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Survival Analysis with High-Dimensional

Covariates: An Application in Microarray

Studies

David Engler and Yi Li

Abstract

Use of microarray technology often leads to high-dimensional and low-sample size (HDLSS)

data settings. A variety of approaches have been proposed for variable selection in this context.

However, only a small number of these have been adapted for time-to-event data where censoring

is present. Among standard variable selection methods shown both to have good predictive ac-

curacy and to be computationally efficient is the elastic net penalization approach. In this paper,

adaptations of the elastic net approach are presented for variable selection both under the Cox

proportional hazards model and under an accelerated failure time (AFT) model. Assessment of

the two methods is conducted through simulation studies and through analysis of microarray data

obtained from a set of patients with diffuse large B-cell lymphoma where time to survival is of

interest. The approaches are shown to match or exceed the predictive performance of a Cox-based

and an AFT-based variable selection method. The methods are moreover shown to be much more

computationally efficient than their respective Cox- and AFT-based counterparts.

KEYWORDS: survival analysis, microarray, elastic net, variable selection



1 Introduction

Analysis of high-dimensional and low-sample size (HDLSS) data is increasingly
an objective of interest. Such analyses are of particular interest in the analysis
of DNA microarray data where the number of genes typically far exceeds
sample size. In this setting, a frequent objective is the identification of a
subset of genes whose expression levels are significantly correlated with a given
clinical outcome or classification. Estimation of the effect of each identified
gene is also usually desired. Identified genes are then often employed to build a
predictive model in which prediction of outcome for new patients is conducted.

A number of variable selection and estimation methodologies based on
the maximization of a penalized likelihood have been proposed. Methods of
penalization include traditional approaches such as AIC (Akaike et al., 1973)
and BIC (Schwarz, 1978) as well as more recent developments including bridge
regression (Frank and Friedman, 1993), the LASSO (Tibshirani, 1996), SCAD
(Fan and Li, 2001), LARS (Efron et al., 2004), the elastic net (Zou and Hastie,
2005), and MM algorithms (Hunter and Li, 2005). Implementation of a number
of these methods, however is not feasible in HDLSS environments.

Microarray data analysis is further complicated when the outcome of inter-
est is a time to an event. In these cases, either dropout or study termination
may occur prior to event occurrence for a number of subjects. Typically, then,
a number of the outcome variables are censored.

Several authors have proposed variable selection methods for HDLSS time-
to-event data under the Cox proportional hazards model (Cox, 1972). For
example, Cox-based methods utilizing kernel transformations (Li and Luan,
2003), threshold gradient descent minimization (Gui and Li, 2005a), and lasso
penalization (see Gui and Li, 2005b; Segal, 2005; Park and Hastie, 2007) have
been proposed.

Likewise, a few authors have proposed variable selection methods based on
accelerated failure time models (see Wei, 1992). Methods based on the lasso
penalization and the threshold gradient descent (Huang et al., 2006) have been
proposed as well as an approach based on Bayesian variable selection (Sha et
al., 2006).

There are a number of drawbacks to current methods of variable selection
in HDLSS settings when censored data is present. The Li and Luan (2003)
method is limited, for example, in that for prediction, all genes in the data
set are included; a straightforward method of gene selection for prediction
is not outlined. The TGD approaches of Gui and Li (2005a) and Huang et
al. (2006) seem to be limited in that, at least in initial data analyses, very
small changes in the threshold parameter dramatically altered the number
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of variables selected. Hence, effective identification of the optimal threshold
might be unwieldy. A second drawback is that in the same analyses, the TGD
method appeared to have less predictive power than alternative methods (see
Gui and Li, 2005a; Gui and Li, 2005b). Use of the lasso in the methods
proposed by Gui and Li (2005b) and Huang et al. (2006) might also lead to
difficulties. For one, when the number of variables p is larger than the number
of subjects n, the number of variables selected by the lasso is at most n.
This restriction may be problematic for gene expression data where p � n.
A second drawback of the lasso is a result of its convexity. Zou and Hastie
(2005) show that for non-strictly convex penalty functions such as the lasso,
performance is suboptimal when highly correlated variables are present. Given
a set of highly correlated variables associated with outcome, procedures that
employ a penalty function that is not strictly convex often will identify only one
of the variables and ignore the others. This limitation might be particularly
problematic in the analysis of gene expression data where identification of
an entire set of correlated genes may lead to an improved understanding of
the biological pathway. It should be noted that the adaptive lasso, a recent
improvement to the lasso, has been proposed by Zhang and Lu (2007) for
censored data. While the approach overcomes a number of the drawbacks of
lasso, use of the adaptive lasso may not be appropriate in high-dimensional
data settings without reliance upon ridge regression (see Zhang and Lu, 2007;
Lu and Zhang, 2007).

Modification of the elastic net penalization approach may be useful for
the analysis of HDLSS time-to-event data. First, the elastic net approach is
not limited in the number of variables selected by the number of available
subjects. That is, the number of variables selected can be greater than the
number of subjects. Second, the elastic net penalty function is strictly convex
and therefore will more frequently identify an entire set of correlated genes
than do methods based on penalty functions that are not strictly convex.
Finally, as shown by Zou and Hastie (2005), the elastic net is computationally
efficient. To date, the only attempt to employ the elastic net penalization
approach to HDLSS censored data under the AFT model (Wang et al., 2008)
employs an imputation approach based on the Buckley and James algorithm
(Buckley and James, 1979). However, the Buckley-James approach entails
an iterative least squares procedure that is known to suffer from convergence
problems (see Wu and Zubovic, 1995) and is more computationally intensive
than other methods.

