
International Journal of Applied Science and Engineering

https://doi.org/10.6703/IJASE.202012_17(4).331 331

OPEN ACCESS

Received: September 6, 2019
Revised: December 12, 2019
Accepted: July 3, 2020

Corresponding Author:
Mahesh Kumar Thota
tmakeshkumar0201@gmail.com

 Copyright: The Author(s).
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License (CC BY 4.0), which
permits unrestricted distribution
provided the original author and
source are cited.

Publisher:
Chaoyang University of
Technology
ISSN: 1727-2394 (Print)
ISSN: 1727-7841 (Online)

Survey on software defect prediction techniques

Mahesh Kumar Thota1*, Francis H Shajin2, P. Rajesh3

1 Research Scholar, Department of Computer Science Engineering, KL University,

Guntur, India
2 Department of Electronics and Communication Engineering, Anna University,

Chennai, India
3 Department of Electrical and Electronics Engineering, Anna University, Chennai,

India

ABSTRACT

Recent advancements in technology have emerged the requirements of hardware and
software applications. Along with this technical growth, software industries also have
faced drastic growth in the demand of software for several applications. For any software
industry, developing good quality software and maintaining its eminence for user end is
considered as most important task for software industrial growth. In order to achieve this,
software engineering plays an important role for software industries. Software
applications are developed with the help of computer programming where codes are
written for desired task. Generally, these codes contain some faulty instances which may
lead to the buggy software development cause due to software defects. In the field of
software engineering, software defect prediction is considered as most important task
which can be used for maintaining the quality of software. Defect prediction results
provide the list of defect-prone source code artefacts so that quality assurance team scan
effectively allocate limited resources for validating software products by putting more
effort on the defect-prone source code. As the size of software projects becomes larger,
defect prediction techniques will play an important role to support developers as well as
to speed up time to market with more reliable software products. One of the most
exhaustive and pricey part of embedded software development is consider as the process
of finding and fixing the defects. Due to complex infrastructure, magnitude, cost and
time limitations, monitoring and fulfilling the quality is a big challenge, especially in
automotive embedded systems. However, meeting the superior product quality and
reliability is mandatory. Hence, higher importance is given to V&V (Verification &
Validation). Software testing is an integral part of software V&V, which is focused on
promising accurate functionality and long-term reliability of software systems.
Simultaneously, software testing requires much effort, cost, infrastructure and expertise
as the development. The costs and efforts elevate in safety critical software systems.
Therefore, it is essential to have a good testing strategy for any industry with high
software development costs. In this work, we are planning to develop an efficient
approach for software defect prediction by using soft computing based machine learning
techniques which helps to predict optimize the features and efficiently learn the features.

Keywords: Defect prediction, Soft computing, Verification, Validation.

1. INTRODUCTION

One of the most exhaustive and pricey part of embedded software development is
consider as the process of finding and fixing the defects (Ebert and Jones, 2009). Due to
complex infrastructure, magnitude, cost and time limitations, monitoring and fulfilling
the quality is a big challenge, especially in automotive embedded systems. However,
meeting the superior product quality and reliability is mandatory. Hence, higher
importance is given to V&V (Verification & Validation). Software testing is an integral

mailto:tmakeshkumar0201@gmail.com
https://creativecommons.org/licenses/by/4.0/deed.ast
https://creativecommons.org/licenses/by/4.0/deed.ast
http://web.cyut.edu.tw/index.php?Lang=en
http://web.cyut.edu.tw/index.php?Lang=en

International Journal of Applied Science and Engineering

 Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202009_17(4).331 332

part of software V&V, which is focused on promising
accurate functionality and long-term reliability of software
systems. Simultaneously, software testing requires much
effort, cost, infrastructure and expertise as the development
(Lemos et al., 2015). The costs and efforts elevate in safety
critical software systems. Therefore, it is essential to have a
good testing strategy for any industry with high software
development costs.

Nowadays, the growth of the software industry is huge
and more sophisticated. Therefore, anticipating the
reliability of the software is an important task in software
development process (Roy et al., 2014). A software bug is a
defective behavior of the software system which arises due
to definite and possible violation of security policies during
the application runtime. It is mainly caused by improper
development or erroneous specification of the software
system (Ghaffarian and Shahriari, 2017). According to ref.
of Abaei and Selamat (2014), analysis and prediction of
defects are essential to serve three important requirements.
First, it helps in assessing the progress of the project and
assists in scheduling testing process by the project manager.
Second, it helps in investigating the quality of the product.
Lastly, it improves the reliability and functionality of the
product. The fault-prone modules can be identified by
distinct metrics, which have been reported by the previous
fault prediction. Some of the crucial information, such as
number of faults, location, severity, and distribution of
defects are extracted to enhance the efficiency of testing
process. It further helps in improving the software quality
of the upcoming software release. The two main advantages
of software fault prediction are, enhancement of the overall
testing process by emphasizing on fault-prone modules,
identification of the refactoring candidates which are
rendered as most likely to undergo fault (Catal, 2014).

The models used for Software engineering cost and
schedules, their estimation, etc., are implemented for
several reasons which are,
 Budgeting: It is the first and foremost implication,

but it is not the only purpose. The most important
factor is “overall accuracy of the system”.

 Project planning and control: It is yet another critical
feature to offer cost and scheduling estimations with
respect to modules, stage and process.

 Tradeoff and risk analysis: It involves the
supplementary capability to focus on the project
scheduling and costs involved in the project
decisions (staffing, scoping, tools, reuse, etc.).

 Software improvement investment analysis: In
involves the additional cost and efforts required for
other strategies, such as recycling, tools, inventory,
process maturity, etc.

In software programming, defect analysis and prediction
can decisively determine potential bugs in the software and
helps in discovering the modules which are more vulnerable
to such problems. It can assist the engineers to allocate

constrained resources to those modules of the software
framework, which are more liable to be affected by bugs.
Constructing a defect prediction models for a software
framework is helpful for numerous of developmental or
maintenance activities, for example, software quality
assessment and monitoring quality assurance (QA).

The significance of defect prediction has propelled
various scholars and engineers to characterize distinctive
kinds of models or indicators that portray different parts of
programming quality. Most research generally evaluates
this issue as supervised learning problems and the results of
those defect prediction models is dependent on the previous
defect information. To be precise, a predictor model is built
based on the training data obtained from the previous
defects seen in past software releases. This defect
predictor’s can be used to defect bugs in upcoming software
projects or to cross-validate on the same data set (He et al.,
2012), also known as Within-Project Defect Prediction
(WPDP). Zimmermann et al. (2009) expressed that the
performance of defect prediction models can be better, if
there are adequate quantity of information accessible to
train the models. Nevertheless, this type of information is
not available for freshly started projects. Therefore, high
precision in defect prediction process in such projects
become extremely difficult, sometimes implausible.
However, there are little open-source information on defect
datasets, such PROMISE (Wang and Li, 2010), Apache
(Ghotra et al., 2015) and Eclipse (Ryu et al., 2016), which
can be used to train the defect predictors.

To overcome such challenges, few engineers and scholars
have made an attempt to apply the predictors from one
project, on to a different one (Li et al., 2017; Lu et al.,
2015). This process of using information between different
projects to construct defect models is generally termed as
Cross-Project Defect Prediction (CPDP). It involves the
process of implementing a predictor model in a project,
which was built for some other project.

The choice of training samples relies upon the
distributional attributes of datasets. Few experimental
examinations assessed the practical advantages of cross-
project defect predictors with various programming metric,
such as, process measurements, static code metrics, system
metrics, etc., (Li et al., 2017; Lu et al., 2015), and how to
uses such metrics in a complementary way (Zimmermann et
al., 2009). Even though, several attempts are established for
the implementation of CPDP, it is still not well developed,
and suffers from poor performance in practice (Rahman et
al., 2012). Besides, no definitive information is available on
how the defect predictors amongst WPDP and CPDP are
sanely selected, when there are no proper historical data on
the project. In general, several type of software metrics, for
example, history of code change, static code metrics,
network metrics, process metrics (He et al., 2013), etc., are
used for building defect predictors for various types of fault
detection (Radjenović et al., 2013).

International Journal of Applied Science and Engineering

 Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202009_17(4).331 333

Defect
prediction
techniques

Prediction

Classification

White Box

Black Box

Capture/Recapture Analysis

Software Reliability Growth Model

Expert Opinions

Casual Models

Analogy based Predictions

Multivariate Regression

Constructive Quality Model

Software Reliability Growth Model

Logistic Regression

ML based Model

Fig. 1. Software defect prediction techniques

All current defect prediction models are constructed on
the sophisticated amalgamation of programming metrics,
with which a defect predictor can generally attain good level
of precision. Nevertheless, few feature selection algorithms
such as principal component analysis (PCA), can greatly
lower the amount of data dimensions (He et al., 2015; Wu
et al., 2017; Wang et al., 2013), they still result in a time-
consuming process. Can a compromise solution be found,
which can attain a tradeoff between cost and accuracy? As
it were, would we be able to build a generic universal
predictor with hand few of metrics, such as Lines of Code
(LOC), which can attain accurate results in comparison to
other complex prediction models? Apart from choosing a
proper software metric, there are numerous classifiers
available at disposal, such as Naive Bayes (Zhang et al.,
2016), J48 (Song et al., 2006), Support Vector Machine
(SVM) (Xia et al., 2016), Logistic Regression (Li et al.,
2014), and Random Tree (Staron and Meding, 2008), etc.
Apart from these, there are a few improved classifiers (Rana
et al., 2013) and hybrid classifiers (Gondra, 2008) which are
known to effectively improve classification results.

1.1 Software Defect Prediction Techniques

To foresee the quantity of flaws anticipated that would be
found in a product module/venture or to group which
modules are likely to be imperfect, Programming Defect
Prediction (PDP) systems are utilized. Various distinctive
strategies have been utilized for characterization
/anticipating absconds; they can be extensively gathered
into methods that are utilized to foresee if or not a given
programming ancient rarity is probably going to contain a
deformity (Classification) and procedures utilized for

foreseeing anticipated that number of imperfections would
be found in a given programming antique (Prediction) and
Fig. 1 outlines normally utilized programming imperfection
forecast methods clustered by the reason –fault check
expectation or defect inclined arrangement.

In an investigation by Staron and Meding (Rajbahadur et
al., 2017), professional views were utilized and their
execution contrasted with other information based models.
Author’s former works establishes the long term analytical
power of SRGMs (Software Reliability Growth Models)
within the automotive realm indicating their utility in
analyzing or predicting fault and consistency. To categorize
the software modules which are likely to be defective or to
analyze the compactness of software defect, various
software modules related to code features like complexity,
size etc., has been utilized effectively.

