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1. Introduction

In this manuscript we propose a new method for characterizing the predictive accuracy of a regres-

sion model when the outcome of interest is a censored survival time. We focus on data obtained

from a prospective study in which a continuous follow-up time is observed for each participant,

but follow-up can be terminated either by the occurance of the event of interest or by censoring.

Thus the essential outcome information is the combination of the status at the end of follow-up

(binary) and the length of follow-up (continuous). Since censored data share features of both

continuous response data and binary data the accuracy concepts that are standard for either re-

sponse type may be extended for survival outcomes. Previous research has focused on extending

the proportion of variation explained by the covariates, or R2, to censored data models (Schemper

and Henderson 2000; O’Quigley and Xu 2001). In addition, limited work has explored the use of

familiar binary outcome methods such as reciever operating characteristic (ROC) curves for ap-

plication in the longitudinal setting (Etzioni, Pepe, Longton, Hu and Goodman 1999; Slate and

Turnbull 2000; Heagerty, Lumley and Pepe 2000). The goals of this manuscript are: to introduce

new time-dependent sensitivity, specificity, and ROC concepts appropriate for survival regression

models; to demonstrate the connection between time-dependent ROC methods and classical con-

cordance summaries such as Kendall’s tau or the “c index” (Harrell, Lee and Mark 1996); and to

show how standard Cox regression estimation methods directly provide the ingredients needed to

calculate the proposed time-dependent accuracy summaries.

1.1 Notation

Let Ti be the survival time for subject i, and assume that we only observe the minimum of Ti

and Ci, where Ci represents an independent censoring time. Define the follow-up time Xi =

min(Ti, Ci), and let ∆i = 1(Ti ≤ Ci) denote the censoring indicator. The survival time Ti can also

be represented through the counting process, N ∗
i (t) = 1(Ti ≤ t), or the corresponding increment,

dN∗
i (t) = N∗

i (t)−N∗
i (t−). Note that we focus on the counting process N ∗

i (t) which is defined solely

in terms of the survival time Ti rather than the more common notation Ni(t) = 1(Xi ≤ t,∆i = 1)

which depends on the censoring time (Fleming and Harrington 1991). Let Ri(t) = 1(Xi ≥ t) denote
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the at-risk indicator. We also assume that for each subject we have a collection of time-invariant

covariates, Z i = (Zi1, Zi2, . . . , Zip).

We focus here on using Cox model methods to both generate a model score, and to evaluate the

prognostic potential of the model score. However, the evaluation methods that we propose can be

used to summarize the accuracy of a prognostic score generated through any alternative regression or

predictive method and in this case varying-coefficient methods (Hastie and Tibshirani 1993) such as

locally weighted partial likelihood estimation (Cai and Sun 2003) provide a convenient approach for

estimating key accuracy summaries. Therefore, we briefly introduce the relevant aspects of partial

likelihood estimation. Under the proportional hazards assumption, λ(t | Z i) = λ0(t) exp(ZT
i β),

where λ(t | Z i) = limδ→0 δ−1P [Ti ∈ [t, t + δ) | Z i, Ti ≥ t]. The partial likelihood score equations

can be writtten as:

0 =
∑

i

∆i

[
Zi −

(∑

k

πk(β,Xi)Zk

)]

where πk(β, t) = Rk(t)·exp(ZT
k β)/W (t), with W (t) =

∑
j Rj(t)·exp(ZT

j β). Solving these equations

yields the consistent and asymptotically normal maximum partial likelihood estimator (MPLE) β̂

(Cox 1972).

1.2 Proportion of Variance Approaches

Two main approaches exist for characterizing the proportion of variation explained by a survival

model. Schemper and Henderson (2000) overview an approach where the survival time is character-

ized by a counting process representation, N ∗
i (t) = 1(Ti ≤ t), and time integrated variances are used

to form the summary measure. Alternatively, O’Quigley and Xu (2001) consider the proportion of

variation in the covariate, Zi, that is explained by the survial time Ti.

Schemper and Henderson (2000) build on earlier work that extends R2 to Cox regression. Their

approach focuses on using the counting process, N ∗
i (t), and marginal and conditional expectations

given by the survival functions S(t) = E[1 −N ∗
i (t)] and S(t | Z i) = E[1 −N∗

i (t) | Zi] respectively.

Since the vital status indicator N ∗
i (t) is a binary variable, Schemper and Henderson (2000) propose

using the marginal variance S(t)[1 − S(t)] and the conditional variance S(t | Z i)[1 − S(t | Zi)] to

characterize the proportion of variation explained by the covariates Z i. In particular, a finite time
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range (0, τ) is considered and time-average variances are formed

D(τ) =

∫ τ

0
S(t)[1 − S(t)] · f(t)dt/

∫ τ

0
f(t)dt

DZ (τ) =

∫ τ

0
EZ {S(t | Z)[1 − S(t | Z)]} · f(t)dt/

∫ τ

0
f(t)dt

where f(t) is the marginal density of Ti. Our representation above differs by a factor of 2 from

the proposal of Schemper and Henderson (2000) as they also consider the mean absolute deviation,

E[|N∗
i (t) − S(t)|] = 2 · S(t)[1 − S(t)]. Finally, the summary V (τ) =

[
D(τ) − DZ (τ)

]
/D(τ) is

proposed as the proportion of variation explained by covariates. Our approach similarly views

survival data through the counting process representation, N ∗
i (t), but since N ∗

i (t) is a binary

outcome we explore the extension of standard binary response accuracy summaries such as ROC

curves rather than considering an extension of R2.

O’Quigley and Xu (2001) also develop R2 summaries for Cox regression. In their approach

the role of survival time and covariate are reversed, and the proportion of variation in the co-

variate that is explained by survival is proposed. The authors exploit partial likelihood estima-

tion methods since this provides model-based estimates of the distribution of covariates condi-

tional on the survival time. Focusing on a scalar covariate, Xu and O’Quigley (2000) show that

πi(β, t) = Ri(t) exp(Ziβ)/W (t) can be used to estimate the distribution of the covariate, Zi, con-

ditional on the event occuring at time t, P̂ (Zi ≤ z | Ti = t) =
∑

j πj(β, t) · 1(Zj ≤ z). O’Quigley

and Xu (2001) obtain estimates of the conditional variance var(Zi | Ti = t) and propose a global

summary by integrating estimates of the marginal and conditional variance over the survival dis-

tribution. Our approach is similar to O’Quigley and Xu (2001) in that we also use πi(β, t) but

rather than computing variances we estimate time-dependent versions of sensitivity and specificity

defined in the following section.

1.3 Overview

In section 2 we briefly review ROC methods proposed for summarizing the accuracy of a prognostic

marker or model when the outcome of interest is a survival time. We then develop new definitions of

time-dependent sensitivity and specificity that are strongly connected to partial likelihood concepts.
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Time-dependent accuracy measures can be used to calculate time-specific ROC curves, and time-

specific area under the curve (AUC) summaries. We show that a global concordance measure is the

integral, or weighted average, of time-specific AUC measures. In section 3 we discuss estimation of

time-dependent ROC and AUC summaries and provide a method that is applicable to a proportional

hazards model, and a more general method that can be used to characterize any scalar prognostic

score even if proportional hazards does not obtain. Finally, in section 4 we analyze two well known

data sets: the Mayo PBC data (Fleming and Harrington 1991); and the VA lung cancer data

(Kalbfleisch and Prentice 2002). We conclude the manuscript with a brief discussion.

