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INTRODUCTION

In many cancer studies, the main outcome under assessment is the
time to an event of interest. The generic name for the time is
survival time, although it may be applied to the time ‘survived’
from complete remission to relapse or progression as equally as to
the time from diagnosis to death. If the event occurred in all
individuals, many methods of analysis would be applicable. However,
it is usual that at the end of follow-up some of the individuals have
not had the event of interest, and thus their true time to event is
unknown. Further, survival data are rarely Normally distributed,
but are skewed and comprise typically of many early events and
relatively few late ones. It is these features of the data that make the
special methods called survival analysis necessary.
This paper is the first of a series of four articles that aim to

introduce and explain the basic concepts of survival analysis. Most
survival analyses in cancer journals use some or all of Kaplan–
Meier (KM) plots, logrank tests, and Cox (proportional hazards)
regression. We will discuss the background to, and interpretation
of, each of these methods but also other approaches to analysis
that deserve to be used more often. In this first article, we will
present the basic concepts of survival analysis, including how to
produce and interpret survival curves, and how to quantify and
test survival differences between two or more groups of patients.
Future papers in the series cover multivariate analysis and the last
paper introduces some more advanced concepts in a brief question
and answer format. More detailed accounts of these methods can
be found in books written specifically about survival analysis, for
example, Collett (1994), Parmar and Machin (1995) and Kleinbaum
(1996). In addition, individual references for the methods are
presented throughout the series. Several introductory texts also
describe the basis of survival analysis, for example, Altman (2003)
and Piantadosi (1997).

TYPES OF ‘EVENT’ IN CANCER STUDIES

In many medical studies, time to death is the event of interest.
However, in cancer, another important measure is the time
between response to treatment and recurrence or relapse-free
survival time (also called disease-free survival time). It is
important to state what the event is and when the period of
observation starts and finishes. For example, we may be interested
in relapse in the time period between a confirmed response and the
first relapse of cancer.

CENSORING MAKES SURVIVAL ANALYSIS
DIFFERENT

The specific difficulties relating to survival analysis arise largely
from the fact that only some individuals have experienced the
event and, subsequently, survival times will be unknown for a
subset of the study group. This phenomenon is called censoring
and it may arise in the following ways: (a) a patient has not (yet)
experienced the relevant outcome, such as relapse or death, by the
time of the close of the study; (b) a patient is lost to follow-up
during the study period; (c) a patient experiences a different event
that makes further follow-up impossible. Such censored survival
times underestimate the true (but unknown) time to event.
Visualising the survival process of an individual as a time-line,
their event (assuming it were to occur) is beyond the end of the
follow-up period. This situation is often called right censoring.
Censoring can also occur if we observe the presence of a state or
condition but do not know where it began. For example, consider a
study investigating the time to recurrence of a cancer following
surgical removal of the primary tumour. If the patients were
examined 3 months after surgery to determine recurrence, then
those who had a recurrence would have a survival time that was
left censored because the actual time of recurrence occurred less
than 3 months after surgery. Event time data may also be interval
censored,meaning that individuals come in and out of observation.
If we consider the previous example and patients are also
examined at 6 months, then those who are disease free at 3
months and lost to follow-up between 3 and 6 months are
considered interval censored. Most survival data include right
censored observations, but methods for interval and left censored
data are available (Hosmer and Lemeshow, 1999). In the remainder
of this paper, we will consider right censored data only.
In general, the feature of censoring means that special methods of

analysis are needed, and standard graphical methods of data explo-
ration and presentation, notably scatter diagrams, cannot be used.

