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Survey on Visual Analysis of
Event Sequence Data

Yi Guo, Shunan Guo, Zhuochen Jin, Smiti Kaul, David Gotz, and Nan Cao

Abstract—Event sequence data record series of discrete events in the time order of occurrence. They are commonly observed in a
variety of applications ranging from electronic health records to network logs, with the characteristics of large-scale, high-dimensional
and heterogeneous. This high complexity of event sequence data makes it difficult for analysts to manually explore and find patterns,
resulting in ever-increasing needs for computational and perceptual aids from visual analytics techniques to extract and communicate
insights from event sequence datasets. In this paper, we review the state-of-the-art visual analytics approaches, characterize them with
our proposed design space, and categorize them based on analytical tasks and applications. From our review of relevant literature, we
have also identified several remaining research challenges and future research opportunities.
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1 INTRODUCTION

E VENT sequence data are found across a vast array of ap-
plications and domains. In fields as diverse as computer

security, advertising, and healthcare, discrete observations
of different types are collected over time and arranged in
sequence based on the specific entity for which the event is
germane. For example, network logs in computer systems
capture timestamped sequences of events (logins, requests,
faults, etc.) for specific devices. Similarly, clickstreams used
to tailor advertising capture sequences of interaction events
for individual users as they navigate websites. Electronic
health records, meanwhile, capture events (e.g., diagnoses,
procedures) over time for individual patients. The ubiquity
of event sequence data reflects both (1) the relative ease with
which it can be captured, and (2) the desire to leverage this
form of data to gain new insights about real-world systems.

These common goals, however, are challenged by the
great heterogeneity that exists within different properties
of event sequence data and the types of insights that
are sought. For example, event sequences can be high-
dimensional (with many event types) or low-dimensional
(very few types of events). They can be sparse and irregular
over time, or dense and evenly spaced. Events can have
zero attributes or many, can be point events or intervals, and
can be strictly sequential or occur in parallel. Similarly, the
types of analysis tasks can vary widely based on the types
of insights one seeks. Are analysts interested in common
patterns or rare outliers? Are analysts focused on prediction,
or identification of predictive factors for intervention? Are
analysts examining a single sequence or comparing across
multiple sets of sequences in aggregate? These are just a few
examples of the wide variety of data and task challenges
which present themselves in event sequence analysis.
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These difficult and diverse methodological challenges
have motivated a broad range of recent research activities
which aim to solve one or more aspects of the event se-
quence analysis problem. This has led, in turn, to a prolif-
eration of different visual analysis methods and prototypes,
each of which has distinct capabilities and advantages in
certain contexts. This has resulted in a situation where the
state-of-the-art for event sequence data is often difficult to
discern. The latest research often offers multiple visual ana-
lytics approaches for specific types of challenges. Moreover,
the same solution may be effective at addressing difficulties
that stem from two or more different challenges. Yet in other
cases, open problems remain unaddressed.

The aim of this survey is to provide a comprehensive
review and characterization of the state-of-the-art in visual
analytics research for event sequence data. Through the
collection and analysis of the literature on this topic, we
identify key dimensions of the event sequence visual ana-
lytics design space. We then use those dimensions, as well
as a characterization of different types of event sequence
analysis tasks, to organize existing methods and identify
common approaches to specific targeted problems. More-
over, we identify areas with little prior work which remain
a challenge for future research.

This literature review represents the first (to our knowl-
edge) comprehensive attempt to survey and characterize
event sequence data visual analytics methods. In this way,
this review promises to help researchers understand key
dimensions that unify prior work, how prior research fits
together within this complex design space, and which event
sequence data analysis challenges remain insufficiently ad-
dressed. Moreover, the results can provide value to practi-
tioners as an organized catalog of alternative approaches
that are most appropriate for specific types of event se-
quence data problems. We developed a web-based survey
browser 1 to facilitate the exploration of our created taxon-
omy and reviewed techniques.

1. http://eventvis.idvxlab.com/
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2 RELATED SURVEYS AND METHODOLOGY

In this section, we first discuss survey papers that are
relevant to this work, and then introduce our methodology
of selecting papers and creating our taxonomy.
2.1 Related Surveys
This section provides an overview of the surveys that are
relevant to visual analysis of event sequence data. Keim
et al. [48] proposed a definition and an analytical pipeline
for visual analytics, which inspires our formalization of the
design space that we discuss later in Section . A prior survey
by Sun et al. [99] generalized visual analytics techniques
by different data types, among which the review of visual
analytics approaches for temporal data is most relevant
to our work. Our work, by contrast, focus on a more
specific type of temporal data – event sequence data. In
addition, some scholars attempted to dive into particular
visual forms or visual analytics approaches for a single
analytical task that are partially related to our survey. For
example, Brehmer et al. [2] formalized the design space for
a representative form for visualization of event sequence
data – timeline-based visualizations. Jentner and Keim [43]
reviewed visualization and visual analytics methods for
exploring frequent patterns. Given the broad application
of event sequence data, we also notice a larger group of
surveys linked to applications where event sequences are
commonly collected, such as social media data [116], smart
manufacturing [131], and anomalous user behaviors [92].
Different from existing work that summarizes techniques
for a particular visualization, visual analytical task, or ap-
plication related to temporal event sequence, our work aims
to provide a more holistic overview of the visual analytics
approaches for all types of event sequence data so as to
benefit practitioners from a wider range of applications.
2.2 Survey Methodology
This survey aims to obtain an overview of existing visual
analytics techniques that are developed for event sequence
data. To construct a structured and comprehensive taxon-
omy, we start by formalizing a design space for develop-
ing visual event sequence analysis tools (discussed in Sec-
tion 3.1). In particular, we leverage the conventional visual
analytics pipeline [48] followed by most visual analytics
techniques, which revolves around four key components:
data, model, visualization, and knowledge. Since deriving
knowledge from model and visualizations can be subjec-
tive and difficult to standardize, we exclude knowledge
inference from the scope of our design space. In addition,
user interaction that links the components throughout the
pipeline is also indispensable in the visual analytics process.
These considerations led to our final proposed design space
with with the following four dimensions: data scales, analysis
techniques, visual representations, and interactions. For each
dimension, we further enumerate all alternatives as we
conduct our review of the existing studies.

We collect relevant papers from visualization journals
and conferences. We followed two main approaches when
collecting the papers: reference-driven and search-driven
selections. For the reference-driven selection, we utilized a
core set of state-of-the-art techniques in this topic known to
us in advance as a starting point, and extended the range of
work by going through cited and citing publications.

For the search-driven selection, we went through two
rounds of paper collection. The first round involves a coarse
search of event sequence analysis and visualization tech-
niques from high impact conferences and journals in the
field of information visualization and data mining. In par-
ticular, we select six visualization conferences: IEEE VAST,
IEEE InfoVis, ACM CHI, ACM IUI, EG/IEEE EuroVis and
IEEE PacificVis, three visualization journals: IEEE TVCG,
IEEE CG&A, Computer Graphics Forum, four data mining
conferences: NeruIPS, WWW, ACM SIGKDD, ICML and
two journals: IEEE TKDD, ACM TIST. We used two search
queries: ”event sequence” AND ”analysis”; ”event sequence”
AND ”visualization” to collect papers broadly, then reviewed
the abstracts and full texts to finalize our selection. We
labeled each work with their correspondence in each di-
mension respectively. Note that event sequence analysis
techniques are only labeled in the first two dimensions.
In addition, according to Keim et al. [48], the choices of
analysis methods, visual representations, and interactions
depend on the analytical tasks and application scenarios.
Therefore, we also label each collected publication with their
motivated tasks and applications. This gives us a full list of
nine analytical tasks, which we further organized in to five
categories as outlined in Section 4, and seven applications
under three major categories as outlined in Section 5.

For each analytical task and application, we went
through another round of complementary paper collection
for visualization and visual analytics techniques with search
queries that combines specific tasks or applications, such
as ”event sequence summarization” AND ”visualization”,
”medical data” AND ”visualization”, etc. The entire selec-
tion process ended up with 153 most relevant publications
of event sequence analysis, and 144 publications of event
sequence visualization and visual event sequence analysis.
We further refined our selection with 100 most representa-
tive and up-to-date event sequence visualization and visual
analytics studies to discuss in this paper. Additionally, this
survey also includes the review of 8 related surveys, 5 event
sequence analysis techniques, 9 visualization techniques in
the field of causality analysis yet are not related to event se-
quence data, and referred to 10 papers regarding the theory
of visual analytics, research challenges and oppotunities of
visual event sequence analysis. This result in a total of 133
papers that are covered in this survey.

The remaining survey is organized as follows. We first
introduce the taxonomy of our survey by formalizing our
proposed design space and outline visual analytical tasks in
Section 2.1. Section 4 elaborates the state-of-the-art solutions
developed for each analytical task respectively through an
analysis of their corresponding design components of the
design space. Then, we provide an overview of applications
where event sequence data are commonly observed in Sec-
tion 5, serving as a more direct guide to practitioners of
visual analytics techniques. Finally, we discuss our reflec-
tions on research challenges, opportunities in Section 6 and
conclude our work in Section 7.