Techniques that utilize code and modify measurements as
sources of info and utilize machine learning strategies for
categorizing and predicting have additionally been
examined by Iker Gondra (Kim et al., 2011) and Xie et al.
(2011). Pertinence of different strategies for programming
imperfection forecasts over the life cycle periods of
programming advancement and the attributes of every
strategy are shown in Table 1.

1.2 Techniques for Defect Classification

Software defect classification is another important
technique of defect prediction. These models strive to
identify fault-prone software modules using variety of
software project and product attributes. In general, defect
classification models are implemented at lower granularity
levels, more predominantly at file and class level. Hence,

International Journal of Applied Science and Engineering

 Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202009_17(4).331 334

Table 1. Different strategies for programming imperfection forecasts
Method Input data required Advantages and limitations
Causal
Models

Inputs about estimated size,
complexity, qualitative inputs on
planned testing and quality
requirements

Causal models biggest advantage is that they can be
applied very early in the development process. Possible
to analyse what-if scenarios to estimate output quality
or level of testing needed to meet desired quality goals.

Expert
Opinions

Domain experience (software
development, testing and quality
assessment).

This is the quickest and easiest way to get the
predictions (if experts are available). Uncertainty of
predictions is high and forecasts may be subjected to
individual biases

Analogy
Based
Predictions

Project characteristics and
observations from large number of
historical projects.

Quick and easy to use, the current project is
compared to previous project with most similar
characteristics. Evolution of software process,
development tool chain may lead to inapplicability or
large prediction errors.

Constructive
Quality
Model

Software size estimates, product,
personal and project attributes; defect
removal level.

Can be used to predict cost, schedule or the residual
defect density of the software under development.
Needs large effort to calibrate the model.

Correlation
Analysis

Number of defects found in given
iteration; size and test effort
estimates can also be used in
extended models.

This method needs little data input which is available
after each iteration. The method provides easy to use
rules that can be quickly applied. The model can also be
used to identify modules that show higher/lower levels
of defect density and thus allow early interventions

Regression
Models

Software code (or model) metrics as
measure of different characteristics
of software code/model; Another
input can be the change metrics.

Uses actual code/models characteristic metrics which
means estimates are made based on data from actual
software under development. Can only be applied when
code/models are already implemented and access to the
source code/model is available. The regression model
relationship between input characteristics and output
can be difficult to interpret –do not map causal
relationship

Machine
Learning
based
models

Software code (or model) metrics as
measure of different characteristics
of software code/model; Another
input can be the change metrics.

Similar to regression models, these can be used for
either classification (defective/not defective) or to
estimate defect count/densities. Over time as more data
is made available, the models improvise on their
predictive accuracy by adjusting their value of
parameters (learning by experience). While some
models as Decision Trees are easy to understand others
may act like a black box (for example Artificial Neural
Networks) where their internal working is not explicit

Software
Reliability
Growth
Models

Defect inflow data of software under
development (life cycle model) or
software under testing.

Can use defect inflow data to make defect predictions
or forecast the reliability of software based system.
Reliability growth models are also useful to assess the
maturity/release readiness of software close to its
release. These models need substantial data points to
make precise and stable predictions

the software products which are flagged as defect-prone can
be prioritized according to their severity for more rigorous
verification and validation activities.

1.2.1 Logistic Regression

A software module can be categorized as defect-prone or
not, on the basis of logistic regression. Much like the
multivariate regression, the classification of software
modules is done by using several variety of process and

product metrics are employed as predictor variables.
Zimmermann, et al. (Köksal et al., 2011) worked on the
principle of logistic regression to categorize file/packages in
Eclipse project as defect prone.

1.2.2 Machine Learning Models

Some popular machine learning techniques uses
statistical algorithms and data mining techniques, which is
helpful for predicting and classifying defects. Such

International Journal of Applied Science and Engineering

Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202012_17(4).331 335

techniques are identical to regression approaches that use
same type of independent variables. On the upside, the
machine learning algorithms are dynamic in nature, and
they progressively enhance the overall prediction and
classification technique.

1.3 General Process of Software Defect Prediction

To build an efficient prediction model, we should have
proper data on defects and metrics, which can be
accumulated from software development efforts to use as
the learning set. Thus, there is tradeoff between its
prediction performance on additional data sets and how well
this model fits in its learning set. Therefore, the performance
of the model is assessed by the comparison of the predicted
defects of the modules in a test, against the actual defects
witnessed (Hewett, 2011).

1.4 General Defect Prediction Process
Labeling: An appropriate defect data must be collected

for the purpose of training a prediction model. This step
generally involves the extraction of instances and labeling
the data items (True or False).

Extracting features and creating training sets: The
extraction of features for prediction labels of instances is
performed in this stage. Few common features for defect
prediction are keywords, complexity metrics, deviations,
and structural dependencies. By consolidating the labels and
highlights of instances, a training set is generated which is
used by the machine learning algorithms to develop a
forecast model.

Building prediction models: The prediction models can
be built with the help of a training set, implemented on the
general machine learning algorithms, such as Bayesian
Network or Support Vector Machines (SVM). Based on the
learned data, the model can classify and label the test
instances as TRUE or FALSE.

Assessment: The assessment of a prediction display is
done on the basis of testing dataset collection and training
set. The labels of the training dataset are used to build the
prediction model, which is later evaluated by comparing the
prediction and real labels. The training sets and testing sets
are separated using 10-fold cross-validation technique.

2. RELATED WORKS

As indicated by Catal and Diri (2009), defect prediction
models in software programming have become one of the
significant research areas since 1990. In just two decades,
the total amount of research papers in this area had increased
two fold. A wide range of procedures and methodologies
were utilized for defect prediction models, for example,
decision trees (Selby and Porter, 1988) neural network
system (Hu et al., 2007), Naïve Bayes (Menzies et al., 2004),
case-based reasoning (Khoshgoftaar et al., 1997), fluffy
logic (Yadav and Yadav, 2015) and the artificial immune
recognition framework technique in Catal and Diri (2007).

Menzies et al. (2004) carried out an experiment derived
from the open-source NASA datasets with the help of few
data mining techniques. The results were later evaluated
with the help of balance parameter, probability of false
alarm and probability of detection. Prior to the
implementation of the algorithm, the authors have used the
log-transformation with Info-Gain filters. They further
assured that performance of Naïve Bayes in terms of fault
prediction was better than J48 algorithm. The authors have
further contended that since a few models with low accuracy
performed well, implementing such models as a dependable
parameter for performance assessment was not suggested.
Okutan and Yıldız (2014), estimated the probabilistic
influential relationships between software metrics and
probability of defect, with the help of Bayesian networks.
Apart from the metric used in Promise data repository, two
other metric were defined in this proposed research work,
which were LOCQ for the source code quality and NOD for
the number of developers. These metrics can be derived by
examining the source code repositories of the targeted
Promise data archives. Once the model was complete, the
marginal probability of defect of the system can be
understood, along with the set of influential metrics, and the
correlation between defects and metrics.

Likewise, dictionary based learning algorithms were
more popular in the field of software defect prediction. Jing
et al. (2014) implemented software defect prediction models
on the principle of machine learning techniques. The
similarity between different software modules can be
exploited to represent a small proportion of few modules
with the help of some other modules. Furthermore, the
coefficients of the pre-defined dictionary contains the
historical software data, which are large inadequate. With
the help of the qualities of the metrics extracted from the
open-source programming modules, the researchers learn
numerous dictionaries, including but not limited to,
defective-free module, defective module, total dictionary,
sub-dictionaries, etc. The researchers have also considered
the problem of misclassification cost, as it usually imposes
greater risk than other defective-free ones. Along these lines,
we present a cost-sensitive discriminative dictionary
learning (CDDL) technique for software defect
classification and prediction.

The representative studies in software defect prediction
are shown in Table 2. Over the past decade, several attempts
were made to build efficient prediction models. Process
metrics and source code (Rahman et al., 2012) are some of
the widely studied metrics. Process metrics were derived
from the software archives, for example, bug tracking
systems, version control systems, etc., which keep track of
all development histories. Process metrics evaluates
numerous characteristics of software programming process
such as, ownership of source code files, changes of source
code, developer interactions, etc. The source code metric
determines the intricate should the source code be. The
fundamental basis about the source code metric was that

International Journal of Applied Science and Engineering

 Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202009_17(4).331 336

Table 2. Representative studies software defect prediction
Type Categories Representatives

Within/Cross

Metrics

Sorce code (Jing et al., 2014), Process (Churn (Kim et al., 2007), (Ghotra et
al., 2015), Change (Kamei et al., 2010), Entropy (Zhang et al., 2016),
Popularity (Roy et al., 2014), Authorship (He et al., 2015), Ownership (Catal,
2014), MIM (Hewett, 2011), Network measure (Okutan and Yıldız, 2014),
(Peters et al., 2013), (Khoshgoftaar et al., 2010), Antipattern (Shin et al.,
2010)

Algorithm/Model Classification, Regression, Active/Semi-supervised learning (Hu et al., 2007),
(Bosu et al., 2014), BugCache (Xie et al., 2011)

Finer prediction
granularity

Change classification (Gondra, 2008), Method level-prediction (Song et al.,
2006)

Preprocessing
Feature selection/Extraction (Walden and Doyle, 2012), (Kim et al., 2007),
Normalisation (Jing et al., 2014), (Catal and Diri, 2009), Noice handling
(Rajbahadur et al., 2017), (Morrison et al., 2015)

Cross Transfer learning Metric compensation (Brereton et al., 2007), NN filter (Moshtari and Sami,
2016), TNB (Khoshgoftaar et al., 1997), TCA + (Catal and Diri, 2009)

Feasibility Decision Tree (Catal and Diri, 2009), (Xia et al., 2016)

more complex source code was more likely to be infected
by bugs. Several studies have emphasized the significance
of process metrics for defect prediction (Zhang et al., 2016;
Fenton and Neil, 1999; Kamei et al., 2010).

The prediction models built by the machine learning
algorithms have the ability to detect the probability of bugs
or defects in the source code. Few research works have
mplemented latest machine learning algorithms such as
active/semi-supervised learning algorithms, which are
known to enhance prediction performance (Li et al., 2012;
Zhang et al., 2017). BugCache algorithm was suggested by
Kim et al., which uses the locality information of previous
defects and maintains a list of source code files or modules,
which were more likely to be faulty (Kim et al., 2007).

BugCache algorithm uses machine learning techniques
for building defect prediction models which uses non-
statistical model. This entirely different from the other
defect prediction models. It also fine tunes the prediction
granularity. It attempts to find defects at various levels, such
as, class, file, package, component, system. Few recent
experiments have demonstrated that defects can be found at
module level or method level, or change level (Koru and Liu,
2005). The developers can be benefited by the finer
granularity model, as they can minimize the scope of source
code, which must be inspected. Thus, preprocessing
techniques are also an important part of defect prediction
studies. Prior to the implementation of defect prediction
model, few techniques are applied, such as normalization
(Menzies et al., 2004), feature selection (Catal and Diri,
2009), noise handling (Khoshgoftaar and Rebours, 2007),
etc.

