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ABSTRACT 31 
The threat to global food security of stagnating yields and population growth makes increasing crop 32 
productivity a critical goal over the coming decades. One key target for improving crop productivity and 33 
yields is increasing the efficiency of photosynthesis. Central to photosynthesis is ribulose-1,5-34 
bisphosphate carboxylase/oxygenase, Rubisco, which is a critical but often rate-limiting component. Here 35 
we present full Rubisco catalytic properties measured at three temperatures for 75 plants species 36 
representing both crops and undomesticated plants from diverse climates. Some newly characterised 37 
Rubiscos were naturally 'better' compared to crop enzymes and have the potential to improve crop 38 
photosynthetic efficiency. The temperature response of the various catalytic parameters was largely 39 
consistent across the diverse range of species, though absolute values showed significant variation in 40 
Rubisco catalysis, even between closely related species. An analysis of residue differences amongst the 41 
species characterised identified a number of candidate amino acid substitutions that will aid in advancing 42 
engineering of improved Rubisco in crop systems. This study provides new insights on the range of 43 
Rubisco catalysis and temperature response present in nature, and provides new information to include in 44 
models from leaf to canopy and ecosystem scale. 45 
 46 
Keywords: Rubisco, photosynthesis, enzyme catalysis, carbon assimilation, natural diversity 47 
  48 
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INTRODUCTION 49 
In a changing climate and under pressure from a population set to hit nine billion by 2050, global food 50 
security will require massive changes to the way food is produced, distributed, and consumed (Ort et al., 51 
2015). To match rising demand agricultural production must increase by 50-70% in the next 35 years, and 52 
yet the gains in crop yields initiated by the green revolution are slowing, and in some cases, stagnating 53 
(Long and Ort 2010, Ray et al., 2012). Amongst a number of areas being pursued to increase crop 54 
productivity and food production, improving photosynthetic efficiency is a clear target, offering great 55 
promise (Parry et al., 2007; von Caemmerer et al., 2012; Price et al., 2013; Ort et al., 2015). As the 56 
gatekeeper of carbon entry into the biosphere and often acting as the rate-limiting step of photosynthesis, 57 
Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase), the most abundant enzyme on the planet 58 
(Ellis, 1979), is an obvious and important target for improving crop photosynthetic efficiency. 59 

Rubisco is considered to exhibit comparatively poor catalysis, in terms of catalytic rate, 60 
specificity, and CO2 affinity (Tcherkez et al., 2006; Andersson, 2008), leading to the suggestion that even 61 
small increases in catalytic efficiency may result in substantial improvements to carbon assimilation 62 
across a growing season (Zhu et al., 2004; Parry et al., 2013; Galmés et al., 2014a; Carmo-Silva et al., 63 
2015). If combined with complimentary changes such as optimising other components of the Calvin 64 
Benson or photorespiratory cycles (e.g. Raines, 2011; Peterhansel et al., 2013; Simkin et al., 2015), 65 
optimised canopy architecture (Drewry et al., 2014), or introducing elements of a carbon concentrating 66 
mechanism (Furbank et al., 2009; Lin et al., 2014a; Hanson et al., 2016; Long et al., 2016), Rubisco 67 
improvement presents an opportunity to dramatically increase the photosynthetic efficiency of crop plants 68 
(McGrath and Long, 2014; Long et al., 2015; Betti et al., 2016). A combination of the available strategies 69 
is essential for devising tailored solutions to meet the varied requirements of different crops and the 70 
diverse conditions under which they are typically grown around the world. 71 

Efforts to engineer an improved Rubisco have not yet produced a 'super Rubisco' (Parry et al., 72 
2007; Ort et al., 2015). However, advances in engineering precise changes in model systems continue to 73 
provide important developments that are increasing our understanding of Rubisco catalysis (Spreitzer et 74 
al., 2005; Whitney et al., 2011a, 2011b; Morita et al., 2014; Wilson et al., 2016), regulation (Andralojc et 75 
al., 2012; Carmo-Silva and Salvucci, 2013; Bracher et al., 2015) and biogenesis (Saschenbrecker et al., 76 
2007; Sharwood and Whitney, 2008; Lin et al., 2014b; Hauser et al., 2015; Whitney et al., 2015). 77 

A complementary approach is to understand and exploit Rubisco natural diversity. Previous 78 
characterisation of Rubisco from a limited number of species has not only demonstrated significant 79 
differences in the underlying catalytic parameters, but also suggests that further undiscovered diversity 80 
exists in nature and that the properties of some of these enzymes could be beneficial if present in crop 81 
plants (Carmo-Silva et al., 2015). Recent studies clearly illustrate the variation possible amongst even 82 
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closely related species (e.g. Galmés et al., 2005; Kubien et al., 2007; Galmés et al., 2014b, 2014c; 83 
Andralojc et al., 2014; Prins et al., 2016).  84 

Until recently there have been relatively few attempts to characterise the consistency, or lack 85 
thereof, of temperature effects on in vitro Rubisco catalysis (Sharwood and Whitney 2014), and often 86 
studies only consider a subset of Rubisco catalytic properties. This type of characterisation is particularly 87 
important for future engineering efforts, enabling specific temperature effects to be factored into any 88 
attempts to modify crops for a future climate. In addition, the ability to co-analyse catalytic properties and 89 
DNA or amino acid sequence provides the opportunity to correlate sequence and biochemistry to inform 90 
engineering studies (e.g. Christin et al., 2008; Kapralov et al., 2011; Rosnow et al., 2015). Whilst the 91 
amount of gene sequence information available grows rapidly with improving technology, knowledge of 92 
the corresponding biochemical variation resulting has yet to be determined (Cousins et al., 2010; Carmo-93 
Silva et al., 2015; Sharwood and Whitney, 2014; Nunes-Nesi et al., 2016). 94 