3 TAXONOMY

In this section, we introduce the design space and the
collection of visual analysis tasks built from the processes
of paper gathering and labeling as mentioned in Section
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2.2. The design space and visual analytical tasks form a
taxonomy that we further use to structure the survey. Specif-
ically, in Section 4, we partition visual analytics techniques
based on their primary analytical task under a consideration
that most visual analytics systems are developed around a
single analytical task. For each analytical task, we further
characterize the relevant papers by exposing the dimensions
in the design space that are leveraged to develop each
visual analytics method. We also discuss the applications of
the visual event sequence analysis techniques in Section 5
to provide domain-specific guidance for practitioners. The
applications, however, are not included in our taxonomy,
because most of the techniques we collected are developed
for event sequence analysis in general cases rather than a
specific application.

3.1 Design Space
In the following, we introduce the dimensions of our design
space and highlight the key elements (i.e., data scales or
techniques) in each dimension that are frequently used
for designing and building a visual analysis system for
analyzing event sequence data.

3.1.1 Dimension 1: Data Scales
Our proposed design space starts with identifying the gran-
ularity of data that the visual analysis is able to cover. For a
given event sequence dataset, we summarize the following
levels of data granularity.

Event: Individual events represent the finest gran-
ularity of event sequences. Each event can be char-
acterized by attributes such as event type, time of

occurrence, and duration. Visual analytics techniques often
attempt to drill down to individual events to provide users
with low-level details of the analysis result. For example,
Vistracker [27] identifies anomalous events in trace routes
based on event attributes. Carepre [44] predicts upcoming
disease based on historical sequence of medical events.

Subsequence: Subsequences are segments of event
sequences with the temporal order of events being
preserved. Meaningful subsequences can represent

the major characteristic of the sequence. EventAction [20]
utilizes the number of common subsequences between in-
dividuals to measure sequence similarities. MOOCad. [68]
leverage anomalous frequent subsequences to facilitate the
reasoning of sequence anomalies.

Sequence: An event sequence is the complete record
of events that are performed or experienced by a
sequence entity (e.g., a patient or a customer). The

entire sequence is often analyzed when attempting to get
a complete view of the entity’s experience. In [35], [72],
[129], anomalous entities are detected by analyzing their
corresponding progressions of events. Similarly, Guo et
al. [33] utilize the embedding of each sequence to estimate
the similarity between entities.

Sequence Collection: A collection of sequences are
analyzed when summarizing common patterns in
the dataset or comparing different groups of se-

quences. For example, visual sumarization techniques [36],
[37], [76], [78] aim to provide a summary of patterns and
identify entities with common progressions in a collection
of sequences. MatrixWave [130] is designed to compare two
collections of event sequences and analyze their differences.

3.1.2 Dimension 2: Analysis Techniques

Visual analytics techniques for event sequence data are
incorporated with back-end data mining algorithms to sup-
port complex analytical tasks. Based on a review of event
sequence analysis methods, we identify the following anal-
ysis techniques.

Pattern discovery: Pattern discovery aims to find
frequently occurring patterns and statistically sig-
nificant associations of data samples. In the anal-

ysis of event sequence data, pattern discovery techniques
can be further categorized into frequent pattern mining
techniques and similarity analysis techniques based on
different analytical goals. Frequent pattern mining tech-
niques are used to uncover common subsequences in the
event sequence dataset. For instance, Perer et al. [76] pro-
posed a visual analytics system that employs a SPAM-
based algorithm to extract frequent patterns in a col-
lection of event sequences. Similarity analysis techniques
utilize event patterns of each sequence to quantify the
similarity between sequences. For example, in Eventac-
tion [20] and Similan [114], two different similarity mea-
surements were proposed based on commonness and dif-
ferences between events across different event sequences.

Sequence inference: Inference is the process of
drawing conclusions based on evidence observed in
existing data. Conclusions derived from inference

techniques are tenable under certain conditions but can
be incorrect when applied to unobserved data. Existing
inference techniques for event sequence analysis mainly in-
clude self-exciting point process and graphical model. Self-
exciting point process is a probabilistic model that describes
the occurrence probabilities of events over time. The occur-
rence of upcoming events is influenced by historical events.
For example, Hawkes Process is widely employed to model
sequential data under the assumption that the impact of the
previous event is approximated by a numerical integration
over time [64], [119]. Graphical model, on the other hand,
presents the conditional dependence between events with a
event correlation graph, such as Bayesian Networks [1] and
Markov Chain [95].

Sequence modeling: While sequence inference tech-
niques are not capable of making predictions on
unobserved data, sequence modeling methods are

developed to build a reliable model to characterize observed
data while ensuring the model’s generalization abilities
on unobserved data. Event sequence models are generally
specifically designed depending on the analytical tasks,
such as classification (e.g., support vector machines, deci-
sion trees) and clustering (e.g, k-means). Neural network
models, especially recurrent neural networks (RNN) are also
commonly applied to model event sequences due to their in-
herent sequential structure and superior performance com-
paring to traditional machine learning model. For instance,
CarePre [44] employed attention-based RNNs to predict
upcoming events based on historical events in sequences,
and Guo et al. [35] embedded RNNs into Variational Auto-
Encoder to detect anomalous sequences in the dataset.

3.1.3 Dimension 3: Visual Representations

Existing visual analytics techniques leverage a variety of
visual representations to display event sequence data and
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Fig. 1. The most cited papers regarding event sequence visualization and visual analytics techniques grouped by different tasks. Each paper is
labeled by the relevant design elements in the design space. The rows are grouped and colored by dimensions of our proposed design space: DSs
- Data Scales; ATs - Analysis Techniques; VRs - Visualization Representations; ITs - Interaction Techniques.

communicate insightful patterns. The visual representations
also determine how events and sequences are organized and
aggregated. We identify five categories of visual representa-
tion for displaying event sequence data as follows.

Chart-based visualizations: Visualization charts,
such as bar charts and scatter plots, are commonly
used to display event features and event distribu-

tions of event sequences. For instance, Coco [63] uses a table
to compare event distributions of two different groups of
sequences and a scatter plot to show the number of records
containing particular events or subsequences.

Timeline-based visualizations: Timelines are the
most intuitive visualizations that organize events
of individual sequences successively in a temporal

order. Events are generally represented with icons encoded
by color, size, or shape to distinguish events with different
attributes. For example, VASABI [71] visualizes a sequence
as a row of squares colored by event categories.

Hierarchy-based visualizations: In hierarchy-based
visualizations, sequences are aggregated into a tree
of sequences [113], where each node represents an

event placed according to its prefix in the sequence. A
variety of visualization designs can be used to display this
hierarchical structure of sequences, such as treemaps [100],
node-link tree [103], and icicle plots [57], [60].

Sankey-based visualizations: The Sankey-based
visualizations organize sequences into the structure
of a Sankey diagram [82]. Instead of aggregating

sequences into a tree structure as the hierarchy-based vi-
sualizations, Sankey-based methods aggregate sequences
into a graph, focusing more on providing an overview of
transitions between different types of events. Sankey-based

visualizations can be further categorized into two different
types of design. The first one is the directed node-link graph
in which events are represented by nodes and transitions
between events are represented by links [36], [44]. The
second one is the traditional Sankey diagram, in which links
are further encoded by width, representing the proportions
of flow that split and merge among events [37], [111].

Matrix-based visualizations: Matrix-based visual-
izations are typically used to demonstrate a sum-
mary of event frequency or frequent patterns. For

example, EventAction [20] incorporates an event matrix
to summarize frequencies of events across different time
intervals. Mu et al. [68] applied a matrix-based design to
present lists of frequent activity patterns in each stage of
sequence progression. In addition, a matrix-based design
is also utilized to display frequencies of event transitions.
For example, Zhao et al. [130] transformed the traditional
Sankey diagram into a sequence of matrices to display step-
to-step transitions of web clickstream data.

3.1.4 Dimension 4: Interactions
Visual analytics systems usually incorporate rich interac-
tions to empower end users with sufficient flexibility and
depth in data analysis. In the following, we summarize
seven interaction techniques that are commonly applied in
visual analytics systems for event sequence data.

Filter/query allows users to make domain-specific
data adjustment or selection based on certain con-
ditions, so as to eliminate noisy and irrelevant data

for better analytical performance. The types of filters include
event filters for filtering specific event types (e.g., [37], [130]),
time filters (e.g., [27], [57]) for narrowing down to a range of
time in the middle of the sequence for exploration, attribute
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Fig. 2. The taxonomy of this survey is established using a design
space for developing visual analysis methods for event sequences with
four dimensions: data scale, analysis technique, visual representation,
interaction technique, and a organized catelog of visual analytics tasks
that includes summarization, prediction & recommendation, anomaly
detection, comparison, causal analysis.

filters (e.g., [14]) for retrieving a subset of event sequences
based on sequence or event attributes, and pattern filters
(e.g., [35], [76]) for querying event sequences that contain
specific subsequences.