Several authors have also emphasized on cross-project
fault prediction. Majority of these experiments were
portrayed and directed inside the prediction setting, which
suggests that the forecast models were constructed and
executed within the same project. In spite of this, it was
challenging for few new projects, which did not contain any

vital information about the historical data about the
developmental process. Few of the popular representative
approaches for cross defect prediction were Nearest
Neighbour (NN) Filter (Zhang et al., 2017), metric
compensation (Watanabe et al., 2008), Transfer Naive
Bayes (TNB) (Ma et al., 2012), and TCA + (Nam et al.,
2013).

2.1 Within-Project Defect Prediction

Catal and Diri (2009) has conducted an investigation on
over 90 software defect prediction research works, which
were published between the vicinity of 1990 and 2009. He
reviewed these papers on the basis of the performance
evaluation metrics, learning algorithms, experimental
outcomes, datasets, etc. As indicated by this review, the
author expressed that a large portion of these research works
were based on utilizing the method-oriented metrics and
prediction-models. Therefore, they were largely dependent
on the machine learning procedures, and Naive Bayes
techniques, which were regarded as a popular machine
learning techniques for supervised prediction tasks.

Hall et al. (2011) carried out an investigation on the
metrics, such as model contexts, modeling algorithms,
independent variables, etc., and characterized their effects
on the performance of defect prediction models, based on
the 208 research works. Their outcomes demonstrated that
rudimentary modeling systems, for example, Logistic
Regression and Naive Bayes, portrayed better performance.
Additionally, the performance was further enhanced by the
combination of independent variables. The results are
greatly improved by the application of feature selection on
these combinations. The authors contend that there was
considerable amount of defect prediction models, in which
certainty was conceivable. However, more examinations
which implemented a reliable technique have witnessed a
comprehensive context, performance, and methodology.
Most of these research works were reviewed with respect to

International Journal of Applied Science and Engineering

Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202012_17(4).331 337

two systemic literature surveys that were led with regards to
WPDP. Nevertheless, they overlooked the fact that few of
these research works were particularly new, and they
normally have restricted or deficient information to train a
proper prediction model for defect forecasting. Thus, a few
researchers have started to work their way towards CPDP.

2.2 Cross-Project Defect Prediction

The primary research on CPDP was performed by Briand
et al. (2000), who connected models based on an open-
source venture (i.e., Xpose) to another (i.e., Jwriter).
Despite the fact that the anticipated imperfection
recognition probabilities were not reasonable, the defect-
prone class positioning was precise. They additionally
approved that such a model performed superior to anything
the irregular model and beat it regarding class size.
Zimmermann et al. (2009) led a large-scale investigation on
information versus province versus process, and found that
CPDP was not generally fruitful (21/622 expectations).
They additionally detected that CPDP was not proportioned
amongst internet explorer and Firefox. CPDP utilizing fixed
code attributes in the view of 10 projects and even gathered
from PROMISE archive was investigated by Turhan et al.
They suggested a closest-neighbor sifting strategy to
channel through the insignificances in cross-venture
information. In addition, they examined the situation where
models were developed from a combination of inside and
cross-venture information, and checked for any
enhancements to WPDP in the wake of including the
information from different undertakings or projects. They
presumed that when there was restricted venture chronicled
information (e.g., 10% of recorded information), combined
project estimates were reasonable, as they executed and
additionally within-project forecast models.

Rahman et al. (2012) led a cost-delicate examination of
the viability of CPDP on thirty eight arrivals of nine
extensive Apache Software Foundation (ASF) ventures, by
contrasting it with WPDP. Their detections uncovered that
the cost-touchy cross-project estimation execution was not
more regrettable than the inside-venture forecast execution,
and was significantly superior to arbitrary expectation
execution. To assist cross-company learning in contrast with
the state of the art Peters et al. (2013) acquainted a new filter
called Burak filter. The outcomes uncovered that their
method could assemble sixty-four percent more valuable
indicators than both cross-company and within-company
approaches in view of Burak channels, and exhibited that
cross-organization fault estimate could be connected ahead
of schedule in a venture's lifecycle. He et al. (2015) directed
three tests on similar informational indexes utilized as a part
of this examination to approve training information from
different projects can give worthy outcomes. They
additionally suggested a way to deal with naturally choosing
appropriate training information for ventures or projects
without neighborhood information.

Herbold (2013) suggested a few methodologies in view
of forty-four informational collections from fourteen open-
source ventures regarding training data selection for CPDP.
A few portions of their informational collections are utilized
here in our paper. The outcomes exhibited that their choice
procedures enhanced the realized progress rate essentially,
though the nature of the outcomes was as yet unfit to
contend with WPDP. The survey uncovers that earlier
examinations have mostly explored the possibility of CPDP
and the decision of preparing information from their tasks.
Yet moderately little consideration was given to
experimentally investigating the execution of a forecaster in
light of a disentangled metric set from the viewpoints of
exertion and-cost, precision and simplification. Besides,
next to no was thought about whether the forecasters made
with basic or least programming metric subsets acquired by
wiping out some unimportant and repetitive highlights can
accomplish adequate outcomes.

2.3 Software Metrics

A wide range of software models are regarded as features,
which can be utilized for defect prediction, to enhance
overall quality of the software programming.
Simultaneously, various correlations are made among
numerous software metrics to review which metric offers
good level of performance. Shin and Williams (2013)
examined whether source code and programming histories
were discriminative and detect weak codes among
sophisticated, code agitate, and parameters followed by the
designer. It was discovered that 24 of the 28 metrics were
discriminative for both Linux and Mozilla Firefox kernel.
By utilizing all the three kinds of metrics, these models
predicted more than 80% of the potential weaknesses in the
files within under 25% false positives for the two activities.
Marco et al. (2010) led three trials on five frameworks with
process metrics, source code metrics, previous defect data,
entropy of changes, and so forth. They found that the best
performance can be obtained by the modest process metrics,
which were marginally better than entropy and churn of
source code metrics.

Zimmermann et al. (2009) utilized social network
parameters extracted from dependency relation between
software programming on Windows Server 2003 to predict
which elements were more vulnerable to defects. With
respect to predicting defects, the experimental results have
shown that the performance of network metrics was better
than source code metrics. Tosun et al. (2011) conducted
experiments on five public datasets to replicate and verify
their outcomes from two distinct levels of granularity. The
outcomes have shown that network metrics were more
appropriate for detecting defects for large-scale and
complicated models, even though their performance in
smaller models were not much impressive. Premraj and
Herzig (2011) reproduced the Zimmermann and Nagappan's
work to conduct further evaluation of the generality of these
results. However, the results were found to be consistent

International Journal of Applied Science and Engineering

 Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202009_17(4).331 338

Table 3. Comparative analysis of classification based techniques for software defect prediction
Authors and
publication

year
Objective Methodology Key findings Conclusion

Roy et al.
(2014)

Software
reliability
prediction

Feed forward and
recurrent neural
network

Genetic algorithm is
used for training the
neural network

Better prediction of
software defects

Ghaffarian and
Shahriari

(2017)

Survey of SDP
techniques

Data mining and
machine learning
techniques for SDP

Data mining and ML
techniques are good for
early defect prediction
and vulnerability

An extensive review
which shows
advantages and
disadvantages of DM
and ML techniques

Catal and Diri
(2009) Fault prediction

Artificial immune
system and random
forest approach for
classification

Significant Feature
selection can improve
the performance

Comparative
performance where it
shows that Random
forest achieves better
accuracy

Wang and Li
(2010)

Software defect
prediction for
improving the
quality

Naïve Bayes
classification model

Multi- variants Gauss
Naive Bayes (MvGNB)
used for reducing the
complexity

MvGNB achieves
better performance
when compared with
J48 classifier

Yadav and
Yadav (2015)

Different artifact
and defect
prediction in
software
engineering

Fuzzy logic
technique

Phase-wise computation
along with fuzzy logic
classification

It can be used for
classifying the defect
types

Okutan and
Yıldız (2014)

Software defect
prediction and
level of defect

Feature extraction
and Bayesian
classification
technique for SDP

Significant feature
extraction and
relationship between
software metrics and
defects.

It can be used for both
supervised and
unsupervised learning

with the original work. In any case, regarding the array of
datasets, code metrics were more suitable for experimental
investigations on open-source programming ventures.

Radjenovic' et al. (2013) grouped 106 papers on defect
prediction with respect to context properties and metrics.
hey discovered that the amount of process metrics, source
code metrics, and object-oriented metrics, were 24%, 27%,
and 49%, respectively. Chidamber and Kemerer’s (CK) uite
metrics were most frequently used. In comparison to
complexity metrics and traditional size, the object-oriented
and process metrics were more efficient. Thus, in
comparison to static code metrics, the process metrics were
more proficient in predicting post-release defects. On the
basis of these research works, a comparative review was
presented in Table 3, which gives details on techniques used,
results, and strengths of individual works. The classification
based techniques are presented first.

Zimmermann et al. (2011) examined the likelihood of
detecting the presence of vulnerabilities and defects in
binary modules of a popular software product (Microsoft
Windows Vista). The researchers have used classical
metrics which were implemented in past research works for
defect prediction. Initially, correlations was computed
which exists between the metrics and amount of defects per

binary module. The Spearman’s rank correlation was used
for this purpose. The results revealed that there was a
noteworthy connection among classical metrics and the
number of vulnerabilities. Another research was led to
determine the prediction capabilities of these metrics. For
this purpose, a five groups of classical metrics (i.e.,
dependency, coverage, coverage, organizational, churn)
were inspected using binary Logistic Regression.

Williams and Meneely (Meneely et al., 2008), examined
the connection between software vulnerabilities and
developer-activity metrics. The developer-activity metrics
consists of number of commits made to a file, number of
developers who have modified the codes in the source
program, amount of geodesic paths which contains a file in
the contribution network. The research was carried out on
three open-source software projects. The assembled
informational in a given research work contains a label
which suggest if the source code file was patched or not.
The version control logs would disclose the developer-
activity metrics. With the help of statistical correlation
analysis, the researchers have confirmed the existence of
statistical correlation for every metric with the given
quantity of vulnerabilities. However, the correlation was not
very strong. The training and validation sets were generated

International Journal of Applied Science and Engineering

Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202012_17(4).331 339

by using Bayesian network with tenfold cross-validation, as
the predictive model.