ILLUSTRATIVE STUDIES

Ovarian cancer data

This data set relates to 825 patients diagnosed with primary
epithelial ovarian carcinoma between January 1990 and December
1999 at the Western General Hospital in Edinburgh. Follow-up
data were available up until the end of December 2000, by which
time 550 (75.9%) had died (Clark et al, 2001). Figure 1 shows data
from 10 patients diagnosed in the early 1990s and illustrates how
patient profiles in calendar time are converted to time to eventReceived 6 December 2002; accepted 30 April 2003
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(death) data. Figure 1 (left) shows that four patients had a nonfatal
relapse, one was lost to follow-up, and seven patients died (five
from ovarian cancer). In the other plot, the data are presented in
the format for a survival analysis where all-cause mortality is the
event of interest. Each patient’s ‘survival’ time has been plotted as
the time from diagnosis. It is important to note that because
overall mortality is the event of interest, nonfatal relapses are
ignored, and those who have not died are considered (right)
censored. Figure 1 (right) is specific to the outcome or event of
interest. Here, death from any cause, often called overall survival,
was the outcome of interest. If we were interested solely in ovarian
cancer deaths, then patients 5 and 6 – those who died from
nonovarian causes – would be censored. In general, it is good
practice to choose an end-point that cannot be misclassified. All-
cause mortality is a more robust end-point than a specific cause of
death. If we were interested in time to relapse, those who did not
have a relapse (fatal or nonfatal) would be censored at either the
date of death or the date of last follow-up.

Lung cancer clinical trial data

These data originate from a phase III clinical trial of 164 patients
with surgically resected (non-small cell) lung cancer, randomised
between 1979 and 1985 to receive radiotherapy either with or with-
out adjuvant combination platinum-based chemotherapy (Lung
Cancer Study Group, 1988; Piantadosi, 1997). For the purposes of
this series, we will focus on the time to first relapse (including
death from lung cancer). Table 1 gives the time of the earliest 15
and latest five relapses for each treatment group, where it can be
seen that some patients were alive and relapse-free at the end of the
study. The relapse proportions in the radiotherapy and combina-
tion arms were 81.4% (70 out of 86) and 69.2% (54 out of 78), res-
pectively. However, these figures are potentially misleading as they
ignore the duration spent in remission before these events occurred.

SURVIVAL AND HAZARD

Survival data are generally described and modelled in terms of two
related probabilities, namely survival and hazard. The survival
probability (which is also called the survivor function) S(t) is the

probability that an individual survives from the time origin (e.g.
diagnosis of cancer) to a specified future time t. It is fundamental
to a survival analysis because survival probabilities for different
values of t provide crucial summary information from time to
event data. These values describe directly the survival experience
of a study cohort.
The hazard is usually denoted by h(t) or l(t) and is the

probability that an individual who is under observation at a time t
has an event at that time. Put another way, it represents the
instantaneous event rate for an individual who has already
survived to time t. Note that, in contrast to the survivor function,
which focuses on not having an event, the hazard function focuses
on the event occurring. It is of interest because it provides insight
into the conditional failure rates and provides a vehicle for
specifying a survival model. In summary, the hazard relates to the
incident (current) event rate, while survival reflects the cumulative
non-occurrence.

KAPLAN–MEIER SURVIVAL ESTIMATE

The survival probability can be estimated nonparametrically from
observed survival times, both censored and uncensored, using the
KM (or product-limit) method (Kaplan and Meier, 1958). Suppose
that k patients have events in the period of follow-up at distinct
times t1ot2ot3ot4ot5o?otk. As events are assumed to occur
independently of one another, the probabilities of surviving from
one interval to the next may be multiplied together to give the
cumulative survival probability. More formally, the probability of
being alive at time tj, S(tj), is calculated from S(tj�1) the probability
of being alive at tj�1, nj the number of patients alive just before tj,
and dj the number of events at tj, by

SðtjÞ ¼ Sðtj�1Þ 1� dj
nj

� �

where t0¼ 0 and S(0)¼ 1. The value of S(t) is constant between
times of events, and therefore the estimated probability is a step
function that changes value only at the time of each event. This
estimator allows each patient to contribute information to the
calculations for as long as they are known to be event-free. Were
every individual to experience the event (i.e. no censoring), this
estimator would simply reduce to the ratio of the number of
individuals events free at time t divided by the number of people
who entered the study.
Confidence intervals for the survival probability can also be

calculated. The KM survival curve, a plot of the KM survival
probability against time, provides a useful summary of the data
that can be used to estimate measures such as median survival
time. The large skew encountered in the distribution of most
survival data is the reason that the mean is not often used.

