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ABSTRACT 
 

Recent advancements in technology have emerged the requirements of hardware and 
software applications. Along with this technical growth, software industries also have 
faced drastic growth in the demand of software for several applications. For any software 
industry, developing good quality software and maintaining its eminence for user end is 
considered as most important task for software industrial growth. In order to achieve this, 
software engineering plays an important role for software industries. Software 
applications are developed with the help of computer programming where codes are 
written for desired task. Generally, these codes contain some faulty instances which may 
lead to the buggy software development cause due to software defects. In the field of 
software engineering, software defect prediction is considered as most important task 
which can be used for maintaining the quality of software. Defect prediction results 
provide the list of defect-prone source code artefacts so that quality assurance team scan 
effectively allocate limited resources for validating software products by putting more 
effort on the defect-prone source code. As the size of software projects becomes larger, 
defect prediction techniques will play an important role to support developers as well as 
to speed up time to market with more reliable software products. One of the most 
exhaustive and pricey part of embedded software development is consider as the process 
of finding and fixing the defects. Due to complex infrastructure, magnitude, cost and 
time limitations, monitoring and fulfilling the quality is a big challenge, especially in 
automotive embedded systems. However, meeting the superior product quality and 
reliability is mandatory. Hence, higher importance is given to V&V (Verification & 
Validation). Software testing is an integral part of software V&V, which is focused on 
promising accurate functionality and long-term reliability of software systems. 
Simultaneously, software testing requires much effort, cost, infrastructure and expertise 
as the development. The costs and efforts elevate in safety critical software systems. 
Therefore, it is essential to have a good testing strategy for any industry with high 
software development costs. In this work, we are planning to develop an efficient 
approach for software defect prediction by using soft computing based machine learning 
techniques which helps to predict optimize the features and efficiently learn the features. 
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1. INTRODUCTION 
 

One of the most exhaustive and pricey part of embedded software development is 
consider as the process of finding and fixing the defects (Ebert and Jones, 2009). Due to 
complex infrastructure, magnitude, cost and time limitations, monitoring and fulfilling 
the quality is a big challenge, especially in automotive embedded systems. However, 
meeting the superior product quality and reliability is mandatory. Hence, higher 
importance is given to V&V (Verification & Validation). Software testing is an integral 
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part of software V&V, which is focused on promising 
accurate functionality and long-term reliability of software 
systems. Simultaneously, software testing requires much 
effort, cost, infrastructure and expertise as the development 
(Lemos et al., 2015). The costs and efforts elevate in safety 
critical software systems. Therefore, it is essential to have a 
good testing strategy for any industry with high software 
development costs. 

Nowadays, the growth of the software industry is huge 
and more sophisticated. Therefore, anticipating the 
reliability of the software is an important task in software 
development process (Roy et al., 2014). A software bug is a 
defective behavior of the software system which arises due 
to definite and possible violation of security policies during 
the application runtime. It is mainly caused by improper 
development or erroneous specification of the software 
system (Ghaffarian and Shahriari, 2017). According to ref. 
of Abaei and Selamat (2014), analysis and prediction of 
defects are essential to serve three important requirements. 
First, it helps in assessing the progress of the project and 
assists in scheduling testing process by the project manager. 
Second, it helps in investigating the quality of the product. 
Lastly, it improves the reliability and functionality of the 
product. The fault-prone modules can be identified by 
distinct metrics, which have been reported by the previous 
fault prediction. Some of the crucial information, such as 
number of faults, location, severity, and distribution of 
defects are extracted to enhance the efficiency of testing 
process. It further helps in improving the software quality 
of the upcoming software release. The two main advantages 
of software fault prediction are, enhancement of the overall 
testing process by emphasizing on fault-prone modules, 
identification of the refactoring candidates which are 
rendered as most likely to undergo fault (Catal, 2014). 

The models used for Software engineering cost and 
schedules, their estimation, etc., are implemented for 
several reasons which are, 
 Budgeting: It is the first and foremost implication, 

but it is not the only purpose. The most important 
factor is “overall accuracy of the system”. 

 Project planning and control: It is yet another critical 
feature to offer cost and scheduling estimations with 
respect to modules, stage and process.  

 Tradeoff and risk analysis: It involves the 
supplementary capability to focus on the project 
scheduling and costs involved in the project 
decisions (staffing, scoping, tools, reuse, etc.). 

 Software improvement investment analysis: In 
involves the additional cost and efforts required for 
other strategies, such as recycling, tools, inventory, 
process maturity, etc. 

In software programming, defect analysis and prediction 
can decisively determine potential bugs in the software and 
helps in discovering the modules which are more vulnerable 
to such problems. It can assist the engineers to allocate 

constrained resources to those modules of the software 
framework, which are more liable to be affected by bugs. 
Constructing a defect prediction models for a software 
framework is helpful for numerous of developmental or 
maintenance activities, for example, software quality 
assessment and monitoring quality assurance (QA). 

The significance of defect prediction has propelled 
various scholars and engineers to characterize distinctive 
kinds of models or indicators that portray different parts of 
programming quality. Most research generally evaluates 
this issue as supervised learning problems and the results of 
those defect prediction models is dependent on the previous 
defect information. To be precise, a predictor model is built 
based on the training data obtained from the previous 
defects seen in past software releases. This defect 
predictor’s can be used to defect bugs in upcoming software 
projects or to cross-validate on the same data set (He et al., 
2012), also known as Within-Project Defect Prediction 
(WPDP). Zimmermann et al. (2009) expressed that the 
performance of defect prediction models can be better, if 
there are adequate quantity of information accessible to 
train the models. Nevertheless, this type of information is 
not available for freshly started projects. Therefore, high 
precision in defect prediction process in such projects 
become extremely difficult, sometimes implausible. 
However, there are little open-source information on defect 
datasets, such PROMISE (Wang and Li, 2010), Apache 
(Ghotra et al., 2015) and Eclipse (Ryu et al., 2016), which 
can be used to train the defect predictors. 

