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Abstract: The estimation of survival distributions for animals which are

radio-tagged is an important current problem for animal ecologists. Allowance

must be made for censoring due to radio failure, radio loss, emigration from

the study area and animals surviving p88l. :~the end of the study period.

First we show that the Kaplan-Meier .procedure wid~ly used in medical and

engineering studies can be applied to this problem. An example using some

quail data is given for illustration. As radios maItunction -or are lost, new

radio-tagged animals have to be added to the study. We show how this

modification can easily be incorpor~.ted inf.<? the basic Kaplan-Meier

procedure. Another example using quail data is used to illustrate the

extension. We also show how the log rank test commonly used to compare

two survival distributions can be generalized to allow for additions. Simple

computer programs which can be run on a PC are available from the authors.
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Radio-telemetry is becoming an increasingly popular methodology for

studying wild animal populations. An animal, captured by trap, dart gun or

some other method, is fitted with a small radio transmitter and released.

From release, the animal's unique radio signal can be monitored until the

animal dies or is censored. An animal is censored if we have lost track of

the animal due to radio failure, radio loss, or emigration from the study area.

The most common application of radio-telemetry technology has been to

the study of animal movements in relation to daily activity patterns, seasonal

changes, habitat types, and interaction with other animals. Time series

approaches will become very important to the thorough analyses of these data

(see for example Dunn and Gipson, 1977; Pantula and Pollock, 1985)'-

Biologists have also begun to use radio-tagged animals to study

survival. Present techniques for analysing the data from these studies

assume that each survival event (typically an animal surviving a day) is

independent and has a constant probability over all animals and all periods

(see Trent and Rongstad, 1974; Bart and Robson, 1982; Heisey and Fuller,

1985). These assumptions are often believed to be unrealistic and

restrictive. White (1983) has generalized discrete approaches in the

framework of band return models (Brownie et ale (1978». He has developed a

flexible computer program, SURVIV, tor use with his approach.

Typically an animal's exact survival time (at least to within one or two

days) is known unless that survival time is right censored (that is only

known to be greater than some value). We suggest an approach based on

the continuous survival models allowing right censoring which are widely used
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in medical and engineering applications (Kalbfleisch and Prentice, 1980; Cox

and Oakes, 1984). Pollock (1984) and Pollock et ale (1987) illustrated the

usefulness of this approach and provided examples of the Kaplan-Meier

procedure. This procedure does not require specification of a particular

parametric continuous distribution such as the exponential or Weibull.

In this paper we first present a simple description of the Kaplan-Meier

procedure complete with an example of some quail survival data collected by

Curtis. We next show how to generalize the Kaplan-Meier procedure to allow

gradual (or staggered entry) into the study. The calculations are again

illustrated with an example from the Curtis quail data. Finally, we present

the log rank test for comparison of survival distributions (modified for

staggered entry of animals) and illustrate it. We also present a discussion of

model assumptions and directions tor future research.

THE KAPLAN-MEIER OR PRODUCT LIMIT PROCEDURE

The Kaplan-Meier or product limit estimator was developed by Kaplan

and Meier (1958) and is discussed in many books on° survival analysis. See

for example Cox and Oakes (1984, p. 48) or Kalbfleisch and Prentice (1980, p.

13).

The survival function S(t) is the probability of an arbitrary animal in

our population surviving t units of time trom the beginning of the study. A

nonparametric estimator of the survival function can be obtained by just

restricting ourselves to the discrete points where deaths occur

8 1, 8 2, ••• , age We define r l , ••• , r g to be the numbers of animals at

risk at these points and d1, d2, ••• , dg to be the number of deaths at
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the same points. The probability of surviving from 0 to al is then

estimated by

Seal) = 1 - dl/rl

because dl/rlis the estimated proportion dying in that interval. The

probability of surviving from al to ~ is similarly given by

1 - d2/r2

and S(~) is then given by the product

S(~) = (1 - dl/rl)(l - d2/r2)

Therefore the estimated survivor function for any arbitrary time t is given by

Set) = IT (1 - d./r.)
J J

(1)

jla/t

which is the mathematical way of stating we are considering the product of

all j terms for which aj is less than the tiae t.