2. Censored Survival and Predictive Accuracy

When outcomes Yi are binary the accuracy of a prediction or classification rule is typically summa-

rized through correct classification rates defined as sensitivity, P (p̂i > c | Yi = 1), and specificity,

P (p̂i ≤ c | Yi = 0), where p̂i is a prediction, and c is a criterion for indicating a positive prediction.

When no apriori value of c is indicated the full spectrum of sensitivities and specificities can be

characterized using an ROC curve that plots the “true positive rate” (sensitivity) versus the “false

positive rate” (1-specifity) for all c ∈ (−∞,+∞).

An ROC curve provides complete information on the set of all possible combinations of true

positive and false positive rates, but is also more generally useful as a graphical characterization of

the magnitude of separation between the case and control marker distributions. If case measure-

ments and control measurements have no overlap then the ROC curve takes the value 1 (perfect

true positive rate) for any false positive rate greater than 0. In this situation the marker is perfect

at discriminating between cases and controls. Alternatively, if the case and control distributions

are identical then the ROC curve lies on the 45 degree line indicating that the marker is useless for

separating cases from controls.

The area under the ROC curve, or AUC, is known to represent a measure of concordance

between the marker and the disease status indicator (Hanley and McNeil 1982). Specifically, the

AUC measures the probability that the marker value for a randomly selected case exceeds the

marker value for a randomly selected control and is directly related to the Mann-Whitney U statistic

(Hanley and McNeil 1982; Pepe 2003). Finally, ROC curves are particularly useful for comparing the
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discrimatory capacity of different potential biomarkers. For example, if for each value of specificity

one marker always has a higher sensitivity, then this marker will be a uniformly better diagnostic

measurement. See Zhou, McClish and Obuchowski (2002) or Pepe (2003) for more discussion of

ROC analysis.

In this section we first review previous proposals for generalizing the concepts of sensitivity and

specificity for application to survival endpoints. Definitions of sensitivity and specificity are given

in terms of the actual survival time Ti. Censoring needs to be addressed for valid estimation. We

then show that a certain choice of time-dependent true positive and false positive definitions lead

to time-dependent ROC curves and time-dependent AUC summaries that are directly related to a

previously proposed concordance summary for survival data.

2.1 Extensions of Sensitivity and Specificity

For survival data there are several potential extensions of cross-sectional sensitivity and specificity.

Rather than a simple binary outcome, Yi = 1, a survival time can be viewed as a time-varying

binary outcome by focusing on the counting process representation N ∗
i (t) = 1(Ti ≤ t). Accuracy

extensions are classified according to whether the “cases” used to define time-dependent sensitivity

are incident cases where Ti = t, or equivalently dN ∗
i (t) = 1, is used to define cases for time t,

or cumulative cases where Ti ≤ t or N∗
i (t) = 1 is used. We also consider whether “controls” are

static defined as subjects with Ti > t⋆ for a fixed value of t⋆, or whether controls are dynamic

and defined for time t as those subjects with Ti > t. We use the superscipts C and I to denote

different definitions of sensitivity, and use the superscripts D and D to denote different definitions

of specificity. In this section we focus on a scalar marker value Mi that is used as a predictor of

death. When our interest is in the accuracy of a regression model we will use Mi = ZT
i β.

Cumulative / Dynamic: For a baseline marker value, Mi, Heagerty et al. (2000) proposed

versions of time-dependent sensitivity and specificity using the definitions:

sensitivityC(c, t) : P (Mi > c | Ti ≤ t) = P (Mi > c | N∗
i (t) = 1)

specificityD(c, t) : P (Mi ≤ c | Ti > t) = P (Mi ≤ c | N∗
i (t) = 0) .

6

Hosted by The Berkeley Electronic Press



Using this approach, at any fixed time t the entire population is classified as either a case or a

control on the basis of vital status at time t. Also, each individual plays the role of a control

for times t < Ti but then contributes as a case for later times, t ≥ Ti. Cumulative / Dynamic

accuracy summaries are most appropriate when a specific time t′ (or a small collection of times

t′1, t
′
2, . . . , t

′
m) is important and scientific interest lies in discriminating between subjects that die

prior to a given time t′ and those that survive beyond t′. ROC curves are defined as ROC
C/D

t (p) =

TP C
t

{
[FP D

t ]−1(p)
}

where TP C
t (c) = P (Mi > c | N∗

i (t) = 1), FP D
t (c) = P (Mi > c | N∗

i (t) = 0),

and [FP D
t (p)]−1 = infc{ c : FP D

t (c) ≤ p }. In the absence of censoring ROC
C/D

t (p) can be esti-

mated using the empirical distribution of the marker separately among cases and controls. With

censored survival times Heagerty et al. (2000) develop a non-parametric estimator based on the

nearest neighbor bivariate distribution estimator of Akritas (1994). A substantive application that

demonstrates use of Cumulative / Dynamic ROC curves for a Cox regression model can be found

in Fan, Au, Heagerty, Deyo, McDonell and Fihn (2002).

Incident / Static: Etzioni et al. (1999), and Slate and Turnbull (2000) adopt an alternative

definition of time-dependent sensitivity and specificity using:

sensitivityI(c, t) : P (Mi > c | Ti = t) = P (Mi > c | dN∗
i (t) = 1)

specificityD(c, t⋆) : P (Mi ≤ c | Ti > t⋆) = P (Mi ≤ c | N∗
i (t⋆) = 0)

where dN ∗
i (t) = N∗

i (t)−N∗
i (t−). Using this definition each subject does not change disease status

and is treated as either a case or a control. Cases are stratified according to the time at which

the event occurs (incident) and controls are defined as those subjects who are event-free through

a fixed follow-up period, (0, t⋆) (static). These definitions facilitate the use of standard regression

approaches for characterizing sensitivity and specificity since the event time, Ti, can simply be used

as a covariate. To estimate the quantiles of the conditional distribution of the marker, Mi, given

the event time, Ti = t, Etzioni et al. (1999) and Slate and Turnbull (2000) consider parametric

methods that assume a normal conditional distribution, but which allow the mean and variance to

be functions of the measurement time, disease status, and the event time for the cases. Cai, Pepe,
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Lumley, Zheng and Jenny (2003) propose semi-parametric methods for estimating time-dependent

sensitivity and specificity when the event time is censored. Recently Zheng and Heagerty (2003)

have proposed use of regression quantile methods which relax the parametric distributional as-

sumptions of previous Incident / Static methods.

Incident / Dynamic: In this manuscript we focus on the following definitions of sensitivity

and specificity:

sensitivityI(c, t) : P (Mi > c | Ti = t) = P (Mi > c | dN∗
i (t) = 1)

specificityD(c, t) : P (Mi ≤ c | Ti > t) = P (Mi ≤ c | N∗
i (t) = 0) .

