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ABSTRACT Breast cancer is one of main causes of death for women. Most of the existing survival analyses
focus on the features’ associations with whether the patients may survive five years or not. The personalized
question remains largely unresolved about how long a breast cancer patient will live. This study aims to
predict the patient-specific survival time of breast cancer patients. It formulates the personalized question
into two machine learning problems. The first problem is the binary classification of whether a patient will
live longer than five years or not. The second one is to build a regressionmodel to predict the patient’s survival
time within five years. The methylome of a breast cancer patient is used for the prediction. A new algorithm
Crystall is presented to find the methylomic features for this regression model. Our models perform well
in the above two problems, and achieve the mean absolute error (MAE) of about 1 month for predicting
how long a breast cancer patient will live within five years. The detected biomarker genes demonstrate close
connections with breast cancers.

INDEX TERMS Methylation, breast cancer, lifespan, prediction, feature selection.

I. INTRODUCTION

Breast cancer is a major cancer type for females and was
ranked top two in both new cases and deaths among all the
cancer types in major countries [1]–[3]. The rapid innovation
and development of the modern high-throughput technolo-
gies facilitated the precision diagnosis of cancer types and
personalized risk estimations [4]–[7]. And cancer patients
become more concerned about the remaining life span and
the life quality [8]–[10].
Most of the existing studies investigated the survival or

relapse risks of a patient after a specific length of time, e.g.,
1 or 5 years. Kolben, et al., investigated the guideline-based
clinical practice of uPA/PAI-1 treatment on the early breast
cancers and observed that the five-year relapse-free survival
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in the intermediate-risk patients (N0, G2) achieved 99% even
without chemotherapy [11]. Kaplan, et al., also demonstrated
that the adjuvant chemotherapy achieved 98% in the five-year
relapse-free survival rate in the HR+/her2- group, while only
89% for the triple negative breast cancer patients [12]. Some
acute cancer subtypes may need to investigate the one-year
survival rate and Geerse, et al., demonstrated that distress had
a major impact on the one-year survival rate of lung cancer
patients [13].

Quite a few multi-gene panels were clinically or
commercially available for the diagnosis or prognosis esti-
mations of breast cancers [14]. A panel of 50 differentially-
expressed genes (PAM50) was constructed to define four
heterogeneous subtypes of breast cancers [15]. PAM50 was
widely used to estimate the recurrence risk and treatment
prognosis of hormonal therapy and chemotherapy [15]. The
OncoType DX genomic test was used in the clinical practice

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 24433

https://orcid.org/0000-0003-2867-4683
https://orcid.org/0000-0001-7171-2695
https://orcid.org/0000-0002-1338-2533
https://orcid.org/0000-0003-3233-3777
https://orcid.org/0000-0002-8108-6007
https://orcid.org/0000-0002-8520-8374


S. Liu et al.: Survival Time Prediction of Breast Cancer Patients Using Feature Selection Algorithm Crystall

to guide the treatment decisions for invasive breast cancer
patients [16], [17]. The robust clinical prediction results also
suggested that the OncoType DX has the potential to be
involved in the clinical routine practice for breast cancer
patients [18]. EndoPredict is a multi-gene panel to estimate
the distance recurrence (DR) risk and the prognosis of adju-
vant chemotherapy for the female early-stage breast cancer
patients with estrogen receptor positive (ERp) and human
epidermal growth factor receptor 2 (HER2) negative sta-
tuses [19], [20]. The Breast Cancer Index is an RT-PCR-based
assay on the FFPE tissues to predict the distance recurrence
risk for the ER-positive breast cancer patients [14].
The OMIC technologies generate a much larger number of

features than that of the samples in a biomedical modeling
study. This could cause the model overfitting problem, and
the feature dimension has to be decreased. A feature selection
algorithm may be utilized to detect the phenotype-associated
features by optimizing the specific optimization goal. There
were two main groups of feature selection algorithms, filters
and wrappers [21], [22]. A filter ranked the features with a
specific metrics, e.g. Pvalue for T-test (Ttest) [23]. While a
wrapper screened for a feature subset using a heuristic rule
and returned the feature subset with the best optimization
goal [24], [25]. A wrapper usually performed slower than a
filter, but achieved a much better prediction accuracy.
The main contribution of this study was to investigate

the survival problem from a new perspective. We tried to
answer the question of how long a specific patient would live
after the diagnosis, instead of the surviving percentage on a
time point of a cohort after the diagnosis in the conventional
survival analysis. A series of proof-of-principle experiments
were carried out to demonstrate that the novel problem setting
was solvable by the regular machine learning approaches.