Survival analysis of the lung cancer trial

Table 2 shows the essential features of the KM survival probability.
The estimator at any point in time is obtained by multiplying a
sequence of conditional survival probabilities, with the estimate
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Figure 1 Converting calendar time in the ovarian cancer study to a
survival analysis format. Dashed vertical line is the date of the last follow-up,
R¼ relapse, D¼ death from ovarian cancer, Do¼ death from other cause,
A¼ attended last clinic visit (alive), L¼ loss to follow-up, X¼ death,
&¼ censored.

Table 1 A sample of times (days) to relapse among patients randomised
to receive radiotherapy with or without adjuvant chemotherapy

Radiotherapy (n¼ 86) 18, 23a, 25, 27, 28, 30, 36, 45, 55, 56,
57, 57, 57, 59, 62, y,
2252a, 2286a, 2305a, 2318a, 2940a

Radiotherapy+CAP (n¼ 78) 9, 22, 35, 53, 76, 81, 94, 97, 103, 114,
115, 126, 147, 154, y,
2220a, 2375, 2566, 2875b, 3067b

CAP¼ cytoxan, doxorubicin and platinum-based chemotherapy. aLost to follow-up
and considered censored. bRelapse-free at time of analysis and considered censored.
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being unchanged between subsequent event times. For example,
the probability of a member of the radiotherapy alone treatment
group surviving (relapse-free) 45 days is the probability of sur-
viving the first 36 days multiplied by the probability of then
surviving the interval between 36 and 45 days. The latter is a
conditional probability as the patient needs to have survived the first
period of time in order to remain in the study for the second. The
KM estimator utilises this fact by dividing the time axis up according
to event times and estimating the event probability in each division,
from which the overall estimate of the survivorship is drawn.
Figure 2 shows the survival probabilities for the two treatment

groups in the conventional KM graphical display. The median
survival times for each group are shown and represent the time at
which S(t) is 0.5. The combination group has a median survival
time of 402 days (1.10 years), as opposed to 232 days (0.64 years)
in the radiotherapy alone arm, providing some evidence of a chemo-
therapy treatment benefit. Other survival time percentiles may be
read directly from the plot or (more accurately) from a full version
of Table 2. There appears to be a survival advantage in the com-
bination therapy group, but whether this difference is statistically
significant requires a formal statistical test, a subject that is
discussed later.

Survival function of the ovarian data

The KM survival curve of the ovarian cancer data is shown in
Figure 3A. The steep decline in the early years indicates poor
prognosis from the disease. This is also indicated by changes in the
cumulative number of events and number at risk. Specifically, of
the 825 women diagnosed with ovarian cancer, about a third had
died within the first year, accounting for 43% of the total deaths as
recorded by the last date of follow-up. The number lost to follow-
up can be deduced from the total number in the cohort and the
cumulative number of events and number at risk.
The 95% confidence limits of the survivor function are shown.

In practice, there are usually patients who are lost to follow-up or
alive at the end of follow-up, and confidence limits are often wide
at the tail of the curve, making meaningful interpretations difficult.
Thus, it may be sensible to curtail plots before the end of follow-up
on the x-axis (Pocock et al, 2002). Curtailing of the y-axis, a

common practice for diseases or events of low incidence, should
not be performed. Instead, the incidence of death curve, or 1�S(t),
(Figure 3B) may be presented (Pocock et al, 2002). The cumulative
incidence at a time point is simply one minus the survival
probability. For example, Figure 3A shows how the 5-year survival
of 0.29 (29%) is calculated, and could also be read from Figure 3B
as a cumulative incidence of 71% for the first 5 years.