Walden and Doyle (2012) have led a study to inspect the
correlation among software metric and vulnerabilities in 14
different popular open source web applications during 2006
and 2008, for example, Mediawiki, WordPress. The
researchers implemented static analytical tools, such as,
PHP CodeSniffer, Fortify Source Code Analyzer. With the
help of this tool, they have estimated various metrics in
source code repositories of these web applications, such as,
source-code size, nesting complexity, static analysis
vulnerability density (SAVD), Security Resources Indicator
(SRI), etc. Williams and Shin (2008), conducted an
experiment to check if the conventional defect prediction
models, which are built on the principle of code-churn
metrics and complexity, were any help in predicting the fault
vulnerability. The experiment was carried out on Mozilla
Firefox with a fault history metric, 5 code churn metrics,
and 18 complexity metrics. With various classification
techniques for the fault prediction, the researchers have
concluded that the results were almost identical.

Shin et al. (2010) carried out an intense research to check
if the vulnerability prediction was affected by the code-
churn and developer-activity (CCD) and complexity. In
regard to this, the researchers have conducted experiments
on two open-source projects. The analysis was performed
on over 28 CCD software metrics, which also consists of 3
code-churn metrics, 14 complexity metrics, and 11
developer-activity metrics.

The authors have used the Welch’s t-test to assess the
discriminative power of the metrics. For both the projects,
the test hypotheses were supported by at least 24 of 28
metrics. For the purpose of evaluation of predictive power
of the metrics, the authors have tested numerous
classification techniques. They have discussed the result
form just one technique, as the performance was similar. To
verify the predictive capacity of the model, the authors have
validation on next-release, where numerous releases were in
progress. Apart from that, they have also performed cross-
validation, where only a single release would be in progress.

Moshtari and Sami (2016) pointed out three important
constraints of vulnerability prediction models of previous
research works. Therefore, they presented a new technique
to predict the potential location of the defects in the software.
It is accomplished by complexity metrics by resolving the
limitations of previous studies. For the purpose of detecting
software vulnerabilities, the researchers have proposed a
semi-automatic analysis framework. The output from this
framework is used as vulnerability information, which was
known to provide more comprehensive details about the
vulnerabilities in software, as explained by the authors. This
research had examined both cross-project and within-
project fault prediction, with the help of accumulated
information from over five different open-source projects.

Bosu et al. (2014) conducted a similar experiment, in
which they investigated more than 260,000 code review
requests from over 10 different open source projects.

Subsequently, they were able to identify more than 400
vulnerable code changes, with the help of three-stage semi-
automated process. The main objective was to detect the
characteristics of vulnerable code changes, and developers
who might cause such vulnerabilities. Some key discoveries
of this study include:

1. The probability of fault elevates if the changes made
in the codes are high.
2. Changes are made by less experienced developers
increases the chances of defects.
3. The chances of defects are higher in new files, in
comparison to modified files.

To recognize constraints which are responsible for
vulnerabilities, Perl et al. (Brereton et al., 2007) examined
the impacts of utilizing the meta-information enclosed in
code sources close by code –metrics. The initiators declare
the way that programming develops incrementally, and
most open-source projects utilize adaptation control
techniques, subsequently, constraints define normal units to
check for vulnerabilities. With this intention, the creators
accumulate a dataset containing 170,860 confers from sixty
six C/C ++ GitHub projects, including 640 vulnerability
contributing commits (VCCs) plotted to significant CVE
IDs. The creators select an arrangement of code-beat and
designer-interest metrics, and in addition GitHub meta-
information from various extensions (creator, document,
commit and project) and concentrate these highlights for the
accumulated dataset. To distinguish VCCs from unbiased
commits, the creators assess their recommended technique,
named VCC Finder, which utilizes a Support Vector
Machine (SVM) classifier based on this dataset.

To analyze the execution of foreseeing vulnerable
programming mechanisms, in light of programming metrics
against text-extracting procedures, Walden et al. (2014)
played out an investigation. With this thought, the creators
initially developed a manually-built dataset of
vulnerabilities assembled from three vast and well known
open-source PHP web applications (Moodle, PhpMyAdmin,
Drupal), comprising of two hundred and twenty three
vulnerabilities. As an endowment to the investigation group,
this dataset is presented. An arrangement of twelve code
unpredictability metrics was chosen for this examination in
order to estimate vulnerability in the light of programming
metrics. For content mining, every PHP source file was
tokenized. Unwanted tokens are either transferred
(punctuations, comments, string, numeric literals, etc.) or
terminated. A count was kept on the frequencies of final
tokens. The numerical feature-vectors are built from the
textual tokens of each PHP source file, using the popular
“bag-of-words” technique.

Morrison et al. (2015) explains that defect prediction
models which are implemented by the Microsoft teams, are
different from the vulnerability prediction models (VPMs).
To clarify this disparity, for two fresh releases of the
Microsoft Windows OS the researchers have made an
attempt to reproduce a VPM technique, presented by
Zimmermann et al. (2011).

International Journal of Applied Science and Engineering

 Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202009_17(4).331 340

Table 4. Uniqueness and few advantages of each work

Authors Metrics Granularity Within/Cross-
project Vulnerability

Zimmerman et al.
(2011)

Code churn, coverage,
dependency,
complexity ,

organizational

Binary modules Within project Public advisories

Meneely et al.
(2008) Developer activity Source file Within project Public advisories

 Code complexity and
security resources Source file Within project Tool-based

defection
Walden and Doyle

(2012)
Complexity, fault-
history, code churn Source file Within project Public advisories

Yonghee et al. (Shin
and Williams, 2011)

Code complexity,
dependency network

complexity and
execution complexity

Source file Within project Public advisories

Shin and Williams
(2008)

Complexity, code-churn,
developer activity Source file Within project Public advisories

Shin et al. (2010) Unit complexity,
coupling Source file both

Self-developed
detection

framework
Moshtari and Sami

(2016)
Code churn, developer

activity Code commits Within project Public advisories

Bosu et al. (2014) Developer activity Code commits Within project Public advisories

Perl et al. (Brereton
et al., 2007)

Code churn, developer
activity, GitHub

Metadata
 Within project Public advisories

Walden et al. (2014) Code complexity Source file Both Public advisories

Morrison et al.
(2015)

Code churn, complexity,
coverage, dependency,

organizational
Binary module Within project Public advisories

Younis et al. (2016)
Code complexity,
information flow,

functions, Invocations.
Functions Within project Public advisories

Younis et al. (2016) made an attempt to detect the
attributes of code, which contains defects that was more
ikely to be susceptible. Since they commenced the study,
they were able to recognize over 183 defects from the Linux
kernel and Apache HTTPD web server projects. It must be
noted that these projects contained 82 exploitable
vulnerabilities. The researchers have chosen over 8 software
metrics from 4 groups, in order to represent these
ulnerabilities. They had used Welch’s t-test to investigate
the discriminative power of each metric. Furthermore, the
researcher examined if there is a combination of these
metrics which can be exploited as predictors for few defects,
wherein, 3 diverse feature selection techniques and 4
classification techniques were verified.

In the previous section, a review was presented on
various recent researches in the area of defect prediction
models based on software metrics. Table 4 presents the
summary of all the research works reviewed in this section
and also tabulates the uniqueness and few advantages of
each work.

3. APPLICATIONS OF DEFECT
PREDICTION

One of significant objectives of defect prediction models

is efficient utilization of available resources for assessing
and testing programming modules. Nevertheless, there is
only a hand few of contextual analyses which use defect
prediction models (Lewis, 1999). Thus, Rahman et al. (2012)
led most of their investigation on cost-viability. Lewis (1999)
pioneered a recent contextual investigation directed by
Google, which compares the BugCache and Rahman's
technique, with respect to the amount of closed bugs (Peters
et al., 2013). The outcomes have indicated that the designers
favored Rahman's technique.

In any case, the defect prediction models do not give any
advantages to the developers. In a recent survey, Rahman et
al. (2012) demonstrated that defect prediction models could
be useful to organize potential warnings discovered by the
bug finders, for example, FindBug. It also helps in
implementation of results from the defect prediction to

International Journal of Applied Science and Engineering

Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202012_17(4).331 341

organize or choose appropriate test cases. In regression
testing, performing all the test cases are not financially
feasible, and consumes large amount of time as well.
Therefore, it is best to choose proper test cases, which
investigates the potential faults in the system (Lessmann et
al., 2008). The results of the defect prediction models can
provide an idea on the potential bugs and their severity,
which can be exploited to select and prioritize the test cases.

On the basis of previously reviewed works, it is obviously
that the area of defect prediction has more to offer, and
hence, it is in its early stages. It can be concluded with few
of the future improvements and limitation, which can be
extracted from past research works.
 A factual limitation in the area of defect prediction

models is that the bugs and weaknesses are few in
number in the given datasets. In data mining and
machine learning algorithms, this limitation is termed
as imbalance class data. This imbalance can create a
greater drop in overall performance of the algorithms.
However, there are few methods to overcome this issue
(Khoshgoftaar et al., 2010). Furthermore, few research
works were focused on achieving the same, with
random under-sampling the majority class. This is
regarded as a critical problem which should not be
overlooked.

 Moshtari et al. (2016) has implemented a semi-
automatic system for fault identification, rather than a
data from public repositories and fault databases
(example: NVD). Thus, in comparison to other
techniques, this system resulted in better recall and
precision values. This could pave the way for more
intense research in the future.

 There are only few research works on the cross-project
studies in the area of defect prediction. Therefore, it
can be regarded as a field of future enhancement. The
cross-project fault prediction models are not well
researched in the context of defect prediction models.
There are additional concerns in the Cross-project
prediction models which are induced due to
distribution of data in the training set, which can differ
largely among themselves. Such variations can greatly
degrade the performance of machine learning
algorithms and statistical-analysis techniques. This
limitation can be overcome by a descendant of the
machine-learning algorithm, known as “inductive
transfer” (or “transfer learning”) techniques. About the
implementation of these techniques are well
documents has in software defect prediction studies
(Catal and Diri, 2009).

 Majority of the fault prediction techniques offered poor
performance. This is mainly due to the use of
traditional software metrics, which are not considered
as the appropriate indicators of software defects.
Morrison et al. (2015) has discussed about this
situation. Later on, characterizing security-oriented
metrics, for example, the Security Resources Indicator

(SRI), which was proposed by Doyle and Walden
(2012) this is another territory for future investigations.

 The use of deep-learning techniques for defect
prediction is not well explored. It has emerged as a new
area of machine-learning algorithm which is made
impressive accomplishments in few application
specific domains. Furthermore, it is increasing gain
more popularity from scholars and professionals (Jiang
et al., 2008). Yang et al. (2015) proposed a technique
based on deep-learning methods for just-in-time
software defect prediction. This laid the foundation for
another area of research for future improvements.

