(pu;v, v, ej , j)
6: return

∑
x∈{bw,res,lat,cost} ρxΩx

7: end procedure

for the delay as well in its heuristic. That is the reason for the
corresponding checkmark in Table XI.)

The optimization problem from [124], which is summarized
by Formulation 2, includes the general objective function
formulated in Equation (17), which minimizes the sum of
the objective value of each VNF j ∈ VS and the adjacent
service graph connection ej ∈ ES . This objective function
is invoked in each greedy step by Algorithm 1 in order to
find the hosting substrate path and node pair with the lowest
objective function value. The details of how the embedding
possibilities are sorted is shown in Algorithm 2. Besides the
resource availability and greedy search directing objective
function components, GETCOSTOFLEGHOST(pu;v, v, ej , j)
calculates the cost of using a hosting resource graph path
pu;v ∈ P(ER) and host v ∈ VR for (ej , j). A given setting
for the weights of latency subcomponents ξi, resource type
subcomponents ωr and objective components ρx provide a
fully specified optimization goal for the mathematical problem
statement in Equation (17). By tuning these weights, operators
can adapt the algorithm to multiple application scenarios. By
these means, a versatile multi-domain orchestrator can be
implemented which is capable of: (i) optimizing for band-
width utilization on infrastructure connections, (ii) distributing
node resource utilization among operators, (iii) providing
high service acceptance for delay critical applications, (iv)
minimizing administrative costs of routing and VNF hosting,
or (v) arbitrary superposition of multiple operating policies
from the various involved entities.

D. Optimization constraints

Analogue to the duality in optimization forms, the set of
constraints assumed in the papers is more or less the same
as the set of objectives. We list the five major groups of
constraints in the right-hand side half of Tables XI and XII,
and we sign with a checkmark if the given paper considers
the constraint in its optimization formula. In case other types
of constraints are also included in the paper, we denote them
in the rightmost column of said tables.

The delay is not the mostly seen constraint throughout the
collected papers, because in the majority of them, the delay is

(a part of) the objective to minimize. In those papers where it is
not, delay is usually considered as a constraint. The most fre-
quently applied constraint, observed in almost all the collected
papers, is on computation resources. Moreover, besides the
delay, which is required by latency-sensitive applications, and
the computation, e.g., CPU, memory, which is dictated by the
capacity of the underlying infrastructure, there are constraints
formalized on network resources, i.e., network bandwidth,
denoted by BW in Tables XI and XII. This latter belongs
to these three most important constraints, because particularly
in edge networks, bandwidth is often assumed to be a scarce
resource.

As the emergence of MEC induced an important body
of research effort in efficiently handling wireless networks,
radio spectrum resources are also considered as constraints in
a number of papers. Again, due to the field of MEC, user
mobility can also be taken into account in the optimization as
guiding constraints. Surprisingly, there are papers in which
researchers formulate constraints not only on the mobility
of users, but also on the mobility of edge nodes, e.g., that
are mounted on UAVs. Therefore the radio and mobility
constraints are predominantly dictated in mobile use cases,
while the other constraint dimensions are general to both
mobile and fixed communication infrastructure scenarios.

Other, less frequently seen constraints, just like in the case
of objectives, include cost and reliability, but other types of
constraints are applied as well. We identify four groups into
which these occasionally seen constraints can be classified.
One can come across most frequently with research works
that build constraints for sustaining the reliability aspect of
service QoS. We denoted those constraints in this group with
tags of reliability, number of replicas and number of nodes.
The second most prevalent type is about location: either the
location constraints given by the infrastructure, e.g., tags of
location and coverage, or the location of deployed service
components, e.g., tags of migration and affinity. We assign
constraints about costs into the third category: those papers
that define cost-related constraints are tagged with cost or
energy labels in Tables XI and XII. Somewhat connected to the
computation resources, we identify more explicit constraints,
such as processing rate and storage with these tags in the
rightmost column. Finally, a category of constraints that is
never considered as optimization objective revolves around
security: the tags security, privacy, and user class are applied
to those papers that take into account user and data security
aspects.

Similarly to our note for optimization targets, we underline
the fact that there is no priority distinction between constraints,
i.e., there are no primary and secondary constraints in the
related work. However, the predominant majority of cited work
in Tables XI and XII introduce multi-constrained optimization
problems, hence multiple tickmarks in each row within the
Constraints part of the tables.