HAZARD AND CUMULATIVE HAZARD

There is a clearly defined relationship between S(t) and h(t), which
is given by the calculus formula:

hðtÞ ¼ � d

dt
½log SðtÞ�:

The formula is unimportant for routine survival analyses as it is
incorporated into most statistical computer packages. The point

Table 2 Calculation of the relapse-free survival probability for patients in the lung cancer trial

Radiotherapy (n¼ 86) Radiotherapy+CAP (n¼78)

Survival times (days) Kaplan–Meier survivor function S(t) Survival times (days) Kaplan–Meier survivor function S(t)

18 1� (1-1/86)¼ 0.988 9 1� (1-1/78)¼ 0.987
23a S(18)� (1-0/85)¼ 0.988 22 S(18)� (1-1/77)¼ 0.974
25 S(23)� (1-1/84)¼ 0.977 35 S(22)� (1-1/76)¼ 0.962
27 S(25)� (1-1/83)¼ 0.965 53 S(35)� (1-1/75)¼ 0.949
28 S(27)� (1-1/82)¼ 0.953 76 S(53)� (1-1/74)¼ 0.936
30 S(28)� (1-1/81)¼ 0.941 81 S(76)� (1-1/73)¼ 0.923
36 S(30)� (1-1/80)¼ 0.930 94 S(81)� (1-1/72)¼ 0.910
45 S(36)� (1-1/79)¼ 0.918 97 S(94)� (1-1/71)¼ 0.897
55 S(45)� (1-1/78)¼ 0.906 103 S(97)� (1-1/70)¼ 0.885
56 S(55)� (1-1/77)¼ 0.894 114 S(103)� (1-1/69)¼ 0.872
57 S(56)� (1-3/76)¼ 0.859 115 S(114)� (1-1/68)¼ 0.859
57 S(56)� (1-3/76)¼ 0.859 121a S(115)� (1-0/67)¼ 0.859
57 S(56)� (1-3/76)¼ 0.859 126 S(121)� (1-1/66)¼ 0.846
59 S(57)� (1-1/73)¼ 0.847 147 S(126)� (1-1/65)¼ 0.833
62 S(59)� (1-1/72)¼ 0.835 154 S(147)� (1-1/64)¼ 0.820

..

. ..
.

2252a S(2209)� (1-0/5)¼ 0.115 2220a S(2218)� (1-0/5)¼ 0.273
2286a S(2286)� (1-0/4)¼ 0.115 2375 S(2220)� (1-0/4)¼ 0.205
2305a S(2305)� (1-0/3)¼ 0.115 2566 S(2375)� (1-0/3)¼ 0.137
2318a S(2318)� (1-0/2)¼ 0.115 2875b S(2566)� (1-0/2)¼ 0.137
2940a S(2940)� (1-0/1)¼ 0.115 3067b S(2875)� (1-0/1)¼ 0.137

S(0)¼ 1, (CAP¼ cytoxan, doxorubicin and platinum-based chemotherapy.) aLost to follow-up and considered censored. bRelapse-free at time of analysis and considered
censored.
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Figure 2 Relapse-free survival curves for the lung cancer trial. * Median
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doxorubicin and platinum-based chemotherapy.

Basic concepts of survival analysis

TG Clark et al

234

British Journal of Cancer (2003) 89(2), 232 – 238 & 2003 Cancer Research UK



here is simply that if either S(t) or h(t) is known, the other is
automatically determined. Consequently, either can be the basis of
statistical analysis.
Unfortunately, unlike S(t) there is no simple way to estimate

h(t). Instead, a quantity called the cumulative hazard H(t) is
commonly used. This is defined as the integral of the hazard, or the
area under the hazard function between times 0 and t, and differs
from the log-survivor curve only by sign, that is H(t)¼�log[S(t)].
The interpretation of H(t) is difficult, but perhaps the easiest way
to think of H(t) is as the cumulative force of mortality, or the
number of events that would be expected for each individual by
time t if the event were a repeatable process. H(t) is used an
intermediary measure for estimating h(t) and as a diagnostic tool
in assessing model validity. A simple nonparametric method for
estimating H(t) is the Nelson-Aalen estimator (Hosmer, 1999),
from which it is possible to derive an estimate of h(t) by applying a
kernel smoother to the increments (Ramlau-Hansen, 1983). Cox
(1979) suggests another method to estimate the hazard based on
order statistics but similar in spirit to the previous method.
Another approach to estimating the hazard is to assume that the

