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ABSTRACT

A significant portion of human cancers are due to

viruses integrating into human genomes. Therefore,

accurately predicting virus integrations can help un-

cover the mechanisms that lead to many devastat-

ing diseases. Virus integrations can be called by

analysing second generation high-throughput se-

quencing datasets. Unfortunately, existing methods

fail to report a significant portion of integrations,

while predicting a large number of false positives. We

observe that the inaccuracy is caused by incorrect

alignment of reads in repetitive regions. False align-

ments create false positives, while missing align-

ments create false negatives. This paper proposes

SurVirus, an improved virus integration caller that

corrects the alignment of reads which are crucial for

the discovery of integrations. We use publicly avail-

able datasets to show that existing methods predict

hundreds of thousands of false positives; SurVirus,

on the other hand, is significantly more precise while

it also detects many novel integrations previously

missed by other tools, most of which are in repet-

itive regions. We validate a subset of these novel

integrations, and find that the majority are correct.

Using SurVirus, we find that HPV and HBV integra-

tions are enriched in LINE and Satellite regions which

had been overlooked, as well as discover recurrent

HBV and HPV breakpoints in human genome-virus

fusion transcripts.

INTRODUCTION

Virus integration is a structural variation that inserts a virus
segment into a host genome. In human, it is responsible
for a signi�cant portion of cancers. Hepatitis B (HBV) and
Hepatitis C (HCV) viruses are known to cause hepatocel-
lular carcinoma (HCC), a form of liver cancer (1), while
Human papillomaviruses (HPVs) are present in virtually all
cervical cancers, and are also associated with cancers of the
anus, penis, vulva as well as oropharyngeal cancer (2,3). The
Epstein-Barrow virus (EBV) infects ∼90% of adults and is
linked to several cancers (4). Other well known oncoviruses
are the Human T-lymphotropic virus (HTLV), Kaposi’s
sarcoma-associated herpesvirus (HHV-8) and Merkel cell
polyomavirus (MCV).
Second-generation sequencing technologies offer the op-

portunity to inexpensively and ef�ciently detect and charac-
terise viral integrations in large numbers of samples. How-
ever, compared to other genomic structural variations such
as deletions or transpositions, the problem of computation-
ally detecting virus integrations has not been suf�ciently
tackled, and only a handful of solutions exist, which are
often computationally very expensive, produce inaccurate
results and are not able to simultaneously scan for integra-
tions from a set of different viruses. Existing integration
callers routinely employ one of two strategies: read subtrac-
tion and host+viruses mapping. The �rst strategy consists of
mapping read pairs onto the host (resp. viruses) genome,
and then remap the unmapped reads onto the viruses (resp.
host) genome; �nally, from the remaining unmaped reads,
virus integrations are called. This strategy is used by Se-
qMap (5), Vy-PER (6), Virus-Clip (7), ViralFusionSeq (8),
BatVI (9) and VIcaller (10). Methods following the second
strategy build a customised genome by concatenating the
host and the viruses, and then map the read pairs directly
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on it, and they include VirusSeq (11), ViFi (12) as well as
general SV callers. Some tools such as VirusFinder (13,14)
and SummonChimera (15) use a combination of the two
strategies. See (16) for a more in-depth review and compar-
ison of different software. No matter what strategy is used,
the second step is usually to extract pairs mapping partially
to the host and partially to a virus, and cluster such pairs
into viral integrations.
We observed that existing callers struggle to correctly

predict integrations in repeat regions of the host genome.
When multiple similar copies of a region exist throughout a
genome, aligners often fail to correctly align reads to them,
as some of the reads can align to multiple possible loci.
Therefore, if a virus integrates into such a region, many
reads that are supposed to support its correct location will
be aligned to incorrect locations and may create false nega-
tives and false positives (Figure 1).
Existing callers deal with ambiguous reads (i.e. reads that

align to multiple locations) by either (a) ignoring them, (b)
trusting them only if supported by non-ambiguous reads or
(c) by simply trusting the location provided by the aligner.
Strategies (a) and (b) will result in false negatives, while (c)
will produce many false positives. We used ViFi, BatVI and
VIcaller as representatives of strategies (a), (b) and (c), re-
spectively. (These three callers have been shown to be the
currently most accurate methods.) We applied these three
methods on liver cancer and cervical cancer datasets and
found that all three methods predict hundreds of HBV and
HPV integrations per sample, which are unlikely to be true.
Furthermore, these methods miss known and validated in-
tegrations.
To solve this problemwe borrow from techniques success-

fully used to predict transpositions (17), but we signi�cantly
adapt them to the problem of virus integration calling. Our
algorithm iteratively clusters reads that are deemed to sup-
port the same integration, and for each cluster it �nds the
location that is most likely to be correct in both the host and
the virus genomes.
The result is SurVirus, a sensitive, precise and fast virus

integration caller. Given a second-generation paired-end
dataset, a host genome and a database of viruses, SurVirus
predicts the integration events that occurred, providing the
precise integration loci on the host genome as well as which
segments of which viruses integrated. We use well-studied
HCC and cervical cancer datasets, both WGS and HIVID
(targeted deep sequencing), as well as simulations, to show
that SurVirus is able to predict many previously missed in-
tegrations, while being more precise than other published
solutions. In particular, SurVirus is able to predict more
known validated virus integrations compared to the other
methods in both HCC and the cervical cancer patients.
Twenty-eight percent of our HPV calls and 7% of our HBV
calls were novel, and most of them are in repeat regions.
We observe that HPV integrations in cervical cancer are
enriched in LINE regions, which was previously observed
for HPV-associated head and neck squamous cell carci-
noma, but not in cervical cancer, to the best of our knowl-
edge. We validated a subset of novel HPV integrations, and
found that the majority of them was real. Our novel HBV
integrations were mainly located in Satellite and LINE
regions.

While the other methods call hundreds of false positives
per sample, we are signi�cantly more precise, and we call
only a fraction of the unrealistic number of calls predicted
by them (9 and 7 breakpoints per sample for HPV andHBV
respectively). Similarly, when the virus integration callers
are applied on DNA and RNA data from the same sam-
ple, SurVirus has the largest overlap among all the methods.
Additionally, we found one recurrent HBV breakpoint in
hg-HBV fusion transcripts and three recurrent HPV break-
points in hg-HPV fusion transcripts. The HBV recurrent
breakpoint and one of the HPV recurrent breakpoint have
never been observed before, to the best of our knowledge.

METHODS

Overview of the algorithm

SurVirus requires a set of read pairs from the sample, a host
reference genome and a database of virus genomes. It then
operates in two steps (Figure 2). In the �rst step (Supple-
mentary Section Chimeric pairs extraction), we retain the
subset of pairs that are relevant for predicting virus inte-
grations. Such pairs partially align to the host genome, and
partially to the virus database. In the second step (Sup-
plementary Section Candidate integration discovery), we
identify ambiguously aligned reads and correct their align-
ments; then, we iteratively group and re�ne the clusters of
read pairs that may support the same integration, and for
each cluster we determine the locationwhere the integration
most likely happened. Supplementary Figure S9 illustrates
how SurVirus works on a real example.

Details of software and datasets

Anumber of virus integration detection software exists, and
testing them all was impractical. We selected three recent
tools: BatVI (9), ViFi (12) and VIcaller (10). As described
in the introduction, they represent the three main strategies
for dealing with ambiguously aligned reads: ignoring them
(ViFi), using themonlywhen supported by uniquely aligned
reads (BatVI) and trusting their original alignments (VI-
caller). These software have already been tested and proven
to be superior to older methods such as VirusSeq (11), Vi-
ralFusionSeq (8) and VirusFinder (13).
All the software were run with FASTQ �les as input. ViFi

is the only software that does not have the ability to deal
with PCR duplicates, so we used FastUniq (18) to create a
new set of FASTQ �les with duplicates removed.

Simulated datasets

In order to determine if current callers fail in repetitive re-
gions, we simulated two distinct genomes: one where inte-
grations were inserted in random locations (RANDSIM),
and onewhere theywere inserted in repetitive regions (REP-
SIM).
For RANDSIM, we generated a genome by selecting 100

locations on hg19 at random, and simulating a HPV inser-
tion for each location. For REPSIM, the 100 locations were
selected to be in repeats (Supplementary Section REPSIM
dataset in detail). Finally, for each simulated genome we
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Figure 1. (A) A region (yellow) is repeated three times in the host reference, in chromosomes 3, 5 and 8. (B) A virus integrates into chromosome 3 in the
sample; four pairs supporting the integration are sequenced. (C) The chimeric host reads (host reads having their mate mapped to a virus sequence) have
each three possible alignments, hence we call them ambiguous reads. In this situation, mappers such as BWAMEM choose one location at random, which
confuses virus integration callers, leading them to either ignore such reads (and entirely miss the integration), or call many different integrations.

Figure 2. SurVirus pipeline. The input to the algorithm is a host genome, a database of virus sequences and a set of read pairs. The algorithm then proceeds
in two steps. Step 1: Chimeric pairs extraction. It extracts the subset of read pairs that are useful to the prediction of virus integrations, and maps them
onto the human and viruses genomes using a standard aligner. Step 2: Candidate integration discovery. It corrects the alignment of the reads that were
incorrectly aligned (for example, in the �gure, the read represented as dotted arrow is realigned to the correct location), and clusters the pairs to predict
virus integrations. Each cluster represents the breakpoint of an integration. (For example, in the �gure, we discovered two clusters which are enclosed by
green dotted lines.)

generated four datasets using pIRS (19) with different cov-
erages: 5 ×, 10 ×, 20 × and 50 ×. For all the datasets, the
read length was 100 bp and the mean insert size 500 bp.
In the results section, we show that while the existing

callers perform very well onRANDSIM, their performance
degrade onREPSIM.We further show that the degradation
of performance on REPSIM is due to the incorrect align-
ment of ambiguous reads.

Real datasets

We test SurVirus, BatVI, ViFi and VIcaller on three real
datasets, which we name HPV HIVID, HBV HIVID and
HBV WGS. This section describes each dataset, while Ta-
ble 1 summarizes their features.

HPV HIVID dataset. In Hu et al. (20), 135 samples of
cervical cancer were sequenced using HIVID, which is a
targeted Illumina sequencing method that produces large

numbers of read pairs from regions where the virus is in-
tegrated. The paper validated 211 candidate HPV integra-
tions with Sanger sequencing, and 174 appear to be suc-
cessful. Interestingly, we noticed that many of the Sanger
sequences reported in (20) are not supported by the actual
Illumina datasets (Supplementary Section Curating HPV
Sanger validated calls, Supplementary Figures S1 and S2).
We eventually retained 75 calls that showed the minimum
required support, and we used them to assess the sensitivity
of the callers.
Furthermore, for 10 patients, RNA sequencing is avail-

able. We use it to assess the precision of the methods, by
computing the overlap between DNA and RNA calls.
In the results section, we run SurVirus, BatVI, ViFi and

VIcaller on both HIVID and RNA-seq datasets to com-
pare their performance. Unfortunately we failed to run VI-
caller on the HIVID datasets for four cervical cancer sam-
ples (T2020, T2023, T2116, T2122), therefore we excluded
these sample from the comparison.
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Table 1. Summary of the three real-world datasets used to benchmark the performance of the callers

Name HPV HIVID HBV HIVID HBVWGS

Samples 135 426 × 2 88 × 2
Tissue Cervical cancer HCC (tumor/control) HCC (tumor/control)
Sequencing method HIVID HIVID WGS
Virus integrated HPV HBV HBV
Sensitivity tested by 75 Sanger-validated calls 145 Sanger-validated calls 246 HIVID calls
Precision tested by RNA-seq RNA-seq 246 HIVID calls

HBVHIVID dataset. Zhao et al. (21) sequenced 426HCC
patients using HIVID. For each patient, two samples (con-
trol and tumor) were sequenced. One hundred forty-six in-
tegrations called byHIVIDwere reported as validated using
Sanger sequencing. We exclude one because the Sanger se-
quence can be entirely mapped to the human genome, and
we use the remaining 145 as a truth set for sensitivity. For
12/145 calls, the Sanger sequence can be aligned tomultiple
locations in the human genome other than the one predicted
by HIVID. Therefore a single Sanger sequence can be used
to validate multiple integration sites, and it is not guaran-
teed that the site predicted by HIVID is the correct one. We
refer to these 12 calls as ambiguously validated.
RNA sequencing is available for 12 samples, and we re-

peat the analysis that was performed for HPV HIVID.

HBV WGS dataset. Sung et al. (22) produced WGS
datasets for both tumor and adjacent normal tissue of 88
HCC patients, 81 of which are HBV-positive. Li et al. (23)
predicted 246 HBV integrations on a subset of 28 patients
using HIVID. We use the HIVID calls as a truth set to test
the performance of the methods on the WGS datasets.

RESULTS

Performance on simulated datasets

In the introduction, we claim that ambiguous reads pose
a challenge to existing callers, and we describe the different
strategies used and the shortcomings of each strategy. In this
section, we provide support for our claim by showing that
ViFi, BatVI andVIcaller all work very well when the viruses
are randomly integrated, but fail when viruses integrate in
repetitive regions.
Supplementary Figure S4 shows that, when virus seg-

ments are randomly integrated into the human genome,
the callers perform well. All methods predict nearly all the
virus integrations correctly and produce very few false pos-
itives. However, when tested on REPSIM, the callers per-
form very differently (Figure 3A–C). Except for SurVirus,
all the callers are lacking in either sensitivity, precision,
or both. VIcaller demonstrates good sensitivity, but suffers
from poor precision; furthermore, its precision decreases
with increasing coverage. BatVI and ViFi show good pre-
cision, but opposite behaviours: BatVI is precise at low cov-
erage, but becomes worse as the depth increases; ViFi starts
with poor precision at 5×, but becomes more precise as the
depth increases. SurVirus is both the most sensitive and the
most precise caller in all the datasets. Remarkably, no other
caller comes close in both sensitivity and precision, and this
is re�ected in the F1 score. Itmust be noted that the sole pur-
pose of our simulated dataset is to demonstrate that existing

A B

C D

Figure 3. (A–C) The performance of the three tested callers plus SurVirus,
on the REPSIM datasets at different coverage. A simulated integration is
considered as predicted if the predictions is within 100 bp from it. (D) Per-
centage of ambiguous reads in false positives (blue) and false negatives
(green) for each caller.

callers struggle in detecting virus integrations in repetitive
regions, while our algorithm better handles such integra-
tions. It is not meant to be representative of general perfor-
mance on biological dataset, whichwill be extensively tested
in the following sections.
Figure 3D shows how ambiguous reads contribute to

false positives and false negatives in REPSIM for each
caller.Wemark a read as ambiguous if its mapQ score is less
than 10 when mapped to hg19. In BatVI, ambiguous reads
constitute about half of all the reads used to call false pos-
itives. This is expected since BatVI uses ambiguous reads,
as long as they are supported by a suf�cient number of un-
ambiguous reads. On the other hand, ViFi entirely discards
ambiguous reads, therefore they do not contribute to false
positives; by closer inspection, all false positives by ViFi
are due to breakpoints imprecisely predicted (farther than
100 bp from the correct location). Finally, ambiguous reads
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C D

Figure 4. (A, B) Sensitivity and number of calls for the callers on the HPV
HIVID dataset. Although the reliable ground truth is only a small set of
Sanger validated integrations, it is easy to see that the number of calls
BatVI, ViFi and VIcaller predict is unrealistic, and it is most likely the
results of tens of thousands of false positives. (C, D) The same analysis
is repeated on detected HBV integrations in HBV HIVID dataset. For a
subset of validated calls (marked as ‘Corrected’), SurVirus actually selects
a better location compared to what was reported by Zhao et al. (21).

contribute almost entirely to false positives by VIcaller, sug-
gesting that it uses them incorrectly.
As for false negatives, it is immediately obvious that am-

biguous reads contribute almost entirely to missed integra-
tions in BatVI and ViFi. We did not consider VIcaller be-
cause it only has three false negatives, which would not be
a signi�cant number to infer any pattern. Supplementary
Figure S5 breaks down the performance of the methods ac-
cording to the dif�culty of the repeats.

Performance on HIVID datasets

To benchmark the performance of SurVirus, BatVI, ViFi
and VIcaller, we run these four callers on HPV HIVID and
HBV HIVID. Their performance are compared using their
Sanger sequencing and RNA-seq datasets.

Sensitivity on Sanger validated calls. Using the Sanger se-
quence, we are able to identify the host breakpoint at a
single base pair resolution. Hence, we employ a very strict
comparison criteria when comparing the calls of each caller
to the benchmark validated calls (Supplementary Section
Comparing integrations called by different methods, D =
10 bp). Figure 4A, C shows the percentage of validated calls
that eachmethod is able to detect, while Figure 4B, D shows
the number of virus integrations called by each method.

SurVirus is the only tool that precisely predicts all the
validated HPV integrations. Remarkably, it does so while
generating a fraction of the calls reported by other meth-
ods (Figure 4A, B). BatVI, the second most sensitive tool,
predicts 196 × more integrations than SurVirus. ViFi and
VIcaller predict 31× and 76× more calls than SurVirus, re-
spectively, ant yet miss a signi�cant portion of validated
calls.
Similarly, SurVirus is also able to detect more validated

HBV integrations while reporting far less calls than the
othermethods (Figure 4C,D). Interestingly, for the 12HBV
integrations which are ambiguously validated by Sanger se-
quences (i.e. these 12 Sanger sequences align to multiple lo-
cations on the human genome), SurVirus reports an alter-
native location compared to what was reported by HIVID.
In 10/12 (=83.3%) cases, the location reported by SurVirus
is better than that reported by Zhao et al. (21) (Supplemen-
tary Section Correcting the location of theHBV Sanger val-
idated calls).
The number of integrations called by methods other than

SurVirus are not realistic. ViFi, the method with the second
least number of calls, predicts an average of over 350 HPV
integrations per cervical sample, while VIcaller almost 700
and BatVI well over 1500 (Figure 4B). Such numbers point
to an extremely high number of false positives. This is fur-
ther reinforced by the fact that different methods call vastly
different integrations, as shown in Figure 5A, C. In each
�gure there are seven subsets that are made of calls not pre-
dicted by SurVirus. We analyse them to determine the rea-
son why SurVirus did not call them.

Most predictions not called by SurVirus are plausibly false
positives. We examined the seven subsets of calls in Fig-
ure 5A, C that were not called by SurVirus but were called
by at least one other tool. Given the large number of calls,
200 calls were randomly sampled for each subset. For each
call, we analyse the reads that were used to call it. When
multiple tools called the same integration, we analyse the
supporting reads according to ViFi, if available (since it was
shown in simulation to be the most precise); otherwise we
analyse the supporting reads according to BatVI.
We classi�ed these calls into seven categories, accord-

ing to the reason why SurVirus would not trust the call.
Namely:

• 1 or 2 unique support: Most callers fail at correctly han-
dling PCR duplicates. For many calls, the tools report a
large number of pairs supporting the call. However, upon
closer inspection, the pairs are all PCR duplicates of one
or two distinct pairs.

• inconsistent reads: Callers sometimes cluster pairs that
cannot support the same breakpoint. For example, the
host reads may belong to opposite strands, or the virus
reads may belong to different viruses, opposite strands or
they may map too far from each other. See Supplemen-
tary Section Consistency of read pairs and Supplemen-
tary Figure S3.

• low-quality unmapped: Some reads cannot be mapped by
BWA MEM (32) onto either the human reference or to
virus database, and have low average base quality (lower
than 10); they are most likely artifacts. Some callers,

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/4
9
/6

/e
3
3
/6

0
9
7
6
6
0
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



e33 Nucleic Acids Research, 2021, Vol. 49, No. 6 PAGE 6 OF 11
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Figure 5. (A) Intersection of the calls from the different callers on HPVHIVID datasets. (B) For each of the seven subsets of (A) not predicted by SurVirus,
we randomly sampled 200 calls, and we classi�ed them into six categories of false positives. Callers are abbreviated as BV (BatVI), VF (ViFi) and VC
(VIcaller). (C) Intersection of the calls from the different callers on HPV HIVID datasets. (D) Classi�cation of the seven subsets of (C) not predicted by
SurVirus.

in particular ViFi, employ custom algorithms that force
their alignment against the virus database;

• non-chimeric: The pairs used to support the integration
can be properly aligned (as reported by BWA MEM)
to either the host or a virus. They are not chimeric
pairs;

• short coverage: The host region next to the integration
is expected to be covered by the chimeric host reads by
>100 bp (since average insert size is >200 bp). Chimeric
host reads are reads that support the existence of an inte-
gration, i.e. their mate is a virus read. If this is not true, we
classify the call as short coverage. No constraint is given
on virus coverage, since the virus segment which is inte-
grated into the host may be short.

Figure 5B shows the classi�cation of the sampled HPV
calls into the six categories. The majority of the calls, af-
ter PCR duplicate removal, are supported by only 1 pair.
Furthermore, a large number of calls were due to inconsis-
tent virus reads and short coverage. Few cases were due to
calls supported by two pairs, low-quality unmapped reads

or non-chimeric. All of the calls could be categorised into
these six categories.
For the HBV HIVID datasets, Figure 5D shows that all

the calls except for three could be classi�ed as false positives.
Compared to HPVHIVID, the number of calls classi�ed as
short coverage was considerably less, and those classi�ed as
non-chimeric or low-quality unmapped were signi�cantly
more.
In total, out of these 1400 HPV integrations and 1400

HBV integrations that are not called by SurVirus, only three
HBV integrations (0.1%) may potentially be true positives.

Validation of novel calls by SurVirus. For the HPVHIVID
dataset, 385 integrations are only predicted by SurVirus.
Unfortunately, only 21 samples were still available for vali-
dation. Out of the 385 calls, only 8 belonged to one of these
samples. Five calls were successfully validated by Sanger
validation (Supplementary Table S2). Two out of three in-
tegrations that failed to validate have split reads support, so
there is a possibility that they are correct. It should be noted
that those integrations seem to appear in low concentration.
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Figure 6. Frequency histograms of the percentages of uniquely aligned reads for each SurVirus-unique call. For most calls, nearly all their reads are not
uniquely aligned, which suggests they lie in repetitive regions, and they are missed by other methods for this reason.

A B

Figure 7. Classi�cation of SurVirus-unique HPV calls (A) and HBV calls
(B) according to which classes of repeats they belong to.

This, coupled with the fact that the organic samples maybe
degraded and that they are in repeated regions, makes them
more dif�cult to validate.
Given the limited number of DNA calls suitable for val-

idation, in order to strengthen our con�dence in the preci-
sion of themethod, we validated the transcriptomic calls for
two samples for which we possessed high quality RNA. 19
calls out of 19 successfully validated (Supplementary Table
S4).

SurVirus predicts novel integrations in repetitive regions.
For every SurVirus-unique call, we compute the percentage
of reads that are not ambiguous (i.e. uniquely aligned). Fig-
ure 6 shows the frequency histograms of such percentages
for the HPV and HBV HIVID datasets.
The vast majority of SurVirus-unique HPV calls (81%)

have <50% of their reads uniquely aligned. Furthermore,
a large proportion of the calls (41%) have 20% or less of
their reads uniquely aligned. This is even more evident in
the HBV dataset, where 52% of the calls have<20% of their
reads uniquely aligned, and 85% of them have <50% of
uniquely aligned reads. This statistics indicate that SurVirus
calls many novel integrations by using ambiguous reads.

We further classify the SurVirus-unique calls based on the
classes of repeat regions they belong to (Figure 7); nearly all
of them belong to at least one class of repeats. More than
half of the SurVirus-unique HPV calls are located in LINE
repeats. The fact that HPV tends to integrate in LINE re-
peats was observed by Hatano et al. (24) in HPV-associated
head and neck squamous cell carcinoma, but it has been
overlooked in cervical cancer, to the best of our knowledge,
probably due to limitations of existing computational meth-
ods. The second and third most commonly missed repeats
were Satellite (23%) and SINE (13%). Indeed, out of the
�ve validated calls, two were located in LINEs repeat, one
in Satellite, and one in SINE.
For the HBV HIVID dataset, most of the SurVirus-

unique calls were in Satellite regions (40%), followed by
LINE (22%). There are a few publications reporting that
HBV is frequently integrated into Satellite and LINE (25–
29).

RNA-sequencing. We ran SurVirus and the other methods
on the available RNA data from cervical cancer and HCC
patients. We expect that each RNA call is supported by a
DNA call, either

1. directly: there is a DNA breakpoint that precisely
matches in chromosome, strand and position of the
RNA breakpoint;

2. as a potential alternative splicing: there is a DNA break-
point that is within 100 000 bp of the RNA breakpoint,
either downstream (if the RNAbreakpoint is on the pos-
itive strand) or upstream (if the RNA breakpoint is on
the negative strand).

Figure 8 illustrates the two cases: Transcript 1 in the �gure
represents case (i), while Transcript 2 represents case (ii).
SurVirus and ViFi display comparable precision and per-

form much better than BatVI and VIcaller (Figure 9). ViFi
has less calls that are directly supported by DNA break-
points. This is probably due to its low accuracy in deter-
mining the breakpoints (as we have demonstrated in Section
Performance on simulated datasets).
More interestingly, we found that out of the 23 RNA

integrations that are potentially due to alternative splic-
ing, 20 splicing loci in the viruses belong to three recurring
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Figure 8. A virus is integrated into a genome. We show two cases: if Transcript 1 is expressed, then the breakpoint detected from RNA-seq will match the
one detected from DNA-seq. If Transcript 2 is expressed, i.e. the genomic region containing the breakpoint is not transcribed, then the RNA call will not
directly match the DNA call, and it will be classi�ed as a potential alternative splicing.

A

B

Figure 9. We consider an RNA call a FP if it is not supported by anyDNA
call on the same sample, neither directly or as a potential alternative splic-
ing. The �gure shows the precision on (A) the HPV HIVID and (B) the
HBV HIVID datasets.

categories: type16:880 (eight calls), type16:226 (�ve calls)
and type18:929 (seven calls). Figure 10 shows an example
for each category. Two of the three locations (type16:880
and type18:929) have been reported as splicing sites in
HPV-human fusion transcripts by Brant et al. (30), and
type16:226 is reported as a known splice site in HPV tran-
scripts, although to the best of our knowledge, splicing in
this location has never been observed in HPV-human fu-
sion transcripts. All of our calls in cell-lines successfully val-
idated. We could not validate the calls in patients since the
RNA samples are degraded.

A

B

C

D

Figure 10. Examples for the three recurring categories of alternative splic-
ing locations in HPV and HBV.

For HBV, we detected one recurrent splicing site
HBV:458 in HBV-human fusion transcripts, which ap-
peared in four out of 12 patients. This is the �rst time we
discovered this recurrent splicing site in HBV-human fusion
transcripts, though this splicing site is known to occur in
HBV transcripts (31).

Performance on the HBV WGS dataset

Figure 11A, B shows the sensitivity and precision for dif-
ferent callers on the HBV WGS datasets, when using the
HIVID calls as benchmark. Note that HIVID uses deep se-
quencing and as such, it is very sensitive but also prone to
noise, hence the sensitivities of the methods are likely un-
derestimated. We failed to run VIcaller on these datasets, as
the software required>100GBofRAMfor every dataset we
tried. Therefore, we used the HBV integrations of VIcaller
provided by Chen et al. (10).

SurVirus has better performance on this dataset as well.
BatVI has the second best sensitivity, yet SurVirus is 35%
more sensitive while having sensibly higher precision. VI-
caller almost matches SurVirus in precision, but it is notice-
ably less sensitive. ViFi performs the worst in both sensi-
tivity and precision, with SurVirus calling more than twice
the number of true positives while nearly doubling the pre-
cision.
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A

C

B

Figure 11. (A,B) Sensitivity and precision for the callers on theHCCWGS
datasets. The HIVID calls are used as ground truth. (C) Intersection be-
tween the calls from different callers, restricted to the HIVID calls.

Table 2. Running time of the different virus integration callers, on an

HIVID dataset (SiHa) and a WGS dataset (260T)

HIVID WGS

BatVI 7h 56m 3h 44m
SurVirus 4m 2h 4m
ViFi 15m 2d 7h 30m
VIcaller 30m N.A.

Figure 11C shows the intersection of the methods, re-
stricted to the calls predicted by HIVID. 23 HIVID calls
are called only by SurVirus. For comparison, the total num-
ber of calls predicted by any of the other three methods and
missed by SurVirus was 13, less than half. Interestingly, the
majority (8/13) are predicted only by BatVI.

Runtime comparison

We compare the running time (Table 2) and the memory
usage (Table 3) of the software on two datasets: an HIVID
dataset (SiHa) and a WGS dataset (260T).
The main difference between the two is that WGS

datasets are much larger than HIVID datasets, but HIVID
datasets often have very high numbers of chimeric pairs.
SurVirus is much faster than the other methods on both

the WGS and the HIVID datasets. Remarkably, it is the

Table 3. Memory usage of the different virus integration callers, on an

HIVID dataset (SiHa) and a WGS dataset (260T)

HIVID WGS

BatVI 31GB 31GB
SurVirus 8GB 9GB
ViFi 6.5GB 7GB
VIcaller 11GB >120GB

only software that performswell on both datasets. Although
BatVI is relatively fast on WGS, SurVirus takes nearly half
the time, and it is more than a 100 times faster in process-
ing the HIVID dataset. ViFi, on the other hand, was fast
on the HIVID dataset, and yet SurVirus was nearly four
times faster, and over 25 times faster on WGS. VIcaller was
relatively slow on HIVID, and for every WGS dataset we
tried, it required more than 120 GB of memory. The other
methods required reasonable amounts of memory to pro-
cess both the HIVID and the WGS datasets.

DISCUSSION

In this study, we tackled the problem of detecting virus in-
tegrations in a host genome. Integrations in repeat regions
are dif�cult to predict, and existing solutions fail to call in-
tegrations in repetitive regions; the dif�culty is due to the
fact that reads are often aligned incorrectly to such repeat
regions. We developed SurVirus, an algorithm that corrects
the mapping of the reads by a technique similar to multiple
sequence alignment, but does so ef�ciently and it is able to
deal with large HTS datasets.
We used simulated and published biological dataset to

demonstrate that SurVirus predicts novel integrations com-
pared to the state-of-the-art methods, and we were able to
validate them. Such novel integrations are mostly in repeat
regions, especially in LINE and Satellite repeats, and the
literature supports our �nding. In particular, a study by
Hatano et al. (24) combined Next-Generation Sequencing
and Sanger sequencing to accurately detect the HPV inte-
grations in HPV-associated head and neck squamous cell
carcinoma, and found signi�cant enrichment of integra-
tions in LINE regions, compared to random expectation.
Among the methods we tested, only SurVirus observed a
similar enrichment for HPV integrations in cervical can-
cer datasets; this leads us to believe that revisiting available
datasets using SurVirus may uncover a substantial number
of integrations that were previously missed.
Furthermore, tested methods predict up to hundreds of

thousands of false positives, which SurVirus successfully �l-
ters. DNA and RNA concordance is higher for SurVirus
compared to other methods. These facts strongly suggest
that SurVirus is signi�cantly more precise than the state of
the art.
SurVirus can be used with an arbitrarily large database

of viruses, and it can quickly scan large datasets starting
from a BAM �le as well as from raw FASTQ �les. This,
plus the high sensitivity and precision, as well as the fact
that SurVirus detects the breakpoints with extreme accu-
racy (Supplementary Figure S6),make SurVirus suitable for
scanning for integrations in large populations. Higher sensi-
tivity means SurVirus will detect integrations that would be
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otherwise missed by other callers. Higher precision means
that less time will be wasted analysing false positives, as well
as less noise as a confounding factor in the analysis. Higher
accuracy in determining the breakpoint allows for a bet-
ter characterisation of the breakpoints, e.g. determining the
presence of inserted sequences in between the host and the
virus sequences, or determining microhomologies. Indeed,
we observed that the breakpoint predicted by SurVirus have
signi�cantly moremicrohomologies than what would be ex-
pected at random. Finally, SurVirus is open-source and free
to use, it can be used on any organism, and its output is
very clear and easy to process. For these reasons, we believe
it represents a signi�cant step forward in the study of how
virus integrations affect their host.

DATA AVAILABILITY

Supplementary Table S10 reports the Accession number
for every dataset we used. SurVirus calls on HPV and
HBV HIVID datasets are reported in Supplementary Ta-
bles S1 and S6, respectively. SurVirus calls on HPV and
HBVRNA-seq datasets are reported in Supplementary Ta-
bles S3 and S8, respectively. SurVirus calls on HBV WGS
datasets are reported in Supplementary Table S9. Curated
benchmark HPV integrations, as detailed in Section Curat-
ing HPV Sanger validated calls, are reported in Supplemen-
tary Table S5. Reads count forHBV integrations having dis-
agreeing location betweenHIVID and SurVirus are listed in
Supplementary Table S7.
The source code, along with instructions, can be found at

https://github.com/kensung-lab/SurVirus.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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