To overcome such challenges, few engineers and scholars 
have made an attempt to apply the predictors from one 
project, on to a different one ( Li et al., 2017; Lu et al., 
2015). This process of using information between different 
projects to construct defect models is generally termed as 
Cross-Project Defect Prediction (CPDP). It involves the 
process of implementing a predictor model in a project, 
which was built for some other project. 

The choice of training samples relies upon the 
distributional attributes of datasets. Few experimental 
examinations assessed the practical advantages of cross-
project defect predictors with various programming metric, 
such as, process measurements, static code metrics, system 
metrics, etc., (Li et al., 2017; Lu et al., 2015), and how to 
uses such metrics in a complementary way (Zimmermann et 
al., 2009). Even though, several attempts are established for 
the implementation of CPDP, it is still not well developed, 
and suffers from poor performance in practice (Rahman et 
al., 2012). Besides, no definitive information is available on 
how the defect predictors amongst WPDP and CPDP are 
sanely selected, when there are no proper historical data on 
the project. In general, several type of software metrics, for 
example, history of code change, static code metrics, 
network metrics, process metrics (He et al., 2013), etc., are 
used for building defect predictors for various types of fault 
detection (Radjenović et al., 2013). 
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Fig. 1. Software defect prediction techniques 
 

All current defect prediction models are constructed on 
the sophisticated amalgamation of programming metrics, 
with which a defect predictor can generally attain good level 
of precision. Nevertheless, few feature selection algorithms 
such as principal component analysis (PCA), can greatly 
lower the amount of data dimensions (He et al., 2015; Wu 
et al., 2017; Wang et al., 2013), they still result in a time-
consuming process. Can a compromise solution be found, 
which can attain a tradeoff between cost and accuracy? As 
it were, would we be able to build a generic universal 
predictor with hand few of metrics, such as Lines of Code 
(LOC), which can attain accurate results in comparison to 
other complex prediction models? Apart from choosing a 
proper software metric, there are numerous classifiers 
available at disposal, such as Naive Bayes (Zhang et al., 
2016), J48 (Song et al., 2006), Support Vector Machine 
(SVM) (Xia et al., 2016), Logistic Regression (Li et al., 
2014), and Random Tree (Staron and Meding, 2008), etc. 
Apart from these, there are a few improved classifiers (Rana 
et al., 2013) and hybrid classifiers (Gondra, 2008) which are 
known to effectively improve classification results. 

 
1.1 Software Defect Prediction Techniques 

To foresee the quantity of flaws anticipated that would be 
found in a product module/venture or to group which 
modules are likely to be imperfect, Programming Defect 
Prediction (PDP) systems are utilized. Various distinctive 
strategies have been utilized for characterization 
/anticipating absconds; they can be extensively gathered 
into methods that are utilized to foresee if or not a given 
programming ancient rarity is probably going to contain a 
deformity (Classification) and procedures utilized for 

foreseeing anticipated that number of imperfections would 
be found in a given programming antique (Prediction) and 
Fig. 1 outlines normally utilized programming imperfection 
forecast methods clustered by the reason –fault check 
expectation or defect inclined arrangement. 

In an investigation by Staron and Meding (Rajbahadur et 
al., 2017), professional views were utilized and their 
execution contrasted with other information based models. 
Author’s former works establishes the long term analytical 
power of  SRGMs (Software Reliability Growth Models) 
within the automotive realm indicating their utility in 
analyzing or predicting fault and consistency. To categorize 
the software modules which are likely to be defective or to 
analyze the compactness of software defect, various 
software modules related to code features like complexity, 
size etc., has been utilized effectively. 

Techniques that utilize code and modify measurements as 
sources of info and utilize machine learning strategies for 
categorizing and predicting have additionally been 
examined by Iker Gondra (Kim et al., 2011) and Xie et al. 
(2011). Pertinence of different strategies for programming 
imperfection forecasts over the life cycle periods of 
programming advancement and the attributes of every 
strategy are shown in Table 1. 
 
1.2 Techniques for Defect Classification 

Software defect classification is another important 
technique of defect prediction. These models strive to 
identify fault-prone software modules using variety of 
software project and product attributes. In general, defect 
classification models are implemented at lower granularity 
levels, more predominantly at file and class level. Hence,  
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Table 1. Different strategies for programming imperfection forecasts 
Method Input data required Advantages and limitations 
Causal 
Models 

Inputs about estimated size, 
complexity, qualitative inputs on 
planned testing and quality 
requirements 

Causal models biggest advantage is that they can be 
applied very early in the development process. Possible 
to analyse what-if scenarios to estimate output quality 
or level of testing needed to meet desired quality goals. 

Expert 
Opinions 

Domain experience (software 
development, testing and quality 
assessment). 

This is the quickest and easiest way to get the 
predictions (if experts are available). Uncertainty of 
predictions is high and forecasts may be subjected to 
individual biases 

Analogy 
Based 
Predictions 

Project characteristics and 
observations from large number of 
historical projects. 

Quick and easy to use, the current project is 
compared to previous project with most similar 
characteristics. Evolution of software process, 
development tool chain may lead to inapplicability or 
large prediction errors. 

Constructive 
Quality 
Model 

Software size estimates, product, 
personal and project attributes; defect 
removal level. 