survival times follow a specific mathematical distribution. Figure 4
shows the relationship between four parametrically specified
hazards and the corresponding survival probabilities. It illustrates
a constant hazard rate over time (which is analogous to an
exponential distribution of survival times), strictly increasing/
decreasing hazard rates based on a Weibull model, and a
combination of decreasing and increasing hazard rates using a
log-Normal model. These curves are illustrative examples and
other shapes are possible. The specification of hazards using fully
parametric distributions is an important and under-utilised
modelling technique that will be discussed in subsequent papers.

Hazard function in the ovarian data

Figure 3C shows the cumulative hazard for the ovarian cancer data.
The hazard is shown in Figure 3D. As the hazard function is
generally very erratic, it is customary to fit a smooth curve to
enable the underlying shape to be seen. Figure 3D shows that
the (instantaneous) risk of death appears to be high in the
first year after diagnosis and decreases afterwards. This observa-
tion corresponds to the steeply descending survival probability
(Figure 3A) and marked increase in cumulative incidence
(Figure 3B) in the first year. The y-axis is difficult to interpret
for the hazard and the cumulative hazard, but the decreasing shape
of the hazard may be consistent with a decreasing Weibull’s model
(see Figure 4).

NONPARAMETRIC TESTS COMPARING SURVIVAL

Survival in two or more groups of patients can be compared using
a nonparametric test. The logrank test (Peto et al, 1977) is the most
widely used method of comparing two or more survival curves.
The groups may be treatment arms or prognostic groups (e.g.
FIGO stage). The method calculates at each event time, for each
group, the number of events one would expect since the previous
event if there were no difference between the groups. These values
are then summed over all event times to give the total expected
number of events in each group, say Ei for group i. The logrank
test compares observed number of events, say Oi for treatment
group i, to the expected number by calculating the test statistic

X2 ¼
Xg
i¼1

ðOi � EiÞ2

Ei
:

This value is compared to a w2 distribution with (g�1) degrees
of freedom, where g is the number of groups. In this manner, a
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P-value may be computed to calculate the statistical significance of
the differences between the complete survival curves.
If the groups are naturally ordered, a more appropriate test is to

consider the possibility that there is a trend in survival across
them, for example, age groups or stages of cancer. Calculating Oi

and Ei for each group on the basis that survival may increase or
decrease across the groups results in a more powerful test. For the
new Oi and Ei, the test statistic for trend is compared with the w2

distribution with one degree of freedom (Collett, 1994).
When only two groups are compared, the logrank test is testing

the null hypothesis that the ratio of the hazard rates in the two
groups is equal to 1. The hazard ratio (HR) is a measure of the
relative survival experience in the two groups and may be
estimated by

HR ¼ O1=E1

O2=E2

where Oi/Ei is the estimated relative (excess) hazard in group i. A
confidence interval (CI) for the HR can be calculated (Collett,
1994). The HR has a similar interpretation of the strength of effect
as a risk ratio. An HR of 1 indicates no difference in survival. In
practice, it is better to estimate HRs using a regression modelling
technique, such as Cox regression, as described in the next article.
Other nonparametric tests may be used to compare groups in

terms of survival (Collett, 1994). The logrank test is so widely used
that the reason for any other method should be stated in the
protocol of the study. Alternatives include methods to compare

median survival times, but comparing confidence intervals for
each group is not recommended (Altman and Bland, 2003). The
logrank method is considered more robust (Hosmer and
Lemeshow, 1999), but the lack of an accompanying effect size to
compliment the P-value it provides is a limitation.