Editing enables users to modify event sequences
through adding new events, removing existing events,
editing event order, and editing event duration, which

is commonly employed in what-if simulation of event se-
quence predictions. The goal is to interactively explore the
influence of historical events on the prediction results. For
instance, in the CarePre [44] and RetainVis [55], users can
edit event sequences to understand how the change of
individual events affects the prediction of risks.

Segmentation enables users to split event sequences
into sections, which is typically used to narrow the
scope of exploration by focusing on sequence seg-

ments that are shorter than the entire sequence. Meaningful
sequence segments can also indicate event occurring pat-
terns. For example, in MAQUI [57] and DecisionFlow [29],
users can segment a set of event sequence by user-specified
milestone events to reveal event patterns and correlations.

Alignment refers to arranging multiple sequences
to make them aligned on a selected event or time
point. This interaction aims to explore and compare

patterns before and after the alignment point within a
single sequence or across multiple sequences. For instance,
Lifelines2 [107] supports interactive alignment of event se-
quences based on a selected event, so that users can easily

spot precursor, co-occurring, and aftereffect events. Chen et
al. [14] allow both sequence alignment and the adjustment
of temporal scale to illustrate the temporal distribution of
events with respect to a selected event.

Scaling provides analysts an access to zoom in/out
the visualizations or inspect data under various
granularity. Zoom in/out are commonly used in

many visualizations, which allows a visualization-level scal-
ing through enlarging or contracting the visual represen-
tations to enhance local details or get an overall impres-
sion. Additionally, some visual analytics techniques [14],
[35], [44], [72] also allows a data-level scaling through ab-
stract/elaborate to accommodate the complexity of event se-
quence. For example, Guo et al. [35], [36] allows a stage-level
abstraction and elaboration by aggregating and expanding
events within the same progression stage.

Emphasis aims to facilitate the discovery of inter-
esting patterns [92]. This can be achieved through
various forms of interactions such as highlighting,

sorting, and layout adjustment. Highlighting draws users’
attention through tweaking basic visual representations
(e.g., color, size), which are commonly used in emphasiz-
ing sequence groupings, progression pathways, and critical
events. Sorting emphasizes the ranking of sequences or
patterns under specific metrics. For example, Lifeflow [113]
allows users to sort progression pathways by the number
of records or average time span. Layout adjustment enables
users to arrange the positions of visual elements in a
meaningful way. For example, Guo et al. [37] proposed a
layout algorithm that arranges sequence clusters to imply
their similarities, which allows users to adjust the similarity
threshold to generate different groupings.

Aggregation enables users to interactively merge
event sequences, supporting a more scalable explo-
ration of large-scale complex event sequences. For

instance, DecisionFlow [29] aggregates sequence with sim-
ilar occurrence of milestone events so as to enhance visual
scalability of large-scale events. CareFlow [74] merges se-
quences by common event occurrences to reveal frequently
observed progression patterns.

3.2 Visual Analysis Tasks

From our review of both data analysis and visual analytics
techniques, we summarize the motivating analytical tasks
that have gained attention from researchers over the past
decade. For simplicity, we further classify these tasks into
five high-level categories introduced as follows according
to their fundamental objectives.

Summarization: Summarizing event sequences
aims to uncover major progression patterns and
featured groupings of the sequence entities. The

fundamental motivation is to help analysts quickly get an
overview of the sequence dataset. A variety of analytical
tasks serve the purpose of generating summaries, including
sequential pattern mining [60], [76] that discover frequently
occurred subsequences from the sequence dataset, progres-
sion analysis [29], [36] that reveals time-evolving patterns of
latent progression stages, and sequence clustering [31], [71]
that segments sequence dataset into groups.
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Prediction & recommendation: Prediction & rec-
ommendation tasks generally involves analyzing
observed event sequences to foresee the upcoming

events or sequences, or examining how certain interventions
may effect the future trends. The fundamental objective is to
make predictive analysis. Typical motivating tasks include
making predictions on future events and outcomes [19],
[44], and making recommendations on user actions to help
achieve certain goals [20]. In addition, due to the importance
of interpretability in the applications of sequence predic-
tions, thus, we also include a group of work that visualize
the underlying mechanisms of the prediction model [55] to
aid result interpretation.

Anomaly detection: Visual anomaly detection for
event sequences aims at identifying rare cases that
deviates from the majority of the sequence pro-

gressions. Anomalies in event sequences can take multiple
forms depending on the data scales (i.e., anomalous event,
subsequence, sequence). For example, EventThread3 [35]
detect anomalous events that derive from normal expected
progressions, MOOCad [68] identifies anomalous studying
patterns of online students, and FluxFlow [129] captures
anomalous spreading process of tweets.

Comparison: Comparison is a common task when
investigating similarities and differences between
event sequences. Existing visual comparison tech-

niques can be broadly categorized by the scale of com-
parison targets. For instance, Similan [114] compares indi-
vidual events of two sequences, while CoCo [62] and Ma-
trixFlow [75] compare two collections of event sequences.

Causality analysis: Causality analysis aims to un-
cover the causal relationships between event types,
promoting a better understanding of which event

is very likely to occur after another, or what bring about a
certain change to the outcome event. Despite that causality
analysis for event sequences have gained much attention in
the data mining community, the work in the field of visual
analytics under this topic is still very limited, indicating a
promising future research direction.

4 VISUAL ANALYSIS TECHNIQUES

In this section, we summarize visual analysis techniques
developed for analyzing event sequence data according to
the analysis tasks introduced in Section 2.1.

4.1 Visual Summarization
Summarization of event sequences aims to use intuitive
representations to reveal major progression patterns and
featured groupings of the sequence entities. In many do-
mains such as health informatics [7], [28], [38], [73], [74],
[78], [89], social media [57], [76], and career design [36], [37],
a variety of analytical tasks serve the purpose of generating
summaries, including explicit summarization, inexplicit
summarization, progressional analysis, and clustering.

Explicit summarization techniques uncover informa-
tive patterns within event sequences using aggregated dis-
play overview. All of the sequences are visualized and ag-
gregated into one interface. Existing techniques adopt var-
ious visualization approaches to display event sequences,
such as timeline-based [7], [49], [58], [78], [107], [126],
sankey-based [111], and hierarchy-based [67], [85], [100],

[113] visualizations. Timeline-based visualizations are fre-
quently adopted to reveal temporal information among
sequences. For instances, LifeLines [78] and its variant [107]
leverage timeline-based visualizations to display the tem-
poral distribution of events in varying time granularities.
Sankey-based visualization are adopted to to reveal the
progression path of event over a period of time. In Outflow
[111], alternative clinical pathways within EMRs are visu-
alized using a sankey diagram, the colors of path encode
the patient outcomes (Fig. 3(2)). Furthermore, hierarchy-
based visualizations, such as tree map and icicle plot, are
able to reveal the hierarchical organizations within event
sequence data. EventFlow [67] reveals aggregated sequences
in a hierarchy-based visualization, and individual sequences
are detailed display in a list of timelines (Fig. 3(1)). Similarly,
LifeFlow [113] leverage a hierarchy-based visualization to
provide an overview of event sequences. Explicit summa-
rization techniques can reveal event sequences with mini-
mum information loss, but interface will become visually
messy when the scale of event sequences is large.

Inexplicit summarization techniques leverage data
mining metrics to uncover informative patterns (e.g., fre-
quent patterns) among event sequence data. Existing works
that serve the purpose of inexplicit summarization mainly
falls into two categories: query-based techniques and
mining-based techniques. Query-based techniques [25], [52],
[103], [114], [127] enable analysts to create complex queries
to extract event sequences of interest. For instances, in
COQUITO [52] and CAVA [127], analysts can express com-
plex queries for iterative cohort construction. Mining-based
techniques leverage advanced sequential pattern mining al-
gorithms to extract insights from complex event sequences
[56], [59], [60], [61], [76], [77]. For instances, in Frequence [76]
and its variant [77], large scale EMRs data are represented
by a set of extracted frequent patterns. The authors used a
sankey diagram to reveal the patterns with a color map to
encode associated outcomes. Through this view, physicians
and clinical researchers can easily understand the important
correlations between treatment patterns and associated out-
comes. But the frequent patterns do not always correspond
to important or meaningful information within the data.
Thus, CoreFlow [60] extracts branching patterns in event se-
quences using the Rank-Divide-Trim three-step procedure,
and visualize the patterns as a tree diagram that illustrates
an overview of the event flow.

In addition, exploring event sequences by defining
queries or using mining algorithms alone may becomes
insufficient in some cases. To this end, Law et al. [57]
proposed MAQUI, which interweaves quering and mining to
extract informative patterns within a set of event sequences.
The authors applied a hierarchy-based visualization and a
timeline-based visualization to represent frequent patterns
and temporal information, respectively (Fig. 3 (5)). Similarly,
Sequence Synopsis combine querying and a mining method
named Minimum Description Length principle to extract
informative patterns from event sequences with minimizes
information loss. Each extracted patterns are visualized as a
series of colored rectangles, where each rectangle represent
an type of event.