In this paper, two elastic net based variable selection methods for high-
dimensional low sample size time-to-event data are presented. First, a Cox
elastic net (EN-Cox) approach is outlined that is based on the Cox propor-
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tional hazards model and utilizes modifications of the algorithms proposed by
Tibshirani (1997) and Gui and Li (2005b). Second, an accelerated failure time
elastic net (EN-AFT) approach is presented which employs a mean imputa-
tion approach for the estimation of AFT model parameters. The approaches
are shown to be an improvement over existing methods in terms of prediction
accuracy and computational efficiency.

2 Methods

2.1 Elastic Net

In the linear regression setting, the elastic net objective function is defined
(Zou and Hastie, 2005) as

L(λ1, λ2, β) = |y−Xβ|2 + λ2

p∑
j=1

β2
j + λ1

p∑
j=1

|βj| (1)

for some fixed, non-negative λ1 and λ2, where y = (y1, . . . , yn) is the centered
response vector for n subjects and X is the design matrix based on p standard-
ized (i.e., location and scale transformed) variables. Notably, for 0 < λ2 ≤ 1,
the penalty function is strictly convex and hence is not restricted in its ability
to identify entire sets of highly correlated variables. The elastic net estimator
of β, then, is the minimizer of (1).

To adjust for HDLSS data settings (and the resultant difficulties in the
estimation of β), Zou and Hastie employ two simple modifications to the elastic
net model. First, an augmentation of X and y is utilized which leads to a sparse
data matrix X∗ with rank p. Hence, through use of the augmentation, selection
of up to p variables is possible even when p � n. Additionally, the sparse data
matrix X∗ leads to a computationally efficient algorithm. Second, a scaled β̂

is employed to overcome a problem of double shrinkage (i.e., the shrinking of
coefficient estimates to increase stability). Following data augmentation and
the rescaling of β̂, the resultant elastic net estimator β̂ is defined as

β̂ = arg minβ

[
β′
(

X′X + λ2I

1 + λ2

)
β − 2y′Xβ + λ1

p∑
j=1

|βj|
]

. (2)

Of interest, then, is the elastic net estimator when the outcome is time
to an event and censoring is present. Let time ti for subject i = 1, . . . , n
depend upon p gene expression levels xi = (xi1, . . . , xip). Due to censoring,

3

Engler and Li: Survival Analysis HDLSS

Published by The Berkeley Electronic Press, 2009



yi = min(ti, ci) is observed where ci is the time to the first censoring event (e.g.,
study conclusion, date of final follow up) for subject i. Let δi = 0 indicate
censoring and δi = 1 otherwise.

2.2 A Cox-based Adaptation of Elastic Net

Under the Cox proportional hazards model, the hazard function for individ-
ual i is specified as λ(ti) = λ0(ti)exp(β′xi), where covariate matrix X =
(x1, . . . ,xn)′ and where baseline hazard λ0(t) is common to all subjects but
is unspecified or unknown. Let ordered risk set at time t(r) be denoted by
Rr = {j ∈ 1, . . . , n : yj ≥ t(r)}. Assume that censoring is noninformative and
that there are no tied event times. The Cox log partial likelihood can then be
defined as

�(β) =
1

n

∑
r∈D

ln

(
exp(β′x(r))∑
j∈Rr

exp(β′xj)

)
, (3)

where D denotes the set of indices for observed events. The Cox elastic net
estimate of β in this setting can be obtained through adaptation of a quadratic
programming approach outlined by Tibshirani and Hastie (see Hastie and
Tibshirani, 1990; Tibshirani, 1997). Namely, let η = Xβ, u = ∂�/∂η,
A = −E[∂2�/∂ηη′], and z = (η + A−1u). A modified Newton-Raphson
iterative procedure can then be employed to optimize (3). Specifically, the
usual Newton-Raphson update is expressed as an iterative reweighted least
squares step. The weighted least squares step is then replaced by a constrained
weighted least squares procedure. Let, for each step, z0 = (η0 +A−1u), where
η0 is based on the β estimate of the previous step. A one-term Taylor series
expansion for each step can then be represented as (z0 − η)′A(z0 − η).

Modifying the approach of Gui and Li (2005b), this approximation can
be rewritten as (z̃0 − X̃β)′(z̃0 − X̃β), where z̃0 = Qz0 and X̃ = QX, where
Q = A1/2. An estimate, Â, of A can be obtained using the observed Fisher
information. Under this formulation, the problem of obtaining an elastic net
estimate for β is akin to the problem posed in (2). That is, the optimal β̂ is
formulated as

β̂ = arg minβ

[
β′

(
X̃′X̃ + λ2I

1 + λ2

)
β − 2z̃′X̃β + λ1

p∑
j=1

|βj|
]

. (4)

Estimation of β̂ is accomplished through the following algorithm:

1. Set tuning parameters and initialize β̂ = 0.
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2. Compute η, u, Â, and Q based on the current value of β̂.