Survival differences in the lung cancer trial

We have already seen that median survival is greater in the
combination treatment arm. Table 3 provides information about
(relapse-free) survival differences between the trial arms. A test of
differences between median survival times in the groups is
indicative of a difference in survival (Po0.01). The number of
relapses observed among patients treated with radiotherapyþCAP
(cytoxan, doxorubin and platinum-based chemotherapy) and
radiotherapy alone were 54 and 70, respectively. Using the logrank
method, the expected number of relapses for each group were 70.6
and 53.4, respectively. Thus, the logrank test yields a w2 value of
9.1 on 1 degree of freedom (Po0.002). The HR of 0.58 indicates
that there is 42% less risk of relapse at any point in time among
patients surviving in the combination treatment group compared
with those treated with radiotherapy alone. Overall, there is
an indication that the combination treatment is more efficacious
than radiotherapy treatment, and may be preventing or delaying
relapse.

Survival differences in the ovarian study

In the ovarian study, we wished to compare the survival between
patients with different FIGO stages–an ordinal variable. Figure 5
shows overall survival by FIGO stage. A logrank test of trend is
statistically significant (Po0.0001), and reinforces the visual
impression of prognostic separation and a trend towards better
survival when the disease is less advanced.

SOME KEY REQUIREMENTS FOR THE ANALYSIS OF
SURVIVAL DATA

Uninformative censoring

Standard methods used to analyse survival data with censored
observations are valid only if the censoring is ‘noninformative’. In
practical terms, this means that censoring carries no prognostic
information about subsequent survival experience; in other words,
those who are censored because of loss to follow-up at a given
point in time should be as likely to have a subsequent event as
those individuals who remain in the study. Informative censoring
may occur when patients withdraw from a clinical trial because of
drug toxicity or worsening clinical condition. Standard methods
for survival analysis are not valid when there is informative
censoring. However, when the number of patients lost to follow-up
is small, very little bias is likely to result from applying methods
based on noninformative censoring.
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Figure 4 Relationships between (parametric) hazard and survival curves:
(a) constant hazard (e.g. healthy persons), (b) increasing Weibull (e.g.
leukaemia patients), (c) decreasing Weibull (e.g. patients recovering from
surgery), (d) increasing and then decreasing log-normal (e.g. tuberculosis
patients).

Table 3 Differences in (relapse-free) survival in the lung cancer trial

Radiotherapy
(n¼ 86)

Radiotherapy+CAP
(n¼ 78)

Number of relapses (Oi) 70 54
Median survival time(years) (95% CI) 0.64 (0.45–0.87) 1.10 (0.96–1.59)
Expected number of relapses (Ei) 53.4 70.6
Hazard ratio (95% CI) 0.58 (0.41–0.83)
Logrank test w2¼ 9.1, 1 df, Po0.002

df¼ degree of freedom: CAP¼ cytoxan, doxorubicin and platinum-based chemotherapy.
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Length of follow-up

In general, the design of a study will influence how it is analysed.
Time to event studies must have sufficient follow-up to capture
enough events and thereby ensure there is sufficient power to
perform appropriate statistical tests. The proposed length of follow-
up for a prospective study will be based primarily on the severity
of the disease or prognosis of the participants. For example, for a
lung cancer trial a 5-year follow-up would be more than adequate,
but this follow-up duration will only give a short- to-medium-term
indication of survivorship among breast cancer patients.
An indicator of length of follow-up is the median follow-up time.

While this could in theory be given as the median follow-up
time of all patients, it is better calculated from follow-up among
the individuals with censored data. However, both these methods
tend to underestimate follow-up, and a more robust measure is
based on the reverse KM estimator (Schemper and Smith, 1996),
that is the KM method with the event indicator reversed so that the
outcome of interest becomes being censored. In the ovarian cohort
example, the median follow-up time of all the patients is 1.7 years,
although is influenced by the survival times which were early
deaths. The median survival of the censored patients was 3.2 years,
but the reverse KM estimate of the median follow-up is 5.3 years
(95% CI: 4.7–6.0 years).

