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Abstract

Survival studies often generate not only a survival time for each patient but also a sequence of 

health measurements at annual or semi-annual check-ups while the patient remains alive. Such a 

sequence of random length accompanied by a survival time is called a survival process. Robust 

health is ordinarily associated with longer survival, so the two parts of a survival process cannot be 

assumed independent. This paper is concerned with a general technique—reverse alignment—for 

constructing statistical models for survival processes, here termed revival models. A revival model 

is a regression model in the sense that it incorporates covariate and treatment effects into both the 

distribution of survival times and the joint distribution of health outcomes. The revival model also 

determines a conditional survival distribution given the observed history, which describes how the 

subsequent survival distribution is determined by the observed progression of health outcomes.
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1 Survival studies

A survival study is one in which patients are recruited according to well-defined selection 

criteria and their health status monitored on a regular or intermittent schedule until the 

terminal event. Covariates such as sex and age are recorded at the time of recruitment, and, 

if there is more than one treatment level, the assignment is presumed to be randomized. In a 

simple survival study, the health status Y(t) at time t is a binary variable, dead or alive, and 

the entire process is then summarized by the time T > 0 spent in state 1, i.e., the survival 

time. In a survival study with health monitoring, Y(t) is a more detailed description of the 

state of health or quality of life of the individual, containing whatever information—pulse 

rate, cholesterol level, cognitive score or CD4 cell count—is deemed relevant to the study. 

The goal may be to study the effect of treatment on survival time, or to study its effect on 

quality of life, or to predict the subsequent survival time of patients given their current health 

history.

Survival studies with intermittent health monitoring are moderately common, and likely to 

become more so as health records become available electronically for research purposes. 
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Within the past few years, several issues of the journal Lifetime Data Analysis have been 

devoted to problems connected with studies of exactly this type. For a good introduction, 

with examples and a discussion of scientific objectives, see Diggle, Sousa and Chetwynd 

(2006), Kurland, Johnson, Egleston and Diehr (2009) or Farewell and Henderson (2010). 

Section 8 of van Houwelingen and Putter (2012) is recommended reading.

In practice, the patient's health status is measured at recruitment (t = 0), and regularly or 

intermittently thereafter while the patient remains alive. To emphasize the distinction 

between the observation times and observation values, each time is called an appointment 

date; the set of dates is called the appointment schedule. Apart from covariate and treatment 

values, a complete uncensored observation on one patient (T, t, Y[t]) consists of the survival 

time T > 0, the appointment schedule t ⊂ [0, T), and the health status measurements Y[t] at 

these times. To accommodate patients whose record is incomplete, a censoring indicator 

variable (Δ) is also included. In that case, the censoring time is usually, but not necessarily, 

equal to the date of the most recent appointment.

A statistical model for a survival study is a family of probability distributions for the record 

of each patient, all three components included. At a minimum, therefore, it is necessary to 

model the survival time and the state of health jointly, and to consider how the joint 

distribution might be affected by treatment. Ordinarily, robust health is associated with 

longevity, but if both are affected by treatment, there is no guarantee that the two effects are 

in similar directions.

In the sense that the health status is measured over time on each patient, a survival study is a 

particular sort of longitudinal study. Certainly, temporal and other correlations are expected 

and must be accommodated. But the distinguishing feature, that each sequence is terminated 

by failure or censoring, gives survival-process models a very distinct character: death, as an 

absorbing state, contradicts stationarity in an extreme way. For a good survey of the goals of 

such studies and the modeling strategies employed, see Kurland, Johnson, Egleston and 

Diehr (2009).

The goal of this paper is to explore a general mathematical framework for the construction 

of survival-process models built upon this distinguishing feature by considering reverse 

alignment of the health processes. The framework permits easy computation of the 

likelihood function and parameter estimates, and straightforward derivation of predictive 

distributions for individual survival times. The chief motivation for these models is the 

effective alignment of patient records for pattern matching and signal extraction. Our 

framework permits asking whether alignment by patient age, by recruitment date, or by time 

remaining to failure is most effective. Of course, a hybrid of alignments may be most 

effective and our framework allows for this possibility. Apart from reservations concerning 

the use of time-evolving covariates, all standard survival models are acceptable within the 

framework. Administrative complications of the sort that are inevitable in medical and 

epidemiological research will be ignored for the most part. Discussion of computational 

techniques needed for model fitting and parameter estimation is provided in Section 5.2; 

however, the emphasis is on statistical ideas and principles, strategies for model formulation, 
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sampling schemes, and the distinction between time-dependent variables and time-evolving 

variables in the definition of treatment effects.

2 Related work

The medical and biostatistical literature contains numerous examples of studies involving 

both successive measurements on each patient, such as CD4 lymphocyte cell counts, 

together with survival time (Lagakos, 1976; DeGruttola and Tu, 1994; Faucett and Thomas 

1996; Guo and Carlin, 2004; Fieuws, Ver-beke, Maes and Vanrenterghem, 2008). Geriatric 

studies seldom focus exclusively on survival time, but tend to emphasize variables related to 

quality of life, such as overall physical and mental health, mobility, independence, memory 

loss, mental acuity, and so on. In the statistical literature, survival studies with health 

monitoring are called longitudinal studies with time-to-event data (Wulfsohn and Tsiatis, 

1997; Henderson, Diggle and Dobson, 2000; Xu and Zeger, 2001; Tsiatis and Davidian, 

2004; Rizopoulos, 2012). Although there are variations in model formulation and 

implementation, all authors are agreed on the need for a joint distribution covering both 

survival time and the progression of health outcomes; see Hsieh et al. (2006), Ding and 

Wang (2008), and Albert and Shih (2010) for additional references.

There are two widely used approaches for longitudinal data analysis with non-ignorable 

terminal event: a latent-variable approach and a marginal estimating equation approach 

using inverse probability weighting. The estimating equation approach is inappropriate when 

the event is terminal as the method treats the terminal event as only a censoring of the 

longitudinal measurements. Below we describe the latent-variable approach in some detail. 

This jointly models the survival time and health process via a latent temporal process. We 

present the well-known shared parameter model (Tsiatis and Davidian, 2004; Rizopoulos, 

2012) as a particular example of this approach.

A common joint modeling approach begins with a pair (η, T) consisting of a latent temporal 

process η(t) together with a positive random variable T < ∞. This joint distribution 

determines the distribution of the observable process1

Y(t) = η(t) t < T
♭ t ≥ T

(1)

by restriction of the latent process to (−∞, T), or by censoring at time T. The observable 

process Y constructed in this way has the same domain t ∈ R as the unobservable process η, 

but the state space includes an additional absorbing value, here labelled ♭. Equivalently, but 

slightly less conveniently, Y may be defined as a process on the random domain (−∞, T) or 

(0, T). In either case the survival time T is a function of Y.

1Missing from the latent-variable formulation in Henderson, Diggle and Dobson (2000) and Xu and Zeger (2001) is an explicit 
recognition of the fact that health outcomes are observable only while patients live.
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In the simplest case where the latent process is Gaussian, η ∼ GP(μ, K) on R, the 

distributions for each finite subset t ⊂ R are Gaussian:

η[t] N(μ[t], K[t]) .

This is not to be confused with the distribution of the observable process (t, Y[t]) at either a 

fixed or randomly generated set of appointment dates. For fixed t, the implied restriction to 

survivors {i: Ti > max(t)} is an instance of truncation or preferential sampling (McCullagh, 

2008; Diggle, Menezes and Su, 2010), and the distribution among survivors is not Gaussian.

A more explicit example is given by Rizopoulos (2012). Given the real-valued temporal 

process m(t), the survival distribution is determined by the conditional hazard function

h(t) = h0(t) exp {γTw + αm(t)} (2)

where w is a vector of baseline covariates, and h0(·) is a baseline risk function common 

among all patients. The survival time and the latent health process η(t) = m(t) + ∊(t) are 

conditionally independent given {m(t)}t≥0, and the observable health process Y is given by 

equation (1). In the literature on joint modeling, m(t) is called the “true and unobserved” 

state of health, which is not limited to t < T. For a more detailed account of specific 

processes, see Rizopoulos (2012), or chapters 13–16 of Fitzmaurice, Davidian, Verbeke and 

Molenberghs (2009).

The latent-variable framework contains the shared parameter model (Ten Have et al., 2000; 

Tsiatis and Davidian, 2004). In this model, the state of health for patient i, mi(t), is described 

by a linear mixed effects models

mi(t) = xi(t)
Tβ + zi(t)

Tbi

where β is a vector of fixed effects with corresponding covariate vector xi(t), bi is a vector of 

(typically Gaussian) random effects with corresponding covariate vector zi(t). The bi are 

shared frailties (i.e., subject-specific characteristics). Setting zi(t)Tbi = b0i + b1it, for 

example, incorporates both a random intercept to characterize a baseline level and random 

slope to characterize a subject-specific trend in the true health trajectory. The shared 

parameter model uses these latent frailties to indirectly model the relationship between the 

the health process and the survival distribution. The particular model above is an example of 

the standard shared parameter model. Of course, it can be extended in several natural ways. 

For example, we may consider a complex functional representation such as a spline 

regression. There is continued research around this formulation. For two recent examples, Li 

et al. (2009) consider a semiparametric approach to estimation, while Crowther et al. (2016) 

incorporate delayed entry and assessment of model misspecification. In certain 

circumstances the health process is a point process, recording the occurrences of a specific 

Dempsey and McCullagh Page 4

Lifetime Data Anal. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



type of non-fatal event. The shared parameter model has been extended to this setting 

(Huang and Wang (2004), Zeng and Lin (2009)). In Section 4.4, we illustrate joint modeling 

of recurrent events and a terminal event under reverse-alignment.