Let us talk further about r i which is the number at risk at time ai •

In this situation we would start off with a fixed sample of size n. The

number at risk at a particular death tiae a i will then be n minus the

number of deaths before aj minus the number of animals censored before

time a ..
J

As an example of the use of this model, we present results from a

radio-tagging study on northern bobwhite quail (Colinus virginianus) conducted

by one of the authors (P.Curtis) at Fort Bragg, North Carolina. This

was a two-year study, but in this section we just consider the data

collected in the spring of 1985. This is a small study, the pertinent

data on each of the eighteen radio-tagged birds is included in Table 1.
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Six birds died and five birds disappeared (were censored) during the study,

leaving seven birds which survived for the thirteen weeks of the study.

Let us illustrate how the estimation of Set) was carried out to obtain

the last column in Table 1 and Figure 1. The computations involve only the

five weeks in which deaths were recorded; therefore al =S, a2 =6, as =8,

a4 = 9 and a5 = 10. Also recall that we have eighteen animals that began the

study at time o. We estimate Seal) as

Seal) =S(S) =1 - dllrl

=1 - 2118

=0.8889,

because there are 2 deaths at time S and there are 18 animals still at

risk (rl ). The next death time ~ is at 6 weeks (~ =6) and at that time

there is one death (d2 = 1) and 16 animals at risk (r2 =16). There are 16

at risk because 2 were lost to death at tiae 1. Therefore S(a2) is given by

8(a2) =8(6) = (1 - d1/r1)(1 - ~/r2)

= (1 - 2118)(1 - 1/16)

=0.8333

Similarly S(&s) is given by

8(aS) =8(8) = (1 - dl/r1)(1 - ~/r2)(1 - dS/rS)

= (1 - 2/18)(1 - 1/16)(1 - 1/15)

=0.7778,

8(a4) =8(9) = (1 - d1/r1)(1 - ~/r2)(1 - ds/rs)(1 - d4/r4)

= (1 - 2/18)(1 - 1/16)(1 - 1/15)(1 - IllS)

=0.7179,
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and S(a5) =S(lO) = (1 - dl/rl)(l - ~/r2)(1 - d3/r3)(1 - d4/r4)(1 - d5/r5)

= (1 - 2118)(1 - 1/16)(1 - 1/15)(1 - 1/13)(1 - 1/10)

= 0.6462.

Notice that the censored observation at time 8 is still considered at

risk until the instant after that time so that r 3 = 15, not 14, but then

r4 =13. Notice also that the estimate of the survivor function (S(t» is

presented for each week in Table 1 but that it only changes at the death

times. Thus S(t) stays at 1.00 until time 3 where it becomes 0.8889 and

stays there until time 6 (the next death time) and so on.

Cox and Oakes (1984 p. 51) also discuss how to estimate the variance of

the estimate at an arbitrary time point using Greenwood's formula

2 d.
A A . ,]

var (S(t» = [S(t)] ·f <t (-d )J aJ r. r. J. J J

where the summation is for all death times a. less than t.
J

They also

(2)

propose an alternate simpler estimate which is better in the tails of the

distribution

var
.. 2 ..

(S(t» = [Set)] [1 - set)]
ret) (3)

Approximate confidence intervals can be obtained using either of these

equations. For example, a 95' confidence interval at t = to would be

S(t
O

) * 1.96 [var S(tO)]1/2 (4)

because of the asymptotic (large sample) normality of the estimates Set).