Can be used to predict cost, schedule or the residual 
defect density of the software under development. 
Needs large effort to calibrate the model. 

Correlation 
Analysis 

Number of defects found in given 
iteration; size and test effort 
estimates can also be used in 
extended models. 

This method needs little data input which is available 
after each iteration. The method provides easy to use 
rules that can be quickly applied. The model can also be 
used to identify modules that show higher/lower levels 
of defect density and thus allow early interventions 

Regression 
Models 

Software code (or model) metrics as 
measure of different characteristics 
of software code/model; Another 
input can be the change metrics. 

Uses actual code/models characteristic metrics which 
means estimates are made based on data from actual 
software under development. Can only be applied when 
code/models are already implemented and access to the 
source code/model is available. The regression model 
relationship between input characteristics and output 
can be difficult to interpret –do not map causal 
relationship 

Machine 
Learning 
based 
models 

Software code (or model) metrics as 
measure of different characteristics 
of software code/model; Another 
input can be the change metrics. 

Similar to regression models, these can be used for 
either classification (defective/not defective) or to 
estimate defect count/densities. Over time as more data 
is made available, the models improvise on their 
predictive accuracy by adjusting their value of 
parameters (learning by experience). While some 
models as Decision Trees are easy to understand others 
may act like a black box (for example Artificial Neural 
Networks) where their internal working is not explicit 

Software 
Reliability 
Growth 
Models 

Defect inflow data of software under 
development (life cycle model) or 
software under testing. 

Can use defect inflow data to make defect predictions 
or forecast the reliability of software based system. 
Reliability growth models are also useful to assess the 
maturity/release readiness of software close to its 
release. These models need substantial data points to 
make precise and stable predictions 

the software products which are flagged as defect-prone can 
be prioritized according to their severity for more rigorous 
verification and validation activities. 

 
1.2.1 Logistic Regression 

A software module can be categorized as defect-prone or 
not, on the basis of logistic regression. Much like the 
multivariate regression, the classification of software 
modules is done by using several variety of process and 

product metrics are employed as predictor variables. 
Zimmermann, et al. (Köksal et al., 2011) worked on the 
principle of logistic regression to categorize file/packages in 
Eclipse project as defect prone. 

 
1.2.2 Machine Learning Models 

Some popular machine learning techniques uses 
statistical algorithms and data mining techniques, which is 
helpful for predicting and classifying defects. Such 
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techniques are identical to regression approaches that use 
same type of independent variables. On the upside, the 
machine learning algorithms are dynamic in nature, and 
they progressively enhance the overall prediction and 
classification technique. 

 
1.3 General Process of Software Defect Prediction 

To build an efficient prediction model, we should have 
proper data on defects and metrics, which can be 
accumulated from software development efforts to use as 
the learning set. Thus, there is tradeoff between its 
prediction performance on additional data sets and how well 
this model fits in its learning set. Therefore, the performance 
of the model is assessed by the comparison of the predicted 
defects of the modules in a test, against the actual defects 
witnessed (Hewett, 2011). 
 

1.4 General Defect Prediction Process 
Labeling: An appropriate defect data must be collected 

for the purpose of training a prediction model. This step 
generally involves the extraction of instances and labeling 
the data items (True or False). 

Extracting features and creating training sets: The 
extraction of features for prediction labels of instances is 
performed in this stage. Few common features for defect 
prediction are keywords, complexity metrics, deviations, 
and structural dependencies. By consolidating the labels and 
highlights of instances, a training set is generated which is 
used by the machine learning algorithms to develop a 
forecast model. 

Building prediction models: The prediction models can 
be built with the help of a training set, implemented on the 
general machine learning algorithms, such as Bayesian 
Network or Support Vector Machines (SVM). Based on the 
learned data, the model can classify and label the test 
instances as TRUE or FALSE. 

Assessment: The assessment of a prediction display is 
done on the basis of testing dataset collection and training 
set. The labels of the training dataset are used to build the 
prediction model, which is later evaluated by comparing the 
prediction and real labels. The training sets and testing sets 
are separated using 10-fold cross-validation technique. 

 
2. RELATED WORKS 
 

As indicated by Catal and Diri (2009), defect prediction 
models in software programming have become one of the 
significant research areas since 1990. In just two decades, 
the total amount of research papers in this area had increased 
two fold. A wide range of procedures and methodologies 
were utilized for defect prediction models, for example, 
decision trees (Selby and Porter, 1988) neural network 
system (Hu et al., 2007), Naïve Bayes (Menzies et al., 2004), 
case-based reasoning (Khoshgoftaar et al., 1997), fluffy 
logic (Yadav and Yadav, 2015) and the artificial immune 
recognition framework technique in Catal and Diri (2007). 

Menzies et al. (2004) carried out an experiment derived 
from the open-source NASA datasets with the help of few 
data mining techniques. The results were later evaluated 
with the help of balance parameter, probability of false 
alarm and probability of detection. Prior to the 
implementation of the algorithm, the authors have used the 
log-transformation with Info-Gain filters. They further 
assured that performance of Naïve Bayes in terms of fault 
prediction was better than J48 algorithm. The authors have 
further contended that since a few models with low accuracy 
performed well, implementing such models as a dependable 
parameter for performance assessment was not suggested. 
Okutan and Yıldız (2014), estimated the probabilistic 
influential relationships between software metrics and 
probability of defect, with the help of Bayesian networks. 
Apart from the metric used in Promise data repository, two 
other metric were defined in this proposed research work, 
which were LOCQ for the source code quality and NOD for 
the number of developers. These metrics can be derived by 
examining the source code repositories of the targeted 
Promise data archives. Once the model was complete, the 
marginal probability of defect of the system can be 
understood, along with the set of influential metrics, and the 
correlation between defects and metrics. 