The latent-variable model (and by inclusion the shared parameter model) seems natural 

enough for recurrent non-fatal events, but probability distributions constructed in this way 

are extraordinarily complicated when applied to single-event survival data. In particular, the 

model defines health-status trajectories beyond death. What is missing is an explicit 

recognition of the fact that death is a state of health, arguably the defining characteristic of a 

health process, and certainly not a censoring event. Often m(t) is referred to as the “immortal 

process” as it is well-defined for all t > 0, which may be applicable when the event is 

dropout. However, death is the fundamental characteristic of a survival process.

2.1 Prior work on reverse alignment

In order to avoid some of the technical difficulties associated with joint modeling the 

suggestion put forward in this paper is to approach the problem from a different angle—

literally in reverse. Reverse alignment avoids the intermediate recurrent process by 

considering probability distributions for the non-recurrent observable process Y directly. It is 

discussed as one of several options in Table 2 of Kurland, Johnson, Egleston and Diehr 

(2009), and is mentioned in section 8.3 of van Houwelingen and Putter (2012), so the idea is 

not new.

Estimation of reverse time-models has been considered by several authors. Chan and Wang 

(2010) consider a nonparametric estimation approach for the mean of the reverse-time 

process. They investigate end-of-life-cost for ovarian cancer cases diagnosed at age 65 or 

older among Medicare enrolles. Li et al. (2013) consider a likelihood-based approach for the 

reverse-time model with applications to palliative care. The approach extends the terminal 

decline model introduced by Kurland et al. (2009) to include a survival model that 

incorporates subjects with censored records. Li et al. (2017) considers a semiparametric 

approach to the same terminal decline model. Finally, shortly before final acceptance of this 

paper, a referee informed us about the forthcoming paper by Kong et al. (2017), which to 

some extent touches on similar topics as this work. Kong et al. propose a two-stage 

semiparametric likelihood based approach. The paper presents a hybrid approach that 

incorporates features of time since recruitment along with terms that capture nonlinear 

terminal behavior that enter only as the participant approaches the terminal event.

This paper explores the probabilistic and statistical implications of time-reversal. It builds 

from the novel conceptual insight that the health process and survival distribution are not 

simply correlated, but are in fact a single health process when the event is terminal. Health 

processes are characterized by the notion of flatlining and the survival time is a deterministic 

function of the health process. In section 3.4, we present a simple analysis of variance 

technique to investigate whether reverse-time modeling is more appropriate for a particular 

dataset than forward-time modeling.

We then present a novel investigation into several statistical consequences of reverse-time 

modeling: implications for sampling, consequences for survival prediction, and the 
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interpretation and estimation of treatment effects. In prior work, the appointment schedule is 

pre-determined (e.g., Kong pp. 4, (2017)) and fixed. Here we consider a variety of 

appointment schedules. We present the sequential conditional independence condition under 

which we can perform simple likelihood estimation using uncensored records. We fit simple 

Poisson point process models to show how this condition leads to very weak assumptions on 

the appointment schedule. In Section 4, we illustrate prediction and how the conditional 

density depends on both the distribution of the appointment schedule and the revival model. 

Namely, we introduce the notion of stale measurements. We show predictive distributions 

based on reverse-time models often exhibit weak dependence on measurements made 

sufficiently far in the past. In Section 3.5, we define the treatment protocol and the necessary 

assumption of lack of interference. We then follow this with a discussion of the 

interpretation of treatment effects in Section 5.3. When aligning by failure, we recognize the 

importance of introducing a null level for treatment at times before and including baseline.

While prior work has incorporated the proportional-hazards specification for the survival 

distribution, we discuss complications that arise under the Cox proportional-hazards model. 

Namely, alignment by failure requires the survival time to be finite with probability one. We 

present several ways to address this issue. We build upon prior work on Markov, 

exchangeable survival processes to construct survival models similar to the Cox 

proportional-hazards model but which guarantee the survival times are finite with 

probability one. Covariates and treatment can be readily incorporated.

Finally, as in Kong et. al (2017) we provide a systematic approach to considering behavior 

related to time since recruitment. Our modeling approach captures terminal behavior via 

nonlinear functions of time until failure. For example, we consider the logarithm of reverse-

time in the model introduced in Section 6. We also introduce nonlinear dependence on time 

until failure into the distribution of the appointment schedule in section 4.5 via an inverse 

linear model. In both instances, the behavior away from the terminal event depends weakly 

on these terms. We also incorporate features related to time since recruitment. We provide a 

simple likelihood-ratio test to ensure we have captured all important forward behavior. See 

Section 5.1.2 for further details.

3 Reverse alignment

3.1 The survival process

A survival process Y is a stochastic process defined for real t, in which Yi(t) is the state of 

health or quality of life of patient i at time t, usually measured from recruitment. In a simple 

survival process, the state space ℛ = {0, 1} is sufficient to encode only the most basic of 

vital signs, dead or alive; more generally, the state space is any set large enough to encode 

the observable state of health or quality of life of the patient at one instant in time. 

Flatlining, introduced in equation (1), is the distinguishing characteristic of a survival 

process, i.e., ♭ ∈ ℛ is an absorbing state such that Y(t) = ♭ implies Y(t′) = ♭ for all t′ ≥ t. 
The survival time is a deterministic function of the survival process:
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Ti = sup
t ≥ 0

{t:Yi(t) ≠ ♭};

it is presumed that Yi(0) ≠ ♭ at recruitment, so Ti > 0. This definition is quite general, and 

does not exclude immortality, i.e., T = ∞ with positive probability. Multiple absorbing states 

{♭c} representing different terminal events may occur. In all of the models considered here, 

however, survival time is finite with probability one. Anonymous (2016) provide an indepth 

discussion of the concepts of vital variables and independent evolution, key ideas for 

stochastic processes associated with the survival process.

A key distinction from prior work is our understanding of the health process as a single 

stochastic process. This is opposed to the standard approach of considering two correlated 

stochastic processes. The latter interpretation is defensible when the event is not terminal; 

however, for terminal events this is simply not the case. Note, the state ♭ ∈ ℛ is arbitrary 

and only important in so far as it denotes the health process has flatlined. Consider, for 

example, a health process where Yi(t) for t < T is some biomarker index taking values in R. 

Then ℛ = R ⋃ ♭. Of course, if the index takes values in the positive reals R+, the state ♭ can 

be set to an arbitrary negative real. The important thing is that ♭ be distinguished from the 

rest of the state-space.

3.2 Statistical modeling strategies

At least three distinct strategies may be identified for constructing a survival process, 

meaning an explicit or implicit probabilistic specification of a continuous-time stochastic 

process having one or more absorbing states.

One classical approach is to specify the process by its instantaneous transition intensity, or 

infinitesimal generator q(y′ ↦ dy; dt) in the case of a Markov process. This ‘stochastic 

differential-equation’ approach generates a random health trajectory in continuous time in 

much the same way that a partial differential equation generates a non-random trajectory for 

the motion of particles in a fluid. In principle, the finite-dimensional distribution Pτ(y) is 

obtained by integration over all paths that are equal to y = (y1, …, yk) at the specified set of 

times τ = (τ1, …, τk). Explicit integration is feasible for stationary Markov processes, but 

non-stationary non-Markov processes present formidable technical difficulties.

A statistical model requires a family of transition intensities, which means that the effect of 

treatment and covariates on the transition intensity must be specified. For a pure survival 

process with state space {0, 1} and no marker variables, the instantaneous transition 

intensity 1 ↦ 0 is called the hazard function; the multiplicative factor in the proportional-

hazards model specifies the effect of treatment and/or covariates on the hazard and thence on 

the distribution of survival times. For this special setting, there is no need to integrate over 

paths because 0 = ♭ is the absorbing state, and Y(t) is observable in continuous time.

For the simplest Markovian setting with non-binary state space, the transition intensity for a 

control patient is q0(y′ ↦ dy; dt) for y′ ∈ R and y ∈ ℛ. In what way should be the 

transition intensity be modified by treatment? It seems natural to split q0 into a sub-
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stochastic diffusion R → R while the patient lives, plus an absorption intensity y′ ↦ ♭, and 

to specify treatment effects separately for the two parts. We have no specific 

recommendations for how this might be done. But the absorption intensity q0(y′ ↦ ♭; dt) is 

a conditional hazard function, so a constant multiplier is one option for that part of the 

specification. In practice, non-Markovian processes must be considered, so the situation is 

more complicated.

The dominant strategy in the literature today is called joint modeling (Rizopoulos, 2012). As 

discussed in Section 2, a patient-specific latent process ηi(t) is used twice, once to generate a 

random hazard function which controls the survival time, and once to generate health values 

while the patient is alive. The finite-dimensional joint distributions are obtained by 

integration over η. Treatment and covariate effects, which are included as parameters in the 

latent process, have a carry-over effect on the joint distribution of survival times and health 

values. The use of a latent process in this way is entirely satisfactory—provided that it is 

capable of generating the patterns that are seen in real data.

The third strategy is reverse alignment, which is motivated by the characteristic terminal 

decline that is a dominant feature of the trajectory of many vital health processes. The 

infinitesimal generator and latent variable strategies could, in principle, generate health 

trajectories that exhibit terminal decline and terminal discontinuity, but it is not so 

straightforward to find or to characterize generators that do so. Most likely, the processes 

that exhibit terminal decline are severely non-Markovian, which makes the infinitesimal 

transitions much more complicated. Likewise, there is little evidence that latent-variable 

methods used at present are successful at reproducing this feature. Reverse alignment 

bypasses the latent process, so treatment effects, covariate effects and temporal mean 

trajectories are incorporated directly, either as hazard multipliers or as additive adjustments 

to mean health values in reverse time. Unlike the preceding two approaches, reverse 

alignment is applicable only for processes having an absorbing state that is attained with 

probability one in finite time. More precisely, the process may have multiple absorbing 

states, one of which is attained with probability one in finite time.