This study aimed to characterise the catalytic properties of Rubisco from diverse species, 95 
comprising a broad range of monocots and dicots from diverse environments. The temperature 96 
dependence of Rubisco catalysis was evaluated to tailor Rubisco engineering for crop improvement in 97 
specific environments. Catalytic diversity was analysed alongside the sequence of the Rubisco large 98 
subunit gene, rbcL, to identify potential catalytic switches for improving photosynthesis and productivity. 99 
In vitro results were compared to the average temperature of the warmest quarter in the regions where 100 
each species grows to investigate the role of temperature in modulating Rubisco catalysis. 101 
 102 
 103 
RESULTS 104 
Variability in Rubisco catalysis across plant species 105 
Diversity in Rubisco catalytic properties determined at 20, 25 and 30°C was measured across 75 species 106 
belonging to 10 families, expanding the range of previously characterised Rubiscos (Fig. 1; full dataset 107 
available in Table S1). This is the largest dataset of complete Rubisco catalytic properties produced to 108 
date. Analysis of variance revealed significant differences in carboxylation efficiency (kcat

c/Kc
air; 109 

Supplemental Fig. S1) and specificity (SC/O; Supplemental Fig. S2). 110 
Carboxylation rates (kcat

c) at 25°C ranged from 1.9 s-1 in Euphorbia helioscopia (Euphorbiaceae) 111 
to 7.1 s-1 in the C4-photosynthesis type annual grass Eragrostis tef (Poaceae). Affinity for CO2 was highest 112 
in Oryza sativa ssp. Indica (Kc = 7 µM at 25°C), and lowest in C4 grasses included in this study (Kc ~34-113 
37 µM, E. tef and Panicum spp.). Across the diverse group of species analysed the CO2/O2 specificity 114 
(SC/O) showed a large range of values, from a 25°C high of 111 in the grass Poa palustris (Poaceae) to a 115 
low of 82 in the C4 dicot Chrysanthellum indicum (Asteraceae). C3 plants surveyed ranged in SC/O from 116 
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111 to 91. Catalytic values generally agreed with previously reported ranges (e.g. Ishikawa et al., 2011; 117 
Galmés et al., 2014b; Occhialini et al., 2015). 118 

Modelling of leaf photosynthesis shows that the direct replacement of native Rubisco in a crop, 119 
such as soybean (Glycine max), with two high performing monocot Rubiscos would support significant 120 
improvements of leaf-level photosynthetic rates at current atmospheric CO2 levels and high irradiance 121 
(Fig. 2). Photosynthesis improvement was particularly evident at low internal CO2 concentrations when 122 
leaf photosynthesis is typically limited by Rubisco activity. 123 
 124 
Linking rbcL sequence variation with Rubisco biochemical diversity 125 
Accompanying the biochemical analysis of a large range of species with an analysis of variation in the 126 
highly conserved chloroplast rbcL gene, which encodes the catalytic subunit of Rubisco, provides the 127 
opportunity to identify amino acid replacements potentially responsible for changes in Rubisco catalysis. 128 
Positive selection analysis identified residue positions that were correlated with particular catalytic 129 
properties, namely: high carboxylation efficiency (kcat

c/Kc
air), high kcat

c, low Kc
air, and high SC/O. Five 130 

Rubisco large subunit residues were associated with changes in particular catalytic characteristics across 131 
the 75 species dataset (Fig. 3), with at least one residue linked to each parameter. The full list of residue 132 
positions under positive selection, their structural location and possible molecular interactions is provided 133 
in Supplemental Table S2. 134 

Importantly, in a large analysis of sequence diversity alongside catalytic properties, 135 
phylogenetically distant species may have acquired similar changes in Rubisco catalysis via different 136 
amino acid substitutions, which makes finding common catalytic switches difficult. Thus, a subsequent 137 
separate analysis of the monocot and dicot species subsets (n = 39 and 36, respectively) was conducted. 138 
Different sets of residues associated with catalytic changes were highlighted for these two groups with 139 
little overlap (Fig. 3A and 3B). Amongst the six residues found within the monocots, three positions were 140 
linked to high carboxylation efficiency, one to high SC/O and two to low Kc

air. In the dicot subset analysis, 141 
two residue positions were associated with high catalytic rates (kcat

c), whilst a further residue position was 142 
linked to high carboxylation efficiency (kcat

c/Kc
air). 143 

 144 
Correlations between catalytic parameters at a range of temperatures  145 
Using phylogenetically independent contrast (PIC) analyses, correlation coefficients between catalytic 146 
parameters for each measurement temperature were calculated (Fig. 4). The classical trade-off between 147 
increasing kcat

c and decreasing CO2 affinity (increased Kc or Kc
air) was evident (Tcherkez et al., 2006). 148 