Likewise, dictionary based learning algorithms were 
more popular in the field of software defect prediction. Jing 
et al. (2014) implemented software defect prediction models 
on the principle of machine learning techniques. The 
similarity between different software modules can be 
exploited to represent a small proportion of few modules 
with the help of some other modules. Furthermore, the 
coefficients of the pre-defined dictionary contains the 
historical software data, which are large inadequate. With 
the help of the qualities of the metrics extracted from the 
open-source programming modules, the researchers learn 
numerous dictionaries, including but not limited to, 
defective-free module, defective module, total dictionary, 
sub-dictionaries, etc. The researchers have also considered 
the problem of misclassification cost, as it usually imposes 
greater risk than other defective-free ones. Along these lines, 
we present a cost-sensitive discriminative dictionary 
learning (CDDL) technique for software defect 
classification and prediction. 

The representative studies in software defect prediction 
are shown in Table 2. Over the past decade, several attempts 
were made to build efficient prediction models. Process 
metrics and source code (Rahman et al., 2012) are some of 
the widely studied metrics. Process metrics were derived 
from the software archives, for example, bug tracking 
systems, version control systems, etc., which keep track of 
all development histories. Process metrics evaluates 
numerous characteristics of software programming process 
such as, ownership of source code files, changes of source 
code, developer interactions, etc. The source code metric 
determines the intricate should the source code be. The 
fundamental basis about the source code metric was that  
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Table 2. Representative studies software defect prediction 
Type Categories Representatives 

Within/Cross 

Metrics 

Sorce code (Jing et al., 2014), Process (Churn (Kim et al., 2007), (Ghotra et 
al., 2015), Change (Kamei et al., 2010), Entropy (Zhang et al., 2016), 
Popularity (Roy et al., 2014), Authorship (He et al., 2015), Ownership (Catal, 
2014), MIM (Hewett, 2011), Network measure (Okutan and Yıldız, 2014), 
(Peters et al., 2013), (Khoshgoftaar et al., 2010), Antipattern (Shin et al., 
2010) 

Algorithm/Model Classification, Regression, Active/Semi-supervised learning (Hu et al., 2007), 
(Bosu et al., 2014), BugCache (Xie et al., 2011) 

Finer prediction 
granularity 

Change classification (Gondra, 2008), Method level-prediction (Song et al., 
2006) 

Preprocessing 
Feature selection/Extraction (Walden and Doyle, 2012), (Kim et al., 2007), 
Normalisation (Jing et al., 2014), (Catal and Diri, 2009), Noice handling 
(Rajbahadur et al., 2017), (Morrison et al., 2015) 

Cross Transfer learning Metric compensation (Brereton et al., 2007), NN filter (Moshtari and Sami, 
2016), TNB (Khoshgoftaar et al., 1997), TCA + (Catal and Diri, 2009) 

Feasibility Decision Tree (Catal and Diri, 2009), (Xia et al., 2016) 

more complex source code was more likely to be infected 
by bugs. Several studies have emphasized the significance 
of process metrics for defect prediction (Zhang et al., 2016; 
Fenton and Neil, 1999; Kamei et al., 2010). 

The prediction models built by the machine learning 
algorithms have the ability to detect the probability of bugs 
or defects in the source code. Few research works have 
mplemented latest machine learning algorithms such as 
active/semi-supervised learning algorithms, which are 
known to enhance prediction performance (Li et al., 2012; 
Zhang et al., 2017). BugCache algorithm was suggested by 
Kim et al., which uses the locality information of previous 
defects and maintains a list of source code files or modules, 
which were more likely to be faulty (Kim et al., 2007). 

BugCache algorithm uses machine learning techniques 
for building defect prediction models which uses non-
statistical model. This entirely different from the other 
defect prediction models. It also fine tunes the prediction 
granularity. It attempts to find defects at various levels, such 
as, class, file, package, component, system. Few recent 
experiments have demonstrated that defects can be found at 
module level or method level, or change level (Koru and Liu, 
2005). The developers can be benefited by the finer 
granularity model, as they can minimize the scope of source 
code, which must be inspected. Thus, preprocessing 
techniques are also an important part of defect prediction 
studies. Prior to the implementation of defect prediction 
model, few techniques are applied, such as normalization 
(Menzies et al., 2004), feature selection (Catal and Diri, 
2009), noise handling (Khoshgoftaar and Rebours, 2007), 
etc. 

Several authors have also emphasized on cross-project 
fault prediction. Majority of these experiments were 
portrayed and directed inside the prediction setting, which 
suggests that the forecast models were constructed and 
executed within the same project. In spite of this, it was 
challenging for few new projects, which did not contain any 

vital information about the historical data about the 
developmental process. Few of the popular representative 
approaches for cross defect prediction were Nearest 
Neighbour (NN) Filter (Zhang et al., 2017), metric 
compensation (Watanabe et al., 2008), Transfer Naive 
Bayes (TNB) (Ma et al., 2012), and TCA + (Nam et al., 
2013). 

 
2.1 Within-Project Defect Prediction 

Catal and Diri (2009) has conducted an investigation on 
over 90 software defect prediction research works, which 
were published between the vicinity of 1990 and 2009. He 
reviewed these papers on the basis of the performance 
evaluation metrics, learning algorithms, experimental 
outcomes, datasets, etc. As indicated by this review, the 
author expressed that a large portion of these research works 
were based on utilizing the method-oriented metrics and 
prediction-models. Therefore, they were largely dependent 
on the machine learning procedures, and Naive Bayes 
techniques, which were regarded as a popular machine 
learning techniques for supervised prediction tasks. 