More than a few commentators have raised objections to time reversal and reverse alignment 

on the philosophical grounds that time marches forwards and not backwards. This objection 

is understandable in a cultural sense. But it misses the point that every stochastic process, 

regardless of how it is described or constructed, has a probability distribution that can be 

factored as P(T)P(Z | T), where Z(s) = Y(T – s) is the time-reversed process, provided that 

the absorbing state is attained with probability one in finite time. Every process also has a 

forward-time factorization by its infinitesimal transition intensities, so the factorizations are 

neither mutually exclusive nor contradictory. Both are automatic as a consequence of the 

definition of a stochastic process. The existence of two factorizations does not imply that 

either one is effective for matching patterns in the trajectories of multiple series, but it does 

mean that reverse alignment is one option for doing so—even for processes generated in 

forward time using stochastic differential calculus.

A stochastic process P is defined by the probabilities P(A) that it assigns to events. 

Typically, the probabilities are specified indirectly, either dynamically as in a Markov chain, 
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or statically as in the Ewens process or the Poisson process, or via density functions on 

suitable spaces, or in myriad other ways suited to the domain. Most processes admit multiple 

specifications, all statistically equivalent. Likewise, a realization Y ∼ P may be constructed 
or generated or simulated in more than one way, either all-at-once, or in a tree-like cascade 

or in a sequential fashion backwards or forwards. A simulation algorithm is not a process, 

but it does define the probabilities, at least implicitly. Two constructions or algorithms 

generating [simulations of] the same process are indistinguishable by their outputs: 

statistically speaking, they are identical. Regardless of how probabilities are specified or 

simulations are generated, every vital health process has an instantaneous transition 

intensity, it has a survival distribution, and it has a family of mutually consistent finite-

dimensional distributions. It also has conditional distributions for survival times and health 

values given an arbitrary finite or infinite collection of values Y[τ] at specified times in the 

past or in the future.

3.3 Administrative and other schedules

Mathematically speaking, post-mortem appointments cause no difficulty: Yi(t) = ♭ for t ≥ Ti. 

In practice, these values are not usually included in the patient's record. The recorded 

appointment schedule t ⊂ [0, T) is obviously informative for survival: T > max(t). If better 

health is associated with longer survival, we should expect patients who are initially frail to 

have shorter health records than patients who are initially healthy. In other words, even if the 

trajectories for distinct individuals may be identically distributed, the first component of a 

short health-status record should not be expected to have the same distribution as the first 

component of a longer record. On the contrary, any model such that record length is 

independent of record values must be regarded as highly dubious for survival studies. It is 

necessary, therefore, to address the nature of the information contained in t.

Consider a patient who has had appointments on k occasions t(k) = (t0 < … < tk–1). The 

sequence Y[t(k)] of recorded health values may affect the scheduled date tk for the next 

appointment: for example, patients in poor health needing more careful monitoring may 

have short inter-appointment intervals. Whatever the scheduled date may be, the 

appointment is null unless tk < T. The assumption used in this paper is sequential conditional 
independence, namely that

tk ╨ Y | (T , t(k), Y[t(k)]) . (3)

In other words, the conditional distribution of the random interval tk – tk–1 may depend on 

the observed history Y[t(k)], but not on the subsequent health trajectory except through T. 

Here, tk may be infinite (or null) with positive probability, in which case the recorded 

sequence is terminated at tk–1.

The schedule is said to be administrative if tk is a deterministic function of the pair (t(k), 

Y[t(k)]), implying that the conditional distribution (3) is degenerate. Eventually, for some 

finite k, the patient dies or is censored at time T ∈ (tk–1, tk) while the next appointment is 
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pending, so the recorded schedule is t = t(k) = t(k+1) ⋂ [0, T). Equivalently, the last recorded 

value is (tk, ♭).

While the sequential conditional independence assumption is mathematically clear-cut, the 

situation in practice may be considerably more muddy. Consider, for example, the CSL1 

trial organized by the Copenhagen Study Group for Liver Diseases in the 1960s to study the 

effect of prednisone on the survival of patients diagnosed with liver cirrhosis. In this instance 

Y(·) is a composite blood coagulation index called the prothrombin level: details can be 

found in Andersen, Hansen and Keiding (1991). Beginning at death, the reverse-time mean 

intervals between appointments are 77, 210 and 252 days, while the medians are 21, 166 and 

293 days. In other words, half of the patients who died had their final appointment within the 

last three weeks of life. It is evident that the appointment intensity increases as s → 0 in 

reverse time, which is not, in itself, a violation of (3). However, one might surmise that the 

increased intensity is related to the patient's state of health or perception thereof. Condition 

(3) implies that the appointment intensity does not depend on the blood coagulation index 

other than at earlier appointments, and it is then unclear to what extent the condition may be 

violated by patient-initiated appointments. Liestøl and Andersen (2002, section 4.1) note 

that 71 off-schedule appointments occurred less than 10 days prior to death, the majority of 

which were patient-initiated. They also examine the effect on hazard estimates of excluding 

unscheduled prothrombin measurements. Section 6 contains a detailed discussion and 

analysis this dataset.

3.4 The revival process

On the assumption that the survival time is finite, the time-reversed process

Zi(s) = Yi(Ti − s)

is called the revival process. Thus, Zi(s) is the state of health of patient i at time s prior to 

failure, and Zi(Ti) = Yi(0) is the value at recruitment. By construction, Z(s) = ♭ for s < 0, and 

Z(s) ≠ ♭ for s > 0. Although Z is defined in reverse time, the temporal evolution via the 

survival process occurs in real time: by definition, Z(·) is not observable component-wise 

until the patient dies. The transformation Y ↦ (T, Z) is clearly invertible; it may appear 

trivial, and in a sense it is trivial. Its one key property is that the revival process Z and the 

random variable T are variation independent.

The chief motivation for reverse alignment is the effective alignment of patient records for 

pattern matching and signal extraction. Are the temporal patterns likely to be more similar in 

two records aligned either by patient age or by recruitment date, or are they likely to be more 

similar in records aligned by reverse age (time remaining to failure)? Ultimately, the answer 

must depend on the context, but the context of survival studies suggests that the latter may 

be more effective than the former. Table 1 shows the averaged Y-values indexed by T and t 
for the prothrombin example discussed in more detail in section 6. It should be borne in 

mind that each cell is the average of 8–266 non-independent high-variability measurements, 

the larger counts occurring in the upper left cells. Alignment by reverse time is equivalent to 

Dempsey and McCullagh Page 10

Lifetime Data Anal. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



counting leftwards from the main diagonal. Despite certain anomalies in the table of 

averages, e.g. row 6, column 4, it is clear that reverse-time is a more effective way of 

organizing the data to display the main trends in the mean response: the forward- and 

reverse-time sums of squares (equally weighted) are 543.0 and 1132.8 respectively, both on 

eight degrees of freedom.

Further confirmation is provided in Table 2, which shows the output from a standard 

equally-weighted analysis of variance applied to the table of averages, with three factors, 

row, column and diagonal (reverse time), denoted by R, C and D respectively. Compared 

with the residual mean square of 23.7, there is considerable excess variation associated with 

rows (116.8) and with the reverse-time factor (77.8), but not so much with columns (34.0). 

In other words, the means in Table 1 are expressible approximately as αT + βT–t. Figures 8.3 

and 8.4 of van Houwelingen and Putter (2012), which are not substantially different from 

Fig. 4 of this paper, offer strong confirmation of this viewpoint in one further survival study 

involving white blood cell counts for patients suffering from chronic myeloid leukemia. For 

an application unrelated to survival, see example B of Cox and Snell (1981).

The key idea is not so much how best to organize the data in the computer-science sense, but 

how best to extract the signal that is common to multiple series. A common signal implies a 

temporal alignment, either by recruitment, by death, or by calendar date. The analysis in 

Table 2 gives strong support to alignment by death. Our framework allows us to try out more 

than one alignment. Indeed in Section 6, we present a case study in which we include 

patterns associated with time since recruitment. Likelihood ratio tests are presented for 

testing whether there are no outstanding significant continuous trends associated with time 

since recruitment in our time-reversed statistical models.

3.5 Treatment

A treatment arm is a protocol specifying the therapy, drug type, dose level, manner of 

ingestion, and even the next appointment date, as a function of current medical 

circumstances and health history. Examples of simple treatment arms include one-time 

surgical procedures with follow-up care as appropriate, or a fixed pharmaceutical regimen 

such as 10 mg. Lipitor per day, or regular attendance at weekly counselling sessions. In 

general, a treatment arm may specify a range of different actions depending on current 

health and past history, so two individuals on the same arm need not be experiencing the 

same medical therapy at the same time.

Treatment refers to a scheduled intervention or series of interventions in which, at certain 

pre-specified times following recruitment, patient i is switched from one arm to another. 

Thus, ai(t) is the treatment arm scheduled for patient i at time t ≥ 0. In general, but crucially 

for revival models, a null level is needed for t ≤ 0, including the baseline t = 0. The entire 

temporal trajectory ai(t) for t > 0 is determined by randomization and recorded at baseline. It 

does not evolve over real time in response to the doctor's orders or the patient's perceived 

needs, so it is not a time-evolving variable. Ordinarily, the random variables a1(·),…, an(·) 

are not independent. In the sense that it is recorded at baseline, ai(·) is a covariate; in the 

sense that it is a temporal function, it is a time-dependent covariate.
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Apart from crossover trials, the distribution of a(·) is such that a switch of treatment arms 

occurs only once, and then only immediately after recruitment. Nonetheless, more general 

formulation is retained to underline the fact that treatment is a scheduled intervention such 

that ai(t) ≠ ai(0), and thus not constant in time. Unlike the survival process, the treatment 

schedule does not evolve randomly in real time.