3. Let z0 = z for the first iteration, otherwise compute z0.

4. Compute X̃ = QX and z̃0 = Qz0.

5. Minimize (z̃0 − X̃β̂)′(z̃0 − X̃β̂) subject to the elastic net constraints.

6. Update β̂.

7. Repeat steps 2–6, subject to the elastic net constraints, until β̂ does not
change.

Of note, Q can then be obtained through the Cholesky decomposition of Â.
Selection of tuning parameters in Step 1 and their effect on the elastic net
constraints in Steps 5 and 7 is discussed in Section 2.5.

2.3 An AFT Adaptation of Elastic Net

When the assumption of proportional hazards is not tenable, the accelerated
failure time (AFT) model can be utilized. The AFT model is a linear regression
model in which the logarithm of response ti is related linearly to covariates xi:

h(ti) = β0 + x′iβ + εi, i = 1, . . . , n, (5)

where h(.) is the log transformation or some other monotone function. In this
case, the Cox assumption of multiplicative effect on hazard function is replaced
with the assumption of multiplicative effect on outcome. In other words, it is
assumed that the variables xi act multiplicatively on time and therefore affect
the rate at which individual i proceeds along the time axis.

Because censoring is present, the standard least squares approach cannot be
employed to estimate the regression parameters in (5) even when p < n. One
approach for AFT model implementation entails the replacement of censored
yi with imputed values. One such approach is that of mean imputation in
which each censored yi is replaced with the conditional expectation of ti given
ti > ci. The imputed value h(y∗i ) can then be given (see Datta, 2005) by

h(y∗i ) = (δi)h(yi) + (1− δi){Ŝ(yi)}−1
∑

t(r)>ti

h(t(r))ΔŜ(t(r)), (6)

where Ŝ is the Kaplan-Meier estimator (Kaplan and Meier, 1958) of the sur-
vival function and where the ΔŜ(t(r)) is the step of Ŝ at time t(r).
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Datta et al. (2007) recently assessed the performance of several approaches
to AFT model implementation, including reweighting the observed ti, replace-
ment of each censored ti with an imputed observation, drawn from the condi-
tional distribution of t (multiple imputation), and mean imputation. Datta et
al. found that in the HDLSS setting, the mean imputation approach outper-
formed reweighting and multiple imputation under the lasso penalization.

Of interest, then, is the elastic net estimate of β for settings when p� n.
Using the imputed values (6), estimation of the elastic net parameters can be
conducted through use of the following algorithm:

1. Set tuning parameters and initialize β̂ = 0.

2. Minimize
∑

i(y
∗

i − β̂
′

xi)
′(y∗i − β̂

′

xi) subject to the elastic net constraints.

3. Update β̂.

4. Repeat steps 2–3, subject to the elastic net constraints, until β̂ does not
change.

Selection of tuning parameters in Step 1 and their effect on the elastic net
constraints in Steps 2 and 4 is discussed in Section 2.5.

2.4 The Grouping Effect in EN-Cox and EN-AFT

Zou and Hastie (2005) show that the elastic net is superior to the lasso in
its ability to identify entire groups of highly correlated variables in the linear
regression setting. This characteristic can be referred to as a grouping effect.
A variable selection method, then, that exhibits the grouping effect will as-
sign non-zero coefficients to an entire set of highly correlated variables. This
characteristic is especially important in analysis of gene expression data where
identification of an entire set of correlated genes may lead to an improved
understanding of the biological pathway.

Both EN-Cox and EN-AFT exhibit the grouping effect. Because EN-AFT
is based on a linear regression model, this follows by the same reasoning out-
lined by Zou and Hastie (2005). By similar reasoning, it is also easy to show
that EN-Cox exhibits the grouping effect for 0 < λ2 ≤ 1. Proposition 1 de-
scribes the expected behavior of EN-Cox for an extreme case and Proposition
2 provides a general property of EN-Cox when correlated variables are present.
Derivation of Proposition 1 and 2 is provided in the Appendix.

Proposition 1 : Let xi = xj for some i, j ∈ {1, . . . , p}. Let β̂ be the EN-Cox

estimate of the Cox regression parameter β. Then β̂i = β̂j .
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Proposition 1 states that given identical covariate vectors xi and xj, the

EN-Cox estimate of β will assign identical values to β̂i and β̂j.
Proposition 2 : Let transformed response vector z̃ and covariate matrix X̃

be mean-centered and standardized. Let original covariate vectors xi and xj

be highly correlated. Without loss of generality, assume ρ > 0. Let β̂ be the
EN-Cox estimate of the Cox regression parameter β and assume sign(β̂i) =
sign(β̂j). Then for fixed λ1 and λ2

|β̂i − β̂j|
|z̃| ≤

√
2{1− (x′iAxj)}

λ2
, (7)

where x′iAxj is equal to the correlation between transformed covariate vectors
x̃i and x̃j.

Proposition 2 states that the standardized difference between the EN-Cox
estimates β̂i and β̂j corresponding to correlated variables xi and xj is bounded
above by a function of the correlation between transformed covariate vectors
x̃i = x̃j . Of note, Proposition 1 and 2 extend the results of Zou and Hastie
(2005) to settings in which censored data is present. Further examination of
the grouping effect of EN-Cox and EN-AFT is provided in Section 3.2.