In Table 1 approximate 95' confidence intervals are given at all points

using the simpler second variance equation (3). Notice that the confidence

intervals get wider and wider as the time increases (Figure 1).
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BSTBNSION OF THE KAPLAN-MBIBR PROCBDURE TO STAGGBRED BNTRY OF ANIMALS

Here we extend the concept of the Kaplan-Meier estimates to allow

animals to enter at different times and for the time variable to be measured

from the point where the first group of animals is tagged. Previously we

presented an example of the Kaplan-Meier estimator and showed it is based

on the formula (3) which is

S(t) =n (1 - dj/rj )

jla/t

for the survival function where r. is the number at risk and d. is the
J J

number of deaths. Typically we assume r. is decreasing due to deaths and
J

censoring but there is no reason it has to be. New animals will only be

considered in those product terms wberethey are at risk. The formula for

the variance of S(t) also allows for new animals to enter during the study.

It should be emphasized that any newly tagged animals are assumed to have

the same survival function as the previously tagged animals.

Let us illustrate the extension of the laplan-Meier estimator to

staggered entry of animals by considering some further bobwhite quail data

collected by P. Curtis. Here we just consider the radio-tagging

carried out in the winter period of 1985-86. The data and estimates are

presented in Table 2. In Week 1 there were 20 aniinals radio-tagged

(r1 = 20), no deaths, no censors and one animal was added so that the number

of animals radio-tagged in Week 2 is 21 and the survival estimate stays at
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1 (8 (1) = 1. 0000) • In Week 2 the only change is that another animal is

added so that at Week 3 the number at risk is r 3=22. In Week 3 the survival

estimate is

8(3) = 1 - d3/r3

= 1 - 2/22 =0.9091.

In Week 4 the number at risk is 19 (2 deaths and 1 censor in Week 3 gives

22 -2 - 1 =19) and there were 5 deaths so that

8(4) = (1 - ~/r3)(1 - d4/r4)

=(1 - 2/22)(1 - 5/19) =0.6699

The survival estimates for later t~s can be obtained similarly. The

approximate 95~ confidence limits are also given based on equations (3) and

(4) presented in the previous section. Notice that here the confidence

limits do not necessarily get wider ~ith tt.e because new animals may be

added (Figure 2). At time 13 there i8 a marked decrease in the confidence

interval width because the number at risk jumps frC81 10 to 16 and then at

time 14 it jumps again to 22 due to the large nUilbers of new animals added

at those times.

100 RANK TEST EXTENSION TO STAGGERED ENTRY or ANIMALS

Often it is important to compare two estimated survival functions to

see if they could have come from the same underlying true survival curve.

For example, in Table 3 we present some bobwhite quail survival estimates

for Fall 1985 and Fall 1986. We would like to know if the survival patterns

are the same for the two years. Graphical comparison would be possible by

plotting survival functions on the same graph; however, a formal hypothesis

testing procedure is also needed••
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There are many possible tests available (Lee, 1980, p. 122) but here we

will concentrate attention on the log rank test (Savage, 1956; Kalbfleisch

and Prentice, 1980, p. 17; Cox and Oakes, 1984, p. 104). We do this because

of the test's simplicity and easy generalization to the case where animals

have staggered entry into the study.

To compare two survivor functions let us generalize the formulation

we used for defining the Kaplan-Meier estimates. Let ai' ~, .•• , ak

denote the death times for the sample formed by combining the two samples.

Suppose there are d, deaths and r, animals at risk at a" with dO' and
J J J J

d
l

, being from samples one and two, respectively. Similarly there are
J,

r Oj and r lj animals at risk from the two sample••

For each of the k points the data can be represented as a 2 x 2

contingency table. For the jth contingency table we have the formulae for

the mean and variance of dlj given by

E(dl ,) =d,rl,/r,
J J J J

2 .
Varl(dl ,) = rO,rl,d,(r,- d,)/r. (r.-l)