Let āi(s) = ai(Ti – s) be the treatment arm expressed in revival time, so that, in the standard 

setting, āi(s) is null for s ≥ Ti. While ai(·) is a covariate, āi(·) is not. It is automatic that that Z 
╨ T|ā, because T is a function of ā. In the case of treatment, however, the crucial 

assumption is lack of interference, i.e., the treatment assigned to one individual has no effect 

on the response distribution for other individuals, and the treatment protocol at one point in 

time has no effect on the response distribution at other times. For the latter, the statement is 

as follows. For each finite subset s ⊂ R+, the conditional distribution of Z[s] given the 

treatment schedule and survival time depends only on the treatment arms ā[s] prevailing at 

the scheduled times, i.e.,

Z[s] ╨ a |a[s] .

For crossover trials in particular, this is a strong assumption denying carryover effects from 

earlier treatments or later treatments. It implies in particular that Z(s) ╨ T | ā(s), which is 

primarily a statement about the one-dimensional marginal distributions. Note, however, that 

the interference assumption is relatively benign if ai(t) is constant for t > 0, as is ordinarily 

the case.

It is common practice in epidemiological work for certain time-evolving variables to be 

handled as covariates, as if the entire trajectory were recorded at baseline. This approach is 

perfectly reasonable for an external variable such as air quality in an asthma study where 

lack of cross-temporal interference might be defensible. It has the advantage of leading to 

simple well-developed procedures for effect estimation using marginal moments (Zeger and 

Liang, 1986; Zeger, Liang and Albert, 1988; Laird, 1996; Diggle, Heagerty, Liang and 

Zeger, 2002). The same approach is less convincing for an evolving variable such as marital 

status in a survival study, because the entire trajectory—suitably coded for t > Ti—would 

often contain enough information to determine the survival time (see Anonymous (2016) for 

an extended discussion of these issues). This issue of external and internal covariates is 

discussed by Kalbfleisch and Prentice (2002).

4 Survival prediction

Hans C. van Houwelingen's invited lecture (Houwelingen, 2014) in Munich in 2013 

discusses the need for “reliable prognostic models for planning of treatment and patient care 

during the follow-up after the initial treatment.” In particular, there is a renewed focus on 

robust handling of health measurements in dynamic survival analysis. In this section, we 

present survival prediction for the revival model showing the benefits of the proposed 

technique. A key concept is that of “stale measurements” – weak dependence of predictive 

distributions on measurements made sufficiently far in the past.
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4.1 Conditional distribution

Consider the simplest model in which observations for distinct patients are independent and 

identically distributed. To simplify matters further, problems related to parameter estimation 

are set aside. In other words, the survival time is distributed according to F, and the revival 

processes given T = t is distributed as G(· | t). Given the joint distribution, we are free to 

compute whatever conditional or marginal distribution is needed to address the inferential 

target.

We consider here the question of how the partial trajectory of Y affects the subsequent 

survival prognosis. The problem is to predict the survival time of an individual given the 

survival process Y[t(k)] at the first k appointments t(k) = (t0 < … < tk–1).

For positive real numbers s = (s1 > … > sk), let gk(z;s|t) be the conditional joint density 

given T = t of the health-status values

Z[s] = (Z(s1), …, Z(sk)) = (Y(T − s1), …, Y(T − sk)) .

Under the sequential conditional independence assumption (3), which implies non-

preferential appointment dates in the sense of Diggle, Menezes and Su (2010), the joint 

density of (T, t(k), Y[t(k)]) at (t, t(k), y) is a product of three factors:

f (t) × ∏
j < k

p(t j, y j |ℋ j, T = t)

= f (t) × ∏
j < k

p(y j |ℋ j, T = t) × ∏
j < k

p(t j |ℋ j, T = t)

= f (t) × gk(y; t − t(k) | t) × ∏
j < k

p(t j |ℋ j, T = t),

(4)

where f = F′ is the survival density, and ℋj is the observed history (t(j), Y[t(j)]) at time tj−1. 

Without further assumptions, all three factors depend on t, meaning that all three 

components are informative for survival prediction.

A simplifying assumption for prediction is for the appointment schedule to be uninformative 
in the sense that

p(tk |ℋk, T = t) = p(tk |ℋk, T = ∞ ) (5)

for tk–1 < tk < t. This means that the next appointment is scheduled as if the patient survives 

forever (i.e., T = ∞). The appointment is recorded only if tk < T. With this additional 

assumption, the third factor in (4) is constant in t and can be ignored. In other words, the 

distribution of the time to the next scheduled appointment may depend on the patient's 

medical history, but is independent of the patient's subsequent survival. Ordinarily, the 
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scheduled appointment is included as a component of the patient's record only if it occurs in 

[0, T) while the patient lives, implying that the partial appointment schedule t(k) is 

uninformative for subsequent survival. In particular, an administrative schedule is 

uninformative. In all subsequent sections, we will indicate whether we are assuming the 

appointment schedule uninformative (i.e., condition (5)) or satisfying the weaker condition 

of sequential conditional independence (i.e., condition (3)).

A simple numerical example illustrates the idea. Suppose T is exponentially distributed with 

mean 10 years and the revival process for s > 0 is a real-valued Gaussian process with mean 

E(Z(s)) = βs/(1 + s) and covariance function δss′ + exp(−|s – s′|) for s, s′ > 0 and the 

appointment schedule is uninformative. The observed health-status values at t = (0, 1, 2, 3) 

are y = (6.0, 4.5, 5.4, 4.0).

For β = 0, the conditional density is such that T – 3 is exponential with mean 10; the 

conditional density is shown for various values 0 ≤ β ≤ 2 in the left panel of Figure 1, and 

for 4 ≤ β ≤ 8 on the right. Calculations follow from equation (4) under the uninformative 

schedule assumption (i.e., the third term is a constant function of T). Evidently, the 

conditional distribution depends on both the observed outcomes and on the model 

parameters: the median residual lifetime is not monotone in β. In applications where β is 

estimated with appreciable uncertainty, the predictive distribution is a weighted convex 

combination of the densities illustrated.

The conditional survival distribution given Y[t(k)] depends not only on the current or most 

recent value, but on the entire vector. In particular, the conditional distribution does not have 

the structure of a regression model in which the longitudinal variable enters as a time-

dependent covariate without temporal interference. Thus, on the assumption that the joint 

model is adequate, issues related to covariate confounding do not arise.

Figure 1 also shows convergence in the conditional densities for times sufficiently past the 

final observation time (t = 3); this behavior represents the weak dependence of the predictive 

distribution on measurements made sufficiently far in the past. In this example, the observed 

health-status values at appointment times t yield negligible information compared to the 

knowledge that the individual has survived well into the future.

4.2 Prediction under the latent-variable model

Consider the latent-variable model presented in Section 2. The joint density of (T, t(k), 

Y[t(k)]) at (t, t(k), y) is again a product of three factors:

∏
j < k

p(t j, y j |ℋ j) × f (t |ℋk)

= ∏
j < k

p(y j |ℋ j) × ∏
j < k

p(t j |ℋ j) × f (t |ℋk),
(6)

Unlike equation (4), only the final factor depends on t; however, this component is 

conditional on the entire observed history and therefore ℋk is informative for survival 
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prediction. Under a shared-random effects model (Rizopolous, 2012), the immortal process 

for patient i, mi(t), is given by

E(mi(t) |bi; β) = xi(t)′β + zi(t)′bi (7)

with β and bi denoting fixed and random effects respectively. For the latent-variable model 

given by equations (2) and (7), the conditional survival distribution given health records (t(k), 

Y[t(k)]) is

pr Ti ≥ u | t(k), Y[t(k)] = ∫ Si(u |ℳi(u, bi, β); θ)
Si(tk − 1|ℳi(tk − 1, bi, β); θ) ⋅ pr(bi | t(k), Y[t(k)])dbi

where θ denotes the set of survival parameters in equation (2), and ℳi(t, bi, β) the entire 

expected health trajectory up to time t (i.e. {E(mi(s) | bi; β) | s ∈ [0, t)}). The conditional 

survival distribution is therefore a complex function of the entire health trajectory. 

Inadequate models for the health trajectory, including unobserved time points, could yield 

inaccurate survival predictions. In most survival studies, noisy health measurements are 

common making discovery of the “true” trajectories difficult if not impossible. Equation (4), 

on the other hand, is only a function of the observed patient history and does not require 

estimation of the unobserved components of the health trajectory. In the latent-variable 

model, how new measurements affect the conditional distribution is not obvious as the 

observed health trajectory enters in entirely. Finally, even with adequate models for the 

entire health trajectory, the predictive density has high computational complexity as 

compared with equation (4).

4.3 Illustration by simulation

Figure 2 shows simulated data for 200 patients whose survival times are independent 

exponential with mean five years. While the patient lives, annual appointments are kept with 

probability 5/(5 + t), so appointment schedules in the simulation are not entirely regular. 

Health status is a real-valued Gaussian process with mean E(Z(s)) = 10+10s/(10+s) in 

reverse time, and covariances

cov (Z(s), Z(s′)) = (1 + exp ( − |s − s′ | /5) + δss′)/2

for s, s′ > 0, so there is an additive patient-specific effect in addition to temporal correlation. 