Progression analysis aims to uncover the evolution of
one event during a period of time. Most of the aforemen-
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Fig. 3. Selected examples of visual summarization techniques. (1) EventFlow [67] visualizes event sequences in both an aggregated tree-like
overview and detailed a timeline display. (2) Outflow [111] visualizes alternative progression paths using color-coded edges that map to patient
outcome. (3) EventThread [37] visualizes the threads derived by tensor analysis as segmented linear stripes, following a line map metaphor. (4)
EventThread2 [36] uses a node-link visual design to provide a higher-level summary of progression patterns of event sequences. (5) MAQUI [57]
applies a hierarchy-based visualization to represent multiple frequent patterns and adopts a timeline to reveal the temporal information.

tioned techniques produce highly summarized results, but
fail to show important low-level event details (e.g., single
event features) [37]. Visual progression analysis techniques,
such as [13], [29], [30], [36], [37], [75], have been introduced
to reveal time-evolving patterns of latent progression stages.
For instances, in DecisionFlow [29], analysts can use a
milestone-based approach to retrieve progression patterns
of interest, and visualized them in a hierarchy-based visu-
alization. EventThread [37] has been introduced to summa-
rize latent sequential patterns within a large-scale sequence
collection. This technique employs a clustering algorithm to
group the summarized patterns into various categories at
different stages. In order to clearly reveal the summarized
latent patterns, the authors adopted a line map metaphor to
display the overall evolution of the latent patterns (Fig. 3(3)).
Based on preceding works, Guo et al. further proposed
EventThread2 [36], a visual analytics technique that iden-
tifies semantically meaningful progressions using a unsu-
pervised algorithm. This technique solves the time scale
limitation of EventThread and proposed a new visual design
to reveal the progression patterns. It combines a node-link-
based cluster view and a timeline-based sequence view to
provide a higher-level summary of progression patterns of
multiple event sequences by grouping similar segments at
each stage (Fig. 3 (4)).

Clustering is the process of finding sequence-wide sim-
ilarities to achieve sequence groupings. In the clustering
analysis of event sequences, a broad range of visual ana-
lytics techniques have been developed to empower analysts
working with three types of event sequence data, including
temporal event sequences, spatiotemporal event sequences
and microarray sequences. For temporal event sequences,
clustering can be informed by sequence characteristics such
as event types and sequence attributes. Cadence system [31]
offers a scatter-plus-focus visualization design that supports
interactive hierarchical exploration of the space of event
type groupings. This system adopts scented navigation cues

to help users navigate complex hierarchies, as well as in-
teractive bar charts and histograms that support additional
constraints in categorical and continuous attributes of the
target groups. [71], [86], [104], [110] are utilized to clus-
ter individual entities (e.g., works, online users) based on
behaviors. VASABI [71] summarise user behaviours by ex-
tracting their common tasks, and then identifies the groups
of users based on user behaviors. This technique facilitates
interactive analysis of user clustering through a hierarchy-
based visualization. DICON [3] segments a collection of
event sequences into groups based on entity attributes (e.g.,
age, gender). Each multidimensional cluster is revealed in
a hierarchy-based visualization, which allows analysts to
understand the event distributions in different groups.

The clustering analysis of spatiotemporal event se-
quences have been explored in many efforts, such as [42],
[53], [83], [102], [122]. Spatiotemporal visual analysis of ac-
tivity diary data is visualized through VISUAL-TimePAcTS
[102] on a coordinate plane of time and space. Robinson
et al. [83] developed STempo, a geovisualization appli-
cation to facilitate the exploration of spatiotemporal pat-
terns within event sequence data. Moreover, studies have
also introduced visualization tools to cluster microarray
sequences [41], [88], [91], [94]. Seo and Shneiderman [91]
created the Hierarchical Clustering Explorer that offers a
dendogram and two-dimensional scattergrams, and their
dynamic query controls allow users to choose which clusters
to display. This model is especially suitable for bioinformat-
ics and microarray data. Moreover, SequenceJuxtaposer [94]
facilitates the comparison of biomolecular sequences using
a visualization technique called accordion drawing.

In conclusion, visual summarization techniques save
user effort by capturing a broad view of event sequence
data. To allow for interactive exploration of visual sum-
marization from different perspectives, the aforementioned
techniques commonly employ the following interaction
techniques within their interfaces: filter/query for retrieving
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Fig. 4. Selected examples of visual prediction & recommendation techniques. (1) EventAction [20] uses a calendar view to show the temporal
information of event sequences. (2) CarePre [44] reveals the medical record of a patient in a timeline-based visualization, and similar patients’
medical event sequences are aggregated into a Sankey-based visualization. (3) In RetainVIS [55], predicted risk trajectories are revealed in parallel
line charts (middle), and the risk contributors for the patients are displayed in a bar chart (bottom). (4) [34] visualizes the top prediction, alternatives,
and their uncertainties in a circular glyph design.

information of user interest, scaling for multiple scales visu-
alization, alignment for aligning event sequences on selected
events or time points, and sequence editing for modifying
event sequences during analysis.

4.2 Visual Event Prediction & Recommendation

Prediction & recommendation generally involves analyzing
observed event sequences to foresee the upcoming events
or sequences, or examining how certain interventions may
effect the future trends. The fundamental objective is to
make predictive analysis. Typical motivating tasks include
making predictions on future events and outcomes [19], [33],
[34], [44], and making recommendations on user actions
to help achieve certain goals [20], [21]. In addition, due
to the importance of interpretability in the applications of
sequence predictions, a group of work that visualize the
underlying mechanisms of the prediction model [51], [55],
[96] to aid result interpretation.

Prediction techniques for event sequences have been
proposed to predict the next event in a sequence based
on historical events. In many domains, event prediction
plays an important role in decision-making. For instance,
medical researchers and physicians can use this type of
techniques to understand potential outcomes of patients
under different treatments. The CarePre system [44] lever-
ages deep learning-based RNNs to predict the risk of a
patient being diagnosed with certain diseases in the future.
In this system, a patient’s historical events are displayed in
a timeline-based visualization (Fig. 4(2)). Users are allowed
to modify these events (e.g., by removing, moving, adding,
or adjusting the event’s duration) to get different outcomes
from the prediction model. Moreover, [34] is a visual ana-
lytics system designed for prediction analysis. It employs
Recurrent Neural Networks (RNNs) to predict future activi-
ties, and review the most probable predictions and possible
alternatives in a circular glyph design (Fig. 4(4)). The color

of the first outer ring represents the top prediction for a
group of records. Then, depending on the granularity of the
analysis, alternative predictions are represented as rings and
added to glyph from the inside out.

Recommendation techniques provide reliable sugges-
tions on user actions to help achieve certain goals. Students
can adopt this type of techniques to understand their future
career development and find an academic plan that suits
their desired goals. Du el al. [20], [21] introduced two career
path recommendation techniques that provide suggestions
and potential outcomes by summarizing the outcome of
similar users. In EventAction [20], all of the records that
similar to select one are displayed in a list of calendar views
(Fig. 4(1)). Recommendation actions are highlighted in the
calendar and allow users add into their plans for next round
explorations.

In the past few years, deep learning algorithms have
demonstrated significant improvements over traditional ap-
proaches in the tasks as prediction and classification. For
event sequence data, Recurrent Neural Networks (RNNs)
are frequently adopted to foresee the upcoming events or
sequences, or exam how certain interventions may effect the
future trends. However, interpretability is recognized as a
primary challenge of deep learning approaches. To address
this issue, recent studies have introduced visual prediction
techniques to interpret the internal mechanisms of a pre-
diction model [51], [55], [96]. For instances, RetainVIS [55]
is a hybrid visual technique for gaining insight into how
RNNs model EMR data within the context of diagnosis
risk prediction tasks. This technique interprets the rela-
tionship between patient records and predicted risk scores.
Specifically, patients’ medical records and their predicted
risk trajectory are visualized in two parallel line charts
(Fig. 4(3)), which allow users to understand the progression
of predicted diagnosis risks and why such predictions are
made. Also, when users hover over the x-axis, they can see
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Fig. 5. Selected examples of visual anomaly detection techniques. (1) [72] combines a rectangle glyph design and a timeline-based visualization to
reveal anomalies within event sequences. (2) MOOCad [68] employs a Sankey-based visualization to display an overview of the stage segmentation
results, and it uses a matrix-based approach to indicate the content patterns of each group within the stage. (3) FluxFlow [129] visualizes anomalous
retweeting sequences in a packed circles design. (4) EventThread3 [35] displays anomalous sequences in a line of rectangular nodes ordered by
time of occurrence (top). The authors use a circular glyph (middle) to visualize the anomalous events within sequences.

the updated contribution scores of medical events, which
represent the importance or contribution of an event to
the predicted result. Similarly, LSTMVis [96] focus on the
visual analysis of hidden features in RNNs, it allows users
to explore hypotheses about RNN hidden state dynamics.

In summary, visual prediction and recommendation
techniques contribute to decision-making in many domains.
In order to allow users to explore the data from differ-
ent perspectives, the aforementioned techniques commonly
employ the following interaction techniques within their
interfaces: filter/query for retrieving information of users
interest, emphasis for adjusting attributes of data to reveal
interesting patterns, and sequence editing for including a new
event or a new feature into the prediction model.