J J J J J J J J

An approximate x2 test statistic with one degree of freedom can be

obtained by combining the results from all the contingency tables (assuming

conditional independence and asymptotic normality of the d's) in the following

way

X 2 J K K 1
2

.tl dl , - .tlE(dl ·)
J=. J J= J

K
'~l var(dl ,)
J- J
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Cox and Oakes (1984, p. 105) consider two modifications to the variance

of dlj which give rise to X2
2 and x3

2 respectively. The first modification

is to use
ro' r l · dJvar2(dl .) = J ~

J r.
J

which gives a slightly more conservative test. The second modification is

to use

i~l var(dlj ) =I~K~.:.l__- + K 1

j~l(djrOj/rj) j~l(djrlj/rj)

which gives an even more conservative test. Notice that as mentioned

earlier, this test in any of its three versions easily generalizes to the

case of staggered entry because rOj and r lj , the number at risk at each

time point, can be redefined to include newly tagged animals.

In Table 4 we present the calculations of the log rank test for data given

in Table 3 which compares bobwhite quail survival distributions for Fall 1985

and Fall 1986. Notice that we present the nUllber at risk_ and the number of

deaths for every week although deaths do not occur every week. Notice that in

those weeks where there are no deaths there are no contributions to the test

statistics.

We now present the calculations for the three approximate )(2 test

statistics with one degree of freedom.



-11-

X 2 = (6 - 3.317)2
1 1.681

X 2 = (6 - 3.317)2
2 1.729

X 2 = (6 - 3.317)2
3 1 1-1

[3.683 + 3.317]

=4.28

=4.16

=4.13

where 6

K
'~1 B(d1 ·) =3.317
1.- J

and hence
K

= 7 - B(d1 ·) ='~1 d.rO·/r.
J 1.- J J J

=3.683

K 2
.tl d.rO.rl.(r. - d.)/r. (r.- 1) = 1.681
1.= J J J J J J J

Notice that all the chi-square tests are very similar and show slightly

increasing conservatism. The approximate p value is 0.04 which indicates

there is a significant difference between the two years survival curves

at the 5% level.

ASSUMPTIONS

Here we briefly discuss the assumptions of the model as they apply to

radio-telemetry data. As this is a new approach, further research on the

validity of these assumptions in practice and on model robustness is

required.
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We have assumed that a random sample of animals of a particular age

and sex class has been obtained. Take, for example, a study on winter

survival of mallards. If lighter adult males tend to be captured and these

have lower survival rates, a negative bias to the survival estimates will

result. Of course, this assumption is also crucial to survival estimates

obtained from capture-recapture and band return studies (Jolly, 1965; Seber,

1965; Pollock, 1981; Brownie et al., 1978).

This model requires the assumption that survival times are independent

tor the different animals. Again, this assumption is also required of

capture-recapture and band return models. Geese which form tight family

groups would be an example where this assumption could fail. Additionally,

the death of a large female mammal (e.g., black bear) still nursing her young

would not be independent of the fate of those young. We believe that

violation of this assumption will not cause bias but it will make our estimates

appear more precise than they actually are.

Another assumption which is common to any method involving marked

animals is that capturing the animal or having it carry a radio-tag does not

influence its future survival. Clearly, failure of this assumption will cause a

negative bias on the survival estimates. As radio-tags are becoming more

sophisticated and, hence, smaller this is less of a problem. Short term

effects could be eliminated by having a conditioning period of say one week

after tagging where an animal's survival time is not considered until it has

survived that period. (This was done by P. Curtis with the quail data.)
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The assumption that the censoring mechanism is random (i.e., is not

related to an animal's fate) is extremely important and requires more

attention from researchers. Possible violations could result from a predator

killing an animal and also destroying the radio or an animal emigrating

because it is more (or less) healthy than its companions. Medical studies

often suffer a similar "emigration" problem; patients doing poorly (or well)

may decide to leave the study. A review of the literature on survival

analysis shows that very little has been done regarding alternative, so called,

informative censoring models. The authors believe this is mainly due to the

difficulty of the problem rather than lack of research. However, "bounds"

can be generated for the survival curve by allowing censoring to take two

very extreme forms. A lower bound can be obtained by assuming that every

censored observation was really a death and an upper bound by assuming

that every censored observation was not a death and that the animal

survived to the end of the study.