As an example, the MILP problem from [171], presented in
Formulation 1, formulates the constraints in equations (2)-(10).
As we have discussed in Section VI-A, Constraints (2), (3),
(5), (8) define the constraints related to computation resources,
while Constraints (4), (6), (9) control bandwidth allocations on
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Table XIII: General notation used to uniformly describe the complexity
analysis results of the surveyed papers

Notation Description

N
Number of possible placement options in the substrate
topology, such as BSs, cloudlets, edge/fog nodes, MEC
servers, private/public clouds or other infrastructure nodes.

E Number of edges or links in the substrate topology.

S
Number of service components or units to be placed, such
as applications, micro-services or parts of it as containers,
pods or VMs, as well as requests, tasks, jobs or functions.

L Number of logical links between service components.
U Number of users or UEs.

T
Number of time slots or time periods to be considered or
the size of a specific look-ahead window.

k
Number of iterations for internally generated scenarios,
such as sub-problems, random samples or branching factor.

m Maximal length of a chain in the service.
r Number of replica copies or replication factor.
c Number of sub-channels or sub-bands.
ξ Convergence threshold/limit or solution accuracy.

LP Computational steps required by a Linear Program solver.

substrate links. The end-to-end latency constraints are formu-
lated by Constraint (10) for respective service function chains.
Our other example from [124], highlighted by Formulation 2,
includes similar constraints formulated by Constraints (13)-
(16). The only difference is the distinction between link-wise
delay requirements, described by Constraint 14, and end-to-
end latency constraints, formulated by Constraint 16.

E. Complexity analysis

In this section, we analyze the algorithmic complexity of
the proposed methods within the collected research papers.
From the set of the articles, we selected those that explicitly
addressed complexity or made a clear statement about the
complexity of the published optimization method therein. For
the sake of comparability, we introduce a common, unified
notation summarized in Table XIII. The overview of these
selected papers is depicted in Table XIV. The contents of the
table reflect the exact and final complexity analysis results of
the cited papers: we have not extended their statements in any
way, e.g., we do not combine their partial results if the authors
did not do so in their article.

After careful evaluation of the heterogeneity of complexity
analysis approaches within the selected papers, we group the
papers into three formalization categories and depict each
category in the Form column of Table XIV. The categories
are the following:
O: the final complexity of the algorithmic solution proposed

for the placement problem is given in closed form by an
explicitly defined asymptotic notation;

T: the analysis is provided in a textual formalization, e.g.,
the algorithm’s total complexity is specified typically to
be polynomial or exponential, while only the complexity
of sub-steps is given by asymptotic notations;

E: the complexity is indirectly derived from other external
algorithm’s complexity, e.g., that of an LP solver.

In all categories, we use a unified notation for ease of
comparison; the unified notation is introduced in Table XIII.
The majority of formulas contain the number of servers or

nodes (depicted by N), the number of service components
(depicted by S), and the number of users (denoted by U) as
inputs. We grouped the references in Table XIV based on their
proposed Service structure types, given in the two leftmost
columns. Within each group, the articles are sorted based on
the complexity (in terms of N ) in the rightmost column from
the simplest to the most complex.

For the papers that fall into the category Form O, all
the parameters included in the complexity formula are given
either in Table XIII (common parameters) or in Table XIV
(special parameters). All these papers provide a formal de-
scription of their proposed algorithms’ complexity, therefore
the comparison of their expected runtime is straightforward.
Among the papers that fall in the category Form T, authors
typically propose iterative solutions. Several papers provide
the complexity of only one iteration step, either for simplicity
and brevity [89] or because the number of iterations in the
algorithm required to arrive at a solution depends on the
objective function’s curvature that is difficult to quantify [101].
Alternatively, other papers do reveal the number of iterations,
but not the complexity of all steps [54]; or only certain sub-
steps are analyzed [75], [81], [111]. In the third category
denoted by Form E, one sub-step is typically a linear program-
ming method: [93] builds on the polynomial-time solvability
of LP problems, whereas [126], [128], [133] explicitly rely on
the complexity of the Simplex method. Furthermore, the total
complexity shown in [178] is based solely on an LP solver.