Using this approach a subject can play the role of a control for an early time, t < Ti, but then

play the role of case when t = Ti. This dynamic status parallels the multiple contributions that

a subject can make to the partial likelihood function. Here sensitivity measures the expected

fraction of subjects with marker greater than c among the sub-population of individuals who die

at time t, while specificity measures the fraction of subjects with a marker less than or equal to c

among those who survive beyond time t. Incident sensitivity and dynamic specificity are defined

by dichotomizing the risk set at time t into those observed to die (cases) and those observed to

survive (controls). In section 3 we discuss how the observed marker data among risk sets can be

used to estimate time-dependent accuracy concepts.

Incident sensitivity and dynamic specificity have some appealing characteristics relative to the

alternative definitions. First, incident sensitivity and dynamic specificity are based on classification

of the risk set at time t into case(s) and controls and are therefore a natural companion to hazard

models. Second, the definitions easily allow extension to time-dependent covariates using P [Mi(t) >

c | Ti = t] to define incident sensitivity and P [Mi(t) ≤ c | Ti > t] to define dynamic specificity

with a longitudinal marker Mi(t). Use of cumulative sensitivity does not permit a time-varying

marker. Finally, use of incident sensitivity and dynamic specificity allow both time-specific accuracy

summaries and, as shown in section 2.3, allow time-averaged summaries which directly relate to a

familiar global concordance measure. In contrast, methods have not been proposed for meaningfully
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averaging the time-specific Incident/Static or Cumulative/Dynamic accuracy summaries.

2.2 Time-dependent ROC Curves

After selecting definitions for time-dependent sensitivity and specificity, ROC curves can be com-

puted and interpreted. In this manuscript we focus on Incident / Dynamic ROC curves defined as

the function ROC
I/D

t (p) where p denotes the false positive rate, p = 1−specificityD(cp, t) = P (Mi >

cp | Ti > t), and ROC
I/D

t (p) is the sensitivity that is obtained using the threshold cp defined above,

or ROC
I/D

t (p) = sensitivityI(cp, t) = P (Mi > cp | Ti = t). Using the true and false positive rate

functions TP I
t (c) = sensitivityI(c, t) and FP D

t (c) = 1 − specificityD(c, t) allows the ROC curve to

be written as the composition of TP I
t (c) and the inverse function [FP D

t ]−1(p) = cp:

ROC
I/D

t (p) = TP I
t {[FP D

t ]−1(p)}

for p ∈ [0, 1]. We use the notation AUC(t) =
∫ 1
0 ROC

I/D

t (p) dp to denote the area under the

Incident / Dynamic ROC curve for time t.

2.3 Time-dependent AUC and Concordance

In the previous subsection we discussed how ROC methods can be used to characterize the ability

of a marker to distinguish cases at time t from controls at time t. However, in many applications no

apriori time t is identified, and a global accuracy summary is desired. In this subsection we show

how time-dependent ROC curves are related to a standard “concordance” summary. The global

summary we adopt is

C = P [Mj > Mk | Tj < Tk]

which indicates the probability that the subject who died at the earlier time has a larger value of

the marker. This is not the usual form (ie. P [Mj > Mk | Tj > Tk]) but reflects the conventions for

ROC analysis.

In order to understand the relationship between this discrimination summary and ROC curves

we assume independence of observations (Mj , Tj) and (Mk, Tk), and assume that Tj is continuous

such that P (Tk = Tj) = 0. We use P (x) to denote probability or density depending on the context.

These assumptions imply that the concordance summary C is a weighted average of the area under
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time-specific ROC curves:

P [Mj > Mk | Tj < Tk] = 2

∫

t
P [{Mj > Mk} | {Tj = t} ∩ {t < Tk}] × P [{Tj = t} ∩ {t < Tk}] dt

=

∫

t
AUC(t) · w(t) dt = ET [AUC(T ) × 2 × S(T )]

with w(t) = 2 · f(t) · S(t) .

In this notation AUC(t) is based on the Incident / Dynamic definition of sensitivity and specificity,

AUC(t) = P (Mj > Mk | Tj = t, Tk > t). See the Appendix for a derivation.

In practice we would typically restrict attention to a fixed follow-up period (0, τ). The concor-

dance summary can be modified to account for finite follow-up:

Cτ =

∫ τ

0
AUC(t) · wτ (t)dt

where wτ (t) = 2 · f(t) ·S(t)/W τ , W τ =
∫ τ
0 2 · f(t) ·S(t)dt = 1−S2(τ). The restricted concordance

summary remains a weighted average of the time-specific AUCs but with the weights rescaled such

that they integrate to 1.0 over the range (0, τ). The interpretation of C τ is a slight modification of

the original concordance where:

Cτ = P [Mj > Mk | Tj < Tk, Tj < τ ] .

Thus Cτ is the probability that the predictions for a random pair of subjects are concordant with

their outcomes, given that the smaller event time occurs in (0, τ).

The concordance summary C is directly related to Kendall’s tau. Specifically, C = K/2 + 1/2

where K denotes Kendall’s tau (see Agresti (2002), p.60 for definition). Korn and Simon (1990)

and Harrell et al. (1996) discuss use of Kendall’s tau with survival data and propose modifications

to account for censored observations.

2.4 Example: Gaussian marker and log-normal disease time

To illustrate time-dependent accuracy concepts we consider a simple example where the marker

Mi and the log of survival time log(Ti) follow a bivariate normal distribution. By convention we

consider a higher marker value as indicative of earlier disease onset and therefore explore bivariate

distributions with a negative correlation between the marker and log(time).
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Hosted by The Berkeley Electronic Press



If [Mi, log(Ti)] has a bivariate normal distribution with mean (0, 0) and unit standard deviations

then time-dependent incident sensitivity and cumulative 1-specificity are:

P (Mi > c | dN∗
i (t) = 1) = TP I

t (c) = Φ

[
ρ · log(t) − c√

(1 − ρ2)

]

P (Mi > c | N∗
i (t) = 0) = FP D

t (c) =
SN

2 [ c, log(t) ; ρ]

Φ[− log(t)]

where Φ(x) = P (X < x) for X ∼ N (0, 1) and SN
2 [x, y; ρ] = P (X > x, Y > y) for (X,Y ) bivariate

mean 0 (unit) normal with correlation ρ.

Figure 1 panel (a) shows Incident/Dynamic ROC curves for ρ = −0.8. The solid line corresponds

to t = exp(−2) and has an AUC of 0.923 indicating very good separation between the distribution

for Mi among subjects with Ti = exp(−2) as compared to the marker distribution for subjects with

Ti > exp(−2). Furthermore, if the threshold value c10% = 1.19 were used to indicate a positive test

then by definition only 10% of the controls (ie. log(Ti) > −2) would have a value of Mi greater

than 1.19. The ROC plot shows that for this false positive rate of 10% a sensitivity, or true positive

rate, of 75% can be obtained: TP I
t (1.19) = 0.752. If we consider a later time such as log(t) = 0

we find less overall discrimination with an AUC of 0.741. Again, specific operating points can be

identified, for example, the ROC curve shows that if the false positive rate is again controlled at

10% then a true positive rate of only 30% is now obtained (here c10% = 0.320). One of the key

advantages of an ROC curve is that it facilitates comparisons across different conditions in terms of

the sensitivity of a marker where the specificity is controlled at a fixed level for each condition. In

this example we have evaluated the variation in sensitivity over time while controlling 1-specificity

at 10%.