4. CONCLUSION

This survey paper helps the researchers to study about

software defects and software defect prediction techniques.
To implement the data pre-processing technique; data
cleaning, data normalization and data discretization will be
performed in data mining. For feature extraction and
selection to implement of new approach, to implement of
evolutionary computation and optimization technique for
best feature selection and to implement machine learning
classification techniques for bug classification. An
improved approach consists of data pre-processing low
computation cost, complex model, software defect
prediction comparative analysis and improved classification
performance of the system.

REFERENCES

Abaei, G., Selamat, A. 2014. A survey on software fault

detection based on different prediction approaches.
Vietnam Journal of Computer Science, 1, 79–95.

Bosu, A., Carver, J.C., Hafiz, M., Hilley, P., Janni, D. 2014,
November. Identifying the characteristics of vulnerable
code changes: An empirical study. In Proceedings of the
22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, 257–268. ACM.

Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M.,
Khalil, M. 2007. Lessons from applying the systematic
literature review process within the software engineering
domain. Journal of systems and software, 80, 571–583.

Briand, L.C., Wüst, J., Daly, J.W., Porter, D.V. 2000.
Exploring the relationships between design measures and
software quality in object-oriented systems. Journal of
systems and software, 51, 245–273.

Catal, C., Diri, B. 2007, February. Software defect
prediction using artificial immune recognition system. In
Proceedings of the 25th conference on IASTED
International Multi-Conference: Software Engineering
285–290. ACTA Press.

Catal, C., Diri, B. 2009. A systematic review of software
fault prediction studies. Expert systems with applications,
36, 7346–7354.

International Journal of Applied Science and Engineering

Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202012_17(4).331 342

Catal, C., Diri, B. 2009. Investigating the effect of dataset
size, metrics sets, and feature selection techniques on
software fault prediction problem. Information Sciences,
179, 1040–1058.

Catal, C., Diri, B. 2009. Investigating the effect of dataset
size, metrics sets, and feature selection techniques on
software fault prediction problem. Information Sciences,
179, 1040–1058.

Catal, C. 2014. A comparison of semi-supervised
classification approaches for software defect prediction.
Journal of Intelligent Systems, 23, 75–82.

D'Ambros, M., Lanza, M., Robbes, R. 2010, May. An
extensive comparison of bug prediction approaches. In
2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010), 31–41. IEEE.

Ebert, C., Jones, C. 2009. Embedded software: Facts,
figures, and future. Computer, 42, 42–52.

Fenton, N.E., Neil, M. 1999. A critique of software defect
prediction models. IEEE Transactions on software
engineering, 25, 675–689.

Ghaffarian, S.M., Shahriari, H.R. 2017. Software
vulnerability analysis and discovery using machine-
learning and data-mining techniques: A survey. ACM
Computing Surveys (CSUR), 50, 56.

Ghotra, B., McIntosh, S., Hassan, A.E. 2015, May.
Revisiting the impact of classification techniques on the
performance of defect prediction models. In Proceedings
of the 37th International Conference on Software
Engineering-Volume 1, 789–800. IEEE Press.

Gondra, I. 2008. Applying machine learning to software
fault-proneness prediction. Journal of Systems and
Software, 8, 186–195.

Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.
2011. A systematic literature review on fault prediction
performance in software engineering. IEEE Transactions
on Software Engineering, 38, 1276–1304.

He, P., Li, B., Liu, X., Chen, J., Ma, Y. 2015. An empirical
study on software defect prediction with a simplified
metric set. Information and Software Technology, 59,
170–190.

He, P., Li, B., Liu, X., Chen, J., Ma, Y. 2015. An empirical
study on software defect prediction with a simplified
metric set. Information and Software Technology, 59,
170–190.

He, P., Li, B., Ma, Y., He, L. 2013. Using software
dependency to bug prediction. Mathematical Problems in
Engineering.

He, Z., Shu, F., Yang, Y., Li, M., Wang, Q. 2012. An
investigation on the feasibility of cross-project defect
prediction. Automated Software Engineering, 19, 167–
199.

Herbold, S. 2013, October. Training data selection for cross-
project defect prediction. In Proceedings of the 9th
International Conference on Predictive Models in
Software Engineering 6. ACM.

Hewett, R. 2011. Mining software defect data to support
software testing management. Applied Intelligence, 34,
245–257.

Hu, Q.P., Xie, M., Ng, S.H., Levitin, G. 2007. Robust
recurrent neural network modeling for software fault
detection and correction prediction. Reliability
Engineering & System Safety, 92, 332–340.

Jiang, Y., Cukic, B., Ma, Y. 2008. Techniques for evaluating
fault prediction models. Empirical Software Engineering,
13, 561–595.

Jing, X.Y., Ying, S., Zhang, Z.W., Wu, S.S., Liu, J. 2014,
May. Dictionary learning based software defect
prediction. In Proceedings of the 36th International
Conference on Software Engineering, 414–423. ACM.

Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K.I.,
Adams, B., Hassan, A.E. 2010, September. Revisiting
common bug prediction findings using effort-aware
models. In 2010 IEEE International Conference on
Software Maintenance, 1–10. IEEE.

Khoshgoftaar, T.M., Rebours, P. 2007. Improving software
quality prediction by noise filtering techniques. Journal
of Computer Science and Technology, 22, 387–396.

Khoshgoftaar, T.M., Ganesan, K., Allen, E.B., Ross, F.D.,
Munikoti, R., Goel, N., Nandi, A. 1997, November.
Predicting fault-prone modules with case-based
reasoning. In Proceedings the eighth international
symposium on software reliability engineering, 27–35.
IEEE.

Khoshgoftaar, T.M., Gao, K., Seliya, N. 2010, October.
Attribute selection and imbalanced data: Problems in
software defect prediction. In 2010 22nd IEEE
International Conference on Tools with Artificial
Intelligence, 1, 137–144. IEEE.

Kim, S., Zhang, H., Wu, R., Gong, L. 2011, May. Dealing
with noise in defect prediction. In 2011 33rd International
Conference on Software Engineering (ICSE). 481–490.
IEEE.

Kim, S., Zimmermann, T., Whitehead Jr, E.J., Zeller, A.
2007, May. Predicting faults from cached history. In
Proceedings of the 29th international conference on
Software Engineering, 489–498. IEEE Computer Society.

Köksal, G., Batmaz, İ., Testik, M.C. 2011. A review of data
mining applications for quality improvement in
manufacturing industry. Expert systems with
Applications, 38, 13448–13467.

Koru, A.G., Liu, H. 2005. Building effective defect-
prediction models in practice. IEEE software, 22, 23–29.

Lemos, O.A.L., Ferrari, F.C., Silveira, F.F., Garcia, A. 2015.
Experience report: Can software testing education lead to
more reliable code?. In 2015 IEEE 26th International
Symposium on Software Reliability Engineering
(ISSRE), 359–369.

Lessmann, S., Baesens, B., Mues, C., Pietsch, S. 2008.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
IEEE Transactions on Software Engineering, 34, 485–
496.

International Journal of Applied Science and Engineering

Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202012_17(4).331 343

Lewis, N.D. 1999. Assessing the evidence from the use of
SPC in monitoring, predicting & improving software
quality. Computers & Industrial Engineering, 37, 157–
160.

Li, K., Chen, C., Liu, W., Fang, X., Lu, Q. 2014. Software
defect prediction using fuzzy integral fusion based on
GA-FM. Wuhan University Journal of Natural Sciences,
19, 405–408.

Li, M., Zhang, H., Wu, R., Zhou, Z.H. 2012. Sample-based
software defect prediction with active and semi-
supervised learning. Automated Software Engineering,
19, 201–230.

Li, Z., Jing, X.Y., Zhu, X., Zhang, H., Xu, B., Ying, S. 2017.
On the multiple sources and privacy preservation issues
for heterogeneous defect prediction. IEEE Transactions
on Software Engineering.

Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., Zhang, G.
2015. Transfer learning using computational intelligence:
a survey. Knowledge-Based Systems, 80, 14–23.

Ma, Y., Luo, G., Zeng, X., Chen, A. 2012. Transfer learning
for cross-company software defect prediction.
Information and Software Technology, 54, 248–256.

Meneely, A., Williams, L., Snipes, W., Osborne, J. 2008,
November. Predicting failures with developer networks
and social network analysis. In Proceedings of the 16th
ACM SIGSOFT International Symposium on
Foundations of software engineering 13–23. ACM.

Menzies, T., DiStefano, J., Orrego, A., Chapman, R. 2004.
Assessing predictors of software defects. In Proc.
Workshop Predictive Software Models.

Mısırlı, A.T., Çağlayan, B., Miranskyy, A.V., Bener, A.,
Ruffolo, N. 2011, May. Different strokes for different
folks: A case study on software metrics for different
defect categories. In Proceedings of the 2nd International
Workshop on Emerging Trends in Software Metrics, 45–
51. ACM.

Morrison, P., Herzig, K., Murphy, B., Williams, L. 2015,
April. Challenges with applying vulnerability prediction
models. In Proceedings of the 2015 Symposium and
Bootcamp on the Science of Security, 4. ACM.

Moshtari, S., Sami, A. 2016, April. Evaluating and
comparing complexity, coupling and a new proposed set
of coupling metrics in cross-project vulnerability
prediction. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, 1415–1421. ACM.

Nam, J., Pan, S.J., Kim, S. 2013, May. Transfer defect
learning. In 2013 35th International Conference on
Software Engineering (ICSE), 382–391. IEEE.

Okutan, A., Yıldız, O.T. 2014. Software defect prediction
using Bayesian networks. Empirical Software
Engineering, 19, 154–181.

Peters, F., Menzies, T., Marcus, A. 2013, May. Better cross
company defect prediction. In Proceedings of the 10th
Working Conference on Mining Software Repositories,
409–418. IEEE Press.

Premraj, R., Herzig, K. 2011, September. Network versus
code metrics to predict defects: A replication study. In

2011 International Symposium on Empirical Software
Engineering and Measurement, 215–224. IEEE.

Radjenović, D., Heričko, M., Torkar, R., Živkovič, A. 2013.
Software fault prediction metrics: A systematic literature
review. Information and software technology, 55, 1397–
1418.

Rahman, F., Posnett, D., Devanbu, P. 2012, November.
Recalling the imprecision of cross-project defect
prediction. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering, 61. ACM.

Rajbahadur, G.K., Wang, S., Kamei, Y., Hassan, A.E. 2017,
May. The impact of using regression models to build
defect classifiers. In 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR)
135–145. IEEE.