2.5 Selection of Tuning Parameters

The elastic net requires the selection of two tuning parameters, λ1 and λ2.
Alternatives to λ1 are possible. The various choices correspond to different
methods of identifying the stopping point of the procedure and hence affect
Steps 4 and 6 of the algorithms outlined in Sections 2.2 and 2.3. Among those
alternatives proposed is the maximum number of steps k allowable in the entire
solution path where one iteration of the above algorithms constitutes a single
step. The choice of k is useful as its selection requires no prior knowledge
(or guesswork) regarding the actual values of the regression coefficients and is
employed in both EN-Cox and EN-AFT.

Evaluation of the two parameters λ2 and k across a two-dimensional sur-
face of parameter values is required. Potential values of λ2 should span a wide
range, e.g., λ2 = (0, 0.01, 0.1, 1, 10, 100). The potential values of k will depend
on the size of the data set. Tuning parameter selection can be implemented
through use of cross-validation methods over a rough grid of candidate val-
ues for λ2 and k. In the current setting, selection of λ2 and k under both
EN-Cox and EN-AFT is conducted through use of a cross validation score
(CVS) (Huang, 2006; see also Verwij and Van Houwelingen (1993), Huang
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and Harrington (2002)):

CV S(X, λ2, k) = �(X, β̂λ2,k,−(i))− �(X−(i), β̂λ2,k,−(i)), (8)

where β̂λ2,k,−(i) consists of the coefficient estimates (for a given variable se-

lection approach) obtained while excluding the ith subject for fixed values λ2

and k and where X−(i) denotes the complete data set, absent the ith subject.
Under the Cox-based models, the function �(.) represents the negative log
partial likelihood (3). Under the AFT-based models, �(.) represents the AFT

objective function (i.e.,
∑

i[(y
∗

i − β̂
′

xi)
′(y∗i − β̂

′

xi)]). Values of λ2 and k that
correspond to the minimization of (8) are identified and selected.

Potentially viable alternatives to the above approach include, but are not
limited to, BIC (see Wang et al., 2007) as well as the approaches outlined by
Zhang and Lu (2007) and by Wang et al. (2008).

2.6 Predictive Performance

Assessment of EN-Cox and EN-AFT can be conducted through analysis of
predictive performance using time-dependent receiver operator characteristic
(ROC) curves (Heagerty et al., 2000). In general, for dichotomous disease-
status indicator D and continuous diagnostic test outcome X, an ROC curve
is defined as the plot of the sensitivity of the test X > c versus (1 - specificity)
over c ∈ (−∞,∞). Heagery et al. extend this formulation to time-to-event
data when censoring is present. Given linear risk score function f(X) = β′X,
sensitivity and specificity for cutoff c at time t are defined as

sensitivity(c, t|f(X)) = P [f(X) > c|δ(t) = 1] (9)

specificity(c, t|f(X)) = P [f(X) ≤ c|δ(t) = 0], (10)

where δ(t) is the event indicator at time t. At each time t, an ROC curve is
generated for β = β̂ and an associated area under the curve (AUC) is calcu-
lated. The plot of AUC over time is then helpful in assessing the predictive
performance of a given variable selection method.

2.7 Software

Analyses were performed using the R software package (http://www.r-project.org).
The R implementation of the Cox-based and AFT-based elastic net models
presented in this paper is available at http://statweb.byu.edu/engler/ENET.
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3 Results

3.1 Data Analysis

Diffuse large-B-cell lymphoma (DLBCL) is a common type of non-Hodgkin’s
lymphoma in adults. Heterogeneity in response to treatment has suggested
the existence of clinically distinct subypes. Rosenwald et al. (2002) utilized
Lymphochip DNA microarrays to collect and analyze gene expression data
from 240 biopsy samples of DLBCL tumors. For each subject, 7399 gene
expression measurements were obtained. During the time of follow-up, 138
patient deaths were observed (i.e., 42.5% censoring).

Analysis of the Rosenwald et al. DLBCL data was conducted using both
EN-Cox and EN-AFT. For comparison purposes, analysis was also conducted
using the Gui and Li (2005b) lasso (LASSO-Cox) method. To assess the effect
of differing imputation methods under the AFT model, separate analyses were
conducted using the mean imputation method described in Section 2.3 and the
Buckley-James imputation method (Wang et al., 2008). A training set of 160
randomly selected subjects was utilized. Selection of tuning parameters for
each method was conducted using half of the training set while model fit (i.e.,
variable selection and coefficient estimation) was conducted using the other
half. Predictive performance was assessed using a validation set composed of
the 80 subjects not in the training set.

The methods varied in the number of gene expressions identified as sig-
nificantly associated with survival. Both EN-Cox and EN-AFT identified a
greater number of signficant features than LASSO-Cox. EN-AFT computed
under mean imputation (EN-AFT-M) identified 13 genes, EN-AFT computed
under Buckley-James imputation (EN-AFT-BJ) identified 18 genes, EN-Cox
identified 16 genes, and LASSO-Cox identified 7 genes.