We have taken into account the selected papers’ optimiza-
tion objectives and constraints from Tables XI and XII in
order to distill meaningful observations on their effect on
the complexities of the proposed algorithms. To sum up the
relation between the optimization tasks and their complexities,
we conclude the following. In case of offloading problems and
problems addressing single component type applications, the
more the terms that are considered in the objective function
and in the constraints, the more complex algorithms with
a larger number of steps are required. Similar conclusion
cannot be drawn for other types of tasks. In general, when
the utilization is included in the objective function, the pro-
posed algorithms become more complex; this suggests that the
approximation of the underlying problem, i.e., optimizing the
utilization, requires more sophisticated heuristics. In addition,
taking the bandwidth, throughput or load balancing into ac-
count in the objective function, the algorithms usually result in
longer runtime. And finally, according to the surveyed results,
there is no direct relation between the exact constraints and
the complexity of the proposed algorithms.

Unfortunately, the accuracy of the proposed heuristic al-
gorithms are rarely touched upon, therefore we are not able
to draw a comprehensive analysis in this aspect. However, it
would be interesting to see how the approximation bound of
the proposed heuristics relate to their algorithmic complexities.

In order to illustrate the applicability of the surveyed
methods, we present two experimental results corresponding to
our explanatory examples (MILP and VNE) presented in this
section. In Figure 11a, a preliminary version of the MILP-
based solution (from [123]) is compared to the basic variant
of the heuristic VNE algorithm proposed in [124]. (Here, the
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Table XIV: Complexity of the proposed algorithms. O: Closed form; T: Described in a high level, while only sub-components of the proposed solution are
characterized by asymptotic notation; E: Derived from external algorithm’s complexity, e.g. an LP solver’s.

Service structure
Paper

Complexity of the proposed method

Components Task Type Form Computational Complexity

Single component

Offloading

[113] O O(U3)

[81] T The algorithm’s complexity is proved to be linear in U , N , c.

[112] O
O(⌈log2(P/ξ)⌉ρ(U,N, c) log δ), where P is the maximum transmission
power, ρ is a suitably chosen polynomial and δ is the optimal/initial ratio.

[117] O O((S(N + 1))4(S(N + 1) +N + S + 2)0.5 log(1/ξ) + kNS)

[101] T The algorithm’s complexity is concluded to be polynomial in the number of U .

Edge/fog computing

[165] O O(Sk2T )

[86] O O(SN)

[130] O O(UN)

[90] O O(S logS + SN)

[93] E O(SN ∗ LP)

[82] O O(N logN)

[98] O O(N2T )

[181] O O(NU2 + UN2T 2k)

[69] O O(N2U2S)

[166] O O(S2N2 +N3)

[177] T The algorithm’s complexity is proved to be polynomial in N,S.

Multiple
components

Offloading [114] O O(S3.5N7.5U2 +N7.5U5.5)

Edge/fog computing

[182] O O(η(U +N +2δ)+ kηδ+ δ), where δ, η are particle parameters of the PSO.
[74] O O(NS)

[70] O O(3SN)

[129] O O(S2Nd), where d is the diameter of the communication network.
[169] O O(S2N2)

[68] O O(S2N2 + S2)

[133] E O((N +B)(SN ∗ LP)), where B is the number of special backhaul nodes.
[75] T The proposed solution’s complexity is polynomial in N,S.

[131], [140] O O(N3 +NS3)

[64] O O(S2N3r)

[59] O O(N13S6.5)

[176], [178] E The approximation can be solved in polynomial time using an LP solver.
[127] T The algorithm’s complexity is exponential in the number of service chains.

Multiple connected
components

Offloading

[109](on) O O(S2)

[109](off) O O(U logU)

[111] T The algorithm’s complexity is proved to be linear in N,S.
[145] O O(N)

[139] O O(S2N)

[107] O O(S2N2)

Multi-cloud

[172] O
O(viSL logL+ i log i), where v and i are the number of instances of the
same VNF type and the number of invocations w.r.t. a given service.

[118] O O(N)

[124] O O(max{N2E + E2 + S, k log k} kξ+1

k−1
⌈S
ξ
⌉)

[122] O O(S3N(2+h)), where h is the maximal junction node count in the requests.
[50] O O(N3)

[53] T Fixed-parameter tractable in the request graph treewidth.