II. MATERIALS AND METHODS

A. SUMMARY AND PREPROCESSING OF THE DATASET

The methylomic data was retrieved from the breast cancer
project of The Cancer Genome Atlas (TCGA). There were
928 samples with methylomes in the project TCGA-BRCA.
Each sample was probed for 485,577 methylation features
using the Illumina 450k BeadChip [26, 27]. The clinical data
of each sample was extracted from the TCGA consortium
data portal [28].
Firstly, this study investigated the survival time of the

breast cancer patients. So the normal samples and control
group were removed from the dataset. Then in order to
remove those reference or stably methylated features, the top-
ranked 100,000 features with the largest variances were kept
for further analysis. Thirdly, one patient may have multiple
samples in the project TCGA-BRCA, and one sample from
each patient was randomly chosen.
After these preprocessing, only 221 samples with the clin-

ical survival time data were obtained and each sample has
100,000 methylated features. There were 71 samples who
died within five years, and were denoted as the negative

FIGURE 1. Experimental design of this study. The 221 methylomes were
the input data to the experimental procedure.

samples. The other 150 patients were denoted as the positive
samples. 103 out of the 221 samples have known deceasing
dates but 32 patients lived longer than five years.

B. PERFORMANCE EVALUATION METRICS

This study formulated the survival time prediction as a binary
classification problem and a regression problem. The binary
classification problem was to discriminate the breast cancer
patients who lived longer than five years (positive samples)
from those who didn’t (negative samples). The classification
performance was evaluated by the metrics accuracy (Acc),
sensitivity (Sn) and specificity (Sp). Sn and Sp were defined
as the percentages of correctly predicted positive and negative
samples, respectively. And the overall accuracy Acc was
the percentage of all the correctly predicted samples. The
metrics balanced accuracy bAcc was defined as (Sn+Sp)/2,
considering the dataset was not strictly balanced, as similar
in [29]–[32].

The regression problem was to predict how long a neg-
ative sample survived after the diagnosis. The regression
performance was evaluated by the mean absolute error
(MAE), as similar in [33], [34]. MAE was defined as
(
∑n

i=1 |y(i) − y′(i)|
)

/n, where y(i) and y’(i) were the real and
predicted survival times, and n was the number of samples.

All the evaluations were carried out by the 10-fold cross
validation strategy. A larger classification Acc or bAcc sug-
gested a better model. And a regression model with a smaller
MAE was better than that with a large MAE. Considering the
‘‘large p small n’’ paradigm in the Omic studies [35]–[37],
the principle of parsimony (Ocam’s razor) preferred a simpler
model [38]. So a prediction model was better than that with a
similar performance metrics and a larger number of features.

C. EXPERIMENTAL PROCEDURE

The experimental procedure in this study was illustrated
in Figure 1. Firstly, we evaluated various classification-based
feature selection algorithms on the binary classification prob-
lem of whether a patient lived longer than five years or
not. The status of five-year survival was widely investigated
in the conventional survival analysis studies [39], [40], and
a patient was generally considered as being ‘‘cancer free’’
if this patient lived for five years and longer [41]–[44].
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Each feature selection algorithm was applied separately on
the dataset and the subset of chosen features was used to
build the classification model using one of the five classifiers
with the 10-fold cross validation strategy. These classification
models were evaluated for their classification performances
and usually the best model was delivered as the final model.
Then the survival time of a patient being predicted to die

within five years was estimated using a regression model. All
the five regression algorithms were applied on the regression
dataset and the built regression models were evaluated for
their regression performances. The best regressionmodel was
delivered as the final regression model.

D. BINARY CLASSIFICATION OF FIVE-YEAR SURVIVAL

Feature selectionwas necessary to reduce the data dimensions
of five-year-survival prediction. Even after the preprocessing
step, a methylome still had 100,000 features for each sample.
Five binary classifiers were utilized to build the binary pre-

dictionmodel of whether a patient lived longer than five years
or not. The classifier k-nearest neighbor (KNN) assigned the
query sample to themajority class label of the k nearest neigh-
bors [45]–[47]. Naïve Bayes (NB) assumed the inter-feature
independence and calculated the probability of each class
label that the query sample belonged to [47]–[49]. Decision
tree was a simple supervised learned and made the decisions
based on the decisions made on the internal nodes [50]–[52].
Logistic regressor (LR) was a regression-based binary classi-
fier [53]–[55]. And the classifier random forest (RF) assem-
bled the decisions of multiple decision trees and provided
the final integrated prediction [56], [57]. We compared the
performances of these five classifiers on a subset of features.
The classification performance was calculated using the
10-fold cross validation strategy.
Eight feature selection algorithms were utilized. The