Completeness of follow-up

Each patient who does not have an event can be included in a
survival analysis for the period up to the time at which they are
censored, but completeness of follow-up is still important. Unequal
follow-up between different groups, such as treatment arms, may
bias the analysis. A simple count of participants lost to follow-up is
one indicator of data incompleteness, but it does not inform us
about time lost and another measure has been proposed (Clark
et al, 2002). In general, disparities in follow-up caused by
differential drop-out between arms of a trial or different subgroups
in a cohort study need to investigated.

Cohort effect on survival

In survival analysis, there is an assumption of homogeneity of
treatment and other factors during the follow-up period. However,

in a long-term observational study of patients of cancer, the case
mix may change over the period of recruitment, or there may be an
innovation in ancillary treatment. The KM method assumes that
the survival probabilities are the same for subjects recruited early
and late in the study. On average, subjects with longer survival
times would have been diagnosed before those with shorter times,
and changes in treatments, earlier diagnosis or some other change
over time may lead to spurious results. The assumption may be
tested, provided we have enough data to estimate survival
probabilities in different subsets of the data and, if necessary,
adjusted for by further analyses (see next section).

Between-centre differences

In a multicentre study, it is important that there is a consistency
between the study methods in each centre. For example, diagnostic
instruments, such as staging classification, and treatments should
be identical. Heterogeneity in case mix among centres can be
adjusted for in an analysis (see next section).

NEED FOR SURVIVAL ANALYSIS ADJUSTING FOR
COVARIATES

When comparing treatments in terms of survival, it is often
sensible to adjust for patient-related factors, known as covariates
or confounders, which could potentially affect the survival time of
a patient. For example, suppose that despite the treatment being
randomised in the lung cancer trial, older patients were assigned
more often to the radiotherapy alone group. This group would
have a worse baseline prognosis and so the simple analysis may
have underestimated its efficacy compared to the combination
treatment, referred to as confounding between treatment and
age. Also, we sometimes want to determine the prognostic ability
of various factors on overall survival, as in the ovarian study.
Figure 5 shows overall survival by FIGO stage, and there is a
significant decrease in overall survival with more advanced
disease.
Multiple prognostic factors can be adjusted for using multi-

variate modelling. For example, if those women with early stage
disease were younger than those with advanced disease, then the
FIGO I and II groups might be surviving longer because of lower
age and not because of the effect of FIGO stage. In this case,
the FIGO effect is confounded by the effect of age, and a
multivariate analysis is required to adjust for the differences in the
age distribution. The appropriate analysis is a form of multiple
regression, and is the subject of the next paper in this series.

SUMMARY

Survival analysis is a collection of statistical procedures for data
analysis where the outcome variable of interest is time until an
event occurs. Because of censoring–the nonobservation of the
event of interest after a period of follow-up–a proportion of the
survival times of interest will often be unknown. It is assumed that
those patients who are censored have the same survival prospects
as those who continue to be followed, that is, the censoring is
uninformative. Survival data are generally described and modelled
in terms of two related functions, the survivor function and the
hazard function. The survivor function represents the probability
that an individual survives from the time of origin to some time
beyond time t. It directly describes the survival experience of a
study cohort, and is usually estimated by the KM method. The
logrank test may be used to test for differences between survival
curves for groups, such as treatment arms. The hazard function
gives the instantaneous potential of having an event at a time,
given survival up to that time. It is used primarily as a diagnostic
tool or for specifying a mathematical model for survival analysis.
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Figure 5 FIGO stage and prognosis in the ovarian study. Chisq¼ w2.
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In comparing treatments or prognostic groups in terms of survival,
it is often necessary to adjust for patient-related factors that
could potentially affect the survival time of a patient. Failure to
adjust for confounders may result in spurious effects. Multivariate
survival analysis, a form of multiple regression, provides a way of
doing this adjustment, and is the subject the next paper in this
series.
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