Values for distinct patients are independent and identically distributed. This distribution is 

such that health-status plots in reverse time aligned by failure show a stronger temporal trend 

than plots drawn in the conventional way. The state of health is determined more by time 

remaining before failure than time since recruitment. These trends could be accentuated by 

connecting successive dots for each individual, as in Fig. 2 of Sweeting and Thompson 

(2011), but this has not been done in Fig. 2.
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Since the survival times are exponential with mean five, independent of covariates and 

treatment, the root mean squared prediction error using co-variates only is five years. For 

fixed k ≥ 2, and a patient having at least k appointments, the conditional survival distribution 

given the first k health-status values has a standard deviation depending on the observed 

configuration, but the average standard deviation is about 1.4 years, and the root mean 

squared prediction error is about 1.7 years. Using only the appointment schedule as a lower 

bound on the survival time, the root mean squared prediction error is 3.9 years. For this 

setting, the longitudinal variable is a reasonably effective predictor of survival, and the 

prediction error is almost independent of k in the range 2–5. This summary does not tell the 

full story because certain y-configurations lead to very precise predictions whereas others 

lead to predictive distributions whose standard deviation exceeds five years.

The parameter settings used in this simulation may not be entirely representative of the 

range of behaviours of the conditional survival distribution given Y[t]. If the ratio of the 

between-patient to within-patient variance components is increased, the average variance of 

the conditional survival distribution decreases noticeably with k. For such settings, 

prediction using the entire health history is more effective than prediction using the most 

recent value.

4.4 Recurrent health-related events

In certain circumstances the health outcome Y is best regarded as a point process, recording 

the occurrences of a specific type of non-fatal event, such as epileptic or asthmatic attacks or 

emergency-room visits. In other words, Yi ⊂ R is the set of times at which patient i 
experiences the event. Then t = (0, tk) is a bounded interval, and the observation Y[t] = Y ⋂ 
t is the set of events that occur between recruitment and the most recent appointment. This 

observation records the actual date of each event, which is more informative than the 

counting process #Y[(0, t1)], …, #Y[(0, tk)] evaluated at the appointment dates. If there are 

recurrent events of several types, Y is a marked point process, and Y[t] is the set of all 

events of all types that occur in the given temporal interval. The paper Schaubel and Zhang 

(2010) is one of several papers in the October 2010 issue of Lifetime Data Analysis, which 

is devoted to studies of this type.

In this situation, the frequency of the recurrent event may be constant over time, or it may 

vary in a systematic way. For example, the frequency may increase slowly but systematically 

as a function of either age or time since recruitment. Alternatively, the frequency may be 

unrelated to age at recruitment, but may increase in the last year of life as death approaches. 

In the former case, alignment of records by failure time is ineffective; in the latter case, the 

revival processes for different individuals have a common pattern, and alignment by failure 

tine is an effective device for exploiting this commonality.

We consider here only the simplest sort of recurrent-event process in which the revival 

process is Poisson, there is a single event type, and the subset Y ⋂ t = y of observed event 

times is finite. The mean measure of the revival process is Λ, which is non-atomic with 

intensity λ on the positive real line. The density ratio at t > sup(t) is the probability density 

at the observed event configuration t – y as a subset of the reverse-time interval t – t, i.e.,
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g(y; t − t) = exp ( − Λ(t − t)) ∏
y ∈ y

λ(t − y) .

In particular, if the intensity is constant for s > 0, the density ratio is constant, and the event 

times are uninformative for survival. In other words, it is the temporal variation of the 

intensity function that makes the observed configuration y informative for patient survival.

For a specific numerical example, let λ(s) = (2 + s2)/(1 + s2) be the revival intensity, and let t 
= (0, 2) be the observation window. The revival intensity, monotone decreasing with an 

asymptote of one, implies that the recurrent events are moderately common at all ages, but 

their frequency increases as failure approaches. Figure 3 shows the likelihood as a function 

of t ≥ 2 for three event configurations, y0 = ø, y1 = {0.5, 1.2} and y2 = {0.2, 1.3, 1.9}. Since 

the likelihood function is defined only up to an arbitrary multiplicative constant the curves 

have been adjusted so that they are equal at t = 20 or effectively at t = ∞. In place of the 

predictive survival distributions we show instead the ratio of the predictive hazard functions 

to the marginal hazards as dashed lines on the assumption that the marginal failure 

distribution is exponential with mean 5. Because of the form of the revival intensity, which is 

essentially constant except near the origin, the predictive hazard functions are very similar in 

shape to the likelihood functions. Figure 3 illustrates again the weak dependence of the 

predictive distribution on measurements made sufficiently far in the past.

4.5 Appointment schedule under sequential conditional independence

As discussed in Section 3.3, the appointment schedule is informative of survival. Ignoring 

the associated measurements recorded at appointment times, the appointment schedule can 

be viewed as a recurrent health-related event process. Here, we consider the appointment 

schedule assuming sequential conditional independence (i.e., condition (3)). Under this 

assumption, we fit a Poisson point process model with conditional intensity depending on 

the observed history and survival time. For the CSL1 trial, we present evidence that, even 

when controlling for the known schedule behavior, the conditional intensity depends on the 

time until failure.

First, recall for the CSL1 trial that each patient has an initial appointment at t = 0. 

Subsequent to the initial appointment, visits were scheduled to take place after three months, 

six months, twelve months, and then once every year afterwards. However, the observed 

appointment schedules varied considerably from the planned appointment sequence. We 

ignore the initial appointment as this is mandatory. Let π(t | (T, t(kt), Y[t(kt)])) denote the 

conditional intensity given the observed history up to time t (i.e., (t(kt),Y[t(kt)])) and survival 

time T. We assume the appointment schedule is a Poisson point process with conditional 

intensity

log (π(t | (T , t
(kt), Y[t

(kt)]))) = α0 + τa(s) + α1
s

s + γ + r(t)Tβ

Dempsey and McCullagh Page 17

Lifetime Data Anal. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for t < T where τā(s) is the treatment indicator, s = Ti – t, and r(t) is a vector depending on t 
designed to capture the known appointment schedule behavior. Recall there are three 

scheduled appointments in the initial year and then a single appointment every year 

subsequently. We start by capturing this in a simple manner, setting r1(t) = log(3) for t < 1 

and log(1) for t ≥ 1. Thus the baseline intensity is set to one level in the first year and then 

adjusted to a different level in all subsequent years. The third term is inverse linear and 

captures the potential non-linear dependence on the time until failure. The probability of the 

appointment schedule t is then given by

exp − ∫0
T

π(t | (T , t
(kt), Y[t

(kt)])dt ∏
k = 1

kT
π tk | (T , t(k), Y[t(k)])

where kt denotes the number of appointments before time t, and tk denotes the kth 

appointment time. We approximate the integral with a sum by assuming the intensity 

function is piecewise constant on each day. We construct the conditional log-likelihood only 

for participants with uncensored records. The denominator term γ in all subsequent 

calculations is set at γ̂ = 0.01 years. Table 3 presents likelihood estimates along with 

standard errors for r(t) = r1(t).

One may argue that this model does not capture the self-correcting nature of the appointment 

schedule. That is, if an appointment has yet to occur within the year then the patient is very 

likely to show up; however, if the appointment has already occurred, the patient is likely to 

not return until the next year. We can capture this by adding a second term into r(t) to 

account for the self-correcting nature of the appointment schedule. We set

r2(t) = (t − 1/3 ⋅ Na[⌊t⌋, t))1[t ≤ 1] + (t − Na[⌊t⌋, t)1[t > 1]

where Na[s, t) is the number of appointments within the window [s, t). The choice derives 

from work on self-correcting point processes of Isham and Westcott (1970). The process is 

self-correcting in that, if the appointment schedule strays too far from the target (3(t – ⎿t⏌) 

for the first year and (t – ⎿t⏌) in the second), then the intensity of the process 

compensates. Then we set r(t)T = (r1(t), r2(t)). Table 3 presents likelihood estimates for this 

point process. Both models show that even when controlling for the appointment schedule 

behavior, the conditional intensity of the next appointment time depends on time until 

failure.

5 Parameter estimation

5.1 Likelihood factorization

The joint density for the observations in a revival model factors into two parts, one involving 

only survival times, the other involving only the revival process. More generally, the second 

factor is the conditional distribution of the revival process given T = t, so both factors 
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depend on t. Although both factors may involve the same covariates and treatment 

indicators, the parameters in the two parts are assumed to be unrelated, i.e., variation 

independent. Thus the likelihood also factors, the first factor involving only survival 

parameters such as hazard modifiers associated with treatment and covariates, the second 

factor involving only health-status parameters such as temporal trends and temporal 

correlations. In other words, the two factors can be considered separately, either for 

maximum likelihood estimation or for Bayesian operations.

This approach is related to pattern-mixture modeling as discussed in Fieuws et al. (2008) in 

which the joint density pr(T, Y) is factorized as pr(Y | T) pr(T). Therefore the revival model 

can be viewed as a particular choice of pattern-mixture model. Initial contributions to the 

pattern-mixture approach include Little (1993) in the context of longitudinal clinical trials 

with dropout.

5.1.1 Survival distribution specification—The first stage in parameter estimation is to 

estimate the survival distribution F together with treatment and covariate effects if needed. 

Whether the model for survival times is finite-dimensional or infinite-dimensional, this step 

is particularly simple because the first factor involves only the survival times (censored and 

uncensored) and the survival distribution. The standard assumption of independent survival 

times for distinct patients simplifies the problem even further. Exponential, gamma and 

Weibull models are all feasible, with treatment effects included in the standard way.

For the Cox proportional-hazards model, the situation is more complicated. First, the 

survival time is finite with probability one if and only if the integrated hazard 

Λ(R+) = ∫ 0
∞λ(t)dt is infinite, which is not satisfied at all parameter points in the model. 