regression-based feature weighting algorithms L1 penaliza-
tion (Lasso) [58], [59], L2 penalization (Ridge) [60] and Elas-
tic Net (E-net) [61], TriVote [62] were evaluated. Lasso [63],
Ridge [60] and E-net [64] were widely used to select features
by regularization. This study removed the features with small
absolute values of the model coefficients, by assuming that
they carried weak contributions to the class labels. TriVote
was a three-step feature selection algorithm. Firstly, TriVote
used a linear SVM model to select a feature subset. Then,
an SVM-RFE model was trained to select a subset of the
remaining features. Finally, TriVote used the linear SVM
classifier again to evaluate a subset of feature from the second
step.
This study also evaluated some feature ranking met-

rics, including T-test [65], mutual information (MI) [66],
chi-squared test (Chi2) [67], Variance [68]. The statistical
significance Pvalues of T-test [69] and Chi2 [70] were used
to measure the importance of each feature. A smaller p-value
represented a better feature. We ranked the features by Pval-
ues and selected the top-ranked k features as the final fea-
ture subset. The two algorithms MI and Variance ranked
the features by the calculated values of MI and Variance.

The top-ranked k features with the best classification perfor-
mance were delivered as the final feature subset. We com-
pared the classification performances of the eight feature
selection algorithms using a user-specified classifier and
choose the best feature selection algorithm to reduce the
dimension of the features.

E. REGRESSION OF THE SURVIVAL TIME

Four existing regression-based feature selection algorithms
were utilized to find the methylomic features associated
with the survival time. The L1- and L2-penalized regres-
sors Lasso [71] and Ridge [72] were used. The elastic
net (E-net) [73], [74] and linear support vector regressor
(lSVR) [75], [76] were also widely used to select Omic fea-
tures. These algorithms evaluated the phenotype associations
by the feature importance scores, and a larger feature impor-
tance score was assumed as a better phenotype association.

We ranked the features by the absolute values of these
features’ coefficients in the above-mentioned regression algo-
rithms, and selected the top-ranked k features with the best
regression performance. After the step of feature selection,
the corresponding regressor was used to predict how long the
patient would live for. For example, if we used Lasso to select
features, we would also use Lasso to predict the patient’s
survival time.

F. COMPARISON WITH THE EXISTING GENE PANELS FOR

BREAST CANCERS

Breast cancer is one of the most investigated cancer types
and various gene panels have been scientifically released or
even commercially available for the purposes of diagnosis
and prognosis.

PAM50 is a breast cancer profiling assay to estimate how
probable a breast cancermaymetastasize based on the expres-
sion levels of 50 genes [77]. This gene is also widely used to
subtype breast cancers [78], [79].

EndoPredict offers a risk score of recurring as dis-
tant metastasis for early-stage breast cancer patients with
Estrogen-Receptor (ER) positive and HER2 negative [80].
Activities of 12 genes are profiled in breast cancer cells to
calculate the risk score and the threshold 3.3287 is optimized
to discriminate the patients with higher than 10% risks [81].

The RT-PCR-based assay Breast Cancer Index evaluates
the activities of seven genes to calculate the risk that the non-
negative, hormone-receptor positive breast cancers may recur
5 to 10 years later [82]. This assay may be applied to the
FFPE (Formalin-Fixed Paraffin-Embedded) tissue samples
and its risk score is based on the ratio between two genes
HOXB13:IL17BR and the five-gene (BUB1B, CENPA,
NEK2, RACGAP1, RRM2) molecular grade index [83].

Oncotype DX is a widely-used prognostic assay for
the ER-positive breast cancers [84], [85]. This assay
utilizes the expression patterns of 16 cancer-associated
genes and 5 house-keeping genes to evaluate the possi-
bilities of a breast cancer to grow and to respond to the
chemotherapeutic treatments. This assay demonstrates
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FIGURE 2. Illustration of the proposed algorithm crystall. Firstly,
a regressor lSVR is used to filter the features with little associations with
the regression label. Then a ‘‘select classifier’’ strategy is used to refine
the feature subset. The last step uses the backFS framework to find the
features with the smallest mean absolute error (MAE).

a sex disparity and may need refining for male
patients [86].
The biomarker genes in the above gene panels were used

to build the survival time regression models of a breast can-
cer patient, for the comparison with the proposed method
Crystall.