Edge/fog computing

[134] O O(S2 logN)

[65] O O(SNEm)

[83] O O(SN logN)

[76] O O(S2N logN)

[66] O O(E +N(logN + r))

[61] O O((N + S +NS) logN + S logS)

[92] O O(SL(N logN + E))

[67] O O(N2)

[97] O O(kN(k log2 N + S log2 S) +N(m+N logN))

[146] O O(S5N4T )

[126], [128] E O(N4 ∗ LP)

[89] T The algorithm’s complexity is proved to be polynomial in N,S.
[162] T The computational complexity of the algorithm is stated to be polynomial.
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(a) Comparison of the runtimes of the MILP-based algorithm proposed
in [123] (which is a preliminary version of the solution given in [171]
and presented in this section) and a basic version of the heuristic VNE
algorithm provided in [124] and briefly summarized in this section.
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(b) Scalability of the advanced heuristic VNE algorithm proposed in [124]
with resource domains (number of managed edge sites). Two types of
advanced constraints were configured in the service requests: end-to-end
delay (E2E) and anti-affinity (AA) between dedicated VNF pairs.

Figure 11: Illustrative results of selected control plane experiments on emulated edge/cloud infrastructures published in [123] and [124].

basic operation means that the advanced features related to
service reliability are not used.)

Both placement methods have been evaluated on a real
world topology taken from SNDlib [187], which has 42
nodes and 157 edges, representing access, aggregation and
core network parts, equipped with computation resources.
The dfn-gwin topology was used with additional network
parts and computing resources. All computation nodes had the
same available resources, i.e., 400 units of CPU each. Service
requests were service chains (SCs) consisting of 1 to 8 VNFs
with different resource requests generated following a uniform
distribution. In order to compare the capabilities of the two
approaches, we grouped a sequence of service chains together
into one batch request and that was given as input for both
algorithms. It is worth noting, that the heuristic VNE algorithm
can operate either in online mode (when the input sequence is
received and processed step-by-step) or in offline mode (when
the overall request is known in advance). The simulation was
conducted on computers with Intel Core i5 processors and
8 GB RAM. The results are shown in Figure 11a, where
the error bars represent the minimal and maximal runtimes
among the 100 independent service chain sequences. On the
one hand, the heuristic algorithm exhibits polynomial scaling
with the number of input service chains, while the MILP-based
approach imposes impractical runtimes and exhibits worse
scaling behavior. On the other hand, according to [123], the
heuristic algorithm can embed around the 2

3 (varying between
59-75%) of the optimal, offline calculated number of requests.
When we are close to a saturated state, the heuristic method
cannot map the overall request, this is the reason why we
do not have samples above 172 chains regarding the heuristic
solution.

The advanced version of the VNE algorithm provided in
[124] was also evaluated on different edge/cloud scenarios.
Selected results are shown in Figure 11b. Here, a core full-
mesh network was used to connect 4 cloud servers providing
the majority of the available computational resources and the
distant edge nodes that were capable of running a limited
number of VNFs. A dedicated orchestrator instance was in

charge of managing all involved domains. By these means,
a single flat control plane hierarchy was established. Fig-
ure 11b illustrates the impact of the number of simultaneously
controlled edge domains tested with different size of 5G-
aware services. Two types of service requests were evaluated:
one with end-to-end delay requirements comparable to the
diameter of the topology and another one containing anti-
affinity constraints between dedicated VNF pairs. The overall
runtimes of these services are comparable to each other and
show that services with anti-affinity relations require slightly
more time for the orchestrator to deploy. According to [124],
the evaluation confirmed the polynomial scaling properties of
the orchestration system in terms of both the infrastructure
size and the complexity of the service requests. Assuming a
reasonable number of edge sites and service requests including
less than 100 VNFs, the placement calculation takes only a
few seconds. When we have more than 1000 service elements
in the request (which is not typical today), the orchestration
time takes a few minutes. And finally, when the number of
edge domains is also large (e.g., around 100), the orchestration
time can take almost half an hour. However, in terms of
management time scale, it is not considered as an extreme
long duration and it can be acceptable in certain scenarios.

