Survey on Security Threats and Protection Mechanisms in Embedded Automotive Networks

Ivan Studnia Vincent Nicomette Éric Alata Yves Deswarte Mohamed Kaâniche

Renault S.A.S

LAAS-CNRS

Dependable Computing and Fault Tolerance team

June 24, 2013

1 The Automotive Network

2 Threats

3 Protection mechanisms

4 Conclusion

Embedded networks

Modern cars embed

- An internal network...
 - Between 30 and 70 ECUs
 - Several communication protocols: CAN, LIN, MOST, FlexRay...

Source: [Checkoway et al., 2011]

Embedded networks

Modern cars embed

- An internal network...
 - Between 30 and 70 ECUs
 - Several communication protocols: CAN, LIN, MOST, FlexRay...
- ... with external connections
 - On Board Diagnostic (OBD) port
 - USB port
 - Bluetooth
 - WiFi
 - GSM
 - 3G/4G
 - Car2Car

Source: [Checkoway et al., 2011]

CAN & Security

SOF	Identifier	Control	Data	CRC	ACK	EOF
1 bit	12/30 bits	6 bits	0 - 64 bits	16 bits	2 bits	7 bits
Content of a CAN frame						

LAAS-CNRS

CAN & Security

SOF	Identifier	Control	Data	CRC	ACK	EOF
1 bit	12/30 bits	6 bits	0 - 64 bits	16 bits	2 bits	7 bits
Content of a CAN frame						

- Integrity ?
- Confidentiality ?
- Availability ?
- Authenticity ?

CAN & Security

SOF	Identifier	Control	Data	CRC	ACK	EOF
1 bit	12/30 bits	6 bits	0 - 64 bits	16 bits	2 bits	7 bits
Content of a CAN frame						

Security properties

- Integrity ?
- Confidentiality ?
- Availability ?
- Authenticity ?

 \rightarrow Just a CRC

CAN & Security

SOF	Identifier	Control	Data	CRC	ACK	EOF
1 bit	12/30 bits	6 bits	0 - 64 bits	16 bits	2 bits	7 bits
Content of a CAN frame						

- Integrity ?
- Confidentiality ?
- Availability ?
- Authenticity ?

- \rightarrow Just a CRC
- \rightarrow Broadcast only

CAN & Security

SOF	Identifier	Control	Data	CRC	ACK	EOF
1 bit	12/30 bits	6 bits	0 - 64 bits	16 bits	2 bits	7 bits
Content of a CAN frame						

- Integrity ?
- Confidentiality ?
- Availability ?
- Authenticity ?

- \rightarrow Just a CRC
- \rightarrow Broadcast only
- \rightarrow Easy DOS

CAN & Security

SOF	Identifier	Control	Data	CRC	ACK	EOF
1 bit	12/30 bits	6 bits	0 - 64 bits	16 bits	2 bits	7 bits
Content of a CAN frame						

- Integrity ?
- Confidentiality ?
- Availability ?
- Authenticity ?

- \rightarrow Just a CRC
- \rightarrow Broadcast only
- \rightarrow Easy DOS
- \rightarrow No authentication

The Automotive Network

2 Threats

Operation Protection mechanisms

4 Conclusion

Attack goals

• Challenge

- Challenge
- Theft

- Challenge
- Theft
- Tuning

- Challenge
- Theft
- Tuning
- Sabotage

- Challenge
- Theft
- Tuning
- Sabotage
- IP theft

- Challenge
- Theft
- Tuning
- Sabotage
- IP theft
- Privacy breach

Local attacks

Direct access to the bus

- Additional device plugged in
- Through the OBD port

Local attacks

Direct access to the bus

- Additional device plugged in
- Through the OBD port

Results

- Many documented attacks
- Impersonation, reflashing, "virus"...
- Up to complete takeover

A	BOIND
Eeo	120
Pwned by CARSHARI	CarShark KED X-X D 3 2 1

Remote attacks

[Rouf et al., 2010]

Target: Tire Pressure Monitoring System

- Eavesdropping from up to 40m
- Spoofed messages sent to monitoring ECU

[Francillon et al., 2010]

Target: Passive Keyless Entry and Start

- Relay attack
- Car unlocked and started 50m away from the owner

Remote/Indirect takeover

[Checkoway et al., 2011]

Vulnerabilities found in

- Physical indirect range: CD player, OBD plug-in device, infected smartphone...
- Short wireless range: Bluetooth
- Long range: GSM/3G unit

