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Abstract—In this paper we propose a formal, model-checking
based procedure to evaluate the survivability of fluid critical
infrastructures. To do so, we introduce the Stochastic Time Logic
(STL), which allows to precisely express intricate state-based and
until-based properties for an important class of hybrid Petri
nets. We present an efficient model checking procedure which
recursively traverses the underlying state-space of the hybrid
Petri net model, and identifies those regions (subsets of the
discrete-continuous state space) that satisfy STL formulae. A
case study studying the survivability of a water refinery and
distribution plant shows the feasibility of our approach.

I. INTRODUCTION

Over the last 10-15 years, governments around the world
have increased their efforts to ensure dependable, safe and
secure operation of their national critical infrastructures, in-
cluding the energy, water and gas distribution and supply to
citizens and professional users [1], [2]. To ensure a continuous
operation of critical infrastructures, a model-based evaluation
of these systems’ dependability [3] is of great use, as it
allows to evaluate a wide variety of “what-if?” scenarios.
We experienced that the evaluation of so-called survivability
properties is most useful to operators of critical infrastructures,
as the the notion of survivability comes close to typical
questions put forward by practitioners [4]. Although multiple
definitions are around, we view the survivability of a system
as the probability that it recovers within a predefined amount
of time to a predefined level of service, after the occurrence
of some disaster [5], [6], [7]. We restrict ourselves in this
sense to so-called GOOD models, for Given-Occurrence-Of-
Disaster. This means that we do not model the failure process
itself, but focus on the effect of the failure once occurred, on
the behaviour of the system.

In what follows we focus on so-called fluid infrastructures,
such as they appear in the water, gas and oil sectors. These
infrastructural systems have as distinguishing feature that
they encompass both continuous state components (levels of
fluid, etc), as well as discrete state components (the states of
discrete control components), hence, so-called hybrid models
appear most applicable. Recently, hybrid Petri net models
with a single general one-shot transition (HPnGs) have been
introduced for modeling fluid critical infrastructures such as
water refinery plants [8] where the general one-shot transition
models stochastic failures or repair processes. HPnGs allow
for a combination of discrete and fluid state variables, and four
different types of state transitions (immediate, deterministically
timed, generally distributed timed and fluid-style continuous),
and allow for an efficient evaluation of a variety of interesting

system properties, e.g., the probability of fluid reservoirs to
become empty before certain events have happened. Following
[8], in [9] a much more efficient algorithm to evaluate the state
probabilities for such HPnGs has been proposed. The crux of
that algorithm is to decompose the continuous part of the state
space in convex regions, such that within such a region, the
discrete part of the state space does not change. Using that
algorithm, simple (transient) state-based system properties can
be evaluated.

However, in order to formalize the notion of survivability a
time-bounded until operator is needed. Hence, this paper adds
a CSL-style [10] Until operator to the previously introduced
state-based logic in [9], which together is called Stochastic
Time Logic (STL) in the following. In this paper, we introduce
syntax and semantics of STL, as well as a model checking
procedure to check the until operator, hence, to evaluate system
survivability properties. Our new algorithm makes extensive
use of computational geometry and recursively traverses all
regions in the underlying state space of the HPnG and identifies
those parts of regions that satisfy sub-formulae.

The contribution of this paper lies in taking into account
the evolution of the system over time which is needed for
model checking the until operator, whereas previous work
could only analyze state-based properties (probabilities). The
logic we propose is similar to MITL [11] and STL in [12],
however, instead of a signal we check nested properties that
are based on discrete and continuous atomic properties that
reflect the marking of the discrete and continuous places of
the hybrid Petri net, respectively. Using the until operator,
as introduced for HPnGs in this paper, we are not restricted
to the evaluation of simple reachability properties. Instead,
our approach allows us to compute so-called reach-avoid
properties, using the until operator.

Related work. The class of hybrid Petri nets, as considered in
this paper constitutes a sub-class of Stochastic Hybrid Models,
where the continuous evolution is linear and determinsitic. Due
to rate-adaption which takes place when a fluid place is at its
upper or lower boundary, the continuous behaviour is however
not fully controlled by the discrete part of the system.

The state representation which is used to compute measures
of interest resembles related work in non-stochastic linear
hybrid automata [13]. For an overview on the related work
with respect to the state representation, we refer to [9]. For
model checking linear hybrid systems different approaches
exist, such as linear abstraction, used in HyTech/PHAVer [14],



[15] and flow pipe construction, as used, e.g., in SpaceEx [16].
However, our work differs from these approaches, since we
partition the state-space according to time and the support of
the general distribution instead of the values of the continuous
variables. Hence, regions, as presented in [9] do not correspond
to modes in hybrid automata (as used there). Due to the
partitioning of the state-space into convex regions with the
same characteristics, we are able to provide exact results for
time-bounded reachability within few seconds.

This considerably differs from related work on Stochastic
Hybrid systems (with deterministic continuous behaviour),
where mostly over-approximation [17], [18], [19] is used
to compute results. The practical applicability of these ap-
proaches, however, seems to be limited to special cases.
Another option is to use Monte-Carlo simulations, as done
in [20], [21].

For model checking Fluid Stochastic Petri nets [22] two
comments are in place. First, the model class is different,
since their analyzability is restricted to only a few fluid
places. Second, we are not aware of a unifying approach that
incorporates both discrete and continuous properties. Model
checking (discrete) probabilistic hybrid automata has been
shown to be decidable for probabilistic temporal logics [23].

This paper is further organized as follows. Section II
summarizes the definition of our class of hybrid Petri nets, and
revisits the partitioning of the state-space into the underlying
regions. The stochastic time logic STL (syntax and semantics)
is introduced in Section III, whereas Section IV explains the
model checking procedure in detail. A case study addressing
the survivability of a water refinery and delivery plant shows
the feasibility of our approach in Section V. The paper is
concluded in Section VI.

II. MODEL DEFINITION

Section II-A defines the syntax of an HPnG and indicates
its evolution. Section II-B explains how the underlying state-
space of an HPnG is partitioned into regions with the same
characteristics.

A. Hybrid Petri-nets with general one-shot transition

An HPnG is defined as a tuple (P, T ,A,m0,x0,Φ), where
P = PD ∪PC is a set of places that can be divided into two
disjoint sets PD and PC for the discrete and continuous places,
respectively. The discrete marking m is a vector that represents
the number of tokens mP ∈ N for each discrete place P ∈ PD
and the continuous marking x is a vector that represents the
non-negative level of fluid xP ∈ R+

0 for each continuous place
P ∈ P . The initial marking is given by (m0,x0). Four types
of transitions are possible, as follows. The set of immediate
transitions, the set of deterministically timed transitions, the
set of general transitions, and the set of continuous transitions
together form the finite set of transitions T = T I∪T D∪T G∪
T C . Note that in this paper the number of general transitions
is restricted to |T G| = 1. Also the set of arcs A consists
of four sets: The set of discrete input and output arcs AD,
connects discrete places and discrete transitions and the set
of continuous input and output arcs AC connects continuous
places and continuous transitions. The set of inhibitor arcs AI
and the set of test arcs AT , both connect discrete places to

all kinds of transitions and ensure that the transition is only
enabled in case the discrete place that is connected via an
inhibitor arc does not contain any token or in the case of a
test arc, the transition is only enabled in case there are as
many tokens in the connected place, as defined by the test arc.
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8 functions. Function φPb : PC → R+ ∪∞ assigns an upper
bound to each continuous place. In contrast to the definition of
HPnG in [8] in the following φTp : T D ∪ T I → N specifies a
unique priority to each immediate and deterministic transition
to resolve firing conflicts, as in [24]. Deterministic transitions
have a constant firing time defined by φTd : T D → R+

and continuous transitions have a constant nominal flow rate
defined by φTf : T C → R+. The general transition is
associated with a random variable s, representing its firing
time, with a cumulative probability distribution function (CDF)
φg(s), and its probability density function (PDF) is denoted
g(s). We assign to all arcs except continuous arcs the weight:
φAw : A \ AC → N which defines the amount of tokens that
is taken from or added to connected places upon firing of the
transition.

Graphical representation. The primitives of the hybrid Petri
net formalism with general one-shot transitions are shown in
Figure 1. A discrete place is graphically represented by a
single circle and a fluid place is represented by two concentric
circles. A general transition is drawn as an empty rectangle,
a deterministic transition is drawn as a grey rectangle, a fluid
transitions shown as an empty rectangle with double lines and
an immediate transition is a thick black bar. The discrete input
and output arcs are drawn as single arrows and fluid input and
output arcs are represented with double lines. Inhibitor arcs
are drawn with a small circle toward the transition and test
arcs are drawn with two triangular arrowheads.

Figure 1. Graphical representation of primitives of HPnG.

System evolution. Markings are collected into two vectors,
the discrete marking m = (m1, . . . ,mnd

) and the continuous
marking x = (x1, . . . , xnc). The initial marking is composed
of a discrete part m0 that describes the initial amount of tokens
in all discrete places and a continuous part x0 that describes
the initial amount of fluid in all continuous places.

The state of an HPnG is defined by Γ = (m,x, c,d,G),
where vector c = (c1, . . . , c|T D|) contains a clock ci for



each deterministic transition that represents the time that TDi
has been enabled. When a transition is disabled the clocks
do not evolve, but the clock value is preserved until the
transition is enabled again and clocks are only reset, when
the corresponding deterministic transition fires. If the general
transition has not fired yet, it can be considered as a de-
terministic transition, whose firing time is sampled from the
corresponding general firing time distribution. This sampling
happens only once per model execution, and it occurs when the
general transition becomes enabled for the first time. Vector
d = (d1, . . . , d|PC|) indicates the drift, i.e., the change of fluid
per time unit for each continuous place. Note that even though
the vector d is determined uniquely by x and m, it is included
in the definition of a state to make it more descriptive. The
general transition is only allowed to fire once, hence, the flag
G ∈ {0, 1} indicates whether the general transition has already
fired (G = 1), or not (G = 0). So, the initial state of the
system is Γ0 = (m0,x0,0,d0, 0). A system state can be seen
as a snapshot of the system evolution at a specific time, and
assumed general transition firing time; this is elaborated in
more detail in the next section.

The firing rules of deterministic, general, immediate and
fluid transitions differ. Whether a transition is allowed to fire
depends (1) on the structure and the current marking of the
Petri net (concession) and (2) on the type of the transitions.

Fluid transitions that have concession, are always enabled,
and continuously transport fluid along fluid arcs. Conflicts in
the distribution of fluid occur when a continuous place reaches
one of its boundaries. To prevent overflow, the fluid input has
to be reduced to match the output, and to prevent underflow the
fluid output has to be reduced to match the input, respectively.
The firing rate of fluid transitions is then adapted according to
the share φAs : AC → R+ and priority φAp : AC → N that is
assigned to the continuous arcs that connect the transition to
the place. This is done by distributing the available fluid over
all continuous arcs. Those with highest priority are considered
first and if there is enough fluid available, all transitions
with the highest priority can still fire at their nominal speed.
Otherwise, their fluid rates are adapted according to the firing
rate of the connected transitions and the share of the arc,
according to [25]. The adaptation of fluid rates in these cases,
results in a piecewise constant fluid derivative per continuous
place.

Non-fluid transitions that have concession may be enabled,
depending on their type. If an immediate transition has con-
cession the marking is said to be vanishing otherwise the
marking is said to be tangible. Immediate transitions have
precedence above deterministic and general transitions. In a
vanishing marking deterministic and general transitions are
disabled and cannot fire. The clock of each enabled deter-
ministic transition TDi evolves with time at rate dci/dτ = 1
and when a clock reaches its firing time, i.e., ci = φTd (Ti)
transition TDi fires. Similarly, the enabling time of the enabled
general transition, that has not fired yet, evolves with time
at rate 1. The general transition then fires with probability
φg(τ + ∆τ) − φg(τ) =

∫ τ+∆τ

τ
g(s)ds in any time interval

[τ, τ + ∆τ ].

Whenever a non-fluid transition fires the marking evolves
according to a firing rule, depending on the type of the transi-
tion. All discrete transition types, i.e. immediate, deterministic
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Figure 2. Generic presentation of STD.

and general, change the discrete part of the marking m in a
similar way. For a more detailed description of HPnGs and
their evolution, we refer to [26].

B. Stochastic time diagram

The Stochastic time diagram (STD) introduced in [9],
provides a genuine way of representing the evolution of a
HPnG for a given initial state. The main reasoning behind this
is that, for an initial state of an HPnG and a predefined value
for the firing time of the general transition, denoted s, for all
the future time instances t we can determine the state of the
system. The STD is a two-dimensional diagram with t and s
as its vertical and horizontal axis, respectively. Each point in
this diagram is associated with a unique HPnG state, which
is denoted by Γ(s, t). A generic version of this diagram is
shown in Figure 2. Two main areas can be distinguished in this
figure. The area above the line t = s, called stochastic area,
contains all the HPnG states for which the general transition
has fired (t > s), whereas the area below the line t = s, called
deterministic area, includes those states for which the general
transition did not yet fire (t < s). To compute measures of
interest for HPnGs, the STD needs to be deconditioned with
the probability density function g(s).

The main idea behind the proposed method in [9], is that
instead of dealing with infinitely many points in the ts-plane,
we can partition it into several regions. These regions exist,
because the state of the system does not change until an event
occurs. In each system state two types of potential events can
occur: a continuous place reaching its lower/upper boundary or
an enabled transition, either deterministic or general fires. The
former imposes a change in the drift of the continuous place,
due to rate adaptation [25], while the latter event type alters
the discrete marking and the general transition flag. Hence, an
event is a change in the discrete marking, a change in drift or
a change in a general transition flag. We define a region as a
set of states that while the system remains in them no event
occurs, and by the occurrence of an event the system enters
another region. This leads to the following definition.

Definition 1. A region R is set of (s, t) points in a given STD,



for which we have:

∀(s1, t1), (s2, t2) ∈ R :

{
Γ(s1, t1).m = Γ(s2, t2).m,
Γ(s1, t1).d = Γ(s2, t2).d,
Γ(s1, t1).G = Γ(s2, t2).G.

Note that, while Γ(s, t).m is used to refer to the vector of
discrete markings, Γ(s, t).mP is used to refer to the discrete
marking of a specific place P . A similar notation is used for
the continuous marking.

A possible partitioning of the state space into regions is
shown in Figure 3 together with probability density function
g(s). Note that the shape of these regions depends on the
structure of the model at hand. In [9] it is shown that, inside a
region all continuous variables, i.e., the amount of fluid and the
clock valuations, can be represented by simple linear equations
in s and t. Intuitively, this is because in a region all continuous
places are associated with a constant drift and clocks also
have a constant drift (of one). Using this we infer that the
boundaries between regions, which represent the occurrence
of an event, are characterized by linear functions of s and
t. Hence, each region in the STD is a polygon. The unique
line segment corresponding to the event, causing the system to
enter this region, is called the underlying segment of the region.
In Figure 5, a generic region is shown and its underlying
segment is depicted by lu. To compute the probability to be in
a specific system state at time τ , it suffices to find all regions
intersecting the horizontal line t = τ that correspond to the
specific system state and integrate g(s) over the intersection.
This idea is illustrated for a given partitioning in Figure 3.

t
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Figure 3. Deconditioning according to the probability density function g(s).

Even though reachability computations on the STD are
always performed for a given and finite time bound, there is
still a possibility of having an infinite number of regions in the
STD before the finite time bound. This happens whenever an
infinite sequence of vanishing markings occurs. This problem
is well-known for all Petri nets formalism that allow immediate
transitions. However, if we require that models have to be
bounded, infinite sequences of vanishing markings can only
take place in the form of cycles of vanishing markings, which,
however can be detected and removed. This ensures that we
always reach a tangible marking in a finite number of steps
and the number of regions in the STD before a finite time
bound is also finite. Hence, for a bounded model and a finite
time bound the algorithm always terminates.

III. STOCHASTIC TIME LOGIC

In [9] an algorithm has been presented to compute the
probability that a certain (state-based) property holds at a
specific time instance. However, to evaluate also path-based
properties, such as (time-bounded) reachability, i.e., whether
a certain property becomes valid within a certain amount of
time, we enhance the logic presented in [9] by adding an until
operator. The resulting logic is called Stochastic Time Logic
(STL); it is used to reason about the underlying state space of
a HPnG, namely the STD as described in Section II-B. Recall
that an STD explicitly takes into account all possible values
of s and t, hence, with the proposed logic it is possible to
reason whether an STL formula holds for a certain system state
Γ(s, t). However, note that STL reasons on the deconditioned
state-space of a HPnG, i.e., on the regions of an STD, which
does not yet take into account the distribution of the general
transition. To lift this to the level of an HPnG we introduce
a probability operator that explicitly takes into account the
density function of the general transition.

Definition 2 (Stochastic Time Logic). An STL formula Ψ is
defined as

Ψ := tt | xP ≥ c | mP = a | ¬Ψ | Ψ ∧Ψ | Ψ U [T1,T2) Ψ,

where T1, T2 ∈ R+, x ≥ c and m = a, with a ∈ N, c ∈ R+, are
called continuous and discrete atomic properties, respectively.

Note that, although the above definition allows nested until
formula, for this paper we only consider non-nested until
formula.

In the following we define two different satisfaction rela-
tions, namely (i) |=s,t between a single system state Γ(s, t)
and an STL formula Ψ, and (ii) |=t between an interval on the
support of the general transition and an STL formula Ψ. The
different indices on the satisfaction relation are used to stress
their dependencies on s and t.

The satisfaction relation |=s,t takes into account a single
point in the STD, which corresponds to a single system state.
The satisfaction relation is defined as follows:

Definition 3 (Satisfaction on system states).

Γ(s, t) |=s,t
tt ∀t, s,

Γ(s, t) |=s,t mP = a iff Γ(s, t).mP = a,

Γ(s, t) |=s,t xP ≥ c iff Γ(s, t).xP ≥ c,
Γ(s, t) |=s,t ¬Ψ iff Γ(s, t) 6|=s,t Ψ,

Γ(s, t) |=s,t Ψ1 ∧Ψ2 iff Γ(s, t) |=s,t Ψ1 ∧ Γ(s, t) |=s,t Ψ2,

Γ(s, t) |=s,t Ψ1U [T1,T2]Ψ2 iff ∃τ ∈ [t+ T1, t+ T2] :

Γ(s, τ) |=s,t Ψ2 ∧ (∀τ ′ ∈ [t, τ ] : Γ(τ ′, s) |=s,t Ψ1).

For the STL until operator Ψ1U [T1,T2]Ψ2 and a system state
Γ(s, t) we have to check, whether starting from time t and for
a given sample s, the evolution of the system is such that a
time point τ exists at which Ψ2 holds and before which Ψ1

holds. Note that for a given system state Γ(s, t) the evolution
over time is deterministic and coincides with a vertical line in
the STD, starting at point (s, t). Hence the analysis of the STL
until operator for a given system state boils down to checking,
whether this line only intersects with regions where Ψ1 holds



until a region is hit where Ψ2 holds within the defined time
interval.

As mentioned earlier STD combines system states with
the same characteristics into regions. This can be exploited
for checking sets of states instead of individual system states.
Hence, we introduce a satisfaction relation |=t for intervals on
the support of the distribution of the general transition, denoted
Iψ ⊆ R≥0, and STL formula Ψ, at time t, which allows for
more efficient model checking procedures than checking each
system state individually.

Definition 4 (Satisfaction on intervals).

Iψ |=t Ψ iff ∀s ∈ I : Γ(s, t) |=s,t Ψ.

Definition 5. The set of satisfaction intervals Satt(Ψ) is
defined as the set of all intervals satisfying Ψ at time t, i.e.,
Satt(Ψ) = {Iψ : Iψ |=t Ψ}.

While the explicit dependency on s (or sets of s-values) is
used for the efficient computation of properties, in the end we
want to know whether a given STL formula holds at time t for
the HPnG model of interest with a certain probability. Hence,
we introduce a probability operator P∼p(Ψ) which is wrapped
around an STL formula, where p ∈ [0, 1] is a real number and
∼∈ {≤, <,>,≥} a comparison operator. It abstracts from the
possible values of s by deconditioning with the probability
density function g(s), as follows.

Definition 6. Let Γ(t) = {Γ(s, t)|s > 0} be the set of possible
system states at time t, then the satisfaction relation for the
probability operator P∼p is defined as:

Γ(t) |= P∼p(Ψ) iff Prob(Ψ, t) ∼ p,

where
Prob(Ψ, t) =

∑
IΨ∈Satt(Ψ)

∫
IΨ

g(s)ds.

IV. MODEL CHECKING STOCHASTIC TIME LOGIC

For model checking an HPnG with given initial state, we
first have to generate the corresponding STD. Then the satis-
faction set of intervals is formed over this STD. We emphasize
that, due to the time-inhomogeneity of an HPnG, the validity
of a certain formula depends on time. Model checking STL
is based on computing the satisfaction sets of intervals as
in Definition 5. Hence, the output of the model checking
algorithms, as presented in this section, is the satisfaction set
of intervals, which due to the time-inhomogeneity depend on
the time we are checking the formula at, denoted t in the
following.

Model checking STL formula without the until operator is
briefly explained in [9]. Conjunctions and negations of atomic
properties are state-based properties and independent of the
further evolution of the system. Hence, we just need to identify
those regions where the system can be in at time t, and find out
in which part of those regions the given formula is satisfied.
In contrast to state-based properties, the until operator is path-
based and its validity depends on the future system evolution.
We have to find those intervals of s-values for which the
evolution of the system from a given starting time satisfies
the formula.

This section is further organized as follows. Section IV-A
introduces special notation for operations on sets of sets that
is needed in the algorithms. Section IV-B explains the main
idea of model checking the until operator and Section IV-C
presents the model checking algorithms in detail.

A. Notation

The algorithm presented in this paper involves a special
set of operations on sets of intervals and on sets of system
states. Hence, we introduce a new intersection and complement
operator between sets of sets.

Definition 7. Let S1 and S2 be two sets of sets, the intersection
operator between these two, and the complement operator of
a set of sets, are defined as follows:

S ∈ S1 u S2 iff ∃S1 ∈ S1, S2 ∈ S2 : S = S1 ∩ S2,

S ∈ ¬S1 iff ∀S′ ∈ S1 :

S′ ∩ S = ∅ ∧ 6 ∃S′′ ∈ ¬S1 : S′′ ⊂ S.

According to the above definition we can derive the union and
the relative complement operator as S1 tS2 = ¬(¬S1 u¬S2)
and S1 \ S2 = S1 u ¬S2, respectively. Intuitively, the union
operator t, merges two sets of sets and ensures that the results
are maximal and there is no duplication. Also the intersection
operator u, computes the intersection of all the set members
of two given sets of sets. For instance if we define two sets
of intervals on real number as S1 = {[1, 3], [4, 5]} and S2 =
{[0, 2], [3, 5], [6, 7]}, then we have, S1 u S2 = {[1, 2], [4, 5]}
and S1tS2 = {[0, 5], [6, 7]}. These operations are also shown
in Figure 4.

0 1 2 3 4 5 6 7

S1

S2

S1 t S2

S1 u S2

Figure 4. Presentation of intersection and union operators over sets of
intervals.

Finally, since the result of the algorithm are sets of satisfac-
tion intervals, we introduce a projection operator as follows:

Definition 8. The operator Prj projects a set of points S in
the ts-plane on the s-axis:

Prj(S) = {s|(s, t) ∈ S}.

If the given set is a connected set, the result of the
projection is an interval. If S is a set of connected sets its
projection results in a set of intervals: Prj(S) =

⊔
S∈S Prj(S).

This operator is used later in the model checking algorithms.

B. Model checking the until operator

Recall that the evolution of the system for a value of s,
corresponds to a vertical line in STD. The main idea behind



checking formula Ψ1U [T1,T2]Ψ2 is to find all intervals which
satisfy Ψ1 at the starting time. Then by moving upwards in
the STD, we refine the initial intervals by omitting those parts
which violate Ψ1. We continue this until reaching either the
time bound T2 or a time point in [T1, T2] for which Ψ2 is
satisfied. Due to the partitioning into regions of states with the
main characteristics, this can be done efficiently by traversing
the regions in the STD. In order to model check the bounded
until operator at starting time t0, for each possible firing time
of the general transition, i.e., all possible values of s, we have
to find a time point τ between t0 + T1 and t0 + T2, where
Ψ2 holds and before which Ψ1 is not violated. Hence, the
satisfaction set of intervals for a bounded until is defined as:

Satt(Ψ1U [T1,T2]Ψ2) =⊔
{I ⊆ R≥0 | ∃τ ∈ [t0 + T1, t0 + T2] :

I |=τ Ψ2 ∧ ∀t′ ∈ [t0, τ ]I |=t′ Ψ1}.

The algorithm for model checking formula Ψ1U [T1,T2]Ψ2

at a given time t0, is based on recursively traversing all regions
in the underlying state space of a HPnG, starting from time
t0. Depending on the position of each region, relative to time
t0 and the interval [T1, T2], we investigate (i) what are the
intervals in which Ψ1 holds and (ii) whether Ψ2 holds in this
region. This is explained in more detail in the following.

According to the definition of regions, the value of discrete
variables does not change within a region. Hence, a discrete
atomic property either holds in the entire region or not at
all. However, as stated earlier, each continuous variable can
be represented by a linear equation in a region and the
corresponding continuous property, say xP ≥ c, can be valid
in only part of that region, where the line xP = c then is
the boundary between the part where the property is valid, the
so-called validity area, and the part where it is not valid.

Considering the linear boundaries of the region, the validity
area of an atomic property in a region is a polygon. The validity
area of the conjunction of two continuous atomic properties is
the intersection of the corresponding areas, and the negation
results in the complement of the validity area with respect to
the considered region. Hence, in order to find the validity area
of a nested formula, which only consists of negation and con-
junctions, first we need to form the parse tree of the formula.
Then, by repeated application of the respective operators the
validity area is formed. Moreover, if we consider polygons as
set of points, then any set theoretical operation between two
polygons, results in a polygon. Therefore, the satisfaction area
of formula Ψ is also a polygon. More formally, we denote the
set of polygons in region R, where formula Ψ is satisfied by
PR(Ψ) and for the state-based STL operators they are defined
as:

Definition 9. The set of polygons within region R, where a
state-based STL formula holds is given by:

PR(mP = a) = {(s, t) ∈ R | Γ(s, t).mP = a},
PR(xP ≥ a) = {(s, t) ∈ R | Γ(s, t).xP ≥ a},
PR(Ψ ∧Ψ) = PR(Ψ) u PR(Ψ),

PR(¬Ψ) = R \ PR(Ψ).

Figure 5. Determining intervals that satisfy formula Ψ1U [T1,T2]Ψ2, in a
generic region.

Note, that if Ψ is an atomic property, then PR(Ψ) is a
single polygon. Figure 5 shows the validity area of properties
Ψ1 and Ψ2 in a hypothetical region. As can be seen, the area
corresponding to Ψ1 is a non-convex polygon, and the area
satisfying Ψ2 consists of two polygons.

C. Algorithms for model checking the until operator

The procedure for model checking an until formula is
presented in Algorithm 1. At first we determine all starting
regions, i.e., all regions we can be in at a given time t. Then we
iterate over all these regions and determine the intervals which
satisfy the until formula, by calling the recursive function
VISIT for each region, which is the core of the model checking
procedure and is presented in Algorithm 2.

Algorithm 1 UNTIL(Ψ1,Ψ2, [T1, T2], t)

Require: Properties Ψ1 and Ψ2, time interval [T1, T2], and
time t.

Ensure: The satisfaction set Satt(Ψ1 U [T1,T2] Ψ2).
1: Rt ← all possible regions we can be in, at time t
2: Satt(Ψ1U [T1,T2]Ψ2)← ∅
3: for all Ri ∈ Rt do
4: Satt(Ψ1U [T1,T2]Ψ2)

t←−
VISIT(Ri,Ψ1,Ψ2, {[0,∞]}, t, [t+ T1, t+ T2])

5: return Satt(Ψ1U [T1,T2]Ψ2)

Function VISIT takes as input the region to be visited,
denoted R, formulas Ψ1 and Ψ2, starting time t and interval
[T1, T2] of the until formula. Furthermore, it receives the set of
intervals IΨ1 , which satisfy Ψ1 just before entering region R.
Hence, IΨ1 is the set of potential intervals which may satisfy
the until formula. For the initial call of VISIT, this set contains
the biggest interval in which the until formula may hold, which
is [0,∞].

At first (lines 2-3) we form the set of polygons correspond-
ing to Ψ1 and Ψ2, as defined in Definition 9. Then, for each
region we have to find three sets of intervals: (i) (IR1 ), that
is the set of intervals which satisfy the until formula upon
entering the region; (ii) the intervals in (IR2 ) satisfy Ψ1 and
reach a Ψ2 polygon in the region in time, therefore they also



satisfy the until formula; (iii) for the intervals in (IR3 ) Ψ1

holds, but a Ψ2 polygon cannot be reached in time within
the region. These are the intervals for which the successive
regions need to be considered to check whether they reach a
Ψ2 polygon in the future (but within the time bound). These
three sets of intervals are illustrated in Figure 5.

Figure 6. Reforming a polygon over a given interval.

As pointed out earlier, the position of a region w.r.t. the
starting time t0, and interval [T1, T2] should be taken into
account during the computation. If a region intersects the
horizontal line t = t0, only the part above this line needs to
be considered. If a region is above the line t = t0, but below
the line t = T1, according to the definition of the bounded
until operator, we only need to consider those intervals, which
satisfy Ψ1. If a region intersects the line t = T1, we have to
split it into two parts. The part below this line only needs to be
considered if Ψ1 holds, and for the upper part we have to apply
the general algorithm, as explained before. The same applies,
if the region is between the lines t = T1 and t = T2. However
for simplicity, Algorithm 2, only discusses the general case
where the region is placed inside the interval [T1, T2].

First set of intervals.: For finding the first interval set, IR1 ,
we have to check if the polygons that form the validity area of
Ψ2 intersect the underlying segment of the region R, denoted
R.lu, and whether the intersection (or part of it) lies in one
of the intervals that belongs to IΨ1

. More formally, we denote
the part of the underlying segment where Ψ1 holds, i.e., that
lies in IΨ1

as

R.lu.IΨ1 = {(s, t) ∈ R.lu | ∃I ∈ IΨ1 , s ∈ I}.

Then, the first interval set is computed as the projection of the
intersection of the validity area of Ψ2 and the Ψ1 part of the
underlying segment:

IR1 = Prj
(
PR(Ψ2) uR.lu.IΨ1

)
.

This is done in lines 4-5 of Algorithm 2 and illustrated in the
left part of Figure 5, where one of the Ψ2 polygons intersects
the underlying segment in one of the intervals which satisfies
Ψ1. Hence, the resulting intersection intervals, satisfy the until
formula. Note that, since the polygons corresponding to an
STL formula are not necessarily convex, they may have several
intersections with the underlying segment.

Algorithm 2 VISIT(R,Ψ1,Ψ2, IΨ1 , t, [T1, T2])

Require: RegionR, properties Ψ1 and Ψ2, set IΨ1
containing

all intervals in which Ψ1 holds before entering this region,
starting time t and absolute main interval [T1, T2].

Ensure: The set of intervals which satisfy the the bounded
until in region R, and potential intervals which satisfy Ψ1

passing from R.
1: if R is above the line τ = t and R ∈ [T1, T2] then
2: PR(Ψ1)← CreatePoly(Ψ1,R)
3: PR(Ψ2)← CreatePoly(Ψ2,R)
4: for all p ∈ PR(Ψ2) and I ∈ IΨ1

do
5: IR1

t←− Prj(p ∩R.lu.I)
6: for all p ∈ PR(Ψ1) do
7: P ← REF(p)
8: for all p ∈ PR(Ψ1) and p′ ∈ PR(Ψ2) and I ∈ IΨ1

do
9: IR2

t←− Prj(p ∩ p′ ∩ I)
10: S ← ∅
11: for all Ri ∈ R.successors and p ∈ PR(Ψ1) and

I ∈ IΨ1
do

12: S t←− Prj(p ∩R.lu.I ∩Ri.lu)
13: IR3 ← S − (IR1 t IR2 )

14: Satt(Ψ1U [T1,T2]Ψ2)
t←−

IR1 t IR2 t VISIT(Ri,Ψ1,Ψ2, IR3 , t, [T1, T2])
15: return Satt(Ψ1U [T1,T2]Ψ2)
16: else if · · · then
17: · · ·

Second set of intervals.: The next step is to find the
second set of intervals, IR2 . For this at first, the set of Ψ1

polygons PR(Ψ1) is needed. However, since the polygons are
not necessarily convex, we only consider that part of the region
where Ψ1 continuously holds over time. This is illustrated in
Figure 6, where for some value of s, Ψ1 does not hold between
time t1 and t2, i.e., part of the evolution of s lies outside the
Ψ1 polygon.

Hence, the polygons are reformed to ensure that the Ψ1

polygon only contains system states Γ(s, t) where in the
respective polygon the evolution until time t continuously
satisfies Ψ1. In other words, we make the polygons convex
w.r.t the vertical lines. For this the operator REF over a polygon
p is introduced as follows:

(s, t) ∈ REF(p)⇔
∀(s, t′) ∈ p, t′ ≤ t :6 ∃t′ < t′′ < t : (s, t′′) 6∈ p.

The reformed polygon is illustrated in Figure 6 by shaded
area. Then IR2 can be computed by projecting the intersection
of the reformed Ψ1 polygon with the Ψ1 part of the underlying
polygon R.lu.IΨ1 and with a Ψ2 polygon. The resulting
intersection intervals then satisfy the bounded until formula:

IR2 = Prj
(
REF

(
PR(Ψ1)

)
uR.lu.IΨ1

u PR(Ψ2)
)
.

This is done in lines 6-9 of Algorithm 2. At first, all the
Ψ1 polygons are reformed. Then we iterate over all reformed
Ψ1 polygons, the set of Ψ2 polygons and the set of intervals in
Iψ1 , and add their intersection to the second interval set i.e.,
IR2 .



Third set of intervals.: We also need to consider those
intervals, through which we can enter and leave a region
without violating Ψ1, which corresponds to the third category
of intervals mentioned earlier. This is done in lines 11-13. We
iterate over all possible successors of the region R and check
for each successor region whether a reformed Ψ1 polygon
intersects with its underlying segment, in order to find all
potential intervals that can be used to enter the new region.
However, only those intervals that have an interval intersection
with the former set IΨ1

are valid. We also, only consider
those intervals which have not already satisfied the overall
until formula. The latter point is considered in line 13, by
subtracting the two computed sets IR1 and IR2 .

Finally, we add IR1 and IR2 to the satisfaction interval
set of until formula. We also call the VISIT function for the
successive regions, with IR3 , as input for potential satisfaction
interval set.

V. CASE STUDY: WATER STORAGE

The case study addressed in this section shows the fea-
sibility of our formalism and algorithms by addressing the
survivability of a simple water storage model, such as depicted
in Figure 7. Here we reuse a simple version of the case study in
[9] to investigate survivability properties, which previously was
not possible. Clearly, the HPnG formalism is not restricted to
the above case study, it could be applied to other fluid critical
infrastructures, like oil and gas. Moreover, it could be used
to model production systems and communication systems, as
done with FSPNs [27] and Hybrid Petri nets [28]. In our case
study, we use a so-called Given the Occurrence Of Disaster
(GOOD) model do not take into account the probability of a
certain failure but assume that the disaster has just happened;
such models allow us to evaluate the recovery process and
study the impact of the disaster on the system operation.

The model consists of a water storage tank (place Cs) with
a constant inflow at rate 1.7 (transition Fs) and an outflow
during day with rate 2 units/h (transition Fd) between 6:00
and 21:00, and a lower outflow during night, with rate 1
units/h between 21:00 and 6:00 the next day. The day-night
pattern is governed by transitions Tn and Td; a finer scale
durial pattern can easily be made, see also the example in [9].

Under normal operation the amount of water in the storage
fluctuates between 3.5 and 8 units and stays at its maximum
between 3:00 and 6:00. During this time span the inflow is
reduced to 1 units/h in order to match the outflow and to
prevent the storage from overflowing. By introducing a single
failure, occurring at different times of the day, we turn off the
inflow to the tank, i.e., introduce a disaster, via the firing of
the deterministic transition Tb. The repair period that follows
has stochastic length, modelled by transition Gr, of which the
duration can follow any possible distribution.

To analyze the survivability of the system, we check
whether the system recovers within a time bound T to a prede-
fined service level without violating a preset safety condition
with probability at least 0.8. The system is defined as being
recovered when the storage holds at least 3 units of water
and the inflow is restored, i.e., the discrete place Pi holds a
token. We require that during the recovery process the amount
of water never drops below 0.1 units, which can be seen

Figure 7. Model of a water storage with different demands during night and
day

as a safety threshold. This translates to checking whether the
following formula holds expressing the system survivability:

P≥0.7

(
(xCs

≥ 0.1) U [0,T ] (xCs
≥ 3 ∧mPi

= 1)
)
.

Figure 8. Survivability probability for different failure times with negative
exponential distributed repair (mean =3)

Figure 8 shows the probability for the system to recover
before a certain time bound T (depicted on the x-axis), for
four different failure occurrence times. The repair process is
assumed to be exponential with mean 3. Note that, we start the
model checking at the time of failure, so due to the definition
of the until operator, time on the horizontal axis is relative
to the failure occurrence time. As can be seen in the figure,
the survivability of the system highly depends on the time
of the occurrence of the failure; a failure which occurs later
during the day recovers with smaller probability. This is due
to the fact that during the day the buffer is emptied, hence, the
probability to hit the safety threshold in the storage becomes
larger. However, in case the failure occurs during the night,
the survivability is higher, since the time window between
21:00 and 24:00 is used to refill the storage. Note that, for the
presented occurrence times of failure the probability to recover
is only larger than 0.7 when the failure occurs at 23:00; hence,
the overall formula is not generally satisfied.

Figure 9 shows the probability for the system to recover
for different repair distributions, namely, Gamma, Normal and
Exponential distributions. Note that the Normal distribution is
truncated for the values smaller than zero and renormalized,
and we use the Gamma distribution with shape parameter



Figure 9. Survivability probability for different repair distributions for a
failure at 23 : 00

4, and scale parameter 0.5. All the distributions have the
same mean, i.e. 2, but with different variance. As can be
seen, the exponentially distributed repair time yields a lower
probability for the survivability property to hold than the
Normal and Gamma-distributed repairs. Figure 9 clearly shows
the importance of being able to model general transitions with
different distributions.

For computing the probabilities, according to Definition
6, the model checking algorithm first computes the set of
satisfaction intervals Satt(Ψ) which can be interpreted as
the maximum time window for repair in order to not violate
the survivability condition. Table I summarizes these inter-
vals for the four different failure occurrence times and six
different time bounds. For instance, for a failure occurrence
time of 23:00, these time-dependent intervals are (0, 2.76)
and (0, 3.58) for 4h and 6h, respectively. Future work will
investigate how we can further use the satisfaction set of
intervals to schedule optimal repair strategies.

The Gamma distribution has most of its probability mass
in the corresponding intervals, hence, yields the highest sur-
vivability. This is depicted in Figure 10. It can easily be seen,
that the probability mass accumulated in the interval (0, 2.76)
is smaller for the Exponential distribution comparing to the
Normal and, the Gamma distribution.

Table I. SATISFACTION INTERVALS FOR DIFFERENT FAILURE TIMES
(LEFTMOST COLUMN) AND TIME BOUNDS FOR REPAIR (COLUMNS 2-6)

T 1h 2h 4h 6h 8h 10h
5:00 (0,1) (0,2) (0,3) (0,3) (0,3) (0,3)

12:00 (0,1) (0,1.6) (0,1.6) (0,1.6) (0,1.6) (0,1.6)
17:00 (0,0.85) (0,0.85) (0,0.85) (0,1.12) (0,1.94) (0,2)
23:00 (0,1) (0,1.94) (0,2.76) (0,3.58) (0,4) (0,4)

To obtain the results presented in this case study the
algorithms introduced in this paper have been implemented
in C++ and been executed on a machine equipped with a 2.0
GHz intel R© CORETM i7 processor, 4 GB of RAM, and Ubuntu
12.04. Computation times vary between 10 ms and 50 ms,
depending on the time bound.

VI. CONCLUSIONS

In this paper we introduced a model checking algorithm
for the evaluation of survivability properties for fluid critical

p

s
2.76

1
2

Gamma(4, .5)
exp(2)

Norm(2, 1)

Figure 10. Representation of probability mass on the interval (0, 2.76), for
three different probability distributions.

infrastructures. To describe such properties, we introduced the
logic STL that reasons on the underlying state space of an
HPnG, the class of hybrid Petri nets we use to describe our
systems. In STL, we introduced a time-bounded until operator
that reasons on the STD, as well as a probability operator
which lifts the expressivity of STL to the level of a HPnG
state at a given time, by deconditioning account the probability
distribution of the general transition.

This paper builds on earlier work [9] which introduced a
partitioning algorithm for the state space of an HPnG into so-
called regions with the same characteristics. We would like to
stress that even though our earlier work contained part of the
logic STL, it only dealt with state-based properties and was not
suitable to argue about the evolution of the system in time, that
is, about survivability properties. With the algorithm presented
in this is now possible using the new until operator. Now for
a restricted class of linear stochastic hybrid models, we are
able to compute exact survivability measures in a couple of
seconds.

The current work presents a detailed algorithm for model
checking time-bounded until properties on HPnGs. The al-
gorithm is based on grouping, per region, all system states
that satisfy a given STL formula into sets of polygons. Note
that, due to negation and conjunction operations, the resulting
validity area is not necessarily a convex polygon. In the field of
computational geometry this problem is referred to as polygon
clipping [29], [30], [31]. The worst case complexity for finding
intersection of two polygons is O(n ·m), in which n and m
are the number of polygons edges. Note that the number of
edges of polygons in our algorithm corresponds to the number
of continuous atomic properties in the given STL formulas. In
the worst case, we may have to visit all regions, so that the
final complexity of the algorithm is dependent on the number
of regions times the number of continuous atomic properties.
The number of regions in the STD is dependent on the structure
and the initial marking of the model. More precisely, the way
that model components are connected to each other and the
initial distribution of tokens and fluid levels in discrete and
continuous places, heavily influence the number of regions,
and hence, it can not be determined a priori.

A case study on the survivability of a water refinery and
distribution system under time-varying load shows the feasibil-
ity of our approach. On the one hand, using the new operators



it is possible to check whether the probability that the system
recovers in time, matches a certain probability bound. On the
other hand, using the satisfaction set of intervals that stem
from the STL model checking, it is possible to reason about the
time windows which is available for repair, and hence, allows a
more operational evaluation of the system. For instance, among
all the considered failure times we showed that 17:00 is the
most vulnerable time for the system. Moreover, we showed
that a repair strategy with the Gamma distribution has the best
recovery probability among others.

In future work, we will develop the full model checking
procedure, also for nested until formula. We plan to add
content-dependent and time-dependent control on continuous
places. Furthermore, we work on adding more general tran-
sitions to the formalism, which would at least add one more
dimension per general transition to the STD.
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