4.3 Visual Anomaly Detection

Visual anomaly detection for event sequences aims at iden-
tifying rare cases that deviates from the majority of the
sequence progressions. In many application domains, such
as social media [4], [6], [129], computer systems [68], [90],
[120], clickstream [27], [35], [72], and smart factory [40],
[115], [121], various visual techniques have been proposed
to serve the task of anomaly detection. As the forms of
anomalies vary across different tasks, we broadly divide
existing techniques into the following three types: anoma-
lous events visualization, anomalous frequent patterns
visualization, and anomalous sequences visualization.

Anomalous events visualization identifies anomalous
events within the context of event sequences by uncover-
ing the differences between abnormal and normal events.
Many existing techniques incorporate multiple visualization
methods in their interfaces to display anomaly events from
different perspectives [8], [27], [35], [69], [72], [121]. For
instance, EventThreat3 [35] detects abnormal events within
anomalous sequences based on inferred expected normal
progressions (Fig. 5(4)). Anomalous sequences and expected
normal progressions are represented in a line of rectangular
nodes ordered by time of occurrence. Anomalous events are
revealed in circular glyphs to encode critical variables of

anomalous events. In this view, analysts can visually com-
pare the abnormal sequence with normal sequences, and
thus potentially understand why anomalies exist. Moreover,
in [72], anomalous log sequences are detected by a black-
box model, and displayed in a timeline-based visualization.
Each event is represented as a colored rectangle, users
can verify the anomalous logs and explore the events that
contribute to sequence anomaly. Xu et al. [121] extended
the Mareys graph to visualize product moving traces in a
production line. The visualization of individual products
and their processing times improves user understanding of
a lines performance, and also helps in better understanding
anomalous events, the causes and effects in a production
line.

Anomalous frequent patterns visualization is utilized
to help users perceive the anomalous frequent patterns that
contribute to sequence abnormality. MOOCad [68] is de-
signed to detect anomalous learning patterns within MOOC
data (a set of online learning activities sequences) (Fig. 5(2)).
To facilitate anomaly detection and reasoning, the large-
scale learning sequences are clustered into various groups
at different stages. The authors employed a sankey-based
visualization to display the overview of the stage segmen-
tation results, and a matrix-based approach to indicate the
content patterns of each group within the stage. In this view,
users can flexibly explore the anomalous learning patterns
via stage comparison, group comparison within stages, and
individual path inspection.

Anomalous sequences visualization helps users detect
anomalous sequences within sequence collections, uncover
the temporal structure of anomalous event sequences, and
reveal the deviation of anomalous sequences from nor-
mal sequences. For instance, Zhao et al. [129] proposed a
flexible timeline visualization technique to discover rumor-
spreading processes between Twitter users (Fig. 5(3)). The
retweeting sequences are visualized by a packed circles
design, where each participating user is represented as a
circle. In order to intuitively display the abnormality of
sequences, the authors designed a circular glyph for each
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Fig. 6. Selected examples of visual comparison techniques. (1) [22] summarizes the criteria values of similar records as a hierarchical tree. Each of
the records and common temporal patterns among the similar records are visualized in the calendar view. (2) In CoCo [63], a combination of medical
events is visualized in a timeline, where colored triangles represent medical events. (3) MatrixWave [130] visually compares two web clickstreams
in a matrix-based visualization. (4) Similan [114] visualizes each event sequence in a binned timeline. The paired events are connected by lines.

retweeting sequence that summarizes its important aspects
such as overall abnormality, contextual polarity, scale, and
temporal information. Cao et al. developed TargetVue [6]
to detect Twitter users with anomalous behaviors. This
technique explores anomalous users via an unsupervised
learning model and visualizes the behaviors of suspicious
users in three glyphs (Fig. 9(4)). These glyphs are designed
to present the users’ communication activities, features, and
social interactions, respectively. Nguyen et al. [72] proposed
a visual analytics approach that aims to detect unusual
action sequences of users (Fig. 5(1)). Every sequence is
visually summarized in a compact glyph to help analysts
spot anomalous sequences, the length and color saturation
of glyph represent sequence length and anomaly scores
respectively. Also, anomalous sequences are visualized in
a timeline visualization, where each event is represented by
a colored rectangle whose color maps to event type. Similar
designs are proposed by [27] and [35]. In [27], anomalous
sequences are displayed in a timeline visualization with
color encoding by event type. In [35], Guo et al. employed
an MDS projection to visually summarize the abnormality
of a dataset and subsequently reveal sequences of interest in
a timeline-based visualization.

In summary, visual anomaly detection has been intro-
duced to solve various real-world problems across different
application domains. To allow users to interactively explore
data from different perspectives, the aforementioned tech-
niques commonly employ the following interaction tech-
niques within their interfaces: filter/query for retrieving in-
formation of users interest, emphasis for adjusting attributes
of data to reveal interesting patterns, scaling for multiple
scales visualization, and alignment for align sequences on
selected events or time points.
4.4 Visual Comparison
Visual comparison is a common task when investigating the
similarities and differences between event sequence data. A
variety of visual comparison techniques have been proposed

to solve real-world problems in many domains such as
for career path analysis [20], [22], clickstream analysis [72],
[130], health information analysis [33], [44], [63], and generic
purposes [35], [114]. In our work, we classify the visual
comparison techniques for event sequences based on com-
pared targets, including comparison techniques for event
sequences, comparison techniques for sequential patterns,
and comparison techniques for sequence collection.

Comparison techniques for event sequences are uti-
lized to compare individual events in terms of disorder,
missingness or redundancy, and difference in the occurrence
of timing and attributes. To facilitate the interpretation of
compared results, researchers adopted juxtaposition design
[114], superposition design [44], and hybrid design [33], [35]
to clearly visualize the similarities and differences between
sequences. For instance, Similan [114] shows the similarity
of events within two similar sequences via juxtaposition. In
this technique, each event sequence is visualized in a binned
timeline (Fig. 6(4)), similar sequences are placed beneath
the target sequence for explicit comparison. In order to
reveal the similarity information between two sequences,
the pairs of events matched by the Match & Mismatch
measure are connected by lines, and events without any
links connected to them are missing or they are extra events.
Moreover, in CarePre [44], the visual comparison techniques
with superposition design are utilized to verify the predicted
risk of potential diseases. Last but not least, in the most
recently published visual comparison technique, Guo et al.
[33] searched similar medical records and applied hybrid
design to convey the differences between target record and
its similar records. This technique uses explicit encoding to
reveal the overall dissimilarity of similar records over time,
and it uses superposition to represent differences between
target record and its top three similar records in detail.

Comparison techniques for sequential patterns are
used to investigate the similarity of sequential patterns
within two event sequences for diverse applications, such
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as for log files [72], [81] and career paths [20], [22]. The
career recommendation technique, EventAction [20], uses a
calendar view to show event sequences and juxtaposed them
in a ranked list for visual comparison. In [72], Nguyen et al.
adopted visual comparison with superposition to indicate the
anomaly path within abnormal sequences. Du et al. [22] sup-
ports explicit encoding and juxtaposition of differences for se-
mantically meaningful comparisons (Fig. 6(1)). Specifically,
while comparing the target record with the entire dataset,
the authors summarized the criteria values of the similar
records in a hierarchical tree, where the similarities and
differences are explicitly encoded. For a detailed inspection,
all records and common temporal patterns are visualized
in the calendar views, so that users can juxtapose any two
sequences of interest to explore the differences between
them.

Comparison techniques for sequence collection aim
to find differences between two sets of event sequences in
terms of structure, attribute, temporal information [62]. For
instance, CoCo [63] leveraged automated statistical analysis
to compare the attributes of two distinctly defined cohorts,
adopting explicit encoding to convey an overview of the
differences between the two cohorts (Fig. 6(2)). Moreover,
MatrixWave [130] is a matrix-based visualization for com-
parison analysis of two web clickstream datasets in terms of
traffic patterns (Fig. 6(3)). The authors applied superposition
to represent two related event sequence datasets within one
visualization and used explicit encoding to reveal the differ-
ences between traffic paths at each node. This technique
focuses on differences in the occurrence of immediate and
pairwise steps among two clickstream datasets.

In conclusion, visual comparison techniques can save
analysts’ efforts to explore the differences between two
event sequences or two groups of event sequences. To
facilitate interactive analysis, the aforementioned techniques
adopt filter/query for retrieving information of users interest,
scaling for multiple scales visualization, alignment for align
sequences on selected events or time points, and emphasis for
adjusting attributes of data to reveal interesting patterns.

4.5 Visual Causality Analysis
Visual causality techniques have been proposed to help
users uncover causal relationships among data. Traditional
visualizations, such as a directed acyclic graph (DAG) or the
Hasse diagram [50], can be employed to illustrate causality
to a certain extent. However, they become inefficient as
an increased number of variables introduces more edge
crossing. Elmqvist et al. successively proposed two visual
methods, Growing Squares [23] and Growing Polygons
[24], which enhance node representations within a DAG
with color-coded squares and polygons that help provide
an overview of influences on each event in large systems.
They also leveraged animations to dynamically present the
temporal ordering of causality. Despite that both methods
are effective in uncovering the causal relationships of events,
they fail to integrate causal semantics into the graph, which
is important for a deeper understanding of causal structures.