However, the significance and strength of this correlation varied at the different measurement 149 
temperatures examined. At 20 and 25°C the strength and significance was high (P ≤ 0.01), while at 30°C 150 
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there was no significant correlation between increasing kcat
c and CO2 affinity (Kc or Kc

air). SC/O correlated 151 
positively with kcat

c, Kc and Kc
air, most significantly at 20 and 25°C, and negatively with carboxylation 152 

efficiency at 25°C. The relationship between kcat
c and carboxylation efficiency was notably inconsistent 153 

across the three measurement temperatures. 154 
 To explore how climate may correlate with Rubisco catalysis in diverse species, the temperature 155 
of the warmest quarter of the year (TWQ) where each species grows served as a proxy for conditions 156 
during the main part of the growing season. TWQ was negatively correlated with SC/O measured at 20 and 157 
30°C (at 25°C the correlation was not significant; Fig. 4), indicating that Rubisco from species growing in 158 
higher temperature climates had lower SC/O. Oxygenation parameters (Ko and Vo) consistently showed a 159 
significant positive correlation with TWQ. Carboxylation efficiency was negatively correlated with TWQ at 160 
20 and 25°C, but the correlation was not significant for measurements at 30°C. 161 
 162 
Temperature response of Rubisco catalysis 163 
To examine the consistency of catalytic changes in response to temperature, the 75 species examined were 164 
divided into five natural groups based on their phylogenetic relationships (indicated in Fig 3). A summary 165 
of the catalytic properties for each group at each temperature is shown in Table I, and non-linear 166 
regression analysis was used to assess the groups and species variation in temperature response 167 
(Supplemental Fig. S3). There was variation in the temperature response of Rubisco catalysis for the 168 
diverse species and groups analysed, but the trend of the response was consistent. The response of each 169 
catalytic property to temperature in soybean (Glycine max) is provided as a representative example (Fig. 170 
5). Group 3 consisted of a range of dicots, including N. tabacum and Artemisia spp., and could be fitted 171 
with a single model that explained temperature response of kcat

c for the whole group (i.e. there was no 172 
significant difference in temperature response of kcat

c between the species within group 3). For the other 173 
groups and individual species, the temperature response of kcat

c was similarly explained by a linear model 174 
and, while individual species displayed a consistent slope for the model generated, significant variation in 175 
the intercept prevented the generation of a single model to explain the entire group. These results show 176 
that the relative increase in kcat

c with temperature was consistent, despite the significant variation in 177 
absolute values within groups. 178 

A group level model for Kc
air could be fitted to groups 2 and 3, but not groups 1, 4 and 5. Each of 179 

the 75 species was modelled with a similar quadratic function; however, only groups 2 and 3 could have 180 
all its members statistically explained by a single model. Kc

air increased with temperature and the rate of 181 
increase was lower above 25 °C, reflected in the representative function shown in Fig. 5A. As mentioned 182 
above, SC/O decreased with temperature. Consistent with previous data, this decrease was non-linear and 183 
for each species/group was best described by a quadratic function. The decrease in SC/O was generally 184 
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greater between 20-25°C than 25-30°C (Fig. 5B). In group 3, this response was reversed (greater decrease 185 
between 25-30°C). Carboxylation efficiency (kcat

c/Kc
air) was also described by a quadratic model with 186 

efficiency being highest at 20 and 30°C, and consistently lower at 25°C. Though the drop in efficiency 187 
around 25°C varied between species and groups, the quadratic effect was consistent across the range of 188 
species, with variation evident in both the slope and intercept of the functions generated (Supplemental 189 
Fig. S4). 190 
 191 
 192 
DISCUSSION 193 
Significant variation in Rubisco catalysis amongst diverse species 194 
The present study represents the largest single survey of Rubisco catalysis to date. A large number of 195 
studies have previously described Rubisco catalysis (reviewed in Parry et al., 2007; Whitney et al., 2011b; 196 
Parry et al., 2013; Carmo-Silva et al., 2015). However, this still represents a very small fraction of known 197 
lands plants (approximately 0.2% based on current literature). Unfortunately, many studies have also only 198 
partially characterised Rubisco catalysis, with specificity (SC/O) in particular lacking from most available 199 
datasets (Sharwood and Whitney, 2014). The present study dramatically expands upon our knowledge of 200 
Rubisco catalytic variability through full characterisation of 75 plant species, and provides a large 201 
comparative dataset to inform future engineering efforts. The results presented here reinforce that, despite 202 
the relatively highly conserved nature of the Rubisco large subunit gene rbcL (Kapralov and Filatov, 203 
2007; Wang et al., 2011), key catalytic parameters vary significantly across diverse plant taxa. 204 
Carboxylation rates in particular varied by almost 3-fold at 25°C. Leaf scale modelling predicted that 205 
direct replacement strategies using newly characterised Rubiscos could substantially improve maximum 206 
photosynthetic capacity, though this will likely require further advances in our ability to test foreign 207 
Rubicos in tobacco based systems (Whitney et al., 2011a). Nevertheless this demonstrates the potential 208 
gains in photosynthetic capacity through Rubisco substitution. This dataset characterising a broad range 209 
of species at multiple temperatures will also be of use in modelling of photosynthesis at different scales 210 
(Smith and Dukes, 2013), and complement in planta studies seeking to adapt models of various scales for 211 
the increased temperatures expected in many regions in the coming decades (e.g. Bagley et al., 2015).  212 
 213 
Targeting improvements through mutagenesis 214 
The large subunit of Rubisco, encoded by the chloroplast rbcL gene, contains the catalytic sites and is 215 
believed to be primarily, though not solely, responsible for the catalytic profile of the holoenzyme 216 
(Sharwood et al., 2008). A number of residues were identified that warrant mutagenic testing in model 217 
systems, including a number of new candidates not previously highlighted. The residues identified 218 