Rana, R., Staron, M., Mellegård, N., Berger, C., Hansson, J.,
Nilsson, M., Törner, F. 2013, June. Evaluation of standard
reliability growth models in the context of automotive
software systems. In International Conference on Product
Focused Software Process Improvement, 324–329.
Springer, Berlin, Heidelberg.

Roy, P., Mahapatra, G.S., Rani, P., Pandey, S.K., Dey, K.N.
2014. Robust feedforward and recurrent neural network
based dynamic weighted combination models for
software reliability prediction. Applied Soft Computing,
22, 629–637.

Ryu, D., Choi, O., Baik, J. 2016. Value-cognitive boosting
with a support vector machine for cross-project defect
prediction. Empirical Software Engineering, 21, 43–71.

Selby, R.W., Porter, A.A. 1988. Learning from examples:
generation and evaluation of decision trees for software
resource analysis. IEEE Transactions on Software
Engineering, 14, 1743–1757.

Shin, Y., Williams, L. 2008, October. An empirical model to
predict security vulnerabilities using code complexity
metrics. In Proceedings of the Second ACM-IEEE
international symposium on Empirical software
engineering and measurement, 315–317. ACM.

Shin, Y., Williams, L. 2011, May. An initial study on the use
of execution complexity metrics as indicators of software
vulnerabilities. In Proceedings of the 7th International
Workshop on Software Engineering for Secure Systems,
1–7. ACM.

Shin, Y., Williams, L. 2013. Can traditional fault prediction
models be used for vulnerability prediction?. Empirical
Software Engineering, 18, 25–59.

Shin, Y., Meneely, A., Williams, L., Osborne, J.A. 2010.
Evaluating complexity, code churn, and developer
activity metrics as indicators of software vulnerabilities.
IEEE Transactions on Software Engineering, 37, 772–
787.

Song, Q., Shepperd, M., Cartwright, M., Mair, C. 2006.
Software defect association mining and defect correction
effort prediction. IEEE Transactions on Software
Engineering, 32, 69–82.

International Journal of Applied Science and Engineering

Thota et al., International Journal of Applied Science and Engineering, 17(4), 331–344

https://doi.org/10.6703/IJASE.202012_17(4).331 344

Staron, M., Meding, W. 2008. Predicting weekly defect
inflow in large software projects based on project
planning and test status. Information and Software
Technology, 50, 782–796.

Walden, J., Doyle, M. 2012. SAVI: Static-analysis
vulnerability indicator. IEEE Security & Privacy, 10, 32–
39.

Walden, J., Stuckman, J., Scandariato, R. 2014, November.
Predicting vulnerable components: Software metrics vs
text mining. In 2014 IEEE 25th international symposium
on software reliability engineering 23–33. IEEE.

Wang, H., Khoshgoftaar, T.M., Liang, Q. 2013. A study of
software metric selection techniques: Stability analysis
and defect prediction model performance. International
journal on artificial intelligence tools, 22, 1360010.

Wang, T., Li, W.H. 2010, December. Naive bayes software
defect prediction model. In 2010 International
Conference on Computational Intelligence and Software
Engineering, 1–4. Ieee.

Watanabe, S., Kaiya, H., Kaijiri, K. 2008, May. Adapting a
fault prediction model to allow inter languagereuse. In
Proceedings of the 4th international workshop on
Predictor models in software engineering, 19–24. ACM.

Wu, F., Jing, X.Y., Dong, X., Cao, J., Xu, M., Zhang, H.,
Ying, S., Xu, B. 2017, May. Cross-project and within-
project semi-supervised software defect prediction
problems study using a unified solution. In 2017
IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), 195–197. IEEE.

Xia, X., Lo, D., Pan, S.J., Nagappan, N., Wang, X. 2016.
Hydra: Massively compositional model for cross-project
defect prediction. IEEE Transactions on software
Engineering, 42, 977–998.

Xie, X., Ho, J.W., Murphy, C., Kaiser, G., Xu, B., Chen, T.Y.,
2011. Testing and validating machine learning classifiers
by metamorphic testing. Journal of Systems and Software,
84, 544–558.

Yadav, H.B., Yadav, D.K. 2015. A fuzzy logic based
approach for phase-wise software defects prediction
using software metrics. Information and Software
Technology, 63, 44–57.

Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J. 2015, August.
Deep learning for just-in-time defect prediction. In 2015
IEEE International Conference on Software Quality,
Reliability and Security, 17–26. IEEE.

Younis, A., Malaiya, Y., Anderson, C., Ray, I. 2016, March.
To fear or not to fear that is the question: Code
characteristics of a vulnerable functionwith an existing
exploit. In Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy, 97–104.
ACM.

Zhang, F., Zheng, Q., Zou, Y., Hassan, A.E. 2016, May.
Cross-project defect prediction using a connectivity-
based unsupervised classifier. In Proceedings of the 38th
International Conference on Software Engineering, 309–
320. ACM.

Zhang, Z.W., Jing, X.Y., Wang, T.J. 2017. Label propagation
based semi-supervised learning for software defect
prediction. Automated Software Engineering, 24, 47–69.

Zimmerman, T., Nagappan, N., Herzig, K., Premraj, R.,
Williams, L. 2011, March. An empirical study on the
relation between dependency neighborhoods and failures.
In 2011 Fourth IEEE International Conference on
Software Testing, Verification and Validation 347–356.
IEEE.

Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy,
B. 2009, August. Cross-project defect prediction: a large
scale experiment on data vs. domain vs. process. In
Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering,
91–100. ACM.

	Survey on software defect prediction techniques
	ABSTRACT
	1. INTRODUCTION

	part of software V&V, which is focused on promising accurate functionality and long-term reliability of software systems. Simultaneously, software testing requires much effort, cost, infrastructure and expertise as the development (Lemos et al., 2015)...
	Nowadays, the growth of the software industry is huge and more sophisticated. Therefore, anticipating the reliability of the software is an important task in software development process (Roy et al., 2014). A software bug is a defective behavior of th...
	The models used for Software engineering cost and schedules, their estimation, etc., are implemented for several reasons which are,
	 Budgeting: It is the first and foremost implication, but it is not the only purpose. The most important factor is “overall accuracy of the system”.
	 Project planning and control: It is yet another critical feature to offer cost and scheduling estimations with respect to modules, stage and process.
	 Tradeoff and risk analysis: It involves the supplementary capability to focus on the project scheduling and costs involved in the project decisions (staffing, scoping, tools, reuse, etc.).
	 Software improvement investment analysis: In involves the additional cost and efforts required for other strategies, such as recycling, tools, inventory, process maturity, etc.
	In software programming, defect analysis and prediction can decisively determine potential bugs in the software and helps in discovering the modules which are more vulnerable to such problems. It can assist the engineers to allocate constrained resour...
	The significance of defect prediction has propelled various scholars and engineers to characterize distinctive kinds of models or indicators that portray different parts of programming quality. Most research generally evaluates this issue as supervise...
	To overcome such challenges, few engineers and scholars have made an attempt to apply the predictors from one project, on to a different one (Li et al., 2017; Lu et al., 2015). This process of using information between different projects to construct...
	The choice of training samples relies upon the distributional attributes of datasets. Few experimental examinations assessed the practical advantages of cross-project defect predictors with various programming metric, such as, process measurements, st...
	Fig. 1. Software defect prediction techniques
	All current defect prediction models are constructed on the sophisticated amalgamation of programming metrics, with which a defect predictor can generally attain good level of precision. Nevertheless, few feature selection algorithms such as principal...
	1.1 Software Defect Prediction Techniques

	To foresee the quantity of flaws anticipated that would be found in a product module/venture or to group which modules are likely to be imperfect, Programming Defect Prediction (PDP) systems are utilized. Various distinctive strategies have been utili...
	In an investigation by Staron and Meding (Rajbahadur et al., 2017), professional views were utilized and their execution contrasted with other information based models. Author’s former works establishes the long term analytical power of SRGMs (Softwa...
	Techniques that utilize code and modify measurements as sources of info and utilize machine learning strategies for categorizing and predicting have additionally been examined by Iker Gondra (Kim et al., 2011) and Xie et al. (2011). Pertinence of diff...
	1.2 Techniques for Defect Classification

	Software defect classification is another important technique of defect prediction. These models strive to identify fault-prone software modules using variety of software project and product attributes. In general, defect classification models are imp...
	Table 1. Different strategies for programming imperfection forecasts
	the software products which are flagged as defect-prone can be prioritized according to their severity for more rigorous verification and validation activities.
	1.2.1 Logistic Regression

	A software module can be categorized as defect-prone or not, on the basis of logistic regression. Much like the multivariate regression, the classification of software modules is done by using several variety of process and product metrics are employe...
	1.2.2 Machine Learning Models

	Some popular machine learning techniques uses statistical algorithms and data mining techniques, which is helpful for predicting and classifying defects. Such techniques are identical to regression approaches that use same type of independent variable...
	1.3 General Process of Software Defect Prediction

	To build an efficient prediction model, we should have proper data on defects and metrics, which can be accumulated from software development efforts to use as the learning set. Thus, there is tradeoff between its prediction performance on additional ...
	1.4 General Defect Prediction Process

	Labeling: An appropriate defect data must be collected for the purpose of training a prediction model. This step generally involves the extraction of instances and labeling the data items (True or False).
	Extracting features and creating training sets: The extraction of features for prediction labels of instances is performed in this stage. Few common features for defect prediction are keywords, complexity metrics, deviations, and structural dependenci...
	Building prediction models: The prediction models can be built with the help of a training set, implemented on the general machine learning algorithms, such as Bayesian Network or Support Vector Machines (SVM). Based on the learned data, the model can...
	Assessment: The assessment of a prediction display is done on the basis of testing dataset collection and training set. The labels of the training dataset are used to build the prediction model, which is later evaluated by comparing the prediction and...
	2. RELATED WORKS

	As indicated by Catal and Diri (2009), defect prediction models in software programming have become one of the significant research areas since 1990. In just two decades, the total amount of research papers in this area had increased two fold. A wide ...
	Menzies et al. (2004) carried out an experiment derived from the open-source NASA datasets with the help of few data mining techniques. The results were later evaluated with the help of balance parameter, probability of false alarm and probability of ...
	Likewise, dictionary based learning algorithms were more popular in the field of software defect prediction. Jing et al. (2014) implemented software defect prediction models on the principle of machine learning techniques. The similarity between diffe...
	The representative studies in software defect prediction are shown in Table 2. Over the past decade, several attempts were made to build efficient prediction models. Process metrics and source code (Rahman et al., 2012) are some of the widely studied ...
	Table 2. Representative studies software defect prediction
	more complex source code was more likely to be infected by bugs. Several studies have emphasized the significance of process metrics for defect prediction (Zhang et al., 2016; Fenton and Neil, 1999; Kamei et al., 2010).
	The prediction models built by the machine learning algorithms have the ability to detect the probability of bugs or defects in the source code. Few research works have mplemented latest machine learning algorithms such as active/semi-supervised learn...
	BugCache algorithm uses machine learning techniques for building defect prediction models which uses non-statistical model. This entirely different from the other defect prediction models. It also fine tunes the prediction granularity. It attempts to ...
	Several authors have also emphasized on cross-project fault prediction. Majority of these experiments were portrayed and directed inside the prediction setting, which suggests that the forecast models were constructed and executed within the same proj...
	2.1 Within-Project Defect Prediction