In Figure 1 panel (b) we show the AUC(t) functions for different values of ρ. For each value

of ρ we find a decreasing AUC(t) with increasing time. In addition, with decreasing correlation

between the marker and the disease time we find uniformly decreasing values for AUC(t). A global

accuracy summary can be obtained using C which integrates AUC(t) using the weight function

proportional to 2 · f(t) · S(t). Figure 1(b) also displays the weight function which for this example

is w(t) = 2 · φ(t) [1 − Φ(t)] where φ(x) and Φ(x) are the standard normal density and distribution

functions respectively. In this bivariate normal situation there exists an analytical solution for the
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concordance: C = sin−1(−ρ)/π +0.5. For ρ = −0.9 we find C = 0.827 while with ρ = −0.6 we find

C = 0.703. Therefore, when the marker Mi and log survival time have a correlation of -0.9 there

is a 82.7% chance that for a random pair of observations the marker value for the earlier survival

time is greater than the marker value for the larger survival time. This concordance probability is

reduced to 70.3% when ρ = −0.6.

3. Estimation of Incident / Dynamic (I/D) Time-dependent Accuracy

In this section we propose methods for estimation of time-dependent accuracy summaries using

a single scalar marker Mi. When interest is in the accuracy of a survival regression model we

propose using the linear predictor as a scalar marker, Mi = ZT
i β, and then using non-parametric

or semi-parametric methods to characterize the time-dependent sensitivity and specificity of the

model score. In particular we discuss how the Cox model and partial likelihood concepts can be

conveniently used to provide semi-parametric estimates of Incident / Dynamic accuracy. However,

the methods that we propose do not require the model score, Mi, to be derived from a proportional

hazards model and are potentially applicable for any prognostic scale.

3.1 Estimation: TP I
t (c) and FP D

t (c) Under Proportional Hazards

Properties of the partial likelihood function make estimation of Incident / Dynamic ROC curves a

natural companion to Cox regression. Here we assume that the censoring time Ci is independent

of the failure time Ti and marker Mi. To clearly distinguish between the general model score,

Mi = ZT
i β, and a Cox model that uses this score we denote γ as the proportional hazards regression

parameter λ(t | Mi) = λ0(t) exp(Miγ). It is well known that under a proportional hazards model

the weights, πi(γ, t) = Ri(t) · exp(Miγ)/W (t) introduced in section 1.1, are used to compute an

estimate of the expected value of the marker given failure:

Ê(Mi | Ti = t) =
∑

k

Mk · πk(γ, t) .

However, Xu and O’Quigley (2000) show that these weights can also be used to estimate the

distribution of the covariate conditional on death at time t:

T̂ P
I

t(c) = P̂ (Mi > c | Ti = t) =
∑

k

1(Mk > c) · πk(γ, t) (3.1)

12
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where the estimate P̂ (Mi > c | Ti = t) is a consistent estimator when the Cox model for Mi

holds. Estimation of γ using partial likelihood provides a semi-parametric estimate for TP I
t (c). An

empirical estimator can be used for FP D
t (c):

F̂P
D

t (c) = P̂ (Mi > c | Ti > t) =
∑

k

1(Mk > c) · Rk(t+)/W R(t+) (3.2)

where Rk(t+) = limδ→0 Rk(t+ |δ|), and W R(t+) =
∑

k Rk(t+). The term W R(t+) denotes the size

of the “control set” at time t where we define the control set as the risk set minus subjects who fail

at time t. Essentially, F̂P
D

t (c) is the empirical distribution function for marker values among the

control set, and T̂ P
I

t(c) is an exponential tilt of the empirical distribution function for the marker

among risk set subjects (Anderson 1979).

3.2 Estimation: TP I
t (c) and FP D

t (c) Under Non-proportional Hazards

In order to use equation (3.1) to estimate incident sensitivity the proportional hazards assumption

must be satisfied. However, this aspect can be relaxed by adopting a varying-coefficient model of

the form λ(t | Mi) = λ0(t) exp[Miγ(t)]. The time-varying coefficient function γ(t) can be estimated

either in a 1-step fashion based on routine Cox model residuals, or through locally weighted partial

likelihood methods. Note if proportional hazards does obtain then γ(t) ≡ 1 when Mi = ZT
i β.

Grambsch and Therneau (1994) describe residual-based methods for assessing the proportional

hazards model that can also be used to obtain estimates of time-varying coefficient functions. In

order to define the residuals we adopt the following notation: S (p)(β, t) =
∑

k Rk(t) exp(ZT
k β)·Z⊗p

k

where Z
⊗p
k refers to 1, Zk, and ZkZ

T
k for p = 0, 1, 2 respectively. The “scaled Schoenfeld residuals”

are defined for each observed ordered failure time, t(j), as the vector:

r∗j (β) = V −1[β, t(j)]
{
Z(j) − e[β, t(j)]

}

where e[β, t(j)] = S(1)[β, t(j)]/S
(0)[β, t(j)], V [β, t(j)] = S(2)[β, t(j)]/S

(0)[β, t(j)] − e[β, t(j)]e[β, t(j)]
T ,

and Z(j) denotes the covariate for the subject observed to die at time t(j). Grambsch and Therneau

(1994) show that: (i) E{r∗j | F [t(j)]} ≈ [β(t) − β0]; and (ii) var{r∗j | F [t(j) } ≈ V −1[β, t(j)], where

β0 is the time-averaged coefficient and F(t) is the right-continuous filtration specifying the survival

process history. These properties are used to obtain focused tests of proportionality, and to obtain
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estimates of the time-varying coefficient function, βk(t) corresponding to covariate Zi,k. As a

graphical diagnostic tool standard regression smoothing techniques are now commonly applied to

the points [ t(j) , β̂k + r∗j,k(β̂) ] following a Cox model fit in order to obtain estimates of time-

dependent coefficient functions, βk(t).

For the evaluation of the accuracy of a marker, Mi, the smoothing of Schoenfeld residuals can be

used to obtain a simple estimate of Incident/Dynamic AUC(t) by exploiting standard Cox model

output. First a Cox model of the form λ0(t) exp(Miγ) is fit, followed by use of regression smoothing

methods to obtain γ̂(t). Second, equation (3.2) can still be used to obtain estimates of false positive

rates, and (3.1) can be now be evaluated using γ(t) rather than a constant value γ:

T̂ P
I

t(c) = P̂ (Mi > c | Ti = t) =
∑

k

1(Mk > c) · πk[γ̂(t), t] . (3.3)

By using equation (3.3) we are adopting the flexible semi-parametric hazard model, λ0(t) exp[Miγ(t)],

which no longer assumes proportionality but rather only assumes smoothly varying hazard ratios

over time.

More formal flexible semi-parametric statistical methods can be used to estimate a varying-

coefficient hazard model and subsequently produce time-dependent accuracy summaries based on

minimal model assumptions. For example, Hastie and Tibshirani (1993) discuss both smooth

parametric methods and non-parametric penalized likelihood methods for estimating the function

γ(t) in the model λi(t) = λ0(t) exp[Miγ(t)]. More recently Cai and Sun (2003) characterize the

properties of locally weighted partial likelihood methods used to obtain varying coefficient estimates.