Orr et al. 2016. Rubisco catalytic diversity & temperature response 

 8

differed dependent on the set of species included in the analysis, demonstrating the need to consider the 219 
phylogenetic background of a target Rubisco when determining the potential impact of point mutations. 220 
Careful consideration must also be given to avoiding effects on holoenzyme assembly and compatibility 221 
with ancillary proteins or assembly chaperones (Carmo-Silva et al., 2015; Whitney et al., 2015). This 222 
presents a promising avenue for future work in model systems, testing these residues either singly or in 223 
combination, with previous studies having shown strong potential for modifying Rubisco catalysis with 224 
targeted amino acid substitutions (e.g. Whitney et al., 2011b). 225 
 226 
The effect of temperature on Rubisco catalysis 227 
Few studies have explored the effect of temperature on Rubisco catalysis beyond model species 228 
(Sharwood and Whitney, 2014, Sharwood et al., 2016), and none at the scale of the present study. Recent 229 
work has begun to make important inroads into this area (Perdomo et al., 2015, Prins et al., 2016). 230 
Analysis of the correlations between parameters at the three measurement temperatures largely agreed 231 
with previous observations regarding the trade-off between increasing carboxylation rate (kcat

c) and 232 
decreasing CO2 affinity (increasing Kc

air). However, the tight linking of these parameters was not evident 233 
at 30°C. This ‘uncoupling’ at higher temperatures suggests the possibility of finding superior Rubiscos for 234 
operating at relatively high temperatures. This study found a negative correlation between warmer 235 
climates and specificity (SC/O). Galmés et al. (2005) found that in hot and dry conditions in the 236 
Mediterranean this correlation was positive, with high Rubisco specificity found for plants from this 237 
region. This suggests a more complex relationship between climate and Rubisco specificity that is not 238 
solely based on temperature, but also needs consideration of additional climatic data such as precipitation. 239 

Higher temperature environments (TWQ) did not consistently correlate with carboxylation 240 
parameters across assay temperatures, but did correlate with increasing Ko and Vo. The observed 241 
correlations suggest that Rubiscos from warmer climates are less efficient at lower temperatures. Fitting 242 
mathematical models to the response of key parameters to measurement temperature resulted primarily in 243 
non-linear models, the exception being carboxylation rate (kcat

c). The type of model that best explained 244 
temperature response of each parameter was consistent across species, though variation in the absolute 245 
values for each species largely prevented fitting a single model to the species groupings. In many cases, 246 
species within a group had parallel responses. This provides important new insights on the response of 247 
Rubisco catalysis to temperature, and its consistency across diverse species, whilst further highlighting 248 
the diversity of catalysis. It is important to note that a number of plant groups such as trees and basal 249 
angiosperms remain either underrepresented in biochemical datasets, or have only just begun to be 250 
surveyed (Galmés et al., 2014b), and provide potential areas where additional valuable information can be 251 
gleamed from characterisation. Data is also lacking for crop species, with few represented in the 252 
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literature, and often with incomplete characterisation. This is an important gap in our knowledge that will 253 
be important when targeting improvements to key crops. This study focused on C3 species, the potential 254 
for C4 Rubiscos to respond differently has received increased interest recently (e.g. Boyd et al., 2015; 255 
Perdomo et al., 2015), however there remains a need to characterise more Rubiscos from C4 species for 256 
thermal response. 257 
 258 
Tailored solutions are required for optimising crop carbon assimilation 259 
The variation in catalysis found during this study provides important information for future efforts to 260 
engineer improved Rubisco in crops via either replacement with a foreign Rubisco (Fig. 2) or point 261 
mutations of the endogenous gene (Fig. 3). In C3 plants, 20-35°C is considered the optimum temperature 262 
range for photosynthesis (Blankenship, 2014), and thus the effects of temperature on Rubisco catalysis 263 
should be considered so that an appropriate Rubisco suited to the growth environment can be engineered 264 
(Galmés et al., 2014a, 2015; Sharwood and Whitney, 2014). The subcellular environment of the crop is 265 
also an important factor; it has been suggested that diversity in Rubisco catalysis may have evolved, at 266 
least partly, as a consequence of the variability found in the subcellular environment of different plant 267 
leaves (Tcherkez et al., 2006; Galmés et al., 2014c). This remains an important area requiring 268 
investigation through the use of model systems such as tobacco, and an important consideration for co-269 
engineering improved Rubisco catalysis alongside large anatomical changes, e.g. the conversion of C3 270 
crops to C4 photosynthesis (Driever and Kromdijk, 2013). Direct replacement of Rubisco will also likely 271 
necessitate co-engineering of ancillary proteins to achieve maximum results, as demonstrated recently 272 
through work with the co-chaperone RAF1 (Whitney et al., 2015). The recent introduction of a faster 273 
cyanobacterial Rubisco that could sustain higher photosynthetic rates – albeit at high CO2 concentrations 274 
(Lin et al., 2014b; Occhialini et al., 2015) – confirms the feasibility and potential of interspecies Rubisco 275 
substitutions. 276 