Second, the partial likelihood function depends only on baseline hazard values λ(t) in the 

range 0 ≤ t ≤ Tmax, where Tmax is the maximum observed survival time, censored or 

uncensored. Thus, the likelihood does not have a unique maximum, but every maximum has 

the property that λ̂(t) = 0 for all 0 ≤ t ≤ Tmax except for failure times, at which λ̂ has a 

discrete atom.

By common convention (Kaplan and Meier 1958; Cox 1972, §8) λ̂(t) = 0 for t > Tmax, but 

this choice is not dictated by the likelihood function. Since the revival model requires 

survival times to be finite with probability one, it is essential to restrict the space of hazards 

to those having an infinite integral, which rules out the standard convention for λ̂. 

Equivariance under monotone temporal transformation points to a mathematically natural 

choice λ̂(t) = ∞ for t > Tmax; a less pessimistic option is to use a finite non-zero constant 

such as

λ (t) = total number of failures
total person time at risk (8)

for t > Tmax. Both of these maximize the proportional-hazards likelihood function—

restricted or unrestricted—and either one may be used in the revival model.
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A less arbitrary alternative is to consider the set of neutral to the right processes (Kalbfleisch 

(1978), Clayton (1991), and Hjort (1990)). Such processes are exchangeable survival 

process constructed by generating survival times conditionally independent and identically 

distributed via a completely independent hazard measure, i.e. the cumulative conditional 

hazard is a Lévy process. These automatically satisfy the property that the survival time is 

finite with probability one. Anonymous (2015) show a correspondence with Markov survival 

processes, studying in particular the harmonic process for which the conditional distributions 

have a close affinity with the Kaplan-Meier estimator. For exchangeable survival times, the 

harmonic process is defined by two non-negative parameters, (ρ, ν). The marginal survival 

time is exponential with rate ν · (ψ(1 + ρ) – ψ(ρ)) where ψ is the derivative of the log 

gamma function. Given unique survival times T1 < … < Tk the conditional hazard is the 

product of a continuous and discrete component. The continuous component is

H(t) = ∑
i:Ti ≤ T

ν
Ti − Ti − 1
R#(Ti − 1)

+ ν
T − T j

R#(T j) + ρ
,

where R#(t) is the number of at risk individuals at time t−. The sum runs over survival times, 

both censored and uncensored, such that Ti ≤ T, and Tj is the last such time. The discrete 

component is a product over uncensored survival times

∏
j:T j ≤ t, Δ j = 0

r j + ρ
r j + d j + ρ . (9)

For small ρ, the discrete component is essentially the same as the right-continuous version of 

the Kaplan-Meier product limit estimator. The hazard rate for t > Tmax is constant, λ = ν/ρ. 

Given ρ, the maximum likelihood estimate for λ is

ρ
k∫0

∞
(ψ(ρ + R#(t)) − ψ(ρ))dt

−1

As ρ tends to zero, the maximum likelihood estimate is non-unique. In particular, λ̂ is either 

0 (i.e., equivalent to the common convention) or Σj(1 – Δj)/Tmax. For ρ → ∞, the estimate 

approaches equation (8). Appendix B derives the estimators as ρ tends to zero when the 

marginal survival times are assumed to be distributed Weibull.

The harmonic process has both a simple form for the joint density and is easy to generate 

sequentially. Moreover, it is the only non-trivial Markov survival process with predictive 

distributions that are weakly continuous as a function of the initial configuration. The only 

exception is the iid process, which arises as the limit ρ → ∞ in which tied failures occur 

with probability zero. Given the above, it is a natural choice when working with the revival 
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process. Inclusion of covariates is relatively straightforward and is discussed by Anonymous 

(2015).

5.1.2 Revival process specification—The second stage, which is to estimate the 

parameters in the revival process, is also straightforward, but only if all records are complete 

with no censoring. Serial dependence is inevitable in a temporal process, and there may also 

be independent persistent idiosyncratic effects associated with each patient, either additive 

or multiplicative. Gaussian revival models are particularly attractive for continuous health 

measurements because such effects are easily accommodated with block factors for patients 

and temporal covariance functions such as those included in the simulation in Fig. 2.

Thus the second stage involves mainly the estimation of variance components and range 

parameters in an additive Gaussian model. One slight complication is that the revival process 

is not expected to be stationary, which is a relevant consideration in the selection of 

covariance functions likely to be useful. Another complication is that the health status may 

be vector-valued, Y(t) ∈ Rq, so there are also covariance component matrices to be 

estimated. If the covariance function is separable, i.e.

cov (Zir(s), Zir′(s′)) = ∑r, r′K(s, s′)

for some q × q matrix Σ, maximum-likelihood estimation is straightforward. But separability 

is a strong assumption implying that temporal correlations for all health variables have the 

same pattern, including the same decay rate, which may not be an adequate approximation. 

Nevertheless, this may be a reasonable starting point.

The second stage requires all health records to be aligned at their termini. Accordingly, a 

record that is right censored (Ti > ci so Δi = 1) cannot be properly aligned. If the complete 

records are sufficiently numerous, the simplest option is to ignore censored records in the 

second stage, on the grounds that the estimating equations based on complete records remain 

unbiased. This conclusion follows from the fact that the second factor is the conditional 

distribution given survival time. Thus, provided that the censoring mechanism is a selection 

based on patient survival time, the estimating equations derived from complete records are 

unbiased. The inclusion of censored records is thus more a matter of statistical efficiency 

than bias, and the information gained from incomplete records may be disappointing in view 

of the additional effort required. Note, likelihood estimates derived from complete records 

are unbiased under sequential conditional independence (i.e., condition (3)).

While alignment by death allows the revival model to incorporate important terminal 

behavior, this does not preclude the inclusion of initial behavior (i.e., the use of time since 

recruitment as a covariate). In section 6, the revival model depends on both the time until 

failure s = T – t and the survival time T. Therefore, the model indirectly depends on time 

since recruitment (i.e., re-write β0Ti + β1s as β0′ T i + β1′ t where β0′ = β0 + β1 and β1′ = − β1. 

The inclusion of the null level also captures some behavior near onset of treatment. 

Moreover, deviations from the proposed revival model can be investigated. For example, we 
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may check whether health sequences exhibit a trend associated with time measured from 

recruitment. We do this by including the generalized Brownian-motion covariance function 

−|t – t′| in the covariance model. Likelihood ratio tests can then be used to test whether there 

is significant characteristic patterns that are continuous in time measured from recruitment.

5.2 Incomplete records

If we choose to include in the likelihood the record for a patient censored at c > 0, we need 

the joint probability of the event T > c, the density of the subset tc = t ⋂ [0, c], and the 

outcome Y[tc] at y. On the assumption that censoring is uninformative, i.e., that the 

distribution of the subsequent survival time for a patient censored at time c is the same as the 

conditional distribution given T > c for an uncensored patient, the joint density is

∫t ≥ c
f (t)p(tc | t)g(y; t − tc)dt

on the space of finite-length records. Assumption (5) implies that the second factor, the 

density of the appointment dates in [0, c] for a patient surviving to time t > c, does not 

depend on the subsequent survival time t – c, in which case it may be extracted from the 

integral. It is also reasonable to assume that the distribution of appointment schedules is 

known, for example if appointments are scheduled administratively at regular intervals, in 

which case the second factor may also be discarded. Since the survival probability 1 – F(c) is 

included in the first-stage likelihood, the additional likelihood factor needed in the analysis 

of the revival model is

1
1 − F(c)∫t > c

f (t)g(y; t − tc)dt,

in which tc may regarded as a fixed subset of [0, c]. Unfortunately, the integral involves both 

the survival density f(t) = F′(t) and the density of the revival process, so the full likelihood 

no longer factors. For an approximate solution, f may be replaced with the estimate obtained 

from the first-stage analysis of survival times, and if f̂ is purely atomic, the integral is 

converted to a finite sum.

For an incomplete record, the component of the derivative of the log-likelihood with respect 

to revival parameters, ψ, associated with the censored record (Y[t(k)], t(k), c) is

Eψ , θ
d log g(y; t − tc; ψ)

dψ | (Y[tc], tc), T > c

where θ denotes the survival parameters assumed common to both. This is the expected 

value of the score given the observed censored record and censoring time. Treating the 

survival time as missing data, a simple imputation method is proposed for approximate 
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maximum likelihood estimation. First, impute survival times, T′, using the conditional 

survival distribution

f T | (Y[tc], tc), T > c; ψu, θ ) ∝ f (T; θ )g(Y[tc]; T − tc, ψu) ⋅ 1[T > c]

where ψ̂
u is the maximum likelihood estimate of the revival parameters for uncensored 

records, and θ̂ the maximum likelihood estimate of the survival parameters using both 

uncensored and censored records.

In this case the log-likehood component associated with the imputed, un-censored record is 

given by

log g(y; T′ − tc; ψ) + log f (T′; θ),

so parameter estimation after imputation is again straightforward. Imputation performed 

multiple times creates imputed estimates { ψ1
(I), …, ψM

(I)} with standard errors { s1
(I), …, sM

(I)}. 

These can then be averaged to get a complete-data estimate, ψ = 1
M ∑m = 1

M ψm
(I). A variance 

estimate, Vψ reflects variation within and between imputations:

Vψ = W + 1 + 1
m B

where W = 1
M ∑sm

2  and B = 1
M − 1 ∑m = 1

M ψm − ψ 2. Let, ψ imp
(c)  denote the estimate for the 

censored records under imputation of the survival times.