In some cases, it may be reasonable to assume that either emigration or

radio failure is zero. Then the likelihood of the censoring time could provide

very useful information. For example, in a study of winter survival of

waterfowl with reliable radios, the censoring times would primarily reflect

emigration. Estimation of this emigration time distribution could be

informative to the biologist, especially if it could be related to covariates

such as those reflecting weather severity.

One of the most important considerations in application of survival

analysis to radio-telemetry data is the definition of a time origin. In medical

studies the natural time origin is the time treatment begins. In
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radio-telemetry there is no such natural time origin. In studies where all

the animals are captured at or near the same time the obvious time origin

might be the date when the last animal was captured. It should be kept in

mind that survival from the origin could be seriously influenced by seasonal

effects. For example, survival for one month from a summer time origin could

be quite different than survival for one month from a winter time origin.

In some studies animals may be introduced into the study gradually

over a long period of time. This could be due to practical problems of

capturing animals all at one time or because the biologist deliberately wants

to introduce more animals into the study to increase precision after a lot of

the animals have died. We have shown that the Kaplan-Meier estimator of the

survivor function and the log rank test for comParing survival curves can

be easily generalizedto allow for staggered entry. In this case the time

origin will be when the first group of animals is tagged.

A special assumption of the staggered entry design is that newly tagged

animals have the same survival function as previously tagged animals. If

there were enough animals in both groups contingency table tests of this

assumption could be made. In practice, however, the animals will often be

added in very small groups thereby prohibiting a quantitative assessment of

this assumption..

DISCUSSION

The radio-tagged survival analysis procedure presented above provides a

general framework for analyses of these studies. Radio-telemetry is likely
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to become an even more common technique as the technology improves and

costs are reduced. The large body of statistical research into survival

analysis in medicine and engineering should prove. a valuable starting point.

The techniques we've outlined above, within the constraints of the listed

assumptions, provide the researcher with a more realistic and sophisticated

analysis than has previously been possible. The Kaplan-Meier procedure is

simple and flexible and also easily generaliAble to the case of staggered

entry of newly tagged animals. Many biologists will find the simple log rank

test for comparing survival distributions very valuable. It is also easily

adapted to the staggered entry case.

We believe the testing of ecolo,pcal hypotheses regarding the influence of

e. individual animal covariates on survival using the proportional hazards 1II;0del

(Cox, 1972) is extremely important. In Pollock et ale (1987), this model is

illustrated by showing how winter survival of female black ducks is related

to their condition index at the start of the winter. . The Cox proportional

hazards model is described clearly by Cox and Oakes (1984, p. 91). This

model can also generalize to the case of staggered entry of animals. We plan

to do this and write a computer program for implementation of this model in

a future article.

There needs to be more work done to study the efficiency of the

Kaplan-Meier estimator (and the power of the log rank test) when there is

staggered entry of animals but some preliminary statements can be made

based on the analyses presented here. If you look carefully at Table 2 and

Figure 2 it is clear that the precision is poor unless the number of animals
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tagged at a particular time is above about 20. To get good precision,

however, 40-50 animals would need to be tagged at all times as a minimum.

(Also if there is a: period of interest when mortality is likely to be high the

biologist should be prepared to introduce a large number of newly

radio-tagged animals at that time.)

In the analysis discussed in this paper we have put most emphasis on

the Kaplan-Meier product limit estimator because of its simplicity and

generality. An important question is when should one use parametric

modelling as compared to non parametric? Previous approaches to analysis of

radio-telemetry data (Trent and Rongstadt, 1974; Bart and Robson, 1982;

Heisey and Fuller, 1985) could be viewed as very special cases of parametric

modelling. Although discrete, their approaches are very similar to fitting an

exponential distribution. Miller (1983) has done a comparison of maximum

likelihood estimation and the Kaplan-Meier procedure when the underlying

distribution is exponential and there is right censoring. As Miller (1983)

points out this comparison is biased against the Kaplan-Meier estimator and

its efficiency can be low. This is especially troublesome when t is large and

Miller (1983) states "Parametric modelling should be considered as a means of

increasing the precision in the estimation of small tail probabilities". He

further states that it is surprising that so little work has been done on this

question considering the importance of survival analysis in many disciplines.

Lagakos (1979) in a review paper on right censoring and survival

analysis discusses informative censoring (i.e., where the censoring is related

to the fate of the animal). Again it is surprising how little research has

been done on this problem. One practical approach discussed in the
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assumptions section is to calculate extreme bounds for the estimated survival

curve by considering each censored observation to be either a death or a

survivor until the end of the study. If there is a lot of censoring early in

the study, these bounds can be very wide.

Finally, we wish to discuss the problem where cause of death can be

classified into several categories. For example, in some cases the biologists

may want to separate hunting deaths from nonhunting deaths. Marginal

survival curves can be obtained by treating deaths from any other cause

as censored observations. For example, if one were considering the survival

curve just related to hunting, then all animals that died of nonhunting

causes would be viewed as censored observations. Unfortunately this

approach does not take into account that different causes of death may not

be independent. A lot of work has been done on competing risks models

when there are several possible causes of deaths, but it has been shown that

these models are not useful for estimating the dependency. These models are

what statisticians refer to as "nonidentifiable". Therefore, the biologist is

forced back to using marginal or crude survival curves, but he or she

should be aware that these results could be misleading if the different

causes of death are not independent. For more information on competing risk

models and their problems the reader could refer to Kalbfleisch and Prentice

(1980, p. 163).

COMPUTER PROGRAMS

Two computer programs written specifically for the analysis of survival

data when all animals enter at the same time are PHGLM (Harrell, 1983) and
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LIFETEST (SAS, 1985). Other programs include SURVREG (Preston and

Clarkson, 1983) and LIFEREG (SAS, 1985) for use with parametric models when

all animals enter at the same time.

A simple computer program which calculates the Kaplan-Meier estimator

and the log rank test when there is potentially staggered entry of animals is

available from the authors. It will run on IBM compatible personal computers

in conjunction with the Lotus Spread Sheet software (Kapor and Sachs,

1983).
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Table 1- Kap1an-Meier survival estimates for bobwhite quail

radio-tagged in Spring 1985.

No. at No. of
Week Risk deaths No. Survival 95~ Confidence Interval
(t) Dates (rj) (dj) censored S(t) Lower Upper

1 3/3 -3/9 18 0 0 1.0000 1.0000 1.0000

2 3/10-3/16 18 0 0 1.0000 1.0000 1.0000

3 3/17-3/23 18 2 0 0.8889 0.7520 1.0258

4 3/24-3/30 16 0 0 0.8889 0.7437 1.0341

5 3/31-4/6 16 0 0 0.8889 0.7437 1.0341

6 4/7 -4/13 16 1 0 0.8333 0.6667 1.0000

7 4/14-4/20 15 0 0 0.8333 0.6612 1.0055

8 4/21-4/27 15 1 1 0.7778 0.5922 0.9633

9 4/28-5/4 13 1 2 0.7179 0.5107 0.9252

10 5/5 -5/11 10 1 1 0.6462 0.4079 0.8844

11 5/12-5/18 8 0 0 0.6462 0.3798 0.9125

12 5/19-5/25 8 0 1 0.6462 0.3798 0.9125

13 5/26-6/1 7 0 0 0.6462 0.3614 0.9309
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Table 2. Kaplan-Meier survival estimates for bobwhite quail radio-tagged

in Winter 1985-86 modified to allow for the staggered entry of new animals.