Using kernel weights that are specified as a function of time, t, allows use of local-linear estimation

methods. Cai and Sun (2003) prove the pointwise consistency and asymptotic normality of the

resulting function estimator, γ̂(t). Smooth parametric and/or non-parametric methods allow valid

estimation of accuracy summaries such as AUC(t) based on the minimal model assumptions since

models of the form λi(t) = λ0(t) exp[Miγ(t)] only assume linearity in Mi and smoothly varying

hazard ratios over time. The linearity assumption can be relaxed by using a model with single or

multiple transformations of Mi and a vector of time-varying coefficients.
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3.3 Estimation: ROC
I/D

t (p), AUC(t), and Cτ

Given estimates of TP I
t (c) and FP D

t (c) the area under the ROC curve at time t, AUC(t), and the

integrated area, Cτ , can be calculated. The estimated ROC curve is given as

R̂OC
I/D

t (p) = T̂ P
I

t

{
[F̂P

D

t ]−1(p)
}

where [F̂P
D

t ]−1(p) = infc

{
c : F̂P t(c) ≤ p

}
. The estimated AUC(t) is simply ÂUC(t) =

∫
R̂OC

I/D

t (p) dp

estimated using standard numerical integration methods such as the trapezoid rule. Finally, the

estimated concordance is given by

Ĉτ =

∫
ÂUC(t) · ŵτ (t) dt

where ÂUC(t) is given above and ŵτ (t) = 2 · f̂(t) · Ŝ(t)/[1 − Ŝ2(τ)]. The Kaplan-Meier estimator

can be used for Ŝ(t), and a discrete approximation to f̂(t) can be used based on the increments in

the Kaplan-Meier estimator. If Kaplan-Meier is used to estimate f(t) and S(t) then ÂUC(t) only

needs to be evaluated at the observed failure times in order to calculate Ĉτ .

3.4 Inference for Incident / Dynamic Accuracy Summaries

Xu and O’Quigley (2000) show that the estimator T̂ P
I

t(c) given in equation (3.1) is consistent

provided that the proportional hazards model obtains, and provided the independent observations

are subject to independent censoring. Parallel arguments apply for the estimator obtained using a

varying-coefficient model given in equation (3.3) whenever a consistent estimator of γ(t) is used.

Cai and Sun (2003) show that the locally-weighted MPLE is consistent under standard regularity

conditions. In addition, since F̂P
D

t (c) is an empirical distribution function calculated over the

control set (i.e. the risk set minus the case), consistency obtains provided the control set represents

an unbiased sample (ie. independent censoring). Therefore, consistent estimates of time-dependent

sensitivity and specificity and corresponding AUC(t) and C τ summaries are obtained under the

proportional hazards assumption using equations (3.1) and (3.2), and under more general non-

proportional hazards assumptions using equation (3.3). Finally, since the accuracy summaries are

defined over the joint distribution of the marker Mi and the survival time Ti, the non-parametric
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bootstrap of Efron (1979) based on resampling of observations (Mi,Xi,∆i) can be used to compute

standard errors or to provide confidence intervals.

3.5 Discrete Times and General Hazard Models

Our motivation for developing tools to summarize predictive accuracy stems from interest in char-

acterizing the prognostic potential of Cox models for continuous survival times. However, the basic

time-dependent accuracy concepts and the estimation method outlined in section 3.2 generalizes to

discrete survival times and/or alternative hazard regression models.

The key to estimation of TP I
t (c) presented in sections 3.1 and 3.2 is that a hazard model can be

used to reweight the empirical distribution of Mi calculated over the risk set at time t. Equations

(3.1) and (3.3) show specific details for Cox models. More generally, let P (Ti = t | Ti ≥ t,Mi)

denote the hazard, where P (t) represents either density for continuous survival times or probability

for discrete times. A hazard regression model can be formulated as: g[ P (Ti = t | Ti ≥ t,Mi) ] =

α(t) + Miβ(t) where g(x) is a link function. The Cox model is a special case where: a log link

is used; α(t) = log λ0(t); and β(t) ≡ β under the proportional hazards assumption. Following

arguments given in Xu and O’Quigley (2000) the general model implies:

P (Mi = m | Ti = t) ∝ g−1[α(t) + m · β(t)] × P (Mi = m | Ti ≥ t) (3.4)

where P (m) denotes either the marker density or probability depending on whether a continuous

or discrete marker distribution is assumed. See the Appendix for a derivation. Equation (3.4)

shows that P (Mi = m | Ti = t) can be estimated from separate estimates of the hazard model and

the distribution of the marker conditional on Ti ≥ t. Therefore, the general estimation approach

outlined in section 3.2 can be adopted for either discrete survival times or for general hazard

regression models provided that consistent estimates of [α(t), β(t)] and P (Mi = m | Ti ≥ t)

are available. Tied survival times impact choice of a method for estimating the hazard model

parameters. In addition, with discrete survival times calculation of the concordace summary C =

∫
AUC(t) · w(t)dt requires modification to account for the fact that P (Tj = Tk) 6= 0 and therefore

the constant 2 in the weight w(t) = 2 · f(t) · S(t) needs to be computed as 1/P (Tj < Tk). Finally,

Cox models are convenient since the baseline hazard, α(t) = log λ0(t), drops out of (3.4) and is
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thus not required for estimation of TP I
t (c).

3.6 Simulations to Evaluate Incident / Dynamic Estimation

In order to demonstrate the feasibility of using Cox regression methods and the marker distribu-

tion among risk sets for estimating Incident / Dynamic ROC curves and global concordance we

conducted a set of simulation studies.

For each of m = 500 simulated data sets a sample of n = 200 marker values, Mi, and survival

times, Ti, were generated such that (Mi, log Ti) is bivariate normal with a correlation of ρ = −0.7.

An independent log-normal censoring time was generated to yield a fixed expected fraction of

censored observations (either 20% or 40% censored). For each simulated data set we estimated the

Incident / Dynamic AUC(t) function and the concordance summary C τ using the largest observed

survival time to truncate follow-up time. For each simulated data set we applied four methods of

estimation to the censored data: maximum likelihood assuming a bivariate normal distribution for

the survival time and the marker; maximum partial likelihood using the Cox model which for this

example incorrectly assumes proportional hazards; locally-weighted maximum partial likelihood

(MPL) estimation for the model λ0(t) exp[Miγ(t)] using the method of Cai and Sun (2003); and

simple local linear smoothing of the scaled Schoenfeld residuals. For both local MPL estimation

and local linear smoothing we used an Epanechnikov kernel with a span of n−1/5 where n is the

number of observations (Cai and Sun 2003).

In order to estimate AUC(t) and Cτ using semi-parametric methods the model for the survival

time conditional on the marker, λ0(t) exp[Miγ(t)], is combined with the observed marker distri-

bution within each risk-set according to the methods described in section 3.2. We have adopted

a survival model that assumes that the log hazard increases linearly in Mi for each time t. The

true data-generating model is actually non-linear with a concave risk function. Therefore for this

simulation study our estimation used a first-order approximation to the true conditional hazard

surface.

Table 1 displays the mean and standard deviation for the estimate of AUC(t) at various values

of t when data are generated with 20% and with 40% censoring. When 20% of the observations
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are censored we find that the MLE for AUC(t) has minimal bias for log(t) between -2 and 2.