Given maximum likelihood estimates, ψ̂(c) and ψ̂(u), and corresponding standard errors, V̂c 

and V̂u, the following statistic is proposed for testing whether censored records are 

consistent with uncensored records:

T i =
ψ i

(c) − ψ i
(u)

(V i
c)

2
+ (V i

u)
2 (10)

The denominator is the estimated variance of the difference under independence of the 

patients' revival processes. While equation (10) can be used, when the survival times are 

imputed the estimates, ψ̂(u) and ψ imp
(c) , are positively correlated as the imputed survival times 

use the maximum likelihood estimate for uncensored records, resulting in a conservative test 

statistic.
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A Monte-Carlo EM algorithm for exact likelihood analysis with incomplete records was 

investigated. This is technically more involved, but omitted as imputation provides similar 

estimates in the data considered here. The situation is considerably more complicated if the 

revival processes for distinct patients are not independent.

5.3 Treatment effect: definition and estimation

We consider here only the simplest sort of revival model for the effect of treatment on 

patient health, ignoring entirely its effect on survival time. Health status in the revival 

process is assumed to be Gaussian, independent for distinct patients, and the treatment is 

assumed to have an effect only on the mean of the process, not on its variance or covariance. 

Consider two patients, one in each treatment arm,

ai(t) = ai(Ti − t) = 1, a j(t) = a j(T j − t) = 0

such that xi = xj. If Z is independent of T, then the random variable Zi(s) – Zj(s) is 

distributed independently of the pair Ti, Tj. By definition, the treatment effect as defined by 

the revival model is the difference of means

τ10(s) = E(Zi(s)) − E(Z j(s)) = E(Yi(Ti − s)) − E(Y j(T j − s))

at revival time s. This is not directly comparable with either of the the conventional 

definitions

γ10(t) = E(Yi(t) − E(Y j(t)) or γ10′ (t) = E(Yi(t) − E(Y j(t) |Ti, TJ > t)

in which the distributions are compared at a fixed time following recruitment. The 

expectation in a survival study—that healthy individuals tend to live longer than the frail—

implies that E(Y(t) | T) must depend on the time remaining to failure. In that case, the 

conventional treatment definition γ10′ (t) depends explicitly on the difference between the two 

survival times. In other words, it does not disentangle the effect of treatment on patient 

health from its effect on survival time.

If Z is not independent of T but the dependence is additive, the difference of means at revival 

time s

E(Zi(s) |T) = E(Z j(s) |T) = τ10(s) + γ(Ti) − γ(T j)

contains both a treatment effect and an effect due to the difference in survival times. In other 

words, the fact that Z and T are not independent does not necessarily complicate the 

interpretation of treatment effects. By contrast with standard practice in the analysis of 

randomized trials with longitudinal responses, (Fitzmaurice, Laird and Ware 2011, section 
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5.6), it is most unnatural in this setting to work with the conditional distribution given the 

baseline outcomes Yi(0) ≡ Zi(Ti). This is one reason why the baseline response should be 

regarded as an integral part of the outcome sequence, not as a covariate. Exchangeability 

implies distributional equality Zi(Ti) ∼ Zj(Tj) for individuals having the same covariate 

values, but it does not imply equality of conditional distributions given T. On the 

presumption that treatment assignment is independent of baseline response values, we also 

have Zi(Ti) ∼ Zj(Tj) conditionally on treatment, whether or not ai, aj are equal. Consequently, 

in order to satisfy the exchangeability assumption, it is necessary to introduce a null, pre-

randomization, treatment level, ai(0) = aj(0), common to all subjects.

6 A worked example: cirrhosis study

6.1 Prednizone and prothrombin levels

In the period 1962–1969, 532 patients in Copenhagen hospitals with histologically verified 

liver cirrhosis were randomly assigned to two treatment arms, control and prednisone. Only 

488 patients for whom the initial biopsy could be reevaluated using more restrictive criteria 

were retained, yielding 251 and 237 patients in the prednisone and placebo groups 

respectively. Variables recorded at entry include sex, age, and several histological 

classifications of the liver biopsy. Clinical variables were also collected, including 

information on alcohol consumption, nutritional status, bleeding, and degree of ascites. 

However, these covariates were not included in the dataset used here, which was 

downloaded from the R library http://cran.r-project.org/web/packages/joineR maintained by 

Philipson Sousa, Diggle, Williamson, Kolamunnage-Dona and Henderson. At the end of the 

study period, the mortality rate was 292/488, or approximately 60%.

The focus here is on the prothrombin index, a composite blood coagulation index related to 

liver function, measured initially at three-month intervals and subsequently at roughly 

twelve-month intervals. The individual prothrombin trajectories are highly variable, both in 

forward and in reverse time, which tends to obscure patterns and trends. In Figure 4a the 

mean trajectory is plotted against time from recruitment for two patient groups placebo/

prednisone and censored/not censored. Naturally, only those patients who are still alive are 

included in the average for that time. Figure 4b shows the same plots in reverse alignment. 

While there are certain similarities in the two plots, the differences in temporal trends are 

rather striking. See Appendix H for details on estimation of both mean trajectories. In 

particular, prothrombin levels in the six months prior to censoring are fairly stable, which is 

in marked contrast with levels in the six months prior to failure, as seen in the lower pair of 

curves. As values of the prothrombin index above seventy are considered normal, it is not 

unreasonable for the trajectories in the six months prior to failure to drop below this 

threshold.

Inspection of the graphs for uncensored patients in the right panel of Figure 4 suggests 

beginning with the simplest revival model in which the sequences for distinct patients are 

independent Gaussian with moments
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E(Zi(s) |T) = α + τai(s) + β0Ti + β1s + β2 log (s + δ)

cov (Zi(s), Z j(s′) |T) = σ1
2δi jK1(s, s′) + σ2

2δi j + σ3
2δi jδss′ .

The non-linear dependence on s is accommodated by the inclusion of log(s + δ) in the mean 

model with a temporal offset δ, which is equal to one day in all subsequent calculations. 

Inclusion of the survival time Ti is suggested by the increasing trend along the diagonals and 

sub-diagonals of Table 1. Since the value at recruitment is included as a response for each 

series, treatment necessarily has three levels, null, control and prednisone. The three 

covariance terms are associated with independent additive processes, the second for 

independent and identically distributed patient-specific constants, and the third for 

independent and identically distributed white noise or measurement error. The first 

covariance term governs the prothrombin sequences for individual patients, which are 

assumed to be continuous in time with covariance function K1(s, s′) = exp(−|s – s′|/λ) for s, 
s′ > 0. The temporal range in all subsequent calculations is set at λ̂ = 1.67 years, implying 

an autocorrelation of 0.55 at a lag of one year. The implied one-year autocorrelation for the 

observed prothrombin sequences is considerably smaller, roughly 0.30, because of the 

white-noise measurement term.

For the initial likelihood calculations that follow, incomplete records are ignored; only the 

1634 measurements for the 292 non-censored patients are used. The fitted variance 

components, estimated by maximizing the residual likelihood, are

(σ1
2, σ2

2, σ3
3) = (210.0, 206.8, 179.6),

all significantly positive. Using these values to determine the covariance matrix, the 

weighted least-squares coefficients in the mean model are shown in Table 4. The standard 

error for the prednisone/control contrast is 1.77, somewhat larger than the standard error for 

the prednisone/null contrast because the former is a contrast between patients involving all 

three variance components, whereas the latter is a contrast within patients, which is 

unaffected by the second variance component. Recall these likelihood estimates are unbiased 

under the sequential conditional independence assumption (condition (3)).

Various deviations from this initial model may now be investigated. In particular, it is 

possible to check whether there is an interaction between treatment and survival time, i.e., 

whether the treatment effect for long-term survivors is or is not the same as the treatment 

effect for short-term survivors. This comparison involves two variance-components models 

having different mean-value subspaces, so the residual likelihoods are not comparable. For 

likelihood comparisons, the kernel subspace must be fixed, and the natural choice is the 

mean-value subspace for the null model as described by Welham and Thompson (1997) or 

as implemented by Clifford and McCullagh (2006). The likelihood ratio statistic computed 

in this way is 0.83 on two degrees of freedom, showing no evidence of interaction. However, 

there is appreciable evidence in the data that the treatment effect (prednisone versus control) 
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decreases as t → T, i.e., as s → 0. The likelihood-ratio statistic for the treat.s interaction is 

3.90 on two degrees of freedom, showing little evidence of a linear trend, but the value for 

the treat. log(s) interaction is 8.68, pointing to a non-linear trend.

We may also check the adequacy of the assumed form for the mean model by including an 

additional random deviation, continuous in reverse time, with generalized non-stationary 

covariance function such as K0(s, s′) = −| log(s + δ) – log(s′ + δ)|. The fitted coefficient is 

2.38, and the associated likelihood ratio statistic is 1.2 on one degree of freedom, showing 

no significant deviations that are continuous in reverse time. Finally, we check whether the 

sequences for different patients exhibit a characteristic pattern or trend associated with time 

measured from recruitment by including the generalized Brownian-motion covariance 

function −|t –t′| in the covariance model. The fitted variance coefficient is 2.10, and the 

likelihood ratio statistic is 2.38 on one degree of freedom showing no significant 

characteristic patterns that are continuous in time measured from recruitment.

Using the imputation method proposed in section 5.2, revival parameters for censored 

records are estimated in order to check consistency with uncensored records. We initially 

considered the marginal survival time to be exponential with rate dependent on treatment 

which was the only available baseline variable. However, the treatment indicator was 

statistically insignificant. This analysis, along with a similar analysis under weibull and Cox-

proportional hazards specifications, are reported in the supplementary material. For this 

reason, we start by assuming the marginal survival time is exponential with rate parameter 

given by the first stage maximum likelihood estimate. We assume the appointment schedule 

is uninformative (i.e., condition (5)); survival times are then imputed. The imputation 

estimates are shown in Table 4. Standard errors of coefficients that do not depend on the 

behavior near the origin of the revival times are similar to those for uncensored records. Not 

surprisingly, the standard error for log(s + δ) is substantially higher for censored records. 