One communication device compromised \rightarrow Complete takeover of the car

The Automotive Network

2 Threats

Protection mechanisms

4 Conclusion

A major concern

Constraints

• Hardware limitations

- Hardware limitations
- Real Time

- Hardware limitations
- Real Time
- Autonomy: (almost) no interaction required

- Hardware limitations
- Real Time
- Autonomy: (almost) no interaction required
- Lifecycle: 20 years

- Hardware limitations
- Real Time
- Autonomy: (almost) no interaction required
- Lifecycle: 20 years
- Compatibility: retrocompatibility and interoperability

- Hardware limitations
- Real Time
- Autonomy: (almost) no interaction required
- Lifecycle: 20 years
- Compatibility: retrocompatibility and interoperability
- Physical constraints

Protections (1/2)

Cryptography

- Authentication, integrity checks, encryption
- Dedicated hardware for cryptography [Wolf and Gendrullis, 2012]

Protections (1/2)

Cryptography

- Authentication, integrity checks, encryption
- Dedicated hardware for cryptography [Wolf and Gendrullis, 2012]

Software integrity

- Secure boot
- Virtualization [Groll et al., 2009]

Protections (2/2)

Intrusion detection

- Anomaly-based
 - Tainting tool [Schweppe and Roudier, 2012]
 - Restricted headers & self-checking [Matsumoto et al., 2012]
 - Entropy variations [Muter and Asaj, 2011]
- Signature-based IDS [Muter et al., 2010]

Protections (2/2)

Intrusion detection

- Anomaly-based
 - Detects unknown attacks
 - Requires a very thorough model
- Signature-based
 - Very few false positives
 - Regular updates required

The Automotive Network

2 Threats

Operation Protection mechanisms

4 Conclusion

Conclusion

Threats

- Lack of security mechanisms in current automotive networks
- More exposure with wireless communication capacities
- Several documented attacks

Conclusion

Threats

- Lack of security mechanisms in current automotive networks
- More exposure with wireless communication capacities
- Several documented attacks

Trends

- A key issue for manufacturers
- Security enforcement
 - Cryptography
 - Software integrity
 - Anomaly detection

References I

[Checkoway et al., 2011] Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S., Koscher, K., Czeskis, A., Roesner, F., Kohno, T., et al. (2011). Comprehensive experimental analyses of automotive attack surfaces. In <u>Proc. 20th USENIX Security</u>, San Francisco, CA.

[Francillon et al., 2010] Francillon, A., Danev, B., and Capkun, S. (2010). Relay attacks on passive keyless entry and start systems in modern cars. IACR ePrint Report, 2010/332.

[Groll et al., 2009] Groll, A., Holle, J., Ruland, C., Wolf, M., Wollinger, T., and Zweers, F. (2009). Oversee a secure and open communication and runtime platform for innovative automotive applications. In 7th Embedded Security in Cars Conf. (ESCAR), Düsseldorf, Germany.

[Koscher et al., 2010] Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy, D., Kantor, B., Anderson, D., and Shacham, H. (2010). Experimental security analysis of a modern automobile. In <u>2010 IEEE Symp. Security and Privacy</u>, pages 447–462, Oakland, CA.

[Matsumoto et al., 2012] Matsumoto, T., Hata, M., Tanabe, M., Yoshioka, K., and Oishi, K. (2012). A method of preventing unauthorized data transmission in controller area network. In Vehicular Technology Conf. (VTC Spring), pages 1–5, Yokohama, Japan. IEEE.

[Muter and Asaj, 2011] Muter, M. and Asaj, N. (2011). Entropy-based anomaly detection for in-vehicle networks. In Intelligent Vehicles Symposium (IV), pages 1110–1115, Baden Baden, Germany. IEEE.

References II

[Muter et al., 2010] Muter, M., Groll, A., and Freiling, F. C. (2010). A structured approach to anomaly detection for in-vehicle networks. In 6th Int. Conf. Information Assurance and Security (IAS), pages 92–98, Atlanta, GA. IEEE.

[Rouf et al., 2010] Rouf, I., Miller, R., Mustafa, H., Taylor, T., Oh, S., Xu, W., Gruteser, M., Trappe, W., and Seskar, I. (2010).

Security and privacy vulnerabilities of in-car wireless networks: A tire pressure monitoring system case study. In Proc. USENIX Security Symposium, pages 323–338, Washington, DC.

[Schweppe and Roudier, 2012] Schweppe, H. and Roudier, Y. (2012). Security and privacy for in-vehicle networks. In Vehicular Communications, Sensing, and Computing (VCSC), pages 12–17, Seoul, Korea. IEEE.

[Wolf and Gendrullis, 2012] Wolf, M. and Gendrullis, T. (2012). Design, implementation, and evaluation of a vehicular hardware security module. Information Security and Cryptology-ICISC 2011, pages 302–318.