Hall et al. (2011) carried out an investigation on the 
metrics, such as model contexts, modeling algorithms, 
independent variables, etc., and characterized their effects 
on the performance of defect prediction models, based on 
the 208 research works. Their outcomes demonstrated that 
rudimentary modeling systems, for example, Logistic 
Regression and Naive Bayes, portrayed better performance. 
Additionally, the performance was further enhanced by the 
combination of independent variables. The results are 
greatly improved by the application of feature selection on 
these combinations. The authors contend that there was 
considerable amount of defect prediction models, in which 
certainty was conceivable. However, more examinations 
which implemented a reliable technique have witnessed a 
comprehensive context, performance, and methodology. 
Most of these research works were reviewed with respect to 
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two systemic literature surveys that were led with regards to 
WPDP. Nevertheless, they overlooked the fact that few of 
these research works were particularly new, and they 
normally have restricted or deficient information to train a 
proper prediction model for defect forecasting. Thus, a few 
researchers have started to work their way towards CPDP. 
 
2.2 Cross-Project Defect Prediction 

The primary research on CPDP was performed by Briand 
et al. (2000), who connected models based on an open-
source venture (i.e., Xpose) to another (i.e., Jwriter). 
Despite the fact that the anticipated imperfection 
recognition probabilities were not reasonable, the defect-
prone class positioning was precise. They additionally 
approved that such a model performed superior to anything 
the irregular model and beat it regarding class size. 
Zimmermann et al. (2009) led a large-scale investigation on 
information versus province versus process, and found that 
CPDP was not generally fruitful (21/622 expectations). 
They additionally detected that CPDP was not proportioned 
amongst internet explorer and Firefox. CPDP utilizing fixed 
code attributes in the view of 10 projects and even gathered 
from PROMISE archive was investigated by Turhan et al. 
They suggested a closest-neighbor sifting strategy to 
channel through the insignificances in cross-venture 
information. In addition, they examined the situation where 
models were developed from a combination of inside and 
cross-venture information, and checked for any 
enhancements to WPDP in the wake of including the 
information from different undertakings or projects. They 
presumed that when there was restricted venture chronicled 
information (e.g., 10% of recorded information), combined 
project estimates were reasonable, as they executed and 
additionally within-project forecast models. 

Rahman et al. (2012) led a cost-delicate examination of 
the viability of CPDP on thirty eight arrivals of nine 
extensive Apache Software Foundation (ASF) ventures, by 
contrasting it with WPDP. Their detections uncovered that 
the cost-touchy cross-project estimation execution was not 
more regrettable than the inside-venture forecast execution, 
and was significantly superior to arbitrary expectation 
execution. To assist cross-company learning in contrast with 
the state of the art Peters et al. (2013) acquainted a new filter 
called Burak filter. The outcomes uncovered that their 
method could assemble sixty-four percent more valuable 
indicators than both cross-company and within-company 
approaches in view of Burak channels, and exhibited that 
cross-organization fault estimate could be connected ahead 
of schedule in a venture's lifecycle. He et al. (2015) directed 
three tests on similar informational indexes utilized as a part 
of this examination to approve training information from 
different projects can give worthy outcomes. They 
additionally suggested a way to deal with naturally choosing 
appropriate training information for ventures or projects 
without neighborhood information. 

Herbold (2013) suggested a few methodologies in view 
of forty-four informational collections from fourteen open-
source ventures regarding training data selection for CPDP. 
A few portions of their informational collections are utilized 
here in our paper. The outcomes exhibited that their choice 
procedures enhanced the realized progress rate essentially, 
though the nature of the outcomes was as yet unfit to 
contend with WPDP. The survey uncovers that earlier 
examinations have mostly explored the possibility of CPDP 
and the decision of preparing information from their tasks. 
Yet moderately little consideration was given to 
experimentally investigating the execution of a forecaster in 
light of a disentangled metric set from the viewpoints of 
exertion and-cost, precision and simplification. Besides, 
next to no was thought about whether the forecasters made 
with basic or least programming metric subsets acquired by 
wiping out some unimportant and repetitive highlights can 
accomplish adequate outcomes. 
 
2.3 Software Metrics 

A wide range of software models are regarded as features, 
which can be utilized for defect prediction, to enhance 
overall quality of the software programming. 
Simultaneously, various correlations are made among 
numerous software metrics to review which metric offers 
good level of performance. Shin and Williams (2013) 
examined whether source code and programming histories 
were discriminative and detect weak codes among 
sophisticated, code agitate, and parameters followed by the 
designer. It was discovered that 24 of the 28 metrics were 
discriminative for both Linux and Mozilla Firefox kernel. 
By utilizing all the three kinds of metrics, these models 
predicted more than 80% of the potential weaknesses in the 
files within under 25% false positives for the two activities. 
Marco et al. (2010) led three trials on five frameworks with 
process metrics, source code metrics, previous defect data, 
entropy of changes, and so forth. They found that the best 
performance can be obtained by the modest process metrics, 
which were marginally better than entropy and churn of 
source code metrics. 