Estimates based on the locally-weighted MPLE and the residual smoother yield approximately

unbiased estimates for all but the most extreme values of time with some negative bias observed for

both semi-parametric estimators. For example, at log(t) = −2 the mean ÂUC(t) using the locally-

weighted MPLE is 0.860 (relative bias of 1-0.860/0.884 = -3%) and using the residual smoother

the average is 0.881 (relative bias of 1 - 0.881/0.884 < -1%) while at log(t) = 2 the locally weighted

MPLE mean estimate is 0.579 (relative bias = 1 - 0.579/0.598 = -3%) and for the residual smoother

the mean is 0.573 (relative bias = 1 - 0.573/0.598 = -4%). As expected for local regression methods

Table 1 shows that the non-parametric methods yield substantially greater variances for specific

values of t compared to the MLE.

Incorrectly assuming proportional hazards leads to biased estimates. Table 1 shows that the es-

timated AUC(t) obtained using equation (3.1) with an estimated Cox model coefficient is negatively

biased for log(t) < 0. For example, at log(t) = −2 we obtain a negative bias of 1-0.743/0.884 =

-16%. For log(t) > 0 the estimates obtained using the Cox model and equation (3.1) are positively

biased indicating that direct use of the proportional hazards assumption produces an estimated

AUC(t) curve that is flatter than the target with early underestimation and late overestimation.

When censoring is increased to 40% similar patterns are found for all estimators. Table 1 shows

that the bias in ÂUC(t) is slightly larger with increased censoring. For example at log(t) = 2 the

mean estimate for the locally-weighted MPLE is 0.555 (relative bias of 1 - 0.555/0.598 = -7%) and

for the residual smoother is 0.546 (relative bias of 1 - 0.546/0.598 = -9%). Therefore, even with

40% censoring the smooth semi-parametric methods appear to perform adequately.

Finally, Table 1 also shows the results for estimation of the global concordance summary C τ .

In the simulations we estimate C using the analytical results for the MLE: Ĉ = sin−1(−ρ̂)/2+1/2.

For the methods that adopt a varying coefficient hazard model we set τ equal to the largest

uncensored survival time in the observed data and therefore truncate follow-up at slightly different

times for each simulated data set. However, even with 40% censoring the largest uncensored

time had a median value of exp(2.30) with interquartile range of exp(2.04) to exp(2.65), and thus

typically very little mass in the survival distribution is lost since S[exp(2.30)] = 1 − Φ(2.30) =
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0.01. With 20% censoring the mean estimate for the MLE, locally-weighted MPLE, and residual

smoother are 0.741 (s.d.=0.016), 0.737 (s.d.=0.018), and 0.740 (s.d.=0.018) respectively. In contrast

the estimate obtained naively assuming proportional hazards is negatively biased with an average

estimate of 0.720 (relative bias = 1 - 0.720/0.741 = -3%). These results suggest that the smooth

semi-parametric methods yield little bias, and for this example exhibit high efficiency relative to

the MLE. A similar pattern is seen with 40% censoring where slightly increased standard deviations

are observed relative to results obtained with 20% censoring.

4. Examples

In this section we illustrate the Incident/Dynamic time-dependent ROC curves, the AUC(t) plot,

and the concordance summary Cτ using two well studied data sets.

4.1 VA Lung Cancer Data

Kalbfleisch and Prentice (2002) present and analyze Veteran’s Administration (VA) lung cancer

data from a clinical trial in which males with inoperable cancer were randomized to a standard

treatment or a test therapy. Baseline covariates that were considered important predictors of

mortality include: patient age; histological type of tumor; and a performance status measure known

as the Karnofsky score. Schemper and Henderson (2000) use these covariates plus a treatment

indicator and report an R2 of V̂ = 0.24. This would suggest that the covariates explain only 24%

of the time integrated variance in survival status.

For comparison we use the same covariates and Cox regression to create estimates of ROC
I/D

t (p)

for select t, the AUC(t) function, and the concordance summary C τ . For our analysis we terminate

follow-up at 500 days. Estimated model coefficients and standard errors are given in Table 2.

Using the proportional hazards assumption we can employ equations (3.1) and (3.2) to estimate

time-specific I/D ROC curves, and then integrate the ROC curve to obtain ÂUC(t). Estimates of

AUC(t) and pointwise 90% confidence intervals are displayed in Figure 2(a). Over the first 60 days

of follow-up the AUC(t) ranges between 0.66 and 0.73. The substantive interpretation is: on any

day, t, between 0 and 60, the probability that a subject who dies on day t having a model score

greater than a subject who survives beyond day t is at least 0.66. The accuracy summaries suggest
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good short-term discriminatory potential of the model score. The estimated AUC(t) function tends

to decline over time to approximately 0.65 for 100 < t < 300. Estimates of AUC(t) also become

increasingly variable over time due to the diminishing size of the risk set. Using a follow-up of

τ = 365 days yields a concordance estimate of
∫ τ
0 ÂUC(t) · ŵτ (t) dt = 0.713 with a standard error

of 0.026. This implies that conditional on one event occuring within the first year, the probability

that the model score is larger for the subject with the smaller event time is 71.3%. The concordance

estimate Ĉτ is relatively modest in magnitude, but is significantly different from the null value of

0.50 (95% CI for Cτ : 0.661, 0.765).

To characterize the model score, Mi = ZT
i β̂, using fewer assumptions we relax the proportional

hazards assumption for Mi by using a varying coefficient model: λ0(t) exp[Miγ(t)]. Note that we are

still focusing on use of the Cox model with a proportional hazards assumption to generate the model

score, but are relaxing assumptions needed to characterize the model accuracy. This highlights the

fact that different methods can be used for generating and evaluating a survival regression model

score (linear predictor). For the VA lung cancer data we simply use a kernel smooth of the scaled

Schoenfeld residuals to estimate γ(t). The estimate of γ(t) suggests a decreasing log relative hazard

with increasing time (not shown).

Figure 2(b) shows estimates of AUC(t) based on equations (3.2) and (3.3) which relax the

proportional hazards assumption. First notice that the short-term accuracy of the model score

remains good with ÂUC(t) between 0.70 and 0.78 over the first 60 days of follow-up. Second, the

discriminatory ability of the model score declines substantially over time, and estimates of AUC(t)

approach 0.50 after approximately 300 days, suggesting that the model score is essentially useless at

discriminating incident cases from controls after 300 days. The one year concordance is estimated

as Ĉτ = 0.738, a slight increase from the estimate obtained assuming proportional hazards. In

this example the AUC(t) curve is particularly useful for displaying the fact that the baseline model

score is good at discriminating early cases from early controls, but is of decreasing prognostic utility

with increasing temporal distance from the baseline measurement. Declining prognostic value is

not surprising particularly since Karnofsky score is actually a time-varying health status measure,

but only the baseline value is available for the regression model. Figure 3 shows select estimates
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of Incident/Dynamic ROC curves based on the varying-coefficient model. Similar to the plot of

AUC(t) the ROC curves show that predictive accuracy is uniformly decreasing with increasing time

since baseline. For example, controlling the dynamic false positive rate at 20% leads to an incident

sensitivity of 56% at 30 days, decreasing to 45%, 42%, and 38% for 60, 90, and 120 days. The ROC

curves also show detail regarding the trade-off between sensitivity and specificity. If a stricter false

positive rate of 10% was desired then the corresponding sensitivity would only be 40% at 30 days

and less than 30% for follow-up times of 60 days or greater.