	Catal and Diri (2009) has conducted an investigation on over 90 software defect prediction research works, which were published between the vicinity of 1990 and 2009. He reviewed these papers on the basis of the performance evaluation metrics, learnin...
	Hall et al. (2011) carried out an investigation on the metrics, such as model contexts, modeling algorithms, independent variables, etc., and characterized their effects on the performance of defect prediction models, based on the 208 research works. ...
	2.2 Cross-Project Defect Prediction

	The primary research on CPDP was performed by Briand et al. (2000), who connected models based on an open-source venture (i.e., Xpose) to another (i.e., Jwriter). Despite the fact that the anticipated imperfection recognition probabilities were not re...
	Rahman et al. (2012) led a cost-delicate examination of the viability of CPDP on thirty eight arrivals of nine extensive Apache Software Foundation (ASF) ventures, by contrasting it with WPDP. Their detections uncovered that the cost-touchy cross-proj...
	Herbold (2013) suggested a few methodologies in view of forty-four informational collections from fourteen open-source ventures regarding training data selection for CPDP. A few portions of their informational collections are utilized here in our pape...
	2.3 Software Metrics

	A wide range of software models are regarded as features, which can be utilized for defect prediction, to enhance overall quality of the software programming. Simultaneously, various correlations are made among numerous software metrics to review whic...
	Zimmermann et al. (2009) utilized social network parameters extracted from dependency relation between software programming on Windows Server 2003 to predict which elements were more vulnerable to defects. With respect to predicting defects, the exper...
	Table 3. Comparative analysis of classification based techniques for software defect prediction
	with the original work. In any case, regarding the array of datasets, code metrics were more suitable for experimental investigations on open-source programming ventures.
	Radjenovic' et al. (2013) grouped 106 papers on defect prediction with respect to context properties and metrics. hey discovered that the amount of process metrics, source code metrics, and object-oriented metrics, were 24%, 27%, and 49%, respectively...
	Zimmermann et al. (2011) examined the likelihood of detecting the presence of vulnerabilities and defects in binary modules of a popular software product (Microsoft Windows Vista). The researchers have used classical metrics which were implemented in ...
	Williams and Meneely (Meneely et al., 2008), examined the connection between software vulnerabilities and developer-activity metrics. The developer-activity metrics consists of number of commits made to a file, number of developers who have modified t...
	Walden and Doyle (2012) have led a study to inspect the correlation among software metric and vulnerabilities in 14 different popular open source web applications during 2006 and 2008, for example, Mediawiki, WordPress. The researchers implemented sta...
	Shin et al. (2010) carried out an intense research to check if the vulnerability prediction was affected by the code-churn and developer-activity (CCD) and complexity. In regard to this, the researchers have conducted experiments on two open-source pr...
	The authors have used the Welch’s t-test to assess the discriminative power of the metrics. For both the projects, the test hypotheses were supported by at least 24 of 28 metrics. For the purpose of evaluation of predictive power of the metrics, the a...
	Moshtari and Sami (2016) pointed out three important constraints of vulnerability prediction models of previous research works. Therefore, they presented a new technique to predict the potential location of the defects in the software. It is accomplis...
	Bosu et al. (2014) conducted a similar experiment, in which they investigated more than 260,000 code review requests from over 10 different open source projects. Subsequently, they were able to identify more than 400 vulnerable code changes, with the ...
	1. The probability of fault elevates if the changes made in the codes are high.
	2. Changes are made by less experienced developers increases the chances of defects.
	3. The chances of defects are higher in new files, in comparison to modified files.
	To recognize constraints which are responsible for vulnerabilities, Perl et al. (Brereton et al., 2007) examined the impacts of utilizing the meta-information enclosed in code sources close by code –metrics. The initiators declare the way that program...
	To analyze the execution of foreseeing vulnerable programming mechanisms, in light of programming metrics against text-extracting procedures, Walden et al. (2014) played out an investigation. With this thought, the creators initially developed a manua...
	Morrison et al. (2015) explains that defect prediction models which are implemented by the Microsoft teams, are different from the vulnerability prediction models (VPMs). To clarify this disparity, for two fresh releases of the Microsoft Windows OS th...
	Younis et al. (2016) made an attempt to detect the attributes of code, which contains defects that was more ikely to be susceptible. Since they commenced the study, they were able to recognize over 183 defects from the Linux kernel and Apache HTTPD we...
	In the previous section, a review was presented on various recent researches in the area of defect prediction models based on software metrics. Table 4 presents the summary of all the research works reviewed in this section and also tabulates the uniq...
	3. Applications of Defect Prediction

	One of significant objectives of defect prediction models is efficient utilization of available resources for assessing and testing programming modules. Nevertheless, there is only a hand few of contextual analyses which use defect prediction models (...
	In any case, the defect prediction models do not give any advantages to the developers. In a recent survey, Rahman et al. (2012) demonstrated that defect prediction models could be useful to organize potential warnings discovered by the bug finders, f...
	which can be exploited to select and prioritize the test cases.
	On the basis of previously reviewed works, it is obviously that the area of defect prediction has more to offer, and hence, it is in its early stages. It can be concluded with few of the future improvements and limitation, which can be extracted from ...
	 A factual limitation in the area of defect prediction models is that the bugs and weaknesses are few in number in the given datasets. In data mining and machine learning algorithms, this limitation is termed as imbalance class data. This imbalance c...
	 Moshtari et al. (2016) has implemented a semi-automatic system for fault identification, rather than a data from public repositories and fault databases (example: NVD). Thus, in comparison to other techniques, this system resulted in better recall a...
	 There are only few research works on the cross-project studies in the area of defect prediction. Therefore, it can be regarded as a field of future enhancement. The cross-project fault prediction models are not well researched in the context of defe...
	 Majority of the fault prediction techniques offered poor performance. This is mainly due to the use of traditional software metrics, which are not considered as the appropriate indicators of software defects. Morrison et al. (2015) has discussed abo...
	 The use of deep-learning techniques for defect prediction is not well explored. It has emerged as a new area of machine-learning algorithm which is made impressive accomplishments in few application specific domains. Furthermore, it is increasing ga...
	4. Conclusion

	This survey paper helps the researchers to study about software defects and software defect prediction techniques. To implement the data pre-processing technique; data cleaning, data normalization and data discretization will be performed in data mini...
	REFERENCES