To incorporate additional causal semantics, Kabada et
al. [46] introduced a set of animations following Michottes
rules of causal perception [65] to intuitively illustrate causal
strength, amplification, dampening, and multiplicity. Recent

studies have invested more effort in integrating automatic
causal analysis algorithms and causality visualizations into
a visual analytics system to facilitate interactive causal anal-
ysis and reasoning. In [9], Chen et al. proposed a workflow
for a visual causal analysis system that aims to support
decision-making by providing hypothesis generation and
evaluation. This leads to a number of visual analytics
systems that are designed to support interactive analysis
of data correlation and causation. For example, Zhang
et al. [128] introduced a visualization tool that utilized
force-directed graphs to display the correlations between
numerical and categorical variables in multivariate data.
Within their interface, the authors designed a slider bar
that allows users to filter the edges corresponding to weak
relations. ReactionFlow [18] was developed to facilitate a
better understanding of causal relationships between pro-
teins and biochemical reactions in biological pathways. It
organizes the causal pathways into a Sankey-based struc-
ture to emphasize the downstream and upstream nature
of the causal relationships. It uses animation to highlight
the flow of activity through a pathway. Wang et al. [105]
presented a visual interface to reveal causal relationships
in a force-directed graph with a color scheme design that
allows analysts to edit and verify causal links according to
their domain expertise. They extended this work in [106]
with a path diagram visualization to better expose causal
relationships between variables.

As prior efforts mainly focus on the causal analysis of
multivariate data, few techniques exist to analyze causal
relationships among events in event sequence datasets.
When dealing with event sequences, three major challenges
need to be specifically tackled. First, the temporal nature of
event progressions adds additional causal semantics, such
as causal delays and causal durations, into the causation
of events. Thus, this aspect raises the bar for extracting
causal relationships within event sequences. Second, the
high dimensionality of events and the latent structure of
hierarchies in event types add complexity to the causal
graph. This requires a dedicated graph layout mechanism
to handle the causal complexity. Lastly, the complexity of
temporal event sequences leads to difficulty in investigating
event sequence collections.

5 APPLICATIONS

Given the broad applications of event sequence data, in this
section, we review visual analysis techniques for event se-
quences applied in the fields of Health informatics, Internet
applications, and Industry 4.0.

5.1 Health Informatics
In health informatics, electronic health records (EHRs) and
electronic medical records (EMRs) can be represented as
individual event sequences. Each sequence records the med-
ical events of a patient over the course of a clinical process,
and each event represents a medical event such as a diagno-
sis, lab test, medication, or treatment. With ample medical
event sequence data and domain knowledge, physicians
and medical researchers can extract new knowledge, quan-
tify the effects of changes in care delivery, and potentially
guide the formation of best practice guidelines. To extract
meaningful information from medical event sequences, a
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Fig. 7. The selected papers regarding visualization and visual analytics of event sequences in different application domains. Each paper is labeled
by relevant analysis tasks and design components in the design space. The rows are grouped and colored by dimensions of our proposed design
space: DSs - Data Scales; Ts - Analysis Tasks; VRs - Visualization Representations; ITs - Interaction Techniques.

variety of visual techniques have been proposed to serve
analysis tasks, including cohort analysis [3], [36], [37], [52],
[54], [62], [127], outcome analysis [29], [31], [74], [84], [108],
[111], [113], and progonsis analysis [44], [55].

Cohort analysis is a common approach used to uncover
correlations between a specific disease risk and the under-
lying attributes of patients within the cohorts [127]. Medical
researches can construct a cohort of patients based on a
medical event (e.g., diagnosis, treatment), the attributes of
patients (e.g., gender, age), and the patterns of individual
sequences (e.g., symptoms progression, treatment progres-
sion). Suppose a medical researcher wishes to understand
the exposure factors for lung cancer. He can gather the
answer by analyzing common attributes within a cohort
of lung cancer patients or by measuring the differences
between cohorts with or without lung cancer. Following this
idea, existing visual techniques for cohort analysis empha-
size one of two strategies: cohort summarization [36], [37],
[80], [127], or cohort comparison [3], [52], [54], [62], [79].

Cohort summarization techniques, such as CAVA [127]
and Chronodes [80], visually summarizing informative pat-
terns within a cohort and uncover the common exposure
factors for a disease. CAVA [127] combines chart-based and
hierarchy-based visualization to represent the attribute dis-
tributions of a cohort (Fig. 8(3)). Then, to further investigate
exposure events in the cohort, each patient was assigned
a hospitalization risk score based on their medical history.
Both the calculated risk scores and event progressions are

visualized by color-coded edges, analysts can intuitively
understand how different event progression pathways lead
to different hospitalization risk scores and which medi-
cal events have higher risks. Moreover, in EventThread2
[36], the clustered medical event sequences and common
sequential patterns (e.g., typical care plans) of a cohort
are visualized in a sankey-based visualization and a node-
link visual design respectively (Fig. 3(4)). User can inspect
common sequential patterns of a cohort with the goal to
explore those medical events that affect further progression.

Cohort comparison measures differences between two
cohorts of patients to determine exposure factors of a condi-
tion such as disease or death. COQUITO [52] helps users
interactively construct two cohorts and explore exposure
events for a disease. It uses a hierarchical tree map and
multiple bar charts to provide an overview of statistical
information about the cohorts (Fig. 8(1)). Then it leverages
PARAMO [70] to compare two cohorts and determine if
the constructed cohorts carry exposure events for a dis-
ease. CoCo [62] is a visual comparison technique (Fig. 6(2))
that measures the differences between two cohorts under
various differentiating metrics. Users can select metrics of
interest, such as the most differentiating event subsequences
between two cohorts, to explore the medical events or
patterns that may influence the incidence of a condition.
In CoCo, each row displays the difference between two
cohorts, where medical patterns of cohorts are visualized by
a timeline-based design. A circle marker is placed horizon-
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Fig. 8. Selected examples of visual techniques for health informatics. (1) COQUITO [52] uses a hierarchical tree map and bar charts to provide an
overview of statistical information of cohorts defined by users. (2) Composer [84] plots the outcome score trajectories of different procedures in a
line chart. (3) CAVA [127] uses a stacked bar chart, a pie chart, and a hierarchical tree map to represent the age, gender, and diagnosis distributions
of a cohort, respectively. Both the calculated risk scores and event progressions within the cohort are visualized by color-coded edges.

tally between two cohorts to display the difference between
the values and in the direction of whichever cohorts value
(e.g., death rate, survive rate) is higher.

Outcome analysis studies the end results of different
medical progressions (e.g., symptom progressions, treat-
ment progressions) with the goal of facilitating informed
decision-making about diagnosis and treatment options.
Existing works, such as Outflow [111] and Frequence [76],
reveal the medical progression paths in a sankey-based
visualization to uncover the outcomes of different proce-
dures. More specifically, Outflow [111] aggregates medical
event sequences from a cohort of patients and visualizes
alternative progression paths using color-coded edges that
map to patient outcomes (Fig. 3(2)). Similarly, in a series of
efforts proposed by Perer et al. [74], [76], [77], the authors
extracted frequent progression pathways of a cohort and
used a sankey-based visualization to display them, while
providing context on which care plans were successful and
which were not. These techniques provide an overview of
the progression pathways within a cohort, and thus help
users understand which factors, medical pathways, or other
structures are most associated to the outcome of interest.
Nevertheless, as users are not allowed to interactively build
the cohorts in some outcome analysis techniques, the an-
alytic capability of these techniques could be hugely im-
pacted when analyzing a sequence collection of different
patients. To overcome this issue, DecisionFlow [29] lever-
ages a milestone approach to support users in defining a
cohort by highlighting patients with a specific outcome (e.g.,
a disease). In this technique, the author used a hierarchy-
based visualization to interpret how many patients within
the cohort have the specific outcome. Users can interac-
tively compare the proportion of patients across different

medical procedures and explore the association between
medical events and outcomes. Moreover, Composer [84]
enables users to interactively explore the outcomes under
different cohorts and treatment plans. This technique em-
ploys PROMIS (Patient-Reported Outcomes Measurement
Information System) to automatically evaluate the outcome
scores of a patient under user-defined treatments, and plots
the outcome score trajectories in a line chart (Fig. 8(2)).
Medical researches can plot outcome trajectories of different
treatments in one chart to determine the optimal treatment
for a cohort of patients.

Prognosis analysis predicts the risks of a patient being
diagnosed with certain diseases in the future based on the
patient’s medical history. A series of deep learningbased
visual prognosis techniques, such as [15], [44], [51], [55],
have been introduced to serve prognosis analysis and in-
terpret the results. For instance, [51], [55] implement RNNs
to predict the current and future states of a patient. Retain-
Vis [55] enables users to modify individual sequences of
medical events (e,g., add or remove medical events, modify
visit period) to experiment with how predicted risk changes
according to event sequences changes. The authors visual-
ized a patient’s predicted risk trajectory and their medical
event sequences in two parallel line charts (Fig. 4(3)). In this
view, users are able to observe correlations between medical
event sequences and prediction risks, and thus understand
why such risk predictions are made. CarePre system [44] can
predict the risk of a patient being diagnosed with a certain
disease and estimates the most influential treatments for a
patient based on historical medical records. The patient’s
historical events are visualized in a timeline-based visualiza-
tion (Fig. 4(2)), and users are allowed to modify these events
(e.g., removing, moving, duration adjustment, adding) to
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get different predicted risks. Clinicians can create multiple
edited sequences to analyze the predicted results under
alternative treatments, and this system thus helps clinicians
understand the impact of different treatment options.