Zimmermann et al. (2009) utilized social network 
parameters extracted from dependency relation between 
software programming on Windows Server 2003 to predict 
which elements were more vulnerable to defects. With 
respect to predicting defects, the experimental results have 
shown that the performance of network metrics was better 
than source code metrics. Tosun et al. (2011) conducted 
experiments on five public datasets to replicate and verify 
their outcomes from two distinct levels of granularity. The 
outcomes have shown that network metrics were more 
appropriate for detecting defects for large-scale and 
complicated models, even though their performance in 
smaller models were not much impressive. Premraj and 
Herzig (2011) reproduced the Zimmermann and Nagappan's 
work to conduct further evaluation of the generality of these 
results. However, the results were found to be consistent  
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Table 3. Comparative analysis of classification based techniques for software defect prediction 
Authors and 
publication 

year 
Objective Methodology Key findings Conclusion 

Roy et al. 
(2014) 

Software 
reliability 
prediction 

Feed forward and 
recurrent neural 
network 

Genetic algorithm is 
used for training the 
neural network 

Better prediction of 
software defects 

Ghaffarian and 
Shahriari 

(2017) 

Survey of SDP 
techniques 

Data mining and 
machine learning 
techniques for SDP 

Data mining and ML 
techniques are good for 
early defect prediction 
and vulnerability 

An extensive review 
which shows 
advantages and 
disadvantages of DM 
and ML techniques 

Catal and Diri 
(2009) Fault prediction 

Artificial immune 
system and random 
forest approach for 
classification 

Significant Feature 
selection can improve 
the performance 

Comparative 
performance where it 
shows that Random 
forest achieves better 
accuracy 

Wang and Li 
(2010) 

Software defect 
prediction for 
improving the 
quality 

Naïve Bayes 
classification model 

Multi- variants Gauss 
Naive Bayes (MvGNB) 
used for reducing the 
complexity 

MvGNB achieves 
better performance 
when compared with 
J48 classifier 

Yadav and 
Yadav (2015) 

Different artifact 
and defect 
prediction in 
software 
engineering 

Fuzzy logic 
technique 

Phase-wise computation 
along with fuzzy logic 
classification 

It can be used for 
classifying the defect 
types 

Okutan and 
Yıldız (2014) 

Software defect 
prediction and 
level of defect 

Feature extraction 
and Bayesian 
classification 
technique for SDP 

Significant feature 
extraction and 
relationship between 
software metrics and 
defects. 

It can be used for both 
supervised and 
unsupervised learning 

with the original work. In any case, regarding the array of 
datasets, code metrics were more suitable for experimental 
investigations on open-source programming ventures. 

Radjenovic' et al. (2013) grouped 106 papers on defect 
prediction with respect to context properties and metrics. 
hey discovered that the amount of process metrics, source 
code metrics, and object-oriented metrics, were 24%, 27%, 
and 49%, respectively. Chidamber and Kemerer’s (CK) uite 
metrics were most frequently used. In comparison to 
complexity metrics and traditional size, the object-oriented 
and process metrics were more efficient. Thus, in 
comparison to static code metrics, the process metrics were 
more proficient in predicting post-release defects. On the 
basis of these research works, a comparative review was 
presented in Table 3, which gives details on techniques used, 
results, and strengths of individual works. The classification 
based techniques are presented first. 

Zimmermann et al. (2011) examined the likelihood of 
detecting the presence of vulnerabilities and defects in 
binary modules of a popular software product (Microsoft 
Windows Vista). The researchers have used classical 
metrics which were implemented in past research works for 
defect prediction. Initially, correlations was computed 
which exists between the metrics and amount of defects per 

binary module. The Spearman’s rank correlation was used 
for this purpose. The results revealed that there was a 
noteworthy connection among classical metrics and the 
number of vulnerabilities. Another research was led to 
determine the prediction capabilities of these metrics. For 
this purpose, a five groups of classical metrics (i.e., 
dependency, coverage, coverage, organizational, churn) 
were inspected using binary Logistic Regression. 

Williams and Meneely (Meneely et al., 2008), examined 
the connection between software vulnerabilities and 
developer-activity metrics. The developer-activity metrics 
consists of number of commits made to a file, number of 
developers who have modified the codes in the source 
program, amount of geodesic paths which contains a file in 
the contribution network. The research was carried out on 
three open-source software projects. The assembled 
informational in a given research work contains a label 
which suggest if the source code file was patched or not. 
The version control logs would disclose the developer-
activity metrics. With the help of statistical correlation 
analysis, the researchers have confirmed the existence of 
statistical correlation for every metric with the given 
quantity of vulnerabilities. However, the correlation was not 
very strong. The training and validation sets were generated 
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by using Bayesian network with tenfold cross-validation, as 
the predictive model. 

Walden and Doyle (2012) have led a study to inspect the 
correlation among software metric and vulnerabilities in 14 
different popular open source web applications during 2006 
and 2008, for example, Mediawiki, WordPress. The 
researchers implemented static analytical tools, such as, 
PHP CodeSniffer, Fortify Source Code Analyzer. With the 
help of this tool, they have estimated various metrics in 
source code repositories of these web applications, such as, 
source-code size, nesting complexity, static analysis 
vulnerability density (SAVD), Security Resources Indicator 
(SRI), etc. Williams and Shin (2008), conducted an 
experiment to check if the conventional defect prediction 
models, which are built on the principle of code-churn 
metrics and complexity, were any help in predicting the fault 
vulnerability. The experiment was carried out on Mozilla 
Firefox with a fault history metric, 5 code churn metrics, 
and 18 complexity metrics. With various classification 
techniques for the fault prediction, the researchers have 
concluded that the results were almost identical. 

Shin et al. (2010) carried out an intense research to check 
if the vulnerability prediction was affected by the code-
churn and developer-activity (CCD) and complexity. In 
regard to this, the researchers have conducted experiments 
on two open-source projects. The analysis was performed 
on over 28 CCD software metrics, which also consists of 3 
code-churn metrics, 14 complexity metrics, and 11 
developer-activity metrics. 