The interaction of large and small subunits, and the potential of the small subunit to influence 277 
catalysis also warrant further investigation. For example, in a recent study of close relatives of wheat, the 278 
observed variability in catalysis appears unlikely to be related to differences in rbcL, and may be the 279 
result of differences in Rubisco small subunit gene (rbcS) sequence (Prins et al., 2016). Wheat is known 280 
to contain a large rbcS family (Spreitzer, 2003), however for many species the number and sequence 281 
diversity of rbcS genes is unknown. The possible influence of environmental conditions on Rubisco small 282 
subunit composition may also need to be considered (Cavanagh and Kubien, 2013). The introduction of 283 
an rbcS gene from Sorghum into rice showed how the introduction of foreign small subunits can alter 284 
catalysis (Ishikawa et al., 2011), and reinforces the need for more information on the variability of the 285 
number, sequence and expression of rbcS gene-family members from wild species and crops of interest. 286 
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 287 
CONCLUSION 288 
This study improves our understanding of the variability of Rubisco catalysis present in nature. 289 
Interrogation of this large dataset provides new insights as to the consistency of the response of catalysis 290 
to temperature across a broad range of species. Analysis of detailed biochemical characterisation 291 
alongside sequence information suggests that targeted mutation of key residues and/or replacement of 292 
crop Rubisco with superior existing enzymes will aid in efforts to engineer improved carbon assimilation 293 
in key crops. This work highlights the importance of characterising the biochemistry of Rubisco at a 294 
range of key temperatures alongside sequence information to improve our understanding of the 295 
relationship between structure and function of this critical enzyme.  296 
 297 
MATERIALS AND METHODS 298 
Plant material 299 
Seeds and plant material were kindly provided by: Royal Botanic Gardens Millennium Seed Bank (UK); 300 
United States Department of Agriculture, Germplasm Resources Information Network (USDA-GRIN); 301 
International Rice Research Institute (IRRI); Mike Birkett, Yi Chen, Belinda Townsend (Rothamsted 302 
Research, UK); Guoxiong Chen (CAAS, Lanzhou, China); Mel Oliver (USDA, Plant Genetics Research). 303 
Plants were grown in a glasshouse with a 16/8h day/night cycle with temperatures of 26/19°C. During the 304 
day supplemental lighting was used to maintain a minimum light level of 200 µmol m2 s-1. Plants were 305 
kept well-watered. For all analyses, samples of leaf material were taken from young, healthy plants and 306 
immediately snap frozen in liquid nitrogen, then stored at -80°C. 307 
 308 
Climatic data 309 
Georeferenced co-ordinates for all species were downloaded from the Global Biodiversity Information 310 
Facility (GBIF.org; accessed June-July 2015), and climate data (BioClim, worldclim.org/bioclim; 311 
Hijmans et al., 2005) obtained using DIVA-GIS (diva-gis.org; Hijmans et al., 2001). Due to the 312 
incompleteness of publically available distribution databases (Maldonado et al., 2015), studies on climate 313 
niche typically use species mean values instead of climatic limits. This study used mean values of the 314 
average temperature across the warmest quarter for each species as a proxy for the main growing season, 315 
when most of the photosynthetic (and hence Rubisco) activity occurs. This value is referred to as TWQ 316 
(temperature of the warmest quarter) throughout the text, and values for each species are listed in 317 
Supplemental Table S1. 318 
 319 
Rubisco catalytic properties 320 
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Rubisco was extracted and its catalytic properties determined essentially as previously described (Prins et 321 
al., 2016), with the following alterations: reactions were carried out in 0% and 21% O2 conditions only, 322 
with two technical replicates of each of these concentrations; and protein extracts were activated and 323 
assayed immediately after extraction and desalting. 324 
 325 
Rubisco specificity factor 326 
Rubisco from each genotype was purified essentially as described by Prins et al. (2016), with the 327 
exception that the final Sephacryl S-200 filtration step was found to be unnecessary for most of the 328 
genotypes in this study. Testing confirmed that excluding this step did not influence the assay results. 329 
Rubisco specificity (SC/O) was determined using the oxygen electrode method as described by (Parry et 330 
al., 1989). For each species, at least four replicate measurements were made at each temperature. Values 331 
were normalised to a value for T. aestivum at each temperature, as described by Parry et al. (1989). 332 
 333 
Rubisco content 334 
An aliquot of the soluble protein extracted for measuring catalytic constants was used to determine total 335 
Rubisco content by 14C-CABP binding via either the method of Parry et al. (1997) or Whitney et al. 336 
(1999). Testing confirmed that using one or the other method did not influence the quantification results. 337 
 338 
rbcL sequencing 339 
Genomic DNA was extracted from leaf tissue using the Qiagen DNEasy Plant Kit (Qiagen, UK). 340 
Amplification of partial rbcL fragments equivalent to codons 1-463 (ca. 98% of the coding region) was 341 
carried out using Phusion HF polymerase (Invitrogen, USA). Forward primer: (5’-342 
TAATTCATGAGTTGTAGGGAGGG-3’); paired with cp063R (Dong et al., 2013, 5’-343 
TTTCCATACTTCACAAGCAGCAGCTAG-3’). PCR products were then sequenced using the following 344 
primers (Eurofins Genomics EU, Germany): DRS19 (5’-345 
GKGYTCCTATTGTAATGCATGACTACTTAAC-3’), rbcL_F1 346 
(ATGTCACCACAAACAGAAACTAAA) and rbcL_F3 (CCRCCBCAYGGNATYCARG). At least two 347 
independent PCR reactions were performed and had product sequenced for each genotype. Sequences 348 
were submitted to EMBL (See supporting Table S3 for accession numbers). 349 
 350 
Rubisco L-subunit sites under positive selection 351 
DNA sequences of rbcL were aligned using MUSCLE (Edgar, 2004). The software MODELTEST 3.7 352 
(Posada and Crandall, 1998; Posada and Buckley, 2004) was used to check for the best model before 353 
running the phylogenetic analyses using maximum-likelihood inference conducted with RAxML version 354 
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7.2.6 (Stamatakis, 2006). Rubisco amino acid residues under positive selection associated with particular 355 
kinetic traits were identified using codon-based substitution models in comparative analysis of protein-356 
coding DNA sequences within the phylogenetic framework using branch-site tests of positive selection 357 
along pre-specified foreground branches in the PAML v.4.7 package (Yang, 2007) as described in 358 
(Kapralov et al., 2011, 2012; Galmés et al., 2014b). Branches leading to species with high or low Kc

air, 359 
kcat

c, Ko, kcat
o and SC/O at 25°C were marked as foreground branches. The Rubisco L-subunit residues are 360 