No. at No. of
_ Week Risk deaths No. No. new Survival 95~ Confidence Interval

(t) Dates (rj) (dj) censored added Set) Lower Upper

1 11/17-11/23 20 0 0 1 1.0000 1.0000 1.0000

2 11/24-11/30 21 0 0 1 1.0000 1.0000 1.0000

3 12/1 -12/7 22 2 1 0 0.9091 0.7946 1.0236

4 12/8 -12/14 19 5 0 0 0.6699 0.4968 0.8429

5 12/15-12/21 14 3 0 0 0.5263 0.3366 0.7161

6 12/22-12/28 11 0 0 0 0.5263 0.3122 0.7404

7 12/29-1/4 11 0 0 0 0.5263 0.3122 0.7404- 1/5 -1/11 11 2 0 0 0.4306 0.2386 0.6226

9 1/12-1/18 9 1 0 0 0.3828 0.1863 0.5792

10 1/19-1/25 8 0 1 0 ·0.3828 0.1744 0.5912

11 1/26-2/1 7 0 0 3 0.3828 0.1600 0.6056

12 2/2 -2/8 10 0 0 6 0.3828 0.1964 0.5692

13 2/9 -2/15 16 4 0 10 0.2871 0.1683 0.4059

14 2/16-2/22 22 4 0 5 0.2349 0.1490 0.3207

15 2/23-3/1 23 4 1 6 0.1940 0.1228 0.2652

16 3/2 -3/8 24 4 0 0 0.1617 . 0.1025 0.2209

17 3/9 -3/15 20 2 0 0 0.1455 0.0866 0.2045
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Table 3. Comparison of survival distributions for Fall 1985 and

Fall 1986 of radio-tagged bobwhite quail.

Fall 1985 Fall 1986
.. ..

No. at No. No. No. S No. at No. No. No. S
Week risk deaths censored added (t) risk deaths censored added (t)

1 7 1 0 0 0.8571 7 0 1 0 1.0000

2 6 0 0 2 0.8571 6 0 0 5 1.0000

3 8 0 0 5 0.8571 11 1 0 0 0.9091

4 13 0 1 6 0.8571 10 0 0 6 0.9091

5 18 0 0 0 0.8571 16 1 0 0 0.8523

6 18 0 0 0 0.8571 15 0 0 0 0.8523

7 18 0 0 0 0.8571 15 1 0 0 0.7955

e 8 18 0 0 0 0.8571 14 0 0 0 0.7955

9 18 0 0 1 0.8571 14 3 0 0 0.6250
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Table 4. Log rank test calculations comparing survival distributions

of radio-tagged bobwhite quail for Fall 1985 and Fall 1986 modified

to allow for the staggered entry of new animals.

Fall 1985 Fall 1986 Total E(d1j) Var2(d1j ) Var1(d1j )

d. djr1~rOj djrljrO/rj-dj )
--J.

Week rOj dOj r 1j d1j r. d. .r1 · r.2(r.-1)r j J r.
J J J J J

1 7 1 7 0 14 1 0.500 0.250 0.250

2 6 0 6 0 12 0 0 0 0

3 8 0 11 1 19 1 0.579 0.244 0.244

4 13 0 10 0 23 0 0 0 0

5 18 0 16 1 34 1 0.471 0.249 0.249

6 18 0 15 0 33 0 0 0 0e 7 18 0 15 1 33 1 0.455 0.248 0.248

8 18 0 14 0 32 0 0 0 0

9 18 0 14 3 32 3 1.313 0.738 0.691

Total 1 6 7 3.317 1.729 1.681



FIGURE CAPTIONS

Figure 1. The Kaplan-Meier survival function for bobwhite quail
radio-tagged in Spring 1985.

Figure 2. The Kaplan-Meier survival function, modified for staggered
entry of animals, for bobwhite quail radio-tagged in
Winter 1985-86.
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