III. CRYSTALL, A FEATURE SELECTION ALGORITHM TO

ESTIMATE THE CANCER SURVIVAL TIME

Survival time prediction is an important question for a patient
with a lethal disease. This is different from the conventional
survival analysis which tries to calculate the percentage of
alive patients within a cohort on a time point [39], [40].
Nie et al. utilized the 3-dimensional convolution neural net-
work (CNN) to extract features for an SVM model and pre-
dicted with an accuracy 89.9% whether a patient had a long
or short overall survival time [87]. Lsik et al. employed a
random walk-based algorithm to predict whether a patient
had a long- or short-term survival by integrating transcrip-
tome, proteome and protein-protein interaction data [88]. The
proposed method achieved the accuracies between 66% and
78% for three cancer types. Chato et al. proposed a wavelet
transform-based denoising method to improve the prediction
of short/mid/long-term survival for the brain tumor patients
using the MRI images [89].
This study investigated the survival time prediction prob-

lem, that most existing studies didn’t provide quantitative
solutions. A regression model was formulated to estimate
how long a patient lived within five years, as described in
the above section. The number of methylomic features was
much larger than that of the samples, and the feature dimen-
sion could be reduced using feature selection algorithms.

This study proposed a three-step feature selection algorithm
Crystall to optimize this regressionmodel. Themean absolute
error (MAE) was used as the optimization goal function.

Firstly, a large number of features were removed by
their coefficients in the trained linear support vector regres-
sion (lSVR) model. Each methylome consisted of nearly half
a million methylation features. It’s highly time-consuming to
train such a model using all the features, and the model may
also be easily overfitted. The absolute value of a feature’s
coefficient in a lSVR model reflected the contribution of this
feature to the model [90]. So only those features with the
largest absolute values of their lSVR coefficients were kept
for further analysis. This step efficiently removed a large
number of features with minor contributions to the regression
problem.

The second step of Crystall evaluated the remaining fea-
tures using a linear regression model and removed the
features with small model coefficients. This step assumed
that features important to the overall regression problem
should have large coefficients in this model, too. The func-
tional module SelectFromModel() in the Python package
scikit-learn version 0.21.3 was used to implement the ‘‘Select
Classifier’’ strategy by evaluating the features’ correlation
with the survival time.

The last step of Crystall further refined the subset of
selected features using the BackFS strategy [91]. The first
two steps of Crystall eliminated features with small absolute
values of the model coefficients, instead of the regression
performance metric MAE. BackFS carried out a brute-force
screening of features that may potentially increase the regres-
sion performance. In summary, a feature was iteratively
removed, if its removal generated the smallest mean absolute
error (MAE).

The proposed feature selection framework Crystall was
theoretically time-efficient than the conventional single-step
algorithms, while still achieved satisfying regression perfor-
mances. This was based on the assumption that the majority
of the features important to the regression problem should be
selected by multiple feature selection algorithms. And this
assumption was evaluated in the experiments in the following
sections.

IV. RESULTS AND DISCUSION

A. MAIN AIM OF THIS STUDY

This study aimed to predict the life duration of a breast cancer
patient. A cancer patient was considered as ‘‘cancer free’’,
if she or he lived longer than 5 years. So this study firstly
predicted a binary classification problem of whether a breast
cancer patient lived at least 5 years or not. The life duration
of a breast cancer patient who died within 5 years was then
formulated as a regression problem. Because the number of
methylomic features was much higher than that of samples
in a clinical cohort, feature selection algorithm had to be
used to find a subset of features with the best predictive
performances. Different feature selection algorithms were
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originally designed for different types of data, and they may
be used with cautions about the pre-assumptions.
The optimization goals of this study were to find two

subsets of features with the best accuracy andminimummean
absolute error for the binary classification problem and the
regression problem, respectively.
The proposed feature selection algorithm Crystall tried to

recommend a subset of features with the minimum mean
absolute error for the regression problem.

B. BINARY CLASSIFICATION OF 5-YEAR SURVIVAL

This study focused on the feature selection algorithm Crystall
for the survival time regression problem of breast cancer
patients who died within five years. Firstly, we utilized a
recently published feature selection algorithm TriVote [62]
to investigate the binary classification problem of whether a
patient survived 5 years or not. The previous study demon-
strated that TriVote achieved very good and stable classifi-
cation performances with its chosen OMIC features on both
transcriptomic and methylomic datasets [62]. The Python
package TriVote calculated the 10-fold cross validation clas-
sification performances of four representative binary clas-
sifiers, i.e., Nearest Neighbor (NN) [92], Support Vector
Machine (SVM) [93], [94], Naive Bayes (NBayes) [49], [95],
and Decision Tree (DTree) [96].
Both prediction accuracy and feature number are impor-