	Abaei, G., Selamat, A. 2014. A survey on software fault detection based on different prediction approaches. Vietnam Journal of Computer Science, 1, 79–95.
	Bosu, A., Carver, J.C., Hafiz, M., Hilley, P., Janni, D. 2014, November. Identifying the characteristics of vulnerable code changes: An empirical study. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineer...
	Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., Khalil, M. 2007. Lessons from applying the systematic literature review process within the software engineering domain. Journal of systems and software, 80, 571–583.
	Briand, L.C., Wüst, J., Daly, J.W., Porter, D.V. 2000. Exploring the relationships between design measures and software quality in object-oriented systems. Journal of systems and software, 51, 245–273.
	Catal, C., Diri, B. 2007, February. Software defect prediction using artificial immune recognition system. In Proceedings of the 25th conference on IASTED International Multi-Conference: Software Engineering 285–290. ACTA Press.
	Catal, C., Diri, B. 2009. A systematic review of software fault prediction studies. Expert systems with applications, 36, 7346–7354.
	Catal, C., Diri, B. 2009. Investigating the effect of dataset size, metrics sets, and feature selection techniques on software fault prediction problem. Information Sciences, 179, 1040–1058.
	Catal, C., Diri, B. 2009. Investigating the effect of dataset size, metrics sets, and feature selection techniques on software fault prediction problem. Information Sciences, 179, 1040–1058.
	Catal, C. 2014. A comparison of semi-supervised classification approaches for software defect prediction. Journal of Intelligent Systems, 23, 75–82.
	D'Ambros, M., Lanza, M., Robbes, R. 2010, May. An extensive comparison of bug prediction approaches. In 2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010), 31–41. IEEE.
	Ebert, C., Jones, C. 2009. Embedded software: Facts, figures, and future. Computer, 42, 42–52.
	Fenton, N.E., Neil, M. 1999. A critique of software defect prediction models. IEEE Transactions on software engineering, 25, 675–689.
	Ghaffarian, S.M., Shahriari, H.R. 2017. Software vulnerability analysis and discovery using machine-learning and data-mining techniques: A survey. ACM Computing Surveys (CSUR), 50, 56.
	Ghotra, B., McIntosh, S., Hassan, A.E. 2015, May. Revisiting the impact of classification techniques on the performance of defect prediction models. In Proceedings of the 37th International Conference on Software Engineering-Volume 1, 789–800. IEEE Pr...
	Gondra, I. 2008. Applying machine learning to software fault-proneness prediction. Journal of Systems and Software, 8, 186–195.
	Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S. 2011. A systematic literature review on fault prediction performance in software engineering. IEEE Transactions on Software Engineering, 38, 1276–1304.
	He, P., Li, B., Liu, X., Chen, J., Ma, Y. 2015. An empirical study on software defect prediction with a simplified metric set. Information and Software Technology, 59, 170–190.
	He, P., Li, B., Liu, X., Chen, J., Ma, Y. 2015. An empirical study on software defect prediction with a simplified metric set. Information and Software Technology, 59, 170–190.
	He, P., Li, B., Ma, Y., He, L. 2013. Using software dependency to bug prediction. Mathematical Problems in Engineering.
	He, Z., Shu, F., Yang, Y., Li, M., Wang, Q. 2012. An investigation on the feasibility of cross-project defect prediction. Automated Software Engineering, 19, 167–199.
	Herbold, S. 2013, October. Training data selection for cross-project defect prediction. In Proceedings of the 9th International Conference on Predictive Models in Software Engineering 6. ACM.
	Hewett, R. 2011. Mining software defect data to support software testing management. Applied Intelligence, 34, 245–257.
	Hu, Q.P., Xie, M., Ng, S.H., Levitin, G. 2007. Robust recurrent neural network modeling for software fault detection and correction prediction. Reliability Engineering & System Safety, 92, 332–340.
	Jiang, Y., Cukic, B., Ma, Y. 2008. Techniques for evaluating fault prediction models. Empirical Software Engineering, 13, 561–595.
	Jing, X.Y., Ying, S., Zhang, Z.W., Wu, S.S., Liu, J. 2014, May. Dictionary learning based software defect prediction. In Proceedings of the 36th International Conference on Software Engineering, 414–423. ACM.
	Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K.I., Adams, B., Hassan, A.E. 2010, September. Revisiting common bug prediction findings using effort-aware models. In 2010 IEEE International Conference on Software Maintenance, 1–10. IEEE.
	Khoshgoftaar, T.M., Rebours, P. 2007. Improving software quality prediction by noise filtering techniques. Journal of Computer Science and Technology, 22, 387–396.
	Khoshgoftaar, T.M., Ganesan, K., Allen, E.B., Ross, F.D., Munikoti, R., Goel, N., Nandi, A. 1997, November. Predicting fault-prone modules with case-based reasoning. In Proceedings the eighth international symposium on software reliability engineering...
	Khoshgoftaar, T.M., Gao, K., Seliya, N. 2010, October. Attribute selection and imbalanced data: Problems in software defect prediction. In 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, 1, 137–144. IEEE.
	Kim, S., Zhang, H., Wu, R., Gong, L. 2011, May. Dealing with noise in defect prediction. In 2011 33rd International Conference on Software Engineering (ICSE). 481–490. IEEE.
	Kim, S., Zimmermann, T., Whitehead Jr, E.J., Zeller, A. 2007, May. Predicting faults from cached history. In Proceedings of the 29th international conference on Software Engineering, 489–498. IEEE Computer Society.
	Köksal, G., Batmaz, İ., Testik, M.C. 2011. A review of data mining applications for quality improvement in manufacturing industry. Expert systems with Applications, 38, 13448–13467.
	Koru, A.G., Liu, H. 2005. Building effective defect-prediction models in practice. IEEE software, 22, 23–29.
	Lemos, O.A.L., Ferrari, F.C., Silveira, F.F., Garcia, A. 2015. Experience report: Can software testing education lead to more reliable code?. In 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE), 359–369.
	Lessmann, S., Baesens, B., Mues, C., Pietsch, S. 2008. Benchmarking classification models for software defect prediction: A proposed framework and novel findings. IEEE Transactions on Software Engineering, 34, 485–496.
	Lewis, N.D. 1999. Assessing the evidence from the use of SPC in monitoring, predicting & improving software quality. Computers & Industrial Engineering, 37, 157–160.
	Li, K., Chen, C., Liu, W., Fang, X., Lu, Q. 2014. Software defect prediction using fuzzy integral fusion based on GA-FM. Wuhan University Journal of Natural Sciences, 19, 405–408.
	Li, M., Zhang, H., Wu, R., Zhou, Z.H. 2012. Sample-based software defect prediction with active and semi-supervised learning. Automated Software Engineering, 19, 201–230.
	Li, Z., Jing, X.Y., Zhu, X., Zhang, H., Xu, B., Ying, S. 2017. On the multiple sources and privacy preservation issues for heterogeneous defect prediction. IEEE Transactions on Software Engineering.
	Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., Zhang, G. 2015. Transfer learning using computational intelligence: a survey. Knowledge-Based Systems, 80, 14–23.
	Ma, Y., Luo, G., Zeng, X., Chen, A. 2012. Transfer learning for cross-company software defect prediction. Information and Software Technology, 54, 248–256.
	Meneely, A., Williams, L., Snipes, W., Osborne, J. 2008, November. Predicting failures with developer networks and social network analysis. In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering 13–23. ACM.
	Menzies, T., DiStefano, J., Orrego, A., Chapman, R. 2004. Assessing predictors of software defects. In Proc. Workshop Predictive Software Models.
	Mısırlı, A.T., Çağlayan, B., Miranskyy, A.V., Bener, A., Ruffolo, N. 2011, May. Different strokes for different folks: A case study on software metrics for different defect categories. In Proceedings of the 2nd International Workshop on Emerging Trend...
	Morrison, P., Herzig, K., Murphy, B., Williams, L. 2015, April. Challenges with applying vulnerability prediction models. In Proceedings of the 2015 Symposium and Bootcamp on the Science of Security, 4. ACM.
	Moshtari, S., Sami, A. 2016, April. Evaluating and comparing complexity, coupling and a new proposed set of coupling metrics in cross-project vulnerability prediction. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, 1415–1421. ACM.
	Nam, J., Pan, S.J., Kim, S. 2013, May. Transfer defect learning. In 2013 35th International Conference on Software Engineering (ICSE), 382–391. IEEE.
	Okutan, A., Yıldız, O.T. 2014. Software defect prediction using Bayesian networks. Empirical Software Engineering, 19, 154–181.
	Peters, F., Menzies, T., Marcus, A. 2013, May. Better cross company defect prediction. In Proceedings of the 10th Working Conference on Mining Software Repositories, 409–418. IEEE Press.
	Premraj, R., Herzig, K. 2011, September. Network versus code metrics to predict defects: A replication study. In 2011 International Symposium on Empirical Software Engineering and Measurement, 215–224. IEEE.
	Radjenović, D., Heričko, M., Torkar, R., Živkovič, A. 2013. Software fault prediction metrics: A systematic literature review. Information and software technology, 55, 1397–1418.
	Rahman, F., Posnett, D., Devanbu, P. 2012, November. Recalling the imprecision of cross-project defect prediction. In Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering, 61. ACM.
	Rajbahadur, G.K., Wang, S., Kamei, Y., Hassan, A.E. 2017, May. The impact of using regression models to build defect classifiers. In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR) 135–145. IEEE.
	Rana, R., Staron, M., Mellegård, N., Berger, C., Hansson, J., Nilsson, M., Törner, F. 2013, June. Evaluation of standard reliability growth models in the context of automotive software systems. In International Conference on Product Focused Software P...
	Roy, P., Mahapatra, G.S., Rani, P., Pandey, S.K., Dey, K.N. 2014. Robust feedforward and recurrent neural network based dynamic weighted combination models for software reliability prediction. Applied Soft Computing, 22, 629–637.
	Ryu, D., Choi, O., Baik, J. 2016. Value-cognitive boosting with a support vector machine for cross-project defect prediction. Empirical Software Engineering, 21, 43–71.
	Selby, R.W., Porter, A.A. 1988. Learning from examples: generation and evaluation of decision trees for software resource analysis. IEEE Transactions on Software Engineering, 14, 1743–1757.
	Shin, Y., Williams, L. 2008, October. An empirical model to predict security vulnerabilities using code complexity metrics. In Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and measurement, 315–317. ACM.
	Shin, Y., Williams, L. 2011, May. An initial study on the use of execution complexity metrics as indicators of software vulnerabilities. In Proceedings of the 7th International Workshop on Software Engineering for Secure Systems, 1–7. ACM.
	Shin, Y., Williams, L. 2013. Can traditional fault prediction models be used for vulnerability prediction?. Empirical Software Engineering, 18, 25–59.
	Shin, Y., Meneely, A., Williams, L., Osborne, J.A. 2010. Evaluating complexity, code churn, and developer activity metrics as indicators of software vulnerabilities. IEEE Transactions on Software Engineering, 37, 772–787.
	Song, Q., Shepperd, M., Cartwright, M., Mair, C. 2006. Software defect association mining and defect correction effort prediction. IEEE Transactions on Software Engineering, 32, 69–82.
	Staron, M., Meding, W. 2008. Predicting weekly defect inflow in large software projects based on project planning and test status. Information and Software Technology, 50, 782–796.
	Walden, J., Doyle, M. 2012. SAVI: Static-analysis vulnerability indicator. IEEE Security & Privacy, 10, 32–39.
	Walden, J., Stuckman, J., Scandariato, R. 2014, November. Predicting vulnerable components: Software metrics vs text mining. In 2014 IEEE 25th international symposium on software reliability engineering 23–33. IEEE.
	Wang, H., Khoshgoftaar, T.M., Liang, Q. 2013. A study of software metric selection techniques: Stability analysis and defect prediction model performance. International journal on artificial intelligence tools, 22, 1360010.
	Wang, T., Li, W.H. 2010, December. Naive bayes software defect prediction model. In 2010 International Conference on Computational Intelligence and Software Engineering, 1–4. Ieee.
	Watanabe, S., Kaiya, H., Kaijiri, K. 2008, May. Adapting a fault prediction model to allow inter languagereuse. In Proceedings of the 4th international workshop on Predictor models in software engineering, 19–24. ACM.
	Wu, F., Jing, X.Y., Dong, X., Cao, J., Xu, M., Zhang, H., Ying, S., Xu, B. 2017, May. Cross-project and within-project semi-supervised software defect prediction problems study using a unified solution. In 2017 IEEE/ACM 39th International Conference o...
	Xia, X., Lo, D., Pan, S.J., Nagappan, N., Wang, X. 2016. Hydra: Massively compositional model for cross-project defect prediction. IEEE Transactions on software Engineering, 42, 977–998.
	Xie, X., Ho, J.W., Murphy, C., Kaiser, G., Xu, B., Chen, T.Y., 2011. Testing and validating machine learning classifiers by metamorphic testing. Journal of Systems and Software, 84, 544–558.
	Yadav, H.B., Yadav, D.K. 2015. A fuzzy logic based approach for phase-wise software defects prediction using software metrics. Information and Software Technology, 63, 44–57.
	Yang, X., Lo, D., Xia, X., Zhang, Y., Sun, J. 2015, August. Deep learning for just-in-time defect prediction. In 2015 IEEE International Conference on Software Quality, Reliability and Security, 17–26. IEEE.
	Younis, A., Malaiya, Y., Anderson, C., Ray, I. 2016, March. To fear or not to fear that is the question: Code characteristics of a vulnerable functionwith an existing exploit. In Proceedings of the Sixth ACM Conference on Data and Application Security...
	Zhang, F., Zheng, Q., Zou, Y., Hassan, A.E. 2016, May. Cross-project defect prediction using a connectivity-based unsupervised classifier. In Proceedings of the 38th International Conference on Software Engineering, 309–320. ACM.
	Zhang, Z.W., Jing, X.Y., Wang, T.J. 2017. Label propagation based semi-supervised learning for software defect prediction. Automated Software Engineering, 24, 47–69.
	Zimmerman, T., Nagappan, N., Herzig, K., Premraj, R., Williams, L. 2011, March. An empirical study on the relation between dependency neighborhoods and failures. In 2011 Fourth IEEE International Conference on Software Testing, Verification and Valida...
	Zimmermann, T., Nagappan, N., Gall, H., Giger, E., Murphy, B. 2009, August. Cross-project defect prediction: a large scale experiment on data vs. domain vs. process. In Proceedings of the the 7th joint meeting of the European software engineering conf...