4.2 Mayo PBC Data

Next we consider data from a randomized placebo controlled trial of the drug D-penicillamine

(DPCA) for treatment of primary biliary cirrhosis (PBC) conducted at the Mayo Clinic between

1974 and 1984 (Fleming and Harrington 1991). Among the 312 subjects randomized to the study,

125 died by the end of the follow-up. Although the study established that DPCA is not effective

for treatment of PBC, the data have been used to develop a commonly used clinical prediction

model. We use this example to illustrate how ROC curves and/or AUC(t) summaries can be used

to compare different model scores.

We first consider a Cox model containing 5 covariates: log(bilirubin), albumin, log(prothrombin

time), edema and age. Table 3 gives the regression estimates using the proportional hazard model

with mortality as the response. Except for log(prothrombin time), all covariates are strong pre-

dictors of survival. The model has been used to create a widely used prognostic score. We now

address the basic question: how well does the model score discriminate subjects that are likely

to die from subjects that are likely to survive? In addition we consider whether the accuracy of

the score changes over time. Using the fitted linear predictor from the Cox model, we construct

Incident/Dynamic time-dependent ROC curves and associated summaries in order to characterize

the accuracy of the “Mayo model”. Figure 4(a) plots AUC(t) evaluated at each failure time. The

model score has very good discriminatory capacity for distinguishing those patients who die at time

t from those who live beyond time t. The accuracy is especially good for follow-up times less than

1000 days, with early AUC(t) estimates exceeding 0.85. The accuracy of the model score gradually
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decreases with time. Based on ÂUC(t) and the Kaplan-Meier estimator of the marginal survival

distribution we estimate a concordance summary, C τ , of 0.80, with τ fixed at 4000 days for this

and subsequent analysis.

To quantify the impact of a single covariate on the accuracy of prediction we fit a second Cox

regression model that does not include the covariate log(bilirubin). Table 3 displays coefficient

estimates for this new four covariate model. The estimate of C τ drops from 0.80 to 0.73 when

log(bilirubin) is excluded from the model. In addition, we can use the estimated AUC(t) curves

shown in Figure 4(a) to quantify for each follow-up time t the additional predictive accuracy that

is obtained by using bilirubin in addition to the other model covariates. Relative to the 5 covariate

model The estimated AUC(t) for the 4 covariate model is approximately 0.10 units below the 5

covariate model ÂUC(t) for t between 0 and 2000 days.

We then relax the proportional hazard assumption and use the time-varying coefficient models

as described in section 3.2 to characterize the accuracy of the model score Mi = ZT
i β̂. The

bottom panel of Figure 4 displays the AUC function based on the estimated time-varying coefficient

obtained using locally-weighted MPL. Early estimates of AUC(t) now exceed 0.90 and decline

sharply to approximately 0.75 at 2000 days for the five covariate model and to less than 0.65 at

2000 days for the four covariate model. Using the estimated AUC(t) reveals that the “Mayo model”

is excellent at short term prediction but that the predictive accuracy declines to ÂUC(t) < 0.80 by

one year for the model without bilirubin, and to ÂUC(t) < 0.80 by five years for the five covariate

model. Finally, using the time-varying coefficient produces a global concordance summary of 0.80

for the five-covariate model and 0.72 for the model that excludes bilirubin.

5. Discussion

This manuscript introduces a new version of time-dependent sensitivity, specificity, and associated

ROC curves that are useful for characterizing the predictive accuracy of a scalar marker, such as a

derived model score, when the outcome is a censored survival time. We show that the area under the

time-specific ROC curves can be plotted as a function of time to characterize temporal changes in

accuracy, and can be integrated using the marginal distribution of the failure time to provide a global

concordance summary. Incident sensitivity and dynamic specificity are shown to be easily estimated
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using a fitted hazard model and the empirical distribution of the marker data within risk sets. Using

only routine Cox model output allows estimates of accuracy that assume proportional hazards and

simple regression smoothing of scaled Schoenfeld residuals provides accuracy summaries appropriate

for markers that do not satisfy proportional hazards. Simulations suggest that residual smoothing

and locally-weighted partial likelihood estimators both provide feasible, and accurate estimates.

Time-dependent ROC curves offer an alternative to the use of R2 extensions for survival data.

However, the goal of an ROC analysis is to characterize the prognostic potential of a marker

(or model) by focusing on correct classification rates. Methods that summarize the proportion

of variation explained by covariates require a different estimation approach and have a different

ultimate goal. Our methods also explicitly decouple the generation of a predictive score from the

evaluation of prognostic accuracy. An investigator may use Cox regression to create a model score

Mi = ZT
i β that is a time-invariant linear combination of baseline covariates Z i. However, using the

flexible methods proposed in section 3.2 to evaluate the prognostic potential of Mi does not require

commitment to the proportional hazards assumption. A practical advantage of using Mi = ZT
i β is

that a single “scoring” of the baseline covariates is conducted to generate Mi, but if proportional

hazards is clearly violated then a more general model such as λ0(t) exp[ZT
i β(t)] may be appropriate,

and would lead to a time-varying score Mi(t) = ZT
i β(t).

A number of aspects warrant additional research. First, estimation methods proposed in sec-

tions 3.1 and 3.2 assume that the censoring time is independent of the survival time. Relaxation to

allow conditional independence given the marker, Mi, or covariates, Z i, would be useful. Second,

we have proposed estimators that assume a prospective study design. Extension to case-cohort data

may be important for characterizing the accuracy of markers for rare diseases. Third, development

of analytical approximations that characterize the large sample distribution of the proposed esti-

mators would facilitate approximate inference for time-dependent ROC curves, the AUC(t) curve,

or the concordance summary Cτ . Finally, exploration of time-depenent accuracy methods with

a longitudinal marker, Mi(t), would be important for the common prospective medical setting in

which predictive covariate information is updated over time.
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Table 1: Simulation results for estimation of I/D accuracy. Data (Mi, log Ti) were generated as
bivariate normal with a correlation of ρ = −0.7. The sample size for each simulated data set
was N = 200. The AUC(t) curve and the integrated curve, C τ , was estimated using: maximum
likelihood assuming a bivariate normal model; Cox model which assumes proportional hazards;
local maximum partial likelihood for the varying-coefficient model λ(t) = λ0(t) exp[γ(t)Mi]; and a
local linear smooth of the scaled Schoenfeld residuals to estimate the varying-coefficient model.

20% Censoring

MLE Cox model local MPLE residual smooth

log time AUC(t) mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.)