tant for an OMIC-based prediction panel [37, 98]. The
classifier Logistic Regression achieved the prediction accu-
racy Acc=1.0000 with the minimum number 40 of fea-
tures, as shown in Figure 3. And both Sn and Sp reached
1.0000. Figure 3 demonstrated that some classifiers may
achieve 1.0000 for Sn or Sp separately. The metrics
bAcc=(Sn+Sp)/2 was a good performance metrics for a
dataset with imbalanced inter-class samples [31], [98]. Due
to the imbalance in our dataset, the metrics geometric mean
(G-mean) and area under the ROC curve (AUC) were also
used to measure the model performance. So the Logistic
Regression model with the 40 features was chosen for the
binary classification model for prediction whether a breast
cancer patient may survive 5 years or not.

C. COMPARISON WITH THE OTHER FEATURE

SELECTION ALGORITHMS

A performance comparison was carried out between TriVote
and the seven other feature selection algorithms, as shown
in Figure 4. The group of three regression-based feature
selection algorithms Lasso, Ridge and Elastic Net (E-net)
were utilized as wrappers of the Python functional module
SelectFromModel() with the default parameters. This study
also evaluated the second group of four filter feature selection
algorithms, i.e., T-test (Ttest), Variance-based ranking (Var),
Chi-squared Test (Chi2) and Mutual Information (MI). The
features were selected by the Incremental Feature Selection
strategy (IFS) for a filter [37]. The classification performance
of a given feature subset is calculated by the 10-fold cross
validation strategy.

FIGURE 3. Binary prediction performances of the 5-year survival. The
horizontal axis gave the number of features selected by the feature
selection algorithm TriVote. The vertical axis gave the values of the binary
prediction metrics (a) Acc, (b) Sn, (c) Sp and (d) bAcc (e) G-mean (f) AUC
for the five binary classifiers provided in the Python package TriVote.

Filter feature selection algorithms didn’t perform well on
this regression problem, as shown in Figure 4. Ttest, Var and
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FIGURE 4. Comparison between TriVote and the 7 other feature selection
algorithms. The horizontal axis gave the algorithms used to select
features. And the horizontal axis gave the feature selection algorithms
and the vertical axis gave the value of Logistic regression prediction
accuracy (Acc) of the feature subset selected by the algorithm.

FIGURE 5. Parameter optimization of Crystall. The horizontal axis is the
parameter pFNum2, which is the number of remaining features in each
iteration of feature removal in the third step of Crystall. The vertical axis
is the optimization goal MAE of Crystall. Each line represents a different
value choice of the parameter pFNum1, which is the number of
top-ranked features selected in the first step of Crystall.

MI may be applied on the numerical variables, and Chi2 was
usually applied on nominal or category variables. Although
the methylomic features were numerical, Chi2 seemed to
have outperformed Ttest on selecting the numerical features
with an improvement 0.0814 in Acc. The literature also
showed that Chi2 achieved similar performances in evaluat-
ing the numerical features as Ttest in both OMIC and imaging
data [99]–[102].
Figure 4 illustrated that the group of three regression-based

feature selection algorithms generally performed better than
the filter-based feature selection algorithms. At least an
improvement of 0.0136 was achieved in Acc by the three
regression-based feature selection algorithms, i.e., Lasso,
Ridge, and E-net. And no existing feature selection algo-
rithms outperformed the algorithmTriVote on the binary clas-
sification problem of the dataset TCGA-BRCA [103]–[105].

D. OPTIMIZATION OF THE PARAMETERS OF CRYSTALL

The two parameters pFNum1 and pFNum2 of Crystall are
evaluated for the best choices of their values, as shown
in Figure 5. The parameters pFNum1 and pFNum2 are the
numbers of the top-ranked features in the first step and the
number of remaining features after the iterations of feature
removal in the third step of Crystall.

FIGURE 6. Regression performance comparison of Crystall and the other
four regression-based feature selection algorithms. (a) Comparison of the
regression performance metric MAE of these five feature selection
algorithms. The horizontal axis is the number of features. The vertical axis
gives the performance metric MAE. (b) Comparison of the regression
performance metric C-index of the five feature selection algorithms. The
horizontal axis lists the algorithms, and vertical axis is the value of
C-index.

The overall trend for all the values of the parameter
pFNum1 was not linearly correlated with the number of
remaining features (pFNum2). A good model tends to have a
small MAE. The data suggested that pFNum1≤200 achieved
a much worser MAE than the larger values of pFNum1.
And the overall best MