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The surprising thing about young fools is how many survive to 
become old fools.

—Doug Larson (1926–2017), American journalist,  
columnist, and editor

The occurrence of a well-defined event such as patient 
mortality is often a primary outcome in medical 
research. This is essentially a binary outcome (the 

event has occurred versus it has not occurred). In a previ-
ous tutorial in this series, we described how such binary 
outcome data can be analyzed with logistic regression.1 For 
example, one can estimate the relationship between one or 
more covariates, also referred to as independent variables 
or predictor variables (eg, treatments or prognostic factors) 
and the odds of experiencing the outcome within a specific 
time frame (eg, mortality within 30 days postoperatively).

However, logistic regression analysis is not appropriate 
when the research question involves the length of time until 
the end point occurs—for example, estimating median sur-
vival times, plotting survival over time after treatment, or 
estimating the probability of surviving beyond a prespeci-
fied time interval (eg, 5-year survival rate). Researchers are 

also often interested in whether survival times are related 
to covariates, and estimating the effect size of a specific 
covariate (eg, magnitude of the treatment effect) when it is 
adjusted for potential confounders.

Furthermore, it may initially appear that such a research 
question about the length of a time interval, which is essen-
tially a continuous outcome variable, can be addressed by 
linear regression or related techniques like a t test or analy-
sis of variance.1,2 However, a key distinction between sur-
vival times and other continuous data is that the event of 
interest (eg, death) will usually have occurred only in some 
but not in all patients by the time the study ends.

For patients who survive until the end of the study period, 
or who are lost to follow-up before the end of the observa-
tion period, full survival times are unknown. Instead all that 
is known is that the survival time is greater than the observa-
tion time. This unique feature of survival data is referred to 
as right censoring, which is described in more detail below.3

Ignoring censored patients in the analysis, or simply equat-
ing their observed survival time (follow-up time) with the 
unobserved total survival time, would bias the results. Even if 
there was no censoring in the data set, survival times usually 
have a heavily skewed distribution, limiting the usefulness of 
statistical tests that assume a normal data distribution.3

Analyzing survival data is unique in that the research 
interest is typically a combination of whether the event has 
occurred (binary outcome) and when it has occurred (contin-
uous outcome). Appropriate analysis of survival data requires 
specific statistical methods that can deal with censored data. 
As the assessed outcome is frequently mortality, these tech-
niques are subsumed under the term survival analysis.

More generally, however, these techniques can be used 
for the analysis of the time until any event of interest occurs 
(eg, recurrence of a disease; initial, breakthrough postopera-
tive pain; or failure of an implanted medical device), and 
such data can thus also be called time-to-event or failure 
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time data.4,5 In this tutorial, we use the terms survival time, 
time-to-event, and failure time synonymously.

As part of the ongoing series in Anesthesia & Analgesia, 
this basic tutorial reviews statistical methods that are appro-
priate for survival data. We focus on the most common tech-
niques, which are the Kaplan-Meier estimator, log-rank test, 
and the Cox proportional hazards (PH) model. The Table 
provides a summary of key-related terms. An extensive dis-
cussion of full parametric techniques and the special circum-
stances that call for other techniques is beyond the scope of 
this basic tutorial, and we thus intentionally provide only 
precursory coverage of these more advanced aspects.

CONCEPTS AND TERMINOLOGY IN SURVIVAL 
ANALYSIS
General Considerations
The event of interest should be clinically relevant, well 
defined, unambiguous, and preferably easily observable. 
While the patient death seems to be such an unambiguous end 
point, misclassification is possible when specific-cause mor-
tality, rather than all-cause mortality, is the outcome of inter-
est.3 Some end points, such as recurrence of cancer, have the 

disadvantage that they do not occur instantaneously, making 
it difficult to specify the exact time point of occurrence. In such 
settings, the clearest description of the outcome is often “time-
to-detection” rather than “time-to-event.” Whatever the event 
of interest, a clear and unambiguous definition is essential.

The total length of follow-up and follow-up intervals should 
be sensibly chosen to ensure that a sufficient number of events 
are observed (see Power and Sample Size Considerations sec-
tion) and that the timing of occurrence can be determined, 
to avoid interval censoring (as detailed below). Conversely, 
long-term observational studies carry the risk that factors that 
influence survival time, other than the treatment or factor 
under investigation, may also change during the study period. 
Patients recruited to the study early should ideally have the 
same risk of event occurrence as patients recruited late.3

As the failure time is the time between some starting point 
(origin) and the event, not only the event but also the time of 
origin needs to be clearly specified. Ideally, the time of ori-
gin should also be sensibly chosen, so all individuals are as 
much as possible on a par.6 In a study comparing therapeu-
tic interventions on a survival outcome, the starting point 
is typically the time when the intervention is administered.

Table. Basic Terminology and Definitions
Term Definition
Censoring Incomplete observation of survival times; subjects with an incomplete observation are referred to as censored.
 Left censoring The patient is known to have experienced the event before the start of the observation period, so the actual time-to- 

event is shorter than the interval between the origin and start of observation, but it is unknown by how much.
 Right censoring Observation of the patient is terminated before the event occurs, so the actual time-to-event, if it were to occur, is 

longer than the observation time, but it is unknown by how much.
Cox regression A semiparametric technique that is commonly used for survival data analysis that allows one to simultaneously assess 

the association between multiple covariates and survival, also termed Cox proportional hazards model.
Delayed entry Synonym for left truncation.
Failure rate Synonym for hazard rate.
Failure time Time until an event occurs (interval between origin and event); synonym for survival time or time-to-event.
Hazard function Describes the instantaneous rate of occurrence of the event over time.
Hazard rate Rate of occurrence of the event during some time interval; often used to denote the instantaneous rate in an 

infinitesimally small time interval.
Hazard ratio Ratio of 2 hazard rates (eg, for 2 different treatment groups).
Kaplan-Meier curve Graphical representation of the survival function with probabilities estimated by the Kaplan-Meier method.
Kaplan-Meier method Nonparametric method to estimate survival probabilities over time.
Lead time The time between the early diagnosis of a specific disease with screening and the time in which diagnosis would have 

been made without screening.
Lead-time bias Lead time increases the observed survival time even if there was no effect of screening on absolute survival time; 

hence, it biases estimates of survival time.
Log-rank test Nonparametric hypothesis test to compare 2 or more survival functions.
Nonparametric method Statistical method that neither imposes assumptions on the distribution of the outcome variable (a specific shape of 

the survival function or hazard function) nor assumes a functional form of the covariates.
Origin Starting point in the timeline of a survival time, which is often the time point when a disease or condition is diagnosed, 

or the time point of a specific event (eg, birth or operation).
Parametric method Statistical method that assumes a specific distribution of the outcome variable, including the relationship between 

covariates and survival.
Proportional hazards  

model
Used to model the hazard function, assuming that the effect of a covariate is the same at all time points; such models 

can be either semiparametric (Cox regression model) or parametric.
Semiparametric method Statistical method that does not assume a specific distribution of the outcome variable (the survival function or hazard 

function), but does assume a specific relationship between covariates and the outcome.
Survival data Umbrella term covering data that describe the time until any well-defined event (not necessarily death) occurs.
Survival (survivor) function Describes the probability over time that the event of interest has not yet occurred.
Survival time Time until an event occurs (interval between origin and event, which does not necessarily have to be the death of a 

subject), synonym for failure time, or time-to-event.
Time-to-event Time until an event occurs (interval between origin and event), synonym for survival time or failure time.
Truncation Subject selection depending on whether or not the event has occurred.
 Left truncation Selective inclusion of patients in whom the event has not occurred early; patients who have already experienced the 

event before the time point of patient identification are not identified and often may not even be known to exist.

 Right truncation Selective inclusion of patients in whom the event has occurred (eg, due to selection of patients from a death registry).
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In epidemiologic or screening studies, the origin is often 
when a condition or disease is diagnosed. However, this can 
lead to biased estimates of survival times, especially when 
the study intervention does not only presumably affect the 
event but also the time of origin. This so-called lead-time 
bias is common in studying whether a screening program 
for a specific disease increases survival time. Observed pro-
longed survival in screened patients could be merely due 
to the disease being diagnosed earlier, and not necessarily 
reflect a benefit of screening on absolute survival time.7

Truncation
As in any clinical study, the target population, as well as 
inclusion and exclusion criteria, must be clearly defined. A 
unique feature of survival data is truncation, which results 
from selection bias and refers to subject selection depend-
ing on whether or not the event has occurred.8 Subjects may 
only be identified for observation at some time point after 
their respective time of origin.9

Patients who have already experienced the event before 
the time point of patient identification may not be identi-
fied—for example, because they have already died, these 
patients may not be known to exist.8 In this situation, only 
those patients who have not experienced the event will 
selectively enter the study, which is referred to as left trun-
cation or delayed entry.

Alternatively, right truncation occurs when patients who 
experience the event are selectively included6—for exam-
ple, when patients are obtained from a death registry, and 
hence, survivors are not selected for the study. While the 
bias caused by truncation can be partially addressed during 
the analysis, it is often preferable be prevent it at the design 
phase of the study.

Censoring
Censoring refers to incompletely observed survival times and 
is inherent with most survival data. The situation described 
above in which not all the patients experience the event until 
completion of the study is referred to as right censoring. 
Visualizing the timeline of a patient’s observed survival time, 
the unobserved event, if it were to occur, would lie beyond 
the right side of the time point at which the patient is cen-
sored. Right censoring is the most common type of censor-
ing in survival studies, and the statistical methods described 
below are well suited to deal with this type of censoring. 
Basically, censored patients are: (1) included in estimates of 
survival probabilities at time points preceding their censor-
ing time point; and (2) excluded from the analysis thereafter.10

Unbiased inferences require the censoring to be nonin-
formative, with the time of censoring absolutely not related 
to the event time.3 Informative censoring would occur when 
patients are censored due to a medical condition that is 
related to the future risk of the event (eg, inability to show 
up for a clinic visit due to severe illness and thus loss to 
follow-up). Unfortunately, this problem is neither easy to 
detect nor is there an ideal solution—other than conducting 
the study in a way that promotes complete follow-up and 
avoids informative censoring.11 If possible, data on the rea-
sons for loss-to-follow-up should be collected because such 
information can be used in sensitivity analyses to assess for 
potential bias.

Left censoring occurs when a subject is known to have 
had the event before the start of the observation, but the 
exact time of the event is unknown. This contrasts with 
left truncation, where the patient is often not even known 
to exist.12 Similarly, interval censoring is where it is only 
known that the event occurred between 2 time points, but 
again, the exact time is unknown. Left and interval censored 
data are less common and usually do not exist when death 
is the outcome of interest. Statistical techniques to deal with 
left and interval censored data are available; however, they 
are infrequently used and will not be covered in this basic 
tutorial.

Survival (Survivor) Function, Hazard Rate, 
Hazard Function, and Hazard Ratio
The survival (or survivor) function and the hazard func-
tion are fundamental to survival analysis. The survival 
function describes the probability of surviving past a spec-
ified time point, or more generally, the probability that the 
event of interest has not yet occurred by this time point 
(Figure 1).13

A hazard rate (or failure rate) is the rate of occurrence of 
the event during a given time interval.10 The hazard func-
tion describes the instantaneous rate of occurrence over 
time, which can conceptually be viewed as the hazard rate 
during an infinitesimally small time interval. The hazard 
and survival functions are closely related and can easily be 
converted to each other.3 When the hazard rate is high, sur-
vival declines rapidly and vice versa.

While it is not necessary to understand the hazard 
function in detail, it is the basis of PH models, which are 
extensively used to model survival data. Importantly, the 
exponentiated parameter estimates of these models can be 
interpreted as a hazard ratio (HR), which is an estimate of 
the ratio of the hazard rates between 2 groups (eg, treatment 
versus control).14

The HR is similar to the risk ratio (relative risk), with a 
value higher or lower than 1 indicating a higher or lower 
hazard rate, respectively, than the comparison group. While 
the HR is technically not the same as the risk ratio, it is often 
conveniently interpreted as such in the literature.15

General Overview of Methods to Analyze 
Survival Data
In analyzing survival data, 3 common classes of methods 
are broadly distinguished:

 1. Nonparametric methods, which neither impose 
assumptions on the distribution of survival times 
(a specific shape of the survival function or hazard 
function) nor assume a specific relationship between 
covariates and the survival time. This class includes 
the Kaplan-Meier estimator and log-rank test.

 2. Semiparametric methods also make no assumptions 
regarding the distribution of survival times but do 
assume a specific relationship between covariates 
and the hazard function—and hence, the survival 
time. The widely used Cox PH model is a semipara-
metric method.

 3. Parametric methods assume a distribution of the sur-
vival times and a functional form of the covariates.
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KAPLAN-MEIER ESTIMATOR
The Kaplan-Meier method estimates the unadjusted 
probability of surviving beyond a certain time point.16 A 
Kaplan-Meier curve shows the estimated survival function 
by plotting estimated survival probabilities against time 
(Figure  1).3 The estimated survival probability is constant 
between the events. Therefore, the curve is a step-function 
in which each vertical drop indicates the occurrence of one 
or more events.17 Right censoring of patients is typically 
indicated by a vertical mark at the censoring time or other 
symbols like an asterisk.6

CIs for the survival probabilities can be readily calcu-
lated, and confidence bands can be plotted around the sur-
vival function (Figure  1).3 These CIs provide an estimate 
of the range of plausible values of the survival probability 
in the population from which the patients were sampled.18 
Often, several Kaplan-Meier curves of different groups  
(eg, treatment groups or prognostic factors) are plotted 
together in 1 graph, allowing for a visual comparison of the 
survival probabilities (Figure 2).

The median survival time, which is the time by when 
the event has occurred in 50% of the patients or study sub-
jects, is a commonly reported summary statistic for survival 
time data. This median survival time can be conveniently 
estimated from the Kaplan-Meier curve as the x-axis (time) 
value at the point where an (imaginary) horizontal line at 
the 50% survival probability on the y-axis crosses the sur-
vival curve (Figure  1).10 Additionally or alternatively, the 
survival probability at appropriate time points (eg, at 1 and 
5 years) can be reported.

LOG-RANK TEST
Analogous to comparing groups of continuous data using 
a t test or analysis of variance, the survival curves for 2 or 
more different groups (eg, treatments or prognostic fac-
tors) can also be compared with hypothesis testing. Most 
commonly, the log-rank test is applied, which tests the null 
hypothesis that there is no difference in the probability of an 
event at any time point.19

When reporting a log-rank P value comparing Kaplan-
Meier curves, researchers should make clear that the entire 
distribution is being tested, and not a particular time such 
as 5-year survival. The log-rank test is based on the same 
assumptions as the Kaplan-Meier survival curve, and 
makes no explicit assumptions about the distribution of the 
survival curves.

However, when the survival curves of different groups 
cross—indicating that 1 group has a more favorable sur-
vival in a certain time interval and less favorable survival in 
another time interval—the power to detect such differences 
is very low.19 Moreover, the log-rank test cannot adjust for 
other covariates that might affect survival time. While it 
can determine whether observed differences are significant, 
it cannot provide an estimate of the difference between 
groups.14 Other techniques, described below, can be used to 
address these issues.

COX PH MODEL
The Cox PH model is the most commonly used survival 
data analysis technique that simultaneously allows one 
to include and to assess the effect of multiple covariates.14 
These model covariates can include the variables of spe-
cific research interest (treatment groups), as well as poten-
tial confounders for which the researcher wants to control 
(demographic and other clinical factors). Multiple strategies 
for covariate selection have been described, and the aim of 
the study—most often to determine the effect of a covari-
ate while controlling for confounding versus prediction of 
survival using a set of predictor variables—should be con-
sidered in choosing a strategy.11,20,21

Cox PH regression actually does not directly model sur-
vival probabilities or survival times, but the hazard func-
tion.22 Herein, it is assumed that all patients have a common 
baseline hazard function that only depends on time. Each 
subject’s individual hazard function is a multiple of this 
common baseline hazard, and the individual multiplicator 
is a constant, determined by a time-independent function of 
a patient’s individual covariate values.22 This implies that 

Figure 1. Survival (survivor) function estimated 
by the Kaplan-Meier method, including 95% con-
fidence bands. Censoring is indicated by vertical 
marks (at 5 and 21 d). The number of patients at 
risk at different time points is displayed on the 
graph. The point on the x-axis where the horizon-
tal dashed line at a survival probability of .5 inter-
sects the curve represents the estimated median 
survival time (17 d).
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the ratio of the hazard rates between different patients (the 
HR) is assumed to be constant over time—in other words, 
the effect of a covariate is assumed to be the same at all time 
points. This is the PH assumption of the Cox PH model,6 
which is discussed in more detail below.

Under this assumption, exponentiated regression coeffi-
cients for each covariate can be interpreted in terms of the 
HR for a 1-unit change in the respective covariate value. 
This is akin to the interpretation of exponentiated regres-
sion coefficients as odds ratios in logistic regression.23

While the Cox PH model estimates regression coeffi-
cients without making assumptions about the shape of the 
hazard function, it is possible to work backward and use 
the parameter estimates to estimate the adjusted hazard 
or adjusted survival function. This allows the plotting of 
adjusted curves for different groups, which are very simi-
lar to Kaplan-Meier curves, but instead show or predict the 
probability of survival in each group, while keeping the 
other covariates fixed at their mean values.24 Survival pro-
portions can also be predicted for each arbitrary combina-
tion of covariate values.14

Model Assumptions
Assumptions of the Cox PH model—other than assump-
tions that apply to all survival analyses, such as nonin-
formative censoring described above—include a linear 
relationship between the covariates and the log-hazard, as 
well as the PH assumption.

While the PH assumption is central to the Cox model, its 
actual importance is debated. While some authors stress the 
importance,25,26 others de-emphasize it and take the view 
that the HR can still be viewed as an average effect during 
the observation period when the assumption is violated.27 
We recommend that the PH assumption should be assessed 
because it is sometimes possible to fix violations. Several 

methods to check this and other assumptions have been 
suggested, and we refer to previous literature on the topic 
for a detailed overview.21,25

The Cox PH model assumes the covariates to be time-
independent—in other words, the values of the variable of 
each patient (eg, gender and age at time of diagnosis) do not 
change over time. Extensions of the Cox model are avail-
able that allow for covariates that vary over time (eg, blood 
pressure recordings at follow-up time points).11 However, 
such models should be used carefully, as they are difficult to 
interpret, prone to misspecifications, and markedly increase 
the potential for erroneous inferences.28

PUBLISHED REPRESENTATIVE USE OF 
NONPARAMETRIC AND SEMIPARAMETRIC 
TECHNIQUES
Nonparametric and semiparametric methods are com-
monly used to analyze survival data in anesthesia, critical 
care, perioperative, and pain research.29–35 We illustrate the 
practical use of these techniques in 3 different types of stud-
ies recently published in Anesthesia & Analgesia.29–31

In their retrospective cohort study, Huang et al29 sought 
to identify predictors of long-term survival in patients after 
lung cancer surgery. The authors initially used multiple log-
rank tests to identify covariates that are potentially related 
to survival. Those covariates that were either considered 
clinically important or displayed a P value <.2 in their log-
rank test were entered in a multivariable Cox PH model. 
With this model, the authors identified 6 factors associated 
with either longer or shorter overall survival. For example, 
limited resection was associated with a higher hazard rate 
and hence shorter survival (HR, 1.46; 95% CI, 1.08–1.98;  
P = .013), whereas perioperative use of dexamethasone 
was associated with prolonged survival (HR, 0.70; 95% CI, 
0.54–0.90; P = .006).29 The authors also specifically compared 
patients who received dexamethasone and flurbiprofen 
axetil with patients who received only one of either drugs 
or none of the drugs. Kaplan-Meier curves were presented 
for each of the 4 possible combinations (Figure  2), and a 
log-rank test was used for an unadjusted comparison of the 
survival curves. A multivariable model adjusting for con-
founders suggested that administration of both flurbiprofen 
axetil and dexamethasone was associated with prolonged 
overall survival when compared to no use of both, with an 
adjusted HR of 0.57 (95% CI, 0.38–0.84; P = .005).29

In their randomized controlled trial, Wilson et al31 stud-
ied whether dural puncture epidural (DPE)—a technique 
where the dura is punctured but medication is not admin-
istered in the subarachnoid space—expedites analgesia in 
laboring patients compared to the conventional lumbar epi-
dural (LE) technique. Adequate analgesia was defined as a 
score of ≤10 mm on a 100-mm Visual Analog Scale during 
active contractions. The authors applied the Kaplan-Meier 
method to estimate median time to achieve adequate anal-
gesia in each treatment group. A Cox PH regression model 
with treatment group as a sole independent variable was 
used to estimate the treatment effect. Median time to ade-
quate analgesia was 8 minutes (95% CI, 6–10 minutes) in 
the DPE group and 10 minutes (95% CI, 8–14 minutes) in 
LE group. The estimated HR was 1.67 (95% CI, 1.02–2.64; 
P = .042).31 To make these results more understandable, the 

Figure 2. Kaplan-Meier curves displaying the estimated survival 
probability for 4 different groups of patients after lung cancer sur-
gery. Patients either did or did not perioperatively receive flurbipro-
fen axetil (FA) and dexamethasone (DXM) (reprinted with permission 
from Huang et al29). Each vertical step in the curve indicates one or 
more events (ie, deaths), and right-censored patients are indicated 
by a vertical mark in the curve at the censoring time. A visual inspec-
tion suggests that survival seems to be more favorable for patients 
who received FA and DXM, compared with patients who received 
none of these 2 drugs. The log-rank test indicates a significant dif-
ference between the survival curves.
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authors followed the common (albeit not statistically cor-
rect) practice of interpreting the HR as a relative risk: “The 
relative risk of achieving pain control at any collected time 
point in parturients receiving DPE was 1.7 times greater 
than in those receiving LE.”31 Of note, in the above first 
example, observational data were analyzed using the Cox 
PH model to adjust for confounding. Here, in this random-
ized controlled trial, the purpose of the Cox PH model was 
to obtain an estimate of the treatment effect.

Using data on patients who participated in 2 trials across 
4 clinical sites for a follow-up analysis, Podolyak et al30 stud-
ied effects of supplemental perioperative oxygen on long-
term mortality in patients undergoing colorectal surgery. In 
the 2 original trials, patients had randomly received either 
30% or 80% inspired oxygen perioperatively. The authors 
present survival curves using Kaplan-Meier estimates and 
use a Cox PH model, stratified by study and site to allow 
for separate baseline hazards for each study and site. This 
approach was (presumably) chosen as it allows for the 
estimation of an overall HR estimate and significance test 
across all study sites. No effect of 80% vs 30% inspired oxy-
gen was observed on mortality, with an overall estimated 
HR of 0.93 (95% CI, 0.72–1.20; P = .57).30

PARAMETRIC MODELS
Parametric models assume a specific distribution of the 
survival times. Advantages of a parametric model include 
a higher efficiency (ie, greater power),14 which can be par-
ticularly useful with smaller sample sizes. Furthermore, a 
variety of parametric techniques can model survival times 
when the PH assumption is not met.

However, it can be quite challenging to identify the most 
appropriate data distribution, and parametric models have 
the drawback of providing misleading inferences if the dis-
tributional assumptions are not met. In contrast, the semi-
parametric Cox model is a safe and proven method without 
the need to specify a specific data distribution,36 which is 
why this model is most common in analyzing survival data. 
For a more detailed discussion on parametric models, we 
refer to previously published literature on the topic.14,36

RECURRENT EVENTS, COMPETING RISKS, AND 
FRAILTY MODELS
The previously described techniques are useful for study-
ing time until occurrence of a specific event that occurs only 
once, terminates the observation of a patient, and occurs 
independently between the patients. While this situation is 
common in many time-to-event study designs, researchers 
may be interested in: (1) events that can occur more than 
once or in a series of events in which each event has its own 
failure time; (2) situations in which follow-up may be termi-
nated by >1 event; or (3) clusters of patients for whom the 
event does not occur independently.

Recurrent event models are capable of modeling the 
sequential occurrence of events over time.37 This can be the 
same event transpiring several times (eg, occurrence of myo-
cardial infarction) or a series of different ordered events (eg, 
different, progressive stages of a disease until death occurs).

Competing risk models can accommodate multiple 
(competing) types of failure events, each of which terminate 
the observation of an individual.38 For example, a researcher 

may not want to simply consider all-cause mortality as 
the failure event, but would like to study the relationship 
between covariates and specific-cause mortality. Or, com-
monly, researchers are interested in an event such as cancer 
recurrence, but death that occurs before the event of interest 
is a competing risk. In this setting, the researcher can either 
model the time to the earliest of death or cancer recurrence 
or use special methods to model both events.

Frailty models account for nonindependence of obser-
vations in clustered data (for correlated failure times), by 
incorporating random effects.39 Such data may arise when 
the survival times of individuals within a cluster (eg, fam-
ily or hospital) tend to be more similar to each other than 
survival times of patients who belong to different clusters. 
These models are analogous to mixed effect models for 
uncensored longitudinal and correlated data, as described 
in a recent tutorial in this series.40

POWER AND SAMPLE SIZE CONSIDERATIONS
The power of a method to analyze survival time data 
depends on the number of events rather the total sample 
size.21 Therefore, calculation of total sample size is a 2-step 
process.41

First, the number of events needed to detect a minimum 
clinically important effect size, like a prespecified HR, with a 
preselected power and alpha level is computed. Depending 
on the planned data analysis method, different approaches 
for estimating the number of events have been proposed, 
including the Schoenfeld method for log-rank tests or PH 
models.42

Second, to calculate the total sample size, the propor-
tion of patients who are expected to experience the event 
needs to be estimated.41 Of note, for multivariable models 
like the Cox PH model, it has been suggested that at least 
10 events need to be observed per covariate to be included 
in the model.43

CONCLUSIONS
Survival data are unique in that the research questions 
essentially involve a combination of whether the event has 
occurred in the observation period and when it has occurred. 
Censoring, or the incomplete observation of failure times, is 
common in these data, such that specific statistical methods 
are required for an appropriate analysis.

The Kaplan-Meier method estimates the unadjusted 
probability of surviving beyond a certain time point, and a 
Kaplan-Meier curve is a useful graphical tool to display the 
estimated survival function. The log-rank test is commonly 
used to compare survival curves between different groups, 
but can only be used for a crude, unadjusted comparison.

The Cox PH model is the most commonly used tech-
nique to assess the effect of factors, such as treatments, that 
simultaneously allows one to control for the effects of other 
covariates. The exponentiated regression coefficients can be 
interpreted in terms of an HR. This semiparametric tech-
nique makes no assumptions about the distribution of the 
survival times.

If the distribution can be appropriately identified and 
modeled, parametric techniques can alternatively be used. 
For special circumstances in which the standard techniques 
cannot be validly used, a variety of methods including 
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recurrent events models, competing risks models, and 
frailty models are available. E
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