The parameters associated with the survival and revival times show some deviation across 

record type, while treatment effects and the non-linear behavior with respect to the revival 

time appear consistent. Conclusions appear robust to survival distribution specification as 

shown in Appendices C and D, where imputed estimates under both exponential and Weibull 

specifications for the above model as well as that including an interaction with treatment are 

provided.

A concern may be the parametric specification of the survival time distribution and whether 

this limits the method for handling censored records. To address this, Appendix B shows 

estimates under the Markov survival process specification when ρ is sent to zero. The result 

is a conditional survival distribution equivalent to the Kaplan-Meier product estimator for t < 

Tmax. For t ≥ Tmax the hazard function is the Weibull hazard function. Appendix E finds 

maximum likelihood estimates for the survival distribution parameters when the marginal 

survival times are assumed Weibull. We see that the estimated conditional distribution is 

approximately equivalent to assuming the hazard is infinite for all times after Tmax = 13.40. 

Table 9 and 11 shows the imputed estimates are similar to those under the exponential 

specification.
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An additional concern may be the assumption of an uninformative appointment schedule. To 

address this, we present imputed estimates under the self-correcting appointment schedule 

estimated in Section 4.5. Table 13 and 15 shows the imputed estimates are similar to those 

under the marginal exponential specification with uninformative appointment times.

6.2 Effect of prothrombin on prognosis

Over a period of 5 years and one month following recruitment, patient u had eight 

appointments with prothrombin values as follows:

tu (days) 0 126 226 392 770 1127 1631 1855

Yu[tu] 49 93 122 120 110 100 72 59

This is in fact the record for patient 402 who was assigned to prednisone and was 

subsequently censored at 2661 days. As determined on day 1855, the survival prognosis for 

this patient depends on preceding sequence of measurements. Relative to the unconditional 

survival density for a patient on the prednisone arm, the conditional survival density at time t 
> max(tu) is modified multiplicatively by a factor proportional to the joint conditional 

density of the random variable Zu[t – tu] at the observed point yu given Tu = t and the data 

observed for all other patients.

For the model described in the preceding section—in which the records for distinct patients 

are independent—this factor is particularly simple. The conditional distribution of Zu[t–tu] 

given T = t has a mean vector μ depending linearly on t –tu and log(t − tu + δ), and a 

covariance matrix Σ that is constant in t. The log density at yu is a quadratic form

h(t, yu) = const − (yu − μ)′∑−1(yu − μ)/2

depending on t only through μ. This estimated factor is shown in Figure 5a for three versions 

of the record in which the final prothrombin value is 59, 69 or 79.

It may be helpful to express the effect of the observed prednisone record on the conditional 

survival distribution through its effect on the hazard function at times t > max(tu) rather than 

its effect on the conditional survival density. Suppose, therefore, that the unconditional 

survival time for a patient on the prednisone arm, is exponential with mean 5 years, so that 

the unconditional hazard function is constant. What is the conditional hazard at time t > 

max(tu) given the prothrombin sequence for patient u, with no further measurements made 

in the interval (max(tu), t) other than survival? The conditional hazard functions for the 

subsequent two-year interval 5 < t < 7 are shown in Fig. 5b for the same three versions of the 

prothrombin record. It is evident from these plots that the conditional hazard for the real 

patient is substantially elevated following the last measurement, but the effect is transient 

and does not persist for the duration of a typical inter-appointment interval of one year. If the 

final value were 79 instead of 59, the hazard function is almost constant, initially increasing 

and subsequently reverting to the long-term value, which is slightly larger than the 

unconditional hazard.
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We also consider the effect of prothrombin on prognosis when accounting for the 

appointment schedule. We consider the estimated self-correcting appointment schedule 

model discussed in Section 4.5. We alter the log density estimates using the estimated 

coefficients in Table 3 and present the estimated factor in Figure 6a for the same three 

versions of the record. The conditional hazard functions for the subsequent two-year interval 

5 < t < 7 are shown in Fig. 6b.

The preceding analyses indicates that it may be misleading to treat the observed health 

sequence as a time-dependent covariate in the proportional-hazards model. At any one 

failure time t measured from recruitment, some of the health measurements are recent and 

fresh, while others are likely to be up to one year old. Figure 5b shows that stale 

measurements may have negligible prognostic value. The predictive revival model 

automatically takes into account the time that has passed since the last appointment, so that 

stale values are discounted appropriately. For all three versions of the record for patient 48, 

the conditional hazard functions converge to the same long-term value.

Figure 7 plots three versions of the hazard function for patient 402 under the latent-variable 

model (Rizopolous, 2012) with linear fixed and random effects. In this case, hazard 

functions do not converge; instead the gap remains over the subsequent two years implying 

the conditional hazard function for this model depends heavily on the stale measurements.

6.3 Review of assumptions

The conditional independence assumption (3) does not require appointments to be scheduled 

administratively, nor does it forbid patient-initiated appointments. Consider two patients i, j 
at time s prior to failure, having similar prior appointment schedules and similar health 

values. Assumption (3) states that the conditional appointment-initiation intensity given the 

observed health record and subsequent survival time does not depend on subsequent health 

values. In other words, conditional independence implies that patients i, j are equally likely 

to initiate an appointment at time s; it is also assumed implicitly that they do so 

independently.

The evidence presented in section 3.3, and in Liestøl and Andersen (2002) shows clearly that 

the rate of patient-initiated appointments increases in the last few months of life. It is 

certainly possible that patient behaviour in this instance violates the conditional 

independence assumption, but the evidence presented does not directly address the matter. 

All in all, assumption (3) seems unavoidable and relatively benign.

The non-informative assumption (5) is much stronger than (3). It implies that appointments 

are scheduled as if the patient will live indefinitely, which is clearly contradicted by the 

evidence in the CSL1 study. We now examine the consequences of failure of (5), retaining 

(3).

Assumption (3) implies that the sampling is non-preferential in the sense of Diggle, 

Menezes and Su (2010), which means that the second factor in (4) is the same as if the 

appointment dates had been fixed by design. Consequently, the likelihood calculations in 

section 5 are unaffected by the failure of (5).
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If the appointment for patient u on day 1855 were self-initiated in such a way that the last 

factor in (4) depends on subsequent survival, it would be technically incorrect to omit that 

factor in prognosis calculations. However, if it were known that all appointments for patient 

u were on schedule, the possibility of a dependence on subsequent survival is eliminated, 

and the prognosis calculations for this patient is technically correct even if the behaviour of 

other patients violates (5).

7 Summary

The paper examines the problem of model formulation for health sequences, whose defining 

characteristic is that the state space contains an absorbing value. Each health sequence is 

terminated ultimately by death, which is not equivalent to random restriction or censoring 

because subsequent values are known. Typically, sequence length and sequence values are 

not independent.

The principal suggestion is that it may be more natural in some circumstances to align health 

sequences by failure time than by age or by recruitment date. The following list describes 

various statistical implications of realignment.

1. The health sequence is regarded as a random process in its own right, not as a 

time-dependent covariate governing survival.

2. To a substantial extent, the model for survival time is decoupled from the revival 

model for the behaviour of the health sequence in reverse time.

3. Realignment implies that value Yi(0) at recruitment must not be treated as a 

covariate, but as an integral part of the response sequence. If they were available, 

values prior to recruitment could also be used.

4. The definition of a treatment effect is not the usual one because the natural way 

to compare the records for two individuals is not at a fixed time following 

recruitment, but at a fixed revival time. The treatment value need not be constant 

in revival time.

5. The predictive value of a partial health sequence for subsequent survival emerges 

naturally from the joint survival-revival distribution. In particular, the conditional 

hazard given the finite sequence of earlier values is typically not constant during 

the subsequent inter-appointment period. For times sufficiently far from in the 

future, the conditional hazard often exhibits weak dependence on such “stale 

measurements”.

6. Records cannot be aligned until the patient dies, which means that the revival 

process is not observable component-wise until T is known. As a result, the 

likelihood analysis for incomplete records is technically more complicated. An 

imputation method has been introduced for estimation with incomplete records.

7. The omission of incomplete records from the revival likelihood does not lead to 

bias in estimation, but it does lead to inefficiency, which could be substantial if 

the majority of records are incomplete.
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8. The principal assumption, that appointment dates be uninformative for 

subsequent survival, does not affect likelihood calculations, but it does affect 

prognosis calculations for individual patients. For that reason, it is advisable to 

label all appointments as scheduled or unscheduled.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Conditional density of survival time for various values of β.
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Fig. 2. Simulated health status sequences aligned by recruitment time (left) and the same 
sequences aligned by failure time (right)
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Fig. 3. Likelihood functions (solid lines) for three point configurations, with predictive hazard 
ratios (dashed lines)
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Fig. 4. Prothrombin mean trajectories aligned by recruitment and by failure
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Fig. 5. 
Three versions of the record for patient 402: log modification factors for the predictive 

survival density (left panel) and hazard functions (right panel).
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Fig. 6. 
Three versions of the record for patient 402: log modification factors for the predictive 

survival density (left panel) and hazard functions (right panel) when accounting for the self-

correcting appointment schedule distribution.
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Fig. 7. 
Hazard function for the latent-variable model for three versions of state for patient 402.
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Table 2
ANOVA decomposition for Table 1

Source / ‖P Y‖2 – ‖P Y‖2 d.f. M.S.

Diagonal (R + C +D)/(R + C) 544.3 7 77.8

Column (R + C + D)/(R + D) 237.9 7 34.0

Row (R + C + D)/(C + D) 817.3 7 116.8

Residual RC/(R+ C + D) 497.2 21 23.7
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