5.2 Internet applications

In various internet applications, the activities of users and
devices can be recorded as individual event sequences.
For instance, social media data contain sequences of times-
tamped activities (e.g., posting or commenting) for specific
users that are recorded over time. Similarly, clickstream data
collected from e-commerce websites record how visitors
operate and navigate through a web site, and this data can
be represented as sequences of timestamped events (e.g.,
visiting a product page, purchasing a product) generated
by visitor actions. Additionally, the system logs collected
from a computer system can also be represented as temporal
event sequences of device conditions (e.g., usage, temper-
ature, workload). In this section, we provide a review of
the visual techniques that have been developed for event
sequence data retrieved from social media platforms, e-
commerce websites, and computer systems.

5.2.1 Social media
On social media platforms such as Twitter and Facebook,
user activities can be recorded as event sequences. Each
sequence records the temporal activities of a user over
time, where each event represents an online activity such
as posting or commenting. Analysis of such event sequence
data has exhibited potential for understanding various types
of user behavior on social media. Existing efforts have
proposed a range of visual analytics techniques to help yield
insights about collective behaviors [12], [57], [76], [101],
[117], [123], [129] and ego-centric behaviors [4], [6], [11].

Collective behaviors refer to activities conducted by a
temporary and unstructured group of people. On social me-
dia, collective behaviors are formulated by groups of social
media users through the processes of spreading information
and human mobility. To study these collective behaviors
and identify behavioral patterns, various visual analytics
techniques have been proposed: [5], [12], [98], [101], [129]
are designed to study the behavior of spreading information,
and [57], [76] can be utilized to analyze human mobility.

Reposting process refers to how information spreads
across space and time on social media platforms. Google
+ [101] interweaves node-link diagrams and circular map
metaphors to visualize message spreading paths. Analysts
can easily capture the traces of diffusion between users
and identify the importance of a message by its size and
diffusion path. Chen et al. [12] used a map metaphor to sym-
bolize the reposting process in a spatial context (Fig. 9(1)).
The diffusion structure is visualized using various link
metaphors such as rivers, routes, and bridges. This tech-
nique highlights the influence of key players, and it enables
analysts to explore how these key players promote the
evolution of topics and enlarge the influence of the source
message. Zhao et al. [129] proposed a flexible timeline vi-
sualization technique to reveal the rumor spreading process
among Twitter users. Moreover, tracing the spatiotemporal
information of diffusion pathways can uncover how infor-
mation is spread on a global scale, such as [5], [98]. Cao et

al. [5] visually summarized the temporal trends, the social-
spatial extent, and community response to a topic using a
sunflower metaphor. The original tweets are placed at the
center of the circle and linked with geo-groups (users from a
same country) once the original tweets are reposted by users
in these groups. The retweeting activities are displayed as
a sequence of color-coded retweet glyphs moving along
pathways that indicate the timing and sentiments of the
retweets.

Beside the reposting process, another collective behav-
ior of importance is human mobility. The spatiotemporal
event sequences retrieved from social media platform, like
Foursquare, have recently been used to uncover user mo-
bility patterns and predict mobility decisions. For example,
by studying human mobility, advertisement companies can
explore the mobility patterns of people such as when and
where they go to work and, thus, optimize their advertising
strategies. Some visual analytics techniques that leverage
pattern mining algorithms have been used to explore com-
mon mobility patterns of users such as [57], [76]. MAQUI
[57] support interactive exploration of the data collected
from Foursquare to uncover the frequent mobility patterns
of users.

Egocentric behaviors refer to activities conducted or
influenced by a user. An egocentric perspective enables a
closer analysis of individual behaviors and thus provides
more detailed behavioral patterns [11]. For instance, Cao et
al. [4] proposed Episogram, an egocentric representation for
visualizing individuals’ interaction histories (e.g., posting
or reposting content). Episogram visualizes each interaction
thread using a vertical line on a timeline and uses a glyph
design to represent interaction events among users. Building
upon preceding works, Cao et al. developed TargetVue [6]
to detect and visualize users with anomalous behaviors on
Twitter. TargetVue detects anomalous users via an unsu-
pervised learning model and visualizes the behaviors of
suspicious users in three glyphs that represent the users
communication activities, features, and social interactions,
respectively (Fig. 9(4)). Moreover, [11] proposed a map-
based visual technique to summarize the historical diffusion
traces initiated by a central user. Users who participated
in reposting one central users post are visualized as hex
nodes whose color and size encode the user’s behaviors and
roles. These users are grouped into different regions on the
map and linked with the central user, forming the social
network of the central user. In this view, if one user leads to
a great amount of reposting, analysts can understand how
information reaches him and diffuses from him.

5.2.2 E-commerce

Clickstream data collected from e-commerce websites record
how visitors operate and navigate through web sites. A
visitor online activity can be recorded as an event sequences,
in which each event represent a single online activity (e.g.,
visiting a product page). The increasing availability of such
event sequence data permits analysts to extract valuable
insights in website design and commercial activities such
as advertising. Existing visual techniques have been intro-
duced to explore frequent visiting traces [60], [61], [124]
and user behavior patterns [10], [26], [32], [39], [68].

To facilitate the understanding of frequent visiting traces,
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Fig. 9. Selected examples of visual techniques for Internet applications. (1) R-Map [12] uses a map metaphor to symbolize the reposting process
in a spatial context. (2) CloudDet [120] combines a glyph design and a stacked line chart to monitor the performance of a computer system. (3)
PeakVizor [10] encodes each interaction peak by a glyph in an overview, and the spatial-temporal information of the peaks and the correlation
between the peaks are visualized in two additional views. (4) TargetVue [6] visualizes the behaviors of suspicious users in three glyphs that present
the users communication activities, features, and social interactions respectively.

Zgraggen et al. [124] proposed (s|qu)eries to visualizes reg-
ular patterns of clickstream data. Moreover, Liu et al. [61]
extracted frequent browsing paths from clickstream data
and visualized them in a funnel-based visualization. As
frequent patterns do not always correspond to important or
meaningful information within data, CoreFlow [60] lever-
aged a tree-based visualization to facilitate branching pat-
tern exploration for browsing paths.

Analyzing clickstream data can help e-commerce com-
panies explore users behavior and optimize their business
plans. This idea has been extended to online education plat-
forms with the goal to explore student learning behaviors
[10], [32], [39], [68]. For instance, PeakVizor [10] analyzes
students’ interaction activities to understand how students
respond to video material. For example, if an unexpectedly
high occurrence of pausing or rewinding is observed at a
certain segment, then this segment is probably difficult or
confusing and thus requires additional time watching and
studying. The authors encoded each peak, representing high
pausing or rewinding activity, using a glyph in an event
sequence overview. Moreover, spatiotemporal information
about the peaks and the correlations between peaks are also
visualized in two additional views (Fig. 9(3)). CCVis [32]
explores the patterns in online students’ clicking behavior,
and thus, identifying the course resources that were clicked
most and least. It visualizes the critical sequences that lead
to different transition probabilities in a node-link diagram,
and it use a sankey diagram to display the click behavior
patterns.

5.2.3 Computer systems
Computer systems are monitored by regularly sampling
profile data that record the timestamped conditions (e.g.,

CPU load, memory usage) of specific devices over time
as event sequences. Monitoring and analyzing the profile
data are important for identifying devices that are over-
or under-allocated, inefficient operations, and nodes that
are misbehaving or failing. Muelder et al. [69] proposed a
visual technique to portray the behavior of cloud computer
systems over time. The authors adopted a stacked graph
timeline to summarize the aggregate behavior of cloud com-
puter systems. For detailed inspection, the behavioral lines
of each compute node are plotted in a table of line charts.
In this view, analysts can efficiently explore the trends and
anomalies within a system. Xie et al. [118] leveraged one-
class support vector machines to detect anomalous exe-
cutions in high performance computing clusters. Detected
anomalies are visualized in a multi-level visualization sys-
tem for deeper analysis. Specifically, all of the anomalous
compute trees are identified in a scatter plot. Analysts can
select the anomalies of interest to inspect their structural
patterns in a node-link diagram and their invoked functions
in a stacked timeline. [120] provides interactive visualization
capabilities that enables analysts to inspect profile data and
identify anomalous performances in cloud computing sys-
tems. This system combines multiple visualization modes
such as glyph design and stacked line charts, to comprehen-
sively monitor the performance of cloud computing systems
from different aspects (Fig. 9(2)).
5.3 Industry 4.0
In smart factories, the temporal status of equipment over
time can be recorded as an individual event sequences,
where each event represent a status (e.g., a equipment
condition or a processing event). Monitoring and analyzing
these event sequence data can help managers understand
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Fig. 10. Selected examples of visual techniques for Industry 4.0. (1) Xu et al. [121] extend a Mareys graph to visualize product moving traces in
a production line. (2) In LiveGantt [45], the big picture of the current schedule is visualized in a Gantt chart. (3) Wu et al. [115] employ a stacked
timeline to reveal how the real equipment conditions deviate from ”normal” conditions in a period of time. The long-term trends of equipment
conditions are visualized as a radial visualization to provide users with an overview of equipment conditions during a certain past time period.

factory conditions, quickly respond to various sorts of
events, and optimize the productivity of factories. A variety
of visual techniques have been introduced to help users
exploring anomalous events [8], [40], [115], [121], [132] and
optimizing manufacturing plans [45], [97].