VII. RESEARCH GAPS

After careful evaluation of the spectrum of research results
in cloud-edge placement, we consider the following interesting
topics yet to be investigated. We argue that all the listed aspects
are of utmost importance for an edge computing platform
to fully serve the edge applications’ and their users’ needs,
furthermore all of those greatly affect the placement logic that
must be deployed in the system.

A. Awareness to user mobility in edge placement decisions

Combining classical user mobility models, of which the
investigation started in the previous millennium, e.g., [188],
and modern AI-based predictions, e.g., [189], locality-aware,
proactive hybrid service placement techniques might be a
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promising area for further improving service QoS and ef-
fectiveness of resource provisioning. We have seen several
papers taking user (or host) mobility into account in their
optimization problems’ constraints (see the second rightmost
column of Tables XI and XII), but using AI models for
accurate prediction of user movements (if patterns can be
found) could significantly enhance the reachable optimization
target in dynamic systems that allow for migration of service
components and/or complete re-optimization of placements
periodically. Closely related to mobility aspects, interestingly
no related work has considered, to the best of our knowledge,
using smart cars as edge nodes. We argue that with the
user mobility patterns in hand, the driving habits could be
exploited: the predicted paths and locations of electric cars
could serve as an input to the dynamic planning of edge
infrastructure if one assumes that the computing power of
those cars can be utilized, especially during charging, e.g.,
at a shopping mall.

B. Cross-layer optimization with edge application design

We have found that although sophisticated placement deci-
sion making is often implemented in cloud-edge management
frameworks, an API is rarely exposed to the application owner
or software developer about the placement policy in operation.
This could be however beneficial, beyond an API functionality
that merely supports stating the application requirements, in
order to develop the applications against it with a larger
extent. An obvious example would be the disclosure of the
optimization target function and a query possibility for the
overall system status, in order to adapt the application-level
parameters according to the expected placement decisions.
In general, a deeper integration of cloud-native applications’
behavior with the cloud platform’s management policy might
lead to a more efficient operation.

C. Joint placement of functions and their corresponding data

The computational entities that are placed in the cloud-
edge infrastructure often belong to heavy or light virtualization
technologies: VMs and containers, respectively. In several
papers big data processing tasks are also orchestrated, but in
general, the latest trend of Function-as-a-Service (FaaS), also
called as serverless, platforms are rarely addressed. As those
systems usually accommodate ephemeral functions, their load
is hectic, and hence the placement logic to be applied must be
fast and efficient. Function requests arrive frequently, demand
various resource amounts and a great level of elasticity.
Therefore, by its nature the FaaS service platform must apply
an online placement method, probably with affinity constraints
to consider in order to collocate functions that may invoke
each other [190]. Inherent to the FaaS concept, input data
or internal function state are often externalized, hence the
stateless operation. As network delay might cause serious
QoS degradation when remote data must be accessed by the
functions invoked in the FaaS platform, the placement of those
is of paramount importance too [190]–[192]. We advocate the
emergence of joint placement policies of functions and their
respective states in edge systems in the near future.

Coded Distributed Computation [23] is a new research field
that has emerged in recent years, where the function placement
is strongly related to the input data allocation. CDC is a
mixture of coding techniques and distributed computing to
reduce the communication costs of the large-scale computation
of tasks and to mitigate the straggler effects in a distributed
environment. Although both data and function allocations are
essential elements of the CDC scheme, most of the studies
focus on only one of them. E.g., the work presented in [193]
about optimal file allocation considers uniformly distributed
processing functions among the cluster nodes. In contrast, au-
thors of [194] present a Reduce function placement while they
assume equally split input files among the nodes. Since data
reallocation could easily result in high communication load in
the cluster, we argue that the joint placement optimization of
both functions and their input data is essential.

D. Temporal placement policies for auto-scaling edge appli-

cations

The integration of placement methods with the auto-scaling
capabilities of widely used platforms, e.g., Kubernetes [195],
[196], or with reliability measures [166] necessary in an edge
infrastructure that is prone to errors and downtimes, might be a
challenging research avenue. Indeed, the optimization problem
is rendered to be highly complex by integrating the dynamics
of the deployed services and the actions the platform takes in
turn. As many targeted use cases require end-to-end latency
guarantees, the emergence of real-time cloud, and particularly,
that of the real-time edge is imperative.