numbered based on the spinach sequence. The location of sites under positive selection was done using 361 
Rubisco protein structure from spinach (Spinacia oleracea L.) obtained from the RCSB Protein Data 362 
Bank (http://www.rcsb.org; file 1RCX; Karkehabadi et al., 2003). 363 
 364 
Phylogenetically Independent Contrasts (PIC) 365 
The Pearson correlation coefficient was calculated between pairwise combinations of the kinetic 366 
parameters Kc, Kc

air, kcat
c, Ko, Vo and SC/O at the three temperatures of measurement. Correlations arising 367 

within groups of related taxa might reflect phylogenetic signal rather than true cause-effect relationships, 368 
because closely related taxa are not necessarily independent data points and could violate the assumption 369 
of randomized sampling employed by conventional statistical methods (Felsenstein, 1985). To overcome 370 
this issue, tests were performed for the presence of phylogenetic signal in the data, and trait correlations 371 
were calculated with phylogenetically independent contrasts using the AOT module of PHYLOCOM 372 
(Webb et al., 2008) for the species phylogeny described above. All these tests were considered significant 373 
at P < 0.05. 374 
 375 
Statistical analyses 376 
The 75 species were divided into five groups based on phylogenetic relationships (Fig. 3). To establish the 377 
significance of variation between these groups (and the species within the groups), the variation with 378 
temperature for each group was assessed using non-linear regression analysis and the fitting of an 379 
asymptotic exponential/simple exponential model. The resulting best models were plotted. Analysis was 380 
carried out using GenStat (VSN International, UK). The five C4 species in this study were not included 381 
when analysing temperature response. With the exception of SC/O, all data were transformed via log 382 
function to conform to the assumptions of the analysis. 383 
 384 
Supplemental Material 385 
The following supplemental materials are available. 386 
Supplemental Table S1. Rubisco catalytic properties for 75 species measured at 20, 25, and 30°C. 387 
Supplemental Table S2. Rubisco large subunit amino acid positions under positive selection. 388 
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Supplemental Table S3. EMBL accession codes for rbcL sequences. 389 
Supplemental Table S4. Model parameters used for plotting temperature responses in Figures 5 and S3. 390 
Supplemental Figure S1. Rubisco carboxylation efficiency (kcat

c/Kc
air) at 20, 25 and 30°C. 391 

Supplemental Figure S2. Rubisco specificity (SC/O) at 20, 25 and 30°C. 392 
Supplemental Figure S3. Temperature response of Rubisco catalytic parameters for the five groups. 393 
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Table I. Key Rubisco catalytic parameters for five phylogenetic groups. 400 
kcat

c, maximum carboxylation rate; Kc
air, Michaelis-Menten constant for CO2 at atmospheric levels of O2 401 

(21%); SC/O, specificity for CO2 vs. O2. For details of the species within each group see Fig. 3. Values are 402 
means ± standard errors of the mean (n as indicated). 403 
 404 

Group n 
kcat

c (s-1) Kc
air (µM) Sc/o 

20°C 25°C 30°C 20°C 25°C 30°C 20°C 25°C 30°C 

1 34 2.3 ± 0.1 3.7 ± 0.2 5.7 ± 0.3 19.4 ± 0.9 28.6 ± 1.2 34.4 ± 1.7 114.9 ± 0.8 104.7 ± 0.6 92.6 ± 0.5 

2 5 2.3 ± 0.2 3.9 ± 0.3 5.6 ± 0.1 14.8 ± 1.7 31.0 ± 2.9 40.1 ± 3.6 110.2 ± 1.9 99.4 ± 2.2 86.8 ± 0.9 

3 4 2.3 ± 0.1 4.0 ± 0.3 7.2 ± 0.3 18.8 ± 3.9 39.5 ± 4.5 52.6 ± 8.3 110.0 ± 4.4 101.3 ± 3.1 88.5 ± 1.9 

4 8 1.9 ± 0.1 3.1 ± 0.3 4.8 ± 0.3 16.4 ± 2.2 27.4 ± 1.9 30.3 ± 1.8 107.2 ± 1.1 99.8 ± 1.6 92.1 ± 1.3 

5 18 1.9 ± 0.1 3.2 ± 0.2 5.2 ± 0.2 15.8 ± 1.0 25.9 ± 1.3 33.1 ± 2.4 107.7 ± 1.1 97.6 ± 1.2 87.2 ± 1.1 

  405 
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FIGURE LEGENDS 406 
 407 
Figure 1. Range of Rubisco (A) carboxylation rate (kcat

c), (B) Michaelis-Menten constant for CO2 (Kc), 408 
and (C) specificity factor (SC/O) at 20, 25 and 30°C. The range of values previously reported for C3 plants 409 
in the literature at 25°C (Lit 25°C) is shown for reference. Literature data is from a survey of publications 410 
available as of January 2016. Box plot lines represent the median value and the 10, 25, 75 and 90th 411 
percentiles. 412 
 413 
Figure 2. Potential photosynthetic improvement in soybean (Glycine max) that would result from 414 
replacement of native Rubisco with Rubisco from Poa palustris (yellow) or Puccinellia maritima (brown) 415 
at 25°C. Rates of net CO2 assimilation (A) were derived from the model of Farquhar et al. (1980) as 416 
detailed in von Caemmerer (2000), and using in vitro measurements of Rubisco catalysis. Modelling 417 
assumed: Rubisco content = 30 µmol m-2; Rd = 0.015 × Vc,max; J = 1.75 × Vc,max; and O2 = 21%. 418 
 419 
Figure 3. Tree diagram illustrating Rubisco large subunit amino acid positions under positive selection 420 
linked to superior Rubisco properties in (A) monocot species, and (B) dicot species. Eff; carboxylation 421 
efficiency (kcat

c/Kc
air). Dashed green lines indicate species groupings for analysis of temperature response. 422 