The authors have used the Welch’s t-test to assess the 
discriminative power of the metrics. For both the projects, 
the test hypotheses were supported by at least 24 of 28 
metrics. For the purpose of evaluation of predictive power 
of the metrics, the authors have tested numerous 
classification techniques. They have discussed the result 
form just one technique, as the performance was similar. To 
verify the predictive capacity of the model, the authors have 
validation on next-release, where numerous releases were in 
progress. Apart from that, they have also performed cross-
validation, where only a single release would be in progress. 

Moshtari and Sami (2016) pointed out three important 
constraints of vulnerability prediction models of previous 
research works. Therefore, they presented a new technique 
to predict the potential location of the defects in the software. 
It is accomplished by complexity metrics by resolving the 
limitations of previous studies. For the purpose of detecting 
software vulnerabilities, the researchers have proposed a 
semi-automatic analysis framework. The output from this 
framework is used as vulnerability information, which was 
known to provide more comprehensive details about the 
vulnerabilities in software, as explained by the authors. This 
research had examined both cross-project and within-
project fault prediction, with the help of accumulated 
information from over five different open-source projects. 

Bosu et al. (2014) conducted a similar experiment, in 
which they investigated more than 260,000 code review 
requests from over 10 different open source projects. 

Subsequently, they were able to identify more than 400 
vulnerable code changes, with the help of three-stage semi-
automated process. The main objective was to detect the 
characteristics of vulnerable code changes, and developers 
who might cause such vulnerabilities. Some key discoveries 
of this study include: 

1. The probability of fault elevates if the changes made 
in the codes are high. 
2. Changes are made by less experienced developers 
increases the chances of defects. 
3. The chances of defects are higher in new files, in 
comparison to modified files. 

To recognize constraints which are responsible for 
vulnerabilities, Perl et al. (Brereton et al., 2007) examined 
the impacts of utilizing the meta-information enclosed in 
code sources close by code –metrics. The initiators declare 
the way that programming develops incrementally, and 
most open-source projects utilize adaptation control 
techniques, subsequently, constraints define normal units to 
check for vulnerabilities. With this intention, the creators 
accumulate a dataset containing 170,860 confers from sixty 
six C/C ++ GitHub projects, including 640 vulnerability 
contributing commits (VCCs) plotted to significant CVE 
IDs. The creators select an arrangement of code-beat and 
designer-interest metrics, and in addition GitHub meta-
information from various extensions (creator, document, 
commit and project) and concentrate these highlights for the 
accumulated dataset. To distinguish VCCs from unbiased 
commits, the creators assess their recommended technique, 
named VCC Finder, which utilizes a Support Vector 
Machine (SVM) classifier based on this dataset. 

To analyze the execution of foreseeing vulnerable 
programming mechanisms, in light of programming metrics 
against text-extracting procedures, Walden et al. (2014) 
played out an investigation. With this thought, the creators 
initially developed a manually-built dataset of 
vulnerabilities assembled from three vast and well known 
open-source PHP web applications (Moodle, PhpMyAdmin, 
Drupal), comprising of two hundred and twenty three 
vulnerabilities. As an endowment to the investigation group, 
this dataset is presented. An arrangement of twelve code 
unpredictability metrics was chosen for this examination in 
order to estimate vulnerability in the light of programming 
metrics. For content mining, every PHP source file was 
tokenized. Unwanted tokens are either transferred 
(punctuations, comments, string, numeric literals, etc.) or 
terminated. A count was kept on the frequencies of final 
tokens. The numerical feature-vectors are built from the 
textual tokens of each PHP source file, using the popular 
“bag-of-words” technique. 

Morrison et al. (2015) explains that defect prediction 
models which are implemented by the Microsoft teams, are 
different from the vulnerability prediction models (VPMs). 
To clarify this disparity, for two fresh releases of the 
Microsoft Windows OS the researchers have made an 
attempt to reproduce a VPM technique, presented by 
Zimmermann et al. (2011). 
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Table 4. Uniqueness and few advantages of each work 

Authors Metrics Granularity Within/Cross-
project Vulnerability 

Zimmerman et al. 
(2011) 

Code churn, coverage, 
dependency, 
complexity , 

organizational 

Binary modules Within project Public advisories 

Meneely et al. 
(2008) Developer activity Source file Within project Public advisories 

 Code complexity and 
security resources Source file Within project Tool-based 

defection 
Walden and Doyle 

(2012) 
Complexity, fault-
history, code churn Source file Within project Public advisories 

Yonghee et al. (Shin 
and Williams, 2011) 

Code complexity, 
dependency network 

complexity and 
execution complexity 

Source file Within project Public advisories 

Shin and Williams 
(2008) 

Complexity, code-churn, 
developer activity Source file Within project Public advisories 

Shin et al. (2010) Unit complexity, 
coupling Source file both 

Self-developed 
detection 

framework 
Moshtari and Sami 

(2016) 
Code churn, developer 

activity Code commits Within project Public advisories 

Bosu et al. (2014) Developer activity Code commits Within project Public advisories 

Perl et al. (Brereton 
et al., 2007) 

Code churn, developer 
activity, GitHub 

Metadata 
 Within project Public advisories 

Walden et al. (2014) Code complexity Source file Both Public advisories 

Morrison et al. 
(2015) 

Code churn, complexity, 
coverage, dependency, 

organizational 
Binary module Within project Public advisories 

Younis et al. (2016) 
Code complexity, 
information flow, 

functions, Invocations. 
Functions Within project Public advisories 

Younis et al. (2016) made an attempt to detect the 
attributes of code, which contains defects that was more 
ikely to be susceptible. Since they commenced the study, 
they were able to recognize over 183 defects from the Linux 
kernel and Apache HTTPD web server projects. It must be 
noted that these projects contained 82 exploitable 
vulnerabilities. The researchers have chosen over 8 software 
metrics from 4 groups, in order to represent these 
ulnerabilities. They had used Welch’s t-test to investigate 
the discriminative power of each metric. Furthermore, the 
researcher examined if there is a combination of these 
metrics which can be exploited as predictors for few defects, 
wherein, 3 diverse feature selection techniques and 4 
classification techniques were verified. 