In smart factories, an anomalous event (e.g., equipment
failure, outlier process) could result in a serious incident or
great financial loss. Traditional anomaly detection depends
on manually checking every equipment, which is too expen-
sive and inefficient. In contrast, the collected manufacturing
data provides more reliable resource for factory managers
to analyze anomalies. For instance, Herr et al. [40] analyze
event reports of a production line and detected system-
atic issues in manufacturing processes. Reported events
are shown as a time series plot that can help understand
the error distribution and recurring error patterns. Xu et
al. [121] extended the Mareys graph to visualize product
moving traces in a production line (Fig. 10(1)). The visu-
alization of individual products and their processing times
improves user understanding of a lines performance, and
also helps in better understanding anomalies, the causes
and the effects in a production line. The visual technique
proposed by Wu et al. [115] provides an interactive interface
to monitor the status of equipment in smart factories. The
authors estimated normal conditions of equipment based
on a training set, and then employed a stacked timeline to
reveal how the real equipment data deviate from estimated
normal conditions over a shot period of time (Fig. 10(3)).
Moreover, in order to visually summarize the long-term
trends of equipment conditions, the authors adopted a
radial visualization to provide an overview of equipment
conditions during a certain past time period.

Analyzing manufacturing data can help managers and
factory planners optimize manufacturing schedules. More
specifically, in a production line, each machine is responsible
only for a specific part of the production process. When the
cooperation of machines is not well designed, the produc-
tion line’s overall efficiency will be negatively affected. The
event sequence data of production lines record the past and
current tasks of machines. By analyzing these data, factory
planners can explore and reschedule inefficient plans, such
as a manufacturing plan with significant equipment conflict.
LiveGantt [45] is an interactive schedule visualization tool
that helps managers explore highly concurrent manufactur-
ing schedules from various perspectives. In this technique,
the big picture of the current schedule is visualized in a
Gantt chart (Fig. 10(2)). Users are allowed to interactively ex-
plore the inefficiencies and reschedule manufacturing plans
accordingly. PlanningVis [97] is a multi-level visualization
system to support interactive exploration and comparison of
production plans. This technique juxtaposes heat maps, line
charts, and bar charts to visualize the differences between
two plans, and thus, optimizing production plans.

6 CHALLENGES AND OPPORTUNITIES

In previous sections, we summarized event sequence visu-
alizations according to our proposed design space, extracted
five analytical tasks common in visual analysis techniques
for event sequences, and categorized the visual analysis
techniques into three typical applications. Through this
process, we found several remaining challenges in existing
research and promising future research directions that are
discussed in this section.
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Data quality: The performance of data analysis tech-
niques largely depends on the quality of data [47]. On top of
this, the complexity of event sequence data adds difficulty in
data recording and leads to more problems for data quality.
Typical data quality issues include data incompleteness
(e.g., missing events or timestamps), data errors (e.g., errors
or inconsistency in event naming), and duplication of data
records, each which can mislead statistical analysis results.
The issue of data quality implies a need for additional effort
to improve data processing to prevent misleading results
and inferences gathered from the source data.

Uncertainty: Uncertainty in information is introduced
when analyzing event sequence data with quality issues or
during user-specified data adjustments such as data trans-
formation and wrangling. This uncertainty can inhibit ana-
lysts from making optimal decisions if information about
uncertainty is not properly communicated in the visual
analytics process [87]. Although some previous studies [19],
[34] have incorporated uncertainty information in visual
analytics of event sequence data, they focused on only one
type of uncertainty information – the probabilistic uncer-
tainty under an event prediction scenario. Therefore, more
research is required to study the best ways of incorporat-
ing and visualizing other types of uncertainty information,
such as bounded uncertainty, during the process of event
sequence data analysis.

Scalability: Scalability is a well-recognized challenge
in visual analytics [17], [48]. This problem becomes more
significant in visual analytics of event sequence data due
to the large scale (i.e., large number of sequences) and
high dimensionality (i.e., vast number of event types) of
most real-world event sequence datasets [29]. Some pre-
vious research touches upon this problem mainly through
sequence aggregation [112] and event filtering [29], [31]
to enhance the visual scalability on the sequence level
and event level respectively. However, these summariza-
tion techniques hinder the inspection of detailed individual
sequences and events, and the problem of how to scale
across both sequence summarizations and low-level details
still remains. Therefore, there is a demand for a scalable
visual analytics pipeline that follows the Visual Information-
Seeking Mantra by Shneiderman [93]: “overview first, zoom
and filter, then details-on-demand” to allow users to flexibly
switch between visual summaries and sequence details.

Heterogeneity: Event sequence data can contain a vari-
ety of heterogeneous temporal events. For example, medical
health records usually include multiple event types such as
diagnostic events, lab test results, vital signs, drug admin-
istrations, etc. Events of each event type are observed or
recorded with different sampling rates and show different
event patterns, which leads to great difficulty for aggregat-
ing and organizing data from multiple sources. Most exist-
ing techniques choose to assemble all types of events to form
a unified process for modeling and display. However, this
may hinders the discovery of relationships between event
types and distinctive patterns from disparate event types,
which is crucial for investigative tasks and sense-making
processes [109]. To solve this issue, a visual analytics frame-
work need to be developed, enabling both the integrated
analysis of multiple event processes and the investigation of
patterns and trends for individual processes.

Multivariate event sequence visualization: Existing vi-
sual analytics techniques for event sequences generally char-
acterize events based on their types and timestamps only.
Besides these two common event attributes, however, events
in a sequence can also be associated with multivariate data.
For instance, lab test events in medical data are associated
with specific test values, and financial transaction records
also contain information about bank accounts and the mon-
etary amount of a transaction. It still remains challenging
to visualize multivariate event sequences due to the large
number of event attributes a single event may include,
coupled with the additional heterogeneity introduced by
different data formats of the variables linked to events.
Cappers and Wijk [7] provide a starting point of this issue by
displaying the distributions of attributes for each individual
event using lists of bar charts. However, this method can be
limited for the discovery of association between attributes
of the same event or between multiple event types. This
implies a need for a new visualization design that is able to
represent categorical event types and multivariate attributes
at the same time.

Interpretability: The chosen analysis model is a criti-
cal component in the pipeline of visual analytics [48]. In
the pursuit of better analytical performance, recently de-
veloped visual analytics tools tend to leverage advanced
machine learning or deep learning models with consider-
ably high complexity. These, however, introduce issues of
interpretability of the analysis results and a lack of control
over the analytical process, both which are essential for
high-impact analytical tasks such as precision medicine
and financial investments [16]. To address such problems,
there has been an increased research investment towards
explainable artificial intelligence [66], [96], with the to un-
cover the inner workings of complex models. Even so,
the mechanisms underlying these models can be difficult
for non-expert users to understand. Thus, there is a high
demand for visual analytics techniques that can organize,
transform, and communicate model-level interpretations
into comprehensible and actionable guidance. Some recent
advancements [15], [35], [44] tackle this issue with a focus on
a particular analytical tasks and analysis models, yet more
generalizable techniques must be explored and developed
in future research.

Causality Analysis: From our review of event sequence
analysis techniques, we noticed that causality analysis for
event sequence data has gained increased attention in the
data mining community over the past years. Many causal-
ity analysis techniques have been proposed [119], [125] to
uncover the cause-and-effect relationship between events.
However, very few visual analytics techniques have been
developed for causality analysis of event sequences. Despite
that some existing visual analytics methods are developed
for analyzing multivariate data [105], [106], the temporal
nature and high dimensionality of event sequence data can
lead to additional challenges as discussed in Section 4.5,
which is worth addressing in future research.

7 CONCLUSION

This paper presents a survey of visual analytics approaches
for event sequence data. The survey proposed a taxonomy
that includes a design space and a collection of primary
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analytical tasks for characterizing the state-of-the-art tech-
niques. In particular, the techniques are partitioned by five
categories of analytical tasks, and featured by their cor-
responding design elements in the design space. It also
illustrates the major applications of the techniques through a
more domain-specific summary. Finally, the paper discusses
the remaining challenges, and points out promising future
research directions. With this survey, we connect prior stud-
ies in this topic by fitting them together into our taxonomy.
We hope our work could provide practitioners with an
overview of the alternatives approaches, and help them
find the most appropriate design components in developing
an effective visual analytics solution that addresses their
analytical tasks at hand.
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