Group 1, monocots, Poaceae/Musaceae (n=39); Group 2, Amaranthaceae (n=5): Group 3, 423 
Asteraceae/Solanaceae (n=5); Group 4, Euphorbiaceae/Curcubitaceae (n=8); Group 5, Fabaceae (n=18). 424 
 425 
Figure 4. Correlation coefficients of phylogenetically independent contrasts (PICs) calculated for 426 
Rubisco catalytic parameters of 75 species, using data from measurements at 20, 25, or 30°C. Significant 427 
correlations are marked: *** = P < 0.001, ** = P < 0.01, * = P < 0.05. 428 
 429 

Figure 5. Temperature response of (A) carboxylation rate (kcat
c) and CO2 affinity in air (Kc

air), (B) 430 
specificity factor (SC/O) and carboxylation efficiency (kcat

c/Kc
air) in soybean (Glycine max). 431 
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Figure 1. Range of Rubisco (A) carboxylation rate (kcat
c), (B) Michaelis-Menten constant for CO2 (Kc), 

and (C) specificity factor (SC/O) at 20, 25 and 30°C. The range of values previously reported for C3 plants 
in the literature at 25°C (Lit 25°C) is shown for reference. Literature data is from a survey of publications 
available as of January 2016. Box plot lines represent the median value and the 10, 25, 75 and 90th 
percentiles. 
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Figure 2. Potential photosynthetic improvement in soybean (Glycine max) that would result from 
replacement of native Rubisco with Rubisco from Poa palustris (yellow) or Puccinellia maritima (brown) 
at 25°C. Rates of net CO2 assimilation (A) were derived from the model of Farquhar et al. (1980) as 
detailed in von Caemmerer (2000), and using in vitro measurements of Rubisco catalysis. Modelling 
assumed: Rubisco content = 30 µmol m-2; Rd = 0.015 × Vc,max; J = 1.75 × Vc,max; and O2 = 21%. 
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AAs – all species AAs - Monocots only Catalysis at 25 °C 
142 183 189 262 449 14 95 99 142 183 251 kcat

c  Kc
air  SC/O  Eff.  

Puccinellia maritima P K C V C Q N C P K I 5.4 21 106 0.26 
Puccinellia lemmonii P K C V C Q N C P K I 5.2 28 102 0.18 
Puccinellia distans P K C V C Q N C P K I 5.4 22 104 0.24 
Puccinellia nuttaliana P K C V C Q S C P K I 4 25 105 0.16 
Deschampsia danthanoides P K C V C K N C P K I 4.5 22 108 0.2 
Poa palustris V K C V C Q N C V K M 4.2 19 111 0.22 
Arctagrostis latifolia V K C V C K N C V K I 5.8 21 105 0.27 
Calamagrostis inexpansa P K C V C K N C P K I 3.3 19 111 0.17 
Calamagrostis foliosa P K C V C K N C P K I 3.5 21 105 0.17 
Agrostis stolonifera P K C V C K S C P K I 5.2 25 105 0.21 
Agrostis scabra P K C V C K N C P K I 3.6 22 103 0.16 
Calamagrostis nutkaensis P K C V C K N C P K I 3.1 20 109 0.16 
Calamagrostis arundinacea P K C V C Q N C P K I 4.1 23 104 0.18 
Calamagrostis canescens P K C V C K N C P K I 2.5 15 99 0.17 
Festuca gigantea V K C V C Q N C V K I 5.1 31 108 0.16 
Festuca pratensis V K C V C Q N C V K I 5.1 23 106 0.22 
Lolium multiflorum V K C V C Q N C V K I 4.5 29 100 0.16 
Lolium rigidum V K C V C Q N C V K I 4.7 25 101 0.19 
Elymus farctus P K C V C Q N C P K L 3.3 20 106 0.17 
Bromus anomalus P K C V C K N C P K I 2.9 17 101 0.17 
Triticum aestivum P K C V C K S C P K I 4.9 20 100 0.25 
Triticum baeoticum P K C V C Q N C P K I 3.8 20 96 0.19 
Hordeum brachyantherum P K C V C Q N C P K I 2.9 16 106 0.18 
Hordeum murinum P K C V C K S C P K I 4.2 29 100 0.14 
Panicum phragmitoides P K C V C K D C P K I 2.8 25 101 0.11 
Panicum amarum P K C V C K D C P K I 3.2 20 106 0.16 
Panicum dichotomiflorum I K C V C K D C I K I 3.1 17 101 0.18 
Eragrostis tef A K C V C Q D C A K I 7.1 35 89 0.2 
Oryza meridionales P I C V C K N A P I I 2.6 15 107 0.18 
Oryza longistaminata P I C V C K N A P I I 2.2 15 108 0.14 
Oryza nivara P I C V C K N A P I I 2.7 16 107 0.17 
Oryza glaberrima P I C V C K N A P I I 2.7 15 105 0.18 
Oryza sativa ssp. Indica P I C V C K N A P I I 2.2 7 101 0.22 
Oryza eichingeri P I C V C K N A P I I 2.5 14 107 0.18 
Oryza gluaepatula P I C V C K N A P I I 2.4 15 109 0.16 
Oryza barthii/glaberrima P I C V C K N A P I I 2.5 14 107 0.18 
Oryza sativa spp. Japonica P I C V C K N A P I I 2.8 12 106 0.24 
Oryza punctata T K C V C Q N A T K M 2.7 15 109 0.18 
Musa veluntina T K C V S K N A T K M 3.2 19 111 0.17 

AAs – all species AAs - Dicots only Catalysis at 25 °C 
142 183 189 262 449 189 228 449 kcat

c  Kc
air  SC/O  Eff.  