To assess predictive performance, the median AUC for each six month
interval (for which there was data) was then calculated and plotted for each
method. Results are presented in Figure 1. For the first ten years of follow-
up, the median AUC for EN-AFT-M is 0.61 and is 0.56 for EN-AFT-BJ.
Use of the Cox model results in a median AUC of 0.58 for both EN-Cox and
LASSO-Cox. Instability in AUC estimates for subsequent times (post year 10)
appears to be due to sparsity of event times. For this analysis, then, EN-AFT-
M outperformed EN-AFT-BJ (in terms of prediction) using a smaller set of
identified genes. The predictive performance of EN-AFT-M was also slightly
superior to EN-Cox and LASSO-Cox in this data analysis.

Several features of the variable selection process for this data set are no-
table. First, EN-COX, EN-AFT-M, and EN-AFT-BJ each select genes not

9
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Figure 1: Comparison of predictive performance (area under the ROC curve,
over time) for the Rosenwald DLBCL data set.

identified by any of the other three variable selection methods. In part, this
is due to the noise of gene expression data. Such results are also indicative of
the stochastic nature of the variable selection process.

Second, the methods based on the elastic net penalization do exhibit the
grouping effect discussed in Section 2.4 while LASSO-Cox does not. For exam-
ple, both EN-Cox and LASSO-Cox select gene 5442, but EN-Cox also selects
gene 5301 which is moderately correlated with gene 5442 (ρ = 0.43). EN-AFT-
M and EN-AFT-BJ each identify correlated gene expressions. For example,
gene 5254 and gene 5296 (uniquely identified by EN-AFT-M) are correlated
(ρ = 0.57). Likewise, genes 1671, 2154, and 5773 (uniquely identified by EN-
AFT-BJ) are correlated (ρ ≥ 0.51). With regard to LASSO-Cox, ρ ≤ 0.30 for
any two identified gene expressions.

In summary, both EN-Cox and EN-AFT-M (EN-AFT based on mean im-
putation) perform as well or better than the lasso-based method and EN-AFT-
BJ (EN-AFT based on the Buckley-James imputation) in terms of predictive
power. It is additionally important to note that the elastic-net based methods
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are much more computationally efficient than their Cox-based and AFT-based
counterparts (see Section 3.3); completion of the Lasso-Cox method exceeded
several days while EN-AFT-M (including parameter selection through cross-
validation) completed in well under an hour.

3.2 Simulation Studies

In order to assess performance of EN-Cox and EN-AFT, several simulation
studies were conducted under different data scenarios. For each scenario, co-
variate data was simulated following the strategy for generating gene expres-
sions proposed by Gui and Li (2005b) which allows for correlation between
certain subsets of the data. In essence, an n× n array B is initially generated
from a uniform U(−1.5, 1.5) distribution. A second set of data C can then be
generated utilizing the normalized, orthogonal basis of the initial array. Gui
and Li (2005b) demonstrate that the maximum correlation between any two
data vectors selected from B and C, respectively, can be specified during the
data generation process. Implementation of this procedure can be conducted
by prespecifying pγ genes significantly associated with outcome. The gene
expression data associated with these pγ variables are drawn from the initial
array B. The data for the remaining p− pγ variables are then drawn from the
subsequent set of data C.

For each of the following three data scenarios, 100 simulations were con-
ducted in which, for each simulation, data for n = 150 subjects and p = 200
gene expressions were generated. For each data set, subjects were randomly
divided into two training sets of nt = 50 each and one prediction set of np = 50.
The first training set was utilized to select the tuning parameter(s) for the re-
spective variable selection methods. Model fit was conducted using the second
training set along with the identified tuning parameter(s). Additionally, it was
assumed that the first pγ = 6 genes were significantly associated with survival
and that the remaining p− pγ were not.

It was first of interest to establish baseline performance for EN-Cox and
EN-AFT in a relatively simple setting in which no correlation existed between
any of the covariate vectors and where, on average, about 40% of the event
times were censored. For this first data scenario, then, data for the first pγ

gene expression were drawn from a uniform U(1.5,−1.5) distribution. That is,
x1, . . . ,x6 were drawn from B. Data for the remaining p−pγ were drawn from
the resultant C matrix. A Weibull distribution with scale parameter 2 and
shape parameter 5 was used for the baseline hazard function and censoring
times were generated using a uniform U(2, 10) distribution, resulting in the
desired level of censoring. Finally, half of the pγ coefficient vector βγ was
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generated from a uniform U(−1,−0.1) distribution while the other half was
generated from U(0.1, 1). The remaining p − pγ coefficients were assigned a
value of 0. Of note, use of the Weibull distribution ensures the appropriate
use of the Cox proportional hazards model and the AFT model.

For the second data scenario, it was of interest to assess the grouping effect
of EN-Cox and EN-AFT. That is, the performance of EN-Cox and EN-AFT
was assessed for a scenario in which subsets of the pγ variables were highly
correlated. First, data for x1 and x4 (two of the six pγ) were drawn from
B (i.e., from a uniform U(−1.5, 1.5) distribution). Using the orthonormal
basis of B, two sets of data, C1 and C2 were generated. For C1, data were
generated such that a number of the vectors in C1 were highly correlated with
vectors in B. Alternatively, vectors in B and C2 were uncorrelated. Data for
x2 and x3 were randomly drawn from the subset of C1 highly correlated (i.e.,
0.85 < ρ < 0.95) with x1. Data for x5 and x6 were randomly drawn from the
subset of C1 highly correlated with x4. The correlation between {x2,x3} and
{x5,x6} was minimal (|ρ| < 0.10). Data for the remaining p − pγ variables
were drawn from C2. Hence, for this scenario, the pγ genes were comprised of
two groups of highly correlated variables. Also, βγ was selected to reflect the
high correlation between the pγ gene subsets: βj = 0.9 for j = 1, . . . , 6. The
baseline hazard function and level of censoring were identical to Scenario 1.