In the previous section, a review was presented on 
various recent researches in the area of defect prediction 
models based on software metrics. Table 4 presents the 
summary of all the research works reviewed in this section 
and also tabulates the uniqueness and few advantages of 
each work. 

3. APPLICATIONS OF DEFECT 
PREDICTION 

 
One of significant objectives of defect prediction models 

is efficient utilization of available resources for assessing 
and testing programming modules. Nevertheless, there is 
only a hand few of contextual analyses which use defect 
prediction models (Lewis, 1999). Thus, Rahman et al. (2012) 
led most of their investigation on cost-viability. Lewis (1999) 
pioneered a recent contextual investigation directed by 
Google, which compares the BugCache and Rahman's 
technique, with respect to the amount of closed bugs (Peters 
et al., 2013). The outcomes have indicated that the designers 
favored Rahman's technique. 

In any case, the defect prediction models do not give any 
advantages to the developers. In a recent survey, Rahman et 
al. (2012) demonstrated that defect prediction models could 
be useful to organize potential warnings discovered by the 
bug finders, for example, FindBug. It also helps in 
implementation of results from the defect prediction to 
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organize or choose appropriate test cases. In regression 
testing, performing all the test cases are not financially 
feasible, and consumes large amount of time as well. 
Therefore, it is best to choose proper test cases, which 
investigates the potential faults in the system (Lessmann et 
al., 2008). The results of the defect prediction models can 
provide an idea on the potential bugs and their severity, 
which can be exploited to select and prioritize the test cases. 

On the basis of previously reviewed works, it is obviously 
that the area of defect prediction has more to offer, and 
hence, it is in its early stages. It can be concluded with few 
of the future improvements and limitation, which can be 
extracted from past research works. 
 A factual limitation in the area of defect prediction 

models is that the bugs and weaknesses are few in 
number in the given datasets. In data mining and 
machine learning algorithms, this limitation is termed 
as imbalance class data. This imbalance can create a 
greater drop in overall performance of the algorithms. 
However, there are few methods to overcome this issue 
(Khoshgoftaar et al., 2010). Furthermore, few research 
works were focused on achieving the same, with 
random under-sampling the majority class. This is 
regarded as a critical problem which should not be 
overlooked. 

 Moshtari et al. (2016) has implemented a semi-
automatic system for fault identification, rather than a 
data from public repositories and fault databases 
(example: NVD). Thus, in comparison to other 
techniques, this system resulted in better recall and 
precision values. This could pave the way for more 
intense research in the future. 

 There are only few research works on the cross-project 
studies in the area of defect prediction. Therefore, it 
can be regarded as a field of future enhancement. The 
cross-project fault prediction models are not well 
researched in the context of defect prediction models. 
There are additional concerns in the Cross-project 
prediction models which are induced due to 
distribution of data in the training set, which can differ 
largely among themselves. Such variations can greatly 
degrade the performance of machine learning 
algorithms and statistical-analysis techniques. This 
limitation can be overcome by a descendant of the 
machine-learning algorithm, known as “inductive 
transfer” (or “transfer learning”) techniques. About the 
implementation of these techniques are well 
documents has in software defect prediction studies 
(Catal and Diri, 2009). 

 Majority of the fault prediction techniques offered poor 
performance. This is mainly due to the use of 
traditional software metrics, which are not considered 
as the appropriate indicators of software defects. 
Morrison et al. (2015) has discussed about this 
situation. Later on, characterizing security-oriented 
metrics, for example, the Security Resources Indicator 

(SRI), which was proposed by Doyle and Walden 
(2012) this is another territory for future investigations. 

 The use of deep-learning techniques for defect 
prediction is not well explored. It has emerged as a new 
area of machine-learning algorithm which is made 
impressive accomplishments in few application 
specific domains. Furthermore, it is increasing gain 
more popularity from scholars and professionals (Jiang 
et al., 2008). Yang et al. (2015) proposed a technique 
based on deep-learning methods for just-in-time 
software defect prediction. This laid the foundation for 
another area of research for future improvements. 
 

4. CONCLUSION 
 
This survey paper helps the researchers to study about 

software defects and software defect prediction techniques. 
To implement the data pre-processing technique; data 
cleaning, data normalization and data discretization will be 
performed in data mining. For feature extraction and 
selection to implement of new approach, to implement of 
evolutionary computation and optimization technique for 
best feature selection and to implement machine learning 
classification techniques for bug classification. An 
improved approach consists of data pre-processing low 
computation cost, complex model, software defect 
prediction comparative analysis and improved classification 
performance of the system. 
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	One of significant objectives of defect prediction models is efficient utilization of available resources for assessing and testing programming modules. Nevertheless, there is only a hand few of contextual analyses which use defect prediction models (...
	In any case, the defect prediction models do not give any advantages to the developers. In a recent survey, Rahman et al. (2012) demonstrated that defect prediction models could be useful to organize potential warnings discovered by the bug finders, f...
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