-2.0 0.884 0.884 (0.018) 0.743 (0.028) 0.860 (0.052) 0.881 (0.044)
-1.5 0.833 0.834 (0.019) 0.734 (0.026) 0.817 (0.033) 0.829 (0.035)
-1.0 0.782 0.782 (0.019) 0.725 (0.024) 0.768 (0.031) 0.771 (0.033)
-0.5 0.734 0.734 (0.019) 0.716 (0.023) 0.722 (0.032) 0.720 (0.033)
0.0 0.693 0.693 (0.018) 0.707 (0.021) 0.688 (0.034) 0.686 (0.034)
0.5 0.660 0.660 (0.016) 0.700 (0.023) 0.655 (0.041) 0.657 (0.040)
1.0 0.634 0.634 (0.015) 0.691 (0.028) 0.633 (0.044) 0.637 (0.041)
1.5 0.614 0.614 (0.013) 0.670 (0.044) 0.621 (0.064) 0.622 (0.048)
2.0 0.598 0.598 (0.012) 0.600 (0.075) 0.579 (0.076) 0.573 (0.060)

Cτ 0.741 0.741 (0.016) 0.720 (0.020) 0.737 (0.018) 0.740 (0.018)

40% Censoring

MLE Cox model local MPLE residual smooth

log time AUC(t) mean (s.d.) mean (s.d.) mean (s.d.) mean (s.d.)

-2.0 0.884 0.884 (0.019) 0.749 (0.031) 0.859 (0.054) 0.875 (0.048)
-1.5 0.833 0.834 (0.021) 0.742 (0.029) 0.818 (0.035) 0.827 (0.037)
-1.0 0.782 0.782 (0.021) 0.732 (0.026) 0.770 (0.035) 0.772 (0.035)
-0.5 0.734 0.734 (0.020) 0.722 (0.024) 0.724 (0.038) 0.722 (0.039)
0.0 0.693 0.693 (0.019) 0.712 (0.024) 0.689 (0.042) 0.687 (0.041)
0.5 0.660 0.660 (0.018) 0.702 (0.026) 0.654 (0.045) 0.655 (0.043)
1.0 0.634 0.635 (0.016) 0.689 (0.035) 0.633 (0.057) 0.637 (0.048)
1.5 0.614 0.614 (0.015) 0.653 (0.055) 0.617 (0.075) 0.614 (0.051)
2.0 0.598 0.599 (0.013) 0.560 (0.073) 0.555 (0.075) 0.546 (0.058)

Cτ 0.741 0.741 (0.017) 0.727 (0.022) 0.740 (0.021) 0.742 (0.021)
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Table 2: Cox regression regression estimates for the VA lung cancer data where follow-up is trun-
cated at 500 days. The reference category for cell type is squamous.

Covariate estimate s.e. Z

Treatment -0.323 0.206 -1.566
Age/10 -0.086 0.093 -0.937
Karnofsky score -0.032 0.005 -5.931
Cell type (small) 0.841 0.270 3.116
Cell type (adeno) 1.151 0.295 3.896
Cell type (large) 0.350 0.285 1.231

Table 3: Cox regression estimates for the PBC data.

Covariate estimate s.e. Z

Model 1
log(bilirubin) 0.928 0.099 9.401
log(prothrombin time) 0.076 0.111 0.678
edema 0.967 0.300 3.221
albumin -0.961 0.240 -4.001
age 0.036 0.009 4.243

Model 2
log(prothrombin time) 0.148 0.105 1.41
edema 1.491 0.294 5.07
albumin -1.316 0.229 -5.76
age 0.029 0.009 3.29
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(a) Incident/Dynamic ROC curves for a scalar marker and a disease time where {Mi, log(Ti)} is bivariate
normal with ρ = −0.8.
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(b) Plots of AUC(t) for a scalar marker and a disease time where {Mi, log(Ti)} is bivariate normal
with ρ taking the values (−0.9,−0.8,−0.7,−0.6).

Figure 1: Incident/Dynamic ROC and AUC plots for a bivariate (log) normal distribution.
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(a) Accuracy of the model score (linear predictor) under the assumption of proportional hazards. Estimates

of I/D AUC(t) versus time with pointwise 90% confidence intervals. Using τ = 365 we obtain bCτ =
R

τ

0
ÂUC(t) · ŵτ (t) dt = 0.713, (s.e.=0.026).
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(b) Accuracy of the model score (linear predictor) based on a varying-coefficient multiplicative hazard
model. Estimates of I/D AUC(t) versus time with pointwise 90% confidence intervals. Using τ = 365 we

obtain bCτ =
R

τ

0
ÂUC(t) · ŵτ (t) dt = 0.738, (s.e.=0.022).

Figure 2: Incident/Dynamic AUC plots for the VA lung cancer data.
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Figure 3: Incident / Dynamic ROC curves for the VA Lung Cancer data. A model score is derived
using Cox regression with Karnofsky score, age, and cell type. ROC curves are estimated using a
varying-coefficient Cox model with the derived model score as the single predictor.
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(a) Accuracy of the model score using five covariates (◦) log(bilibubin), log(prothrombin), edema, albumin,
age, and the model score using four covariates (+) where log(bilirubin) is excluded. Lines plot the estimates
of I/D AUC(t) versus time under the assumption of proportional hazards.
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(b) Accuracy of the model score using five covariates (◦) log(bilibubin), log(prothrombin), edema, albumin,
age, and the model score using four covariates (+) where log(bilirubin) is excluded. Estimation is based
on a varying-coefficient multiplicative hazard model. Lines plot the estimates of I/D AUC(t) versus time.

Figure 4: Incident/Dynamic AUC plots for the Mayo PBC data.31
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A. Appendix

A.1 Concordance as function of AUC(t)

Assume independent observations (Mj , Tj) and (Mk, Tk), and assume that Tj is continuous such

that P (Tk = Tj) = 0. Let P (x) denote probability or density depending on the context.

P [Tj < Tk] =
1

2
(by independence)

P [Mj > Mk | Tj < Tk] = P [{Mj > Mk} ∩ {Tj < Tk}] × 2

=

∫

t
P [{Mj > Mk} ∩ {Tj = t} ∩ {t < Tk}] × 2 dt

=

∫

t
P [{Mj > Mk} | {Tj = t} ∩ {t < Tk}] × 2 × P [{Tj = t} ∩ {t < Tk}] dt

=

∫

t
AUC(t) × 2 × P [Tj = t] × P [t < Tk] dt

=

∫

t
AUC(t) · w(t) dt = ET [AUC(T ) × 2 × S(T )]

with w(t) = 2 · f(t) · S(t)

A.2 Hazard as bridge from P (Mi = m | Ti ≥ t) to P (Mi = m | Ti = t)

Let P (x) denote probability or density depending on the context and specific assumptions. For

either continuous or discrete survival times the conditional hazard can be defined as:

λ(t | Mi = m) = P (Ti = t | Mi = m)/P (Ti ≥ t | Mi = m) .

Let P (m) denote the marginal density or distribution of the marker M . Following Xu and O’Quigley

(2000) we obtain the following general relationship:

P (Mi = m | Ti = t) = P (Ti = t | Mi = m) · P (Mi = m)/P (Ti = t)

= λ(t | Mi = m) · P (Ti ≥ t | Mi = m) · P (Mi = m)/P (Ti = t)

= λ(t | Mi = m) · P (Mi = m | Ti ≥ t) · P (Ti ≥ t)/P (Ti = t)

P (Mi = m | Ti = t) ∝ λ(t | Mi = m) · P (Mi = m | Ti ≥ t) .
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