Finally, it was of interest to assess the performance of EN-Cox and EN-
AFT when an elevated level of censoring was present. For this third data
scenario, gene expression data were generated as described above for Scenario
1. Likewise, the same βγ parameter vector was used. The level of censoring,
however, was increased to 60%.

For each of the three scenarios, performance of EN-Cox and EN-AFT was
assessed in two ways. First, the relative frequency of selection of significant
variables (i.e., βj , j = 1, . . . , 6) was assessed. The average (across the re-
maining p− pγ variables) relative frequency of the selection of non-significant
variables (i.e., βj = 0, j = 7, . . . , 200) was also assessed. Variable selection
results for the three scenarios are presented in Tables 1, 2, and 3. Listed in
each table are the non-zero coefficient values along with the relative frequency
of selection across all simulations for these coefficients. The average frequency
of selection (across all simulations and across all zero-valued coefficients) of
the remaining coefficients is also listed.

Second, predictive performance was assessed as described in Section 2.6.
For each simulation, the AUC was calculated at each unique event time. Be-
cause unique times varied across simulations, the time scale was divided into
equal sized “bins”. The average AUC in each time-bin was then calculated.
Figure 3.2 contains the plotted average AUCs over time for each of the three
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Table 1: Variable selection results (frequency of selection) for LASSO-Cox
(L-Cox), EN-Cox, EN-AFT (BJ: Buckley-James imputation, M: mean im-
putation) methods for independent variables, 40% censoring. The column
”Actual” dentotes the true parameter value. The remaining columns consist
of the frequency of selection (across all simulations) by the respective meth-
ods. Average false positive (FP): relative frequency (across all simulations) of
selection of βj = 0, averaged across all j ∈ {7, . . . , 200}.

Actual L-Cox EN-Cox EN-AFT-BJ EN-AFT-M
β1 0.96 0.82 0.84 1.00 1.00
β2 −0.65 0.79 0.73 0.81 0.98
β3 −0.54 0.78 0.70 0.73 0.98
β4 −0.57 0.80 0.68 0.77 0.97
β5 0.95 0.82 0.84 0.99 1.00
β6 0.24 0.32 0.10 0.17 0.49
FP 0.025 0.170 0.024 0.025

scenarios. For comparison purposes, the same sets of data were also analyzed
using the Gui and Li (2005b) LASSO-Cox procedure for censored data. To
assess the effect of imputation method under the AFT model, separate analy-
ses were conducted using the mean imputation method of Section 2.3 and the
Buckley-James imputation method of Wang et al. (2008).

Results for the first scenario (i.e., independent covariates, 40% censoring)
are presented in Table 1 and in Figure 3.2 (under ”Scenario 1”). For this simple
scenario, the Cox-based methods seem roughly equivalent in terms of perfor-
mance results; both EN-Cox and LASSO-Cox have a median AUC (across all
times) of 0.80. With regard to the AFT-based methods, both EN-AFT-M
and EN-AFT-BJ appear to outperform the Cox-based models in this setting,
more frequently identifying variables of interest. The AFT approach based
on mean imputation (EN-AFT-M) performs particularly well. For coefficients
with moderate or high absolute effects (β1−5), the mean frequency of selection
of EN-AFT-M is 0.986. With regard to the selection of the remaining non-zero
coefficient (β6), EN-AFT-M outperforms the Cox-based methods as well as the
method based on Buckley-James imputation (EN-AFT-BJ).

Results for the second scenario (i.e., grouped covariates with high correla-
tion within groups, 40% censoring) are presented in Table 2 and in Figure 3.2
(under ”Scenario 2”). With regard to variable selection (Table 2), the AFT-
based selection methods exhibit the highest accuracy, followed by EN-Cox and
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Table 2: Variable selection results (frequency of selection) for LASSO-Cox
(L-Cox), EN-Cox, EN-AFT (BJ: Buckley-James imputation, M: mean impu-
tation) methods for correlated variables, 40% censoring. Variables 1–6 are
grouped into two sets: {x1, x2, x3}, {x4, x5, x6}; within each set, variables
are highly correlated (ρ ∈ [0.85, 0.95]). The column ”Actual” dentotes the
true parameter value. The remaining columns consist of the frequency of
selection (across all simulations) by the respective methods. Average false
positive (FP): relative frequency (across all simulations) of selection of βj = 0,
averaged across all j ∈ {7, . . . , 200}.

Actual L-Cox EN-Cox EN-AFT-BJ EN-AFT-M
β1 0.90 0.45 0.62 0.93 0.95
β2 0.90 0.58 0.81 0.91 0.98
β3 0.90 0.01 0.71 0.85 0.93
β4 0.90 0.53 0.70 0.93 0.96
β5 0.90 0.55 0.76 0.89 0.90
β6 0.90 0.01 0.69 0.86 0.87
FP 0.002 0.002 0.016 0.017

Table 3: Variable selection results (frequency of selection) for LASSO-Cox
(L-Cox), EN-Cox, EN-AFT (BJ: Buckley-James imputation, M: mean impu-
tation) methods for independent variables, 60% censoring. The column ”Ac-
tual” dentotes the true parameter value. The remaining columns consist of
the frequency of selection (across all simulations) by the respective methods.
Average false positive: relative frequency (across all simulations) of selection
of βj = 0, averaged across all j ∈ {7, . . . , 200}.