Chenopodium murale V K V V S V A S 4.4 24 109 0.18 
Chenopodium petiolare V K V A S V A S 4.4 26 99 0.17 
Chenopodium rubrum V K C V S C A S 4.1 14 98 0.28 
Agriophyllum squarrosum V K C V S C A S 2.8 15 94 0.18 
Beta vulgaris V K V V S V A S 3.8 17 98 0.22 
Artemisia myriantha T K V V T V S T 3.1 26 110 0.12 
Artemisia vulgaris T K V V T V S T 3.9 32 105 0.12 
Chrysanthellum indicum T K C V T C S T 4.7 28 82 0.17 
Nicotiana tabacum P K V V C V A C 4.4 21 96 0.21 
Foeniculum vulgare V K V V T V A T 4.4 21 94 0.21 
Euphorbia helioscopia P K V T A V S A 1.9 11 97 0.16 
Euphorbia microphaera P K V V G V S G 4.5 26 100 0.17 
Mercurialis annua P K V V C V A C 3.4 17 96 0.2 
Manihot esculenta P K V V S V A S 2.4 15 105 0.16 
Flueggea suffruticosa P K V V S V A S 3.4 19 101 0.18 
Lepidium campestre P K V V C V S C 3.4 16 93 0.21 
Citrullus ecirrhosus T K V V S V S S 3.1 19 100 0.17 
Citrullus lanatus T K V V S V S S 2.5 19 107 0.13 
Tephrosia candida N K V V S V S S 2.2 16 98 0.14 
Tephrosia rhodesica N K V V S V S S 2.2 14 92 0.16 
Tephrosia purpurea N K V V S V S S 2.2 12 103 0.18 
Desmodium intortum N K V A A V A A 3.3 14 99 0.23 
Desmodium psilocarpum N K V A A V A A 3.6 16 96 0.23 
Desmodium cinereum N K V A A V A A 3 13 97 0.23 
Erythrina flabelliformis T K V V S V A S 3.6 18 96 0.2 
Glycine max T K V V S V S S 2.5 13 100 0.19 
Glycine canescens T K V A S V S S 2.6 17 97 0.15 
Amphicarpaea bracteata I K V V T V A T 4 29 98 0.14 
Pueraria montana I K V V C V A C 2.7 21 101 0.13 
Macrotyloma uniflorum V K V V S V A S 4.4 25 101 0.17 
Sphenostylis stenocarpa T K V V C V A C 2.8 17 94 0.16 
Lablab purpureus T K V V S V A S 5.3 22 91 0.25 
Phaseolus carteri T K V V S V A S 3.2 14 85 0.22 
Phaseolus coccineus T K V V C V A C 3.9 16 104 0.25 
Phaseolus lunatus T K V V S V A S 3.2 17 101 0.18 
Phaseolus vulgaris T K V V S V A S 3.5 20 105 0.17 

A 

B 

Group 3 

Group 4 

Group 5 

Figure 3. Tree diagram illustrating Rubisco large subunit amino acid positions under positive selection 
linked to superior Rubisco properties in (A) monocot species, and (B) dicot species. Eff; carboxylation 
efficiency (kcat

c/Kc
air). Dashed green lines indicate species groupings for analysis of temperature response. 

Group 1, monocots, Poaceae/Musaceae (n=39); Group 2, Amaranthaceae (n=5): Group 3, 
Asteraceae/Solanaceae (n=5); Group 4, Euphorbiaceae/Curcubitaceae (n=8); Group 5, Fabaceae (n=18). 
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Figure 4. Correlation coefficients of phylogenetically independent contrasts (PICs) calculated for Rubisco 
catalytic parameters of 75 species, using data from measurements at 20, 25, or 30°C. Significant 
correlations are marked: *** = P < 0.001, ** = P < 0.01, * = P < 0.05. 

20°C KC KC
air KO VO SC/O kcat

c/KC
air TWQ 

kcat
c 0.730*** 0.312** -0.342** -0.104 0.333** 0.652*** -0.775*** 

KC 0.782*** 0.529** 0.223* 0.209 -0.885*** 0.538*** 

KC
air 0.025 -0.265* 0.519*** -0.901*** -0.059 

KO 0.941*** -0.038 -0.132 0.742*** 

VO -0.130 0.194 0.626*** 
SC/O -0.171 -0.509*** 
kcat

c/KC
air             -0.307** 

25°C KC KC
air KO VO SC/O kcat

c/KC
air TWQ 

kcat
c 0.724*** 0.673*** 0.427*** -0.205 0.940*** -0.525*** -0.051 

KC 0.978*** 0.302** -0.639** 0.776*** -0.935*** 0.208 
KC

air 0.110 -0.770** 0.765*** -0.927*** 0.066 
KO 0.525*** 0.202 -0.273* 0.716*** 
VO -0.445** 0.646*** 0.284* 
SC/O -0.567*** -0.100 
kcat

c/KC
air             -0.338** 

30°C KC KC
air KO VO SC/O kcat

c/KC
air TWQ 

kcat
c -0.028 0.034 -0.256** 0.210 0.106 0.206 -0.103 

KC 0.985*** 0.244*** -0.731** 0.129 -0.977*** -0.096 

KC
air 0.099 -0.780** 0.071 -0.960*** -0.187 

KO 0.356* 0.061 -0.234** 0.826*** 

VO -0.231** 0.795*** 0.637*** 
SC/O -0.173 -0.233** 
kcat

c/KC
air             0.115 
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Figure 5. Temperature response of (A) carboxylation rate (kcat
c) and CO2 affinity in air (Kc

air), (B) 
specificity factor (SC/O) and carboxylation efficiency (kcat

c/Kc
air) in soybean (Glycine max). 
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