E. Security-aware edge placement challenges

Unfortunately security aspects receive little attention in the
body of research on edge platforms and placement techniques.
The authors of [197] argue that it is the hasty design and
development of these systems that has led to the neglect of
security threats in the edge computing platforms themselves
and in their enabled applications. The rare appearance of
security and privacy in the rightmost column of Tables XI and
XII proves their point. In recent surveys [197], [198] one may
learn about basic attacks, as well as the corresponding defense
mechanisms, furthermore about the latest research advance of
data security and privacy-preserving protection technologies,
specifically tailored to the field of edge computing.

A stellar example of research results in the area of privacy
[199] has tackled the challenge of improving the overall execu-
tion performance of edge computing nodes, i.e., the resource
usage, the load balance levels, and the power consumption,
while preventing privacy leakage of the IoT devices for service
placement. The authors propose a trust-oriented IoT service
placement method for smart cities in edge computing that
provides balanced placement strategies for the tradeoffs among
the execution performance metrics with privacy preservation.
Their example urges the research community to consider
such security and privacy requirements when designing the
placement engines in the core of edge platforms, as we see
that by the commoditization of edge computing services such
features will be mandatory in order to maintain the trust of
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users. E.g., the authors of [200] and [201] assume that edge
nodes are not trustworthy so they propose to apply differential
privacy manipulations on user data before sending those to
the cloud; we argue that their assumption holds even stronger
in a public edge multi-provider setup, however advanced
orchestration techniques might mitigate the problem, e.g., by
data obfuscation over multiple edge nodes of multiple edge
service providers.

F. Economic aspects of edge placement

The economics of placement decisions in edge platforms are
often incorporated into the orchestration logic in related work.
The collected papers associated with tick marks in the Revenue
optimization goal column of Tables XI and XII explicitly
account for the maximization of profit generated by edge
computing service. Revenue maximization may be performed
by effective resource usage and by admitting more customers
to the service, alternatively the applied pricing scheme can be
tailored to find the sweet spot in the income and cost trade-off.
Specifically, the interaction between users and an edge cloud
provider through the pricing of the computation offloading
service has been targeted by many research endeavors. E.g.,
in [202] the authors consider two important metrics: latency
and fee, and they formulate a stochastic game to model the
interaction between users and the provider. In this game, the
provider sets prices to maximize its profit, while users devise
the offloading strategy to reduce both the latency and charge.

Nevertheless, the emerging technology of serverless com-
puting has recently inspired researchers to consider the edge
placement problem from a novel perspective. In a serverless
platform users are able to deploy individual functions and pay
only for the time that their code is actually executing. The
pricing model usually depends on the memory, duration, and
the number of executions of a sequence/workflow of functions.
The authors of [203] adapt the cloud native approach and
related operating techniques for latency sensitive IoT appli-
cations operated on public serverless platforms. They argue
that solely adding cloud resources to the edge is not enough
and other mechanisms and operation layers are required to
achieve the desired level of quality. Therefore they propose
a novel system on top of a public serverless edge cloud
platform, which can dynamically optimize and deploy the
microservice based software layout based on live performance
measurements. They apply their concepts to one of today’s
most widely used and versatile public cloud platforms, Ama-
zon’s AWS, and its edge extension for IoT applications, called
Greengrass. Also considering Amazon’s serverless offering,
AWS Lambda, the authors of [204] present an algorithm that
optimizes the price of serverless applications by, among other
methods, splitting functions across edge and cloud resources,
and allocating the memory for each function. They present
an efficient algorithm to explore different function placement
solutions and find the solution that optimizes the application’s
price while keeping the latency under a certain threshold.
In general, we still see a research gap in the area of cost
optimization of application owners. The complex optimization
we envision overarches the cloud application’s whole life-
time: starting from the application design, e.g., monolith or

microservice-type implementation, through the choice of cloud
services, e.g., VM or container or function as a service, to the
selection of the ideal public cloud provider, both in terms of
pricing and service quality, e.g., locality and performance, to
deploy the application. The placement of computational units
is in the focal point of this complex challenge, raising hard
computational problems to solve.

G. Multi-operator setting

We identify the lack of the multi-operator scenario as the
most common shortcoming in the related work results. The
vast of the research works assume a dedicated central entity
which is in charge of calculating the efficient placement of
the service components. Those researchers assume single-
operator scenarios, i.e., the resources operated in central clouds
or deployed to edge domains are owned and managed by
a single provider. This seems to be a realistic assumption
and the first generation of edge and fog computing in-
frastructures comply with this model. However, envisioned
large scale, e.g., global scale, service deployments require
compute and network resources from multiple providers and
only a federation of operators can provision these services
and applications. Unfortunately, only a few works [124],
[167] address the more complex and more challenging multi-
operator setups. Modelling such a scenario, and combining the
optimization problem with the economical aspects described
in Section VII-F would create exciting research problems and
valuable results.

VIII. SUMMARY

Recent cloud architectures, proposing the deployment of
computation resources to the edge of the network, enable a
new generation of network services and applications. However,
simply extending the cloud per se is not enough and novel
features, capabilities and workflows should be added. As we
have seen, a key component which significantly affects the
application’s performance, especially if it is constructed from
multiple communicating modules, is the algorithm responsible
for calculating the optimal placement of computational units
(varying from VMs to fine-granular software functions). As
an answer, the research community has dedicated significant
efforts to this challenging topic and a vast number of theo-
retical papers have been published during the recent years.
This survey paper aimed at categorizing the current results
related to the placement problem in the edge. A structured
taxonomy has been defined and the surveyed solutions have
been presented according to the identified dimensions con-
sidered relevant. Starting from the aspects of the underlying
cloud architecture and the structure of the supported services,
across the dimensions of the mathematical tool set and the
applied methods, we arrived at the detailed characterization
of the explored optimization problems including the targeted
goals and considered constraints, which of course determine
the family of supported use cases, as well.

The vast body of literature on the placement of edge
applications offers a colorful combination of use cases, prob-
lem formulation and selected methods applied to solve the
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problem. An imaginary paper that we would place in the focal
point of the multi-dimensional space of the categorization
characteristics we identified in this survey would propose a
framework to push the resource-intensive applications from
end devices to the edge, and delay critical components from
the cloud to the edge. This average paper would propose an
online algorithm to do so with the goals of minimizing average
data traffic in the edge in order to save battery in the end
devices. The authors would decompose the original problem
into a resource allocation problem with fixed task offload-
ing decisions, and a task offloading problem that optimizes
the value function corresponding to the resource allocation
problem; separate sub-problems would then be formulated as
ILP, and solved by proposed heuristics. One distinctive feature
of the edge system would be added, e.g., to provide latency
constrained service access for customers, services would be
replicated from the cloud to a selected subset of the edge
servers.

Of course, each and every paper we collected for this survey
is special on its own. However, as a general summary, we
argue that the goals of the researchers are similar. In MEC
offloading papers the goal is selected from a rather limited set
of inherent choices: energy and processing time. End users
and/or terminals aim at minimizing their own battery usage
(induced by the low power nature of IoT devices in general)
or the processing time that constitutes the service latency.
Extending this goal concept, several research initiatives have
been made to tackle the trade-off between power consumption
and transmission delay. Others focus on resource allocation
in edge and fog computing systems, mainly considering cost
and/or delay as optimization objective(s). In general, cost min-
imization is a widely applied formalization in the research on
edge computing platforms, and the cost can stand for different
aspects, either resource consumption (i.e., efficient utilization)
or service quality and its related revenue. Minimizing the
perceived latency or respecting a delay constraint is linked
to the revenue from the operator’s point of view.

We find the objects to be placed are the second main point
in most of the collected papers: usually those are applica-
tion instances, or the components thereof. However, some
papers combine the optimization of the virtual infrastructure
elements with the placement of service components. A few
others, instead of directly placing applications, model the
workload as individual tasks: within these models the service
requests are single entities to be placed onto a heterogeneous
edge computing network. Naturally, the infrastructure itself is
closely related to the objects to be placed: when the application
contains non time-critical components, then central cloud is an
available choice, otherwise the alternatives are edge nodes and
end devices.

The third common aspect in the related work is mobility.
One can find papers in the related literature that apply mov-
ing devices, e.g., UAVs, robots, as edge nodes in order to
position them to optimal locations anytime the user terminals
change their location. Migration-enabled and mobility-aware
approaches, in which user migration is considered between
adjacent base stations, aim to maximize the user coverage
rate, to minimize the number of re-allocations and to yield

refinable dynamic allocations. Therefore in several research
papers mobility patterns are incorporated in the models and the
service deployment and/or resource allocation are optimized
either proactively based on predictions or reactively based on
measurements.

Overall we find this survey to be extremely useful for
researchers, engineers, system designers, and developers for
several reasons. First, the summarized mathematical tool set
of the collected papers empowers the reader with a good
understanding of potential formal approaches to related future
problems from other research fields. The pros/cons of differ-
ent modeling and problem solving frameworks thus can be
identified in advance based on the lessons learned this survey
conveys. The suitable methods a scholar can select from for
their respective research agenda is offered as a comprehensive,
but bounded search space. Therefore, the design of algorithms
for related problems will be easier with all the pointers to
the technical details of promising solutions. Second, as a
more use case oriented fruit of this work, this survey delivers
a comprehensive catalog on the mathematical apparatus for
the placement problem, which is essentially a tutorial guide
for applied research and product development. For example,
the design and implementation of an orchestrator software of
an arbitrary edge cloud platform or service can be driven
by selecting the most suitable solutions presented in the
easily searchable taxonomy structure. As an addition, the
algorithmic complexity characteristics are also provided, so the
practical feasibility of the selected approaches can be instantly
evaluated. Third, the disclosed research gaps list promising
future research directions for those scholars that are active
in the topic of edge cloud scheduling and orchestration in
challenging setups.
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“Operating latency sensitive applications on public serverless edge
cloud platforms,” IEEE Internet of Things Journal, pp. 1–1, 2020.

[204] T. Elgamal, “Costless: Optimizing Cost of Serverless Computing
through Function Fusion and Placement,” in 2018 IEEE/ACM Sym-

posium on Edge Computing (SEC), 2018, pp. 300–312.

Balázs Sonkoly is an associate professor at Bu-
dapest University of Technology and Economics
(BME) and he is the head of MTA-BME Network
Softwarization Research Group. He received his
Ph.D. (2010) and M.Sc. (2002) degrees in Computer
Science from BME. He has participated in several
EU projects (FP7 OpenLab, FP7 UNIFY, H2020 5G
Exchange) and national projects. He was the demo
co-chair of ACM SIGCOMM 2018, EWSDN’15,’14,
IEEE HPSR’15. His current research activity focuses
on cloud / edge / fog computing, NFV, SDN, and 5G.

János Czentye is currently in his final year of his
Ph.D. studies at Budapest University of Technology
and Economics. He completed his M.Sc. in the topic
of Networks and Services with highest honours in
2014. For 4 years he worked at the HSNLab partic-
ipating in European research projects FP7 UNIFY
and H2020 5GEx and gained wide knowledge about
SDN/NFV, microservices and cloud technologies.
His current Ph.D. research focuses on cloud-native
service modeling, composition and provisioning.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/COMST.2021.3101460, IEEE

Communications Surveys & Tutorials

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS 41

Márk Szalay is a Ph.D. student in HSNLab
(http://hsnlab.hu) at Budapest University of Tech-
nology and Economics. His main research interests
include hardware (router / switch / NIC) design,
network programming, software-defined networking
and network function virtualization.

Balázs Németh is an Industrial Ph.D. student at
Budapest University of Technology and Economics
(BME) in cooperation with Ericsson Research. He
obtained his M.Sc. degree at BME as a Computer
Science Engineer in info-communication specializa-
tion (2016). He has been working on orchestration
algorithms for the H2020 5G-PPP 5G Exchange
(5GEx) project. Currently, he is pursuing his Ph.D.
degree in network softwarization with special focus
on orchestration algorithms and next generation net-
work models.

László Toka is assistant professor at Budapest Uni-
versity of Technology and Economics, vice-head of
HSNLab (http://hsnlab.hu), and member of both the
MTA-BME Network Softwarization and the MTA-
BME Information Systems Research Groups. He
obtained his Ph.D. degree from Telecom ParisTech
in 2011, he worked at Ericsson Research between
2011 and 2014, then he joined the academia with re-
search focus on software-defined networking, cloud
computing and artificial intelligence.