Actual L-Cox EN-Cox EN-AFT-BJ EN-AFT-M
β1 0.957 0.41 0.71 0.83 0.83
β2 −0.650 0.30 0.41 0.42 0.39
β3 −0.539 0.23 0.29 0.22 0.34
β4 −0.566 0.27 0.38 0.28 0.39
β5 0.953 0.45 0.74 0.77 0.90
β6 0.237 0.09 0.14 0.09 0.13
FP3 0.022 0.035 0.028 0.030
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Figure 2: Comparison of predictive performance (area under the ROC curve,
over time) for Scenario 1: independent covariates, 40% censoring, Scenario 2:
correlated subsets of covariates (i.e., grouping effect), 40% censoring. Scenario
3: independent covariates, 60% censoring

then LASSO-Cox. The LASSO-Cox does not exhibit the grouping effect but
instead appears to select one of several highly correlated variables and ignores
the others. For example, in about half the simulations, LASSO-Cox selects β1,
ignoring β2 and β3 whereas in the remaining simulations, LASSO-Cox selects
β2, ignoring β1 and β3. A similar pattern is observed for the second group of
correlated variables, β4, β5, and β6. As in the first setting, the performance
of EN-AFT-M with regard to frequency of variable selection is superior to the
Cox-based methods and to EN-AFT-BJ. Regarding predictive performance
(Figure 3.2), all three EN-AFT-M, EN-AFT-BJ and EN-Cox perform well
both with a median AUC (across all times) of 0.92. The over-time average
AUC of LASSO-Cox in this setting is 0.82.

Results for the third scenario (i.e., independent covariates, 60% censor-
ing) are presented in Table 3 and Figure 3.2 (under ”Scenario 3”). For this
scenario in which a high level of censoring is present, the three elastic net
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Table 4: Comparison of computation times for LASSO-Cox (L-Cox), EN-Cox,
EN-AFT (BJ: Buckley-James imputation, M: mean imputation) methods (in
seconds). p: number of variables, N : number of subjects.

p N L-Cox EN-Cox EN-AFT-BJ EN-AFT-M
200 50 164.57 62.65 0.98 0.05
200 100 200.04 110.41 1.39 0.06
200 150 648.53 133.61 5.63 0.08
500 150 1107.85 217.95 6.33 0.10
1000 150 1134.76 508.79 11.02 0.29

methods outperform LASSO-Cox in both variable selection accuracy and in
predictive performance. Interestingly, while the three elastic net methods are
roughly equivalent with regard to variable selection, EN-Cox (median AUC:
0.76) appears to slightly outperform the two AFT-based methods (EN-AFT-
M median AUC: 0.68, EN-AFT-BJ median AUC: 0.66) in terms of predictive
performance. The poorer predictive performance of the AFT-based methods
may be due, in part, to the fact that the required imputation in the AFT
models is based on fewer observed events and is therefore less accurate.

In summary, then, EN-Cox performs as well or better than LASSO-Cox
in each of the three scenarios. The improvement of EN-Cox is particularly
notable when correlated covariates are present. Moreover, the computational
efficiency of EN-Cox exceeds that of LASSO-Cox. With regard to the AFT-
based methods, EN-AFT-M performs as well or better than EN-AFT-BJ in
all three scenarios, particularly wtih regard to frequency of variable selection.
Additionally, the improvement in computational efficiency is substantial.

3.3 Computational Efficiency

Use of the elastic net penalty leads to computationally efficient algorithms.
Typical run times (3.2Ghz Xeon Linux workstation) for EN-AFT-M, EN-
AFT-BJ, EN-Cox, and LASSO-Cox are listed in Table 4 for various data set
dimensionalities.

Note that the run times listed in Table 4 are for fixed tuning parameters
and that differences in run times are even more pronounced when time of cross-
validation is included. For example, a typical total run-time (cross-validation
and model fitting) for N = 150 and p = 200 for EN-AFT-M is 25.0 seconds
whereas the EN-AFT-BJ time is 2716.6 seconds. For N = 150 and p = 1000,
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the total run time for EN-AFT-M is 47.6 seconds and is 106280.7 seconds for
EN-AFT-BJ.

4 Discussion

Adaptation of the elastic net penalization criterion for use in high-dimensional
and low-sample size censored data settings leads to computationally efficient
variable selection methods with good predictive performance. Through simula-
tion studies, EN-Cox and EN-AFT were shown to perform well in comparison
to the Gui and Li (2005b) LASSO-Cox approach in simple settings with low
censoring and independent covariates. The two methods were also shown to
outperform LASSO-Cox in settings with a high degree of censoring and in
settings where sets of highly correlated variables were present. The EN-AFT
approach entailing mean imputation was also shown to outperform the ap-
proach based on Buckley-James imputation (Wang et al., 2008) in terms of
both frequency of variable selection and computational efficiency.

Several features of the EN-Cox and EN-AFT implementations may warrant
further investigation. Some have proposed methods for improving the compu-
tational efficiency of the LASSO-Cox (Segal, 2005). While EN-Cox was shown
to perform efficiently in comparison to LASSO-Cox, improvements might be
made. For example, utilization of the penalized likelihood approach of Park
and Hastie (2007) may be of particular interest under the Cox model.

The presented models can also be adapted to situations in which it is of
interest to assign separate penalty functions to different coefficients or groups
of coefficients. That is, equation (1) can be extended to

L(λ1, λ2, β) = |y −Xβ|2 + λ2

p∑
j=1

W2jβ
2
j + λ1

p∑
j=1

W1j |βj |, (11)

where the Wmj , m = 1, 2 are covariate-specific weights. For example, if it
is a priori known that a group of genes are associated with outcome and
identification of additional genetic regions is desired, optimization in EN-Cox
and EN-AFT can be modified to allow separate penalization of the two groups.
To date, such an approach has not been investigated, however, and may not
be optimal. An alternative approach might entail modification of the adaptive
elastic net (see Ghosh, 2007; Zou and Zhang, 2009) for censored data settings.
In HDLSS settings, the Zou and Zhang approach may be of particular interest.
Likewise, assessment of the performance of the adaptive lasso of Zhang and
Lu (2007) in high-dimensional data settings is warranted.
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It may also be of interest to obtain standard error estimates for the EN-
Cox or EN-AFT regression coefficients. One possible approach is based on an
adaptation of the lasso local quadratic approximation (LQA) proposed by Fan
and Li (2001) (see also Zou, 2006). First, assume the nonzero elements of β

have been identified, perhaps through an initial EN-Cox or EN-AFT analysis.
Let β0 be an estimate of β (presumably close to β), again perhaps obtained
through an initial EN-Cox or EN-AFT analysis. Equation (2) can be rewritten
as

β̂ = arg minβ

[
β′
(

X′X + λ2I

1 + λ2

)
β − 2y′Xβ +

λ1{
p∑

j=1

|βj0|+ 1

2|βj0|(β
2
j − β2

j0)}
]
, (12)

where y and X are replaced with z̃ and X̃ for EN-Cox and where y is replaced
with y∗ for EN-AFT. Let βm consist of the m nonzero elements of β and
let Xm consist of the corresponding columns of X. By differentiating (12), a
closed form solution for β can be written as

β̂ = (1 + λ2){X′

mXm + λ2I + λ1Σ(β0)}−1X′

my, (13)

where Σ(β0) = diag( 1
β1

, . . . , 1
βm

) . Equation (13) can then be utilized to obtain
the sandwich estimator for the covariance matrix for βm.

Finally, a current drawback of the elastic net is that, like the lasso, it may
not always yield consistent results (see Ghosh, 2007). The adaptive elastic
net, proposed by Zou and Zhang (2009), resolves this issue for HDLSS data.
Adaptation of this new approach for HDLSS censored data settings will be of
future interest.

5 Appendix

Proposition 1 : Assume that β̂i �= β̂j . Define estimator β̂
∗

: let β̂∗k = β̂k for all

k �= i, j, otherwise let β̂∗k = pβ̂i + (1− p)β̂j for p = 1/2. Since xi = xj, clearly

Txi = x̃i = x̃j = Txj , X̃β̂
∗

= X̃β̂, and |z̃ − X̃β̂
∗|2 = |z̃ − X̃β̂|2. However,

because the elastic net penalization function f(β) = λ2

∑p
k=1 β2

k +λ1

∑p
k=1 |βk|

is strictly convex, it is the case that

f(β̂
∗

i,j) = f(pβ̂i + (1− p)β̂j) < pf(β̂i) + (1− p)f(β̂j) < f(β̂i,j).

Because f(β̂
∗

) = f(β̂) for i �= j, and because f(.) is additive, f(β̂
∗

) < f(β̂)
and it therefore cannot be the case that β̂ is a minimizer. Hence, β̂i = β̂j .
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Proposition 2 : By definition,

∂L(λ1, λ2, β)

∂βk

|β=β̂ = 0 for β̂k �= 0. (14)

Also, note that
L(λ1, λ2, β̂) ≤ L(λ1, λ2, β = 0). (15)

By (14) (for non-zero β̂i and β̂j),

−2x̃′i(z̃− X̃β̂) + λ1sign(β̂i) + 2λ2β̂i = 0,

and
−2x̃′j(z̃− X̃β̂) + λ1sign(β̂j) + 2λ2β̂j = 0.

Hence,

β̂i − β̂j =
1

λ2

(x̃′j − x̃′i)(z̃− X̃β̂) ≤ 1

λ2

|x̃j − x̃i||z̃− X̃β̂|,

where |x| = √x′x. By (15),

|z̃− X̃β̂|2 ≤ |z̃|2,
since z̃ is centered. Hence,

|β̂i − β̂j|
|z̃| ≤ 1

λ2

|x̃j − x̃i| |z̃− X̃β̂|
|z̃| ≤ 1

λ2

|x̃j − x̃i| ≤ 1

λ2

√
2(1− xiAxj),

where x̃′ix̃j = xiAxj is the correlation between standardized variables x̃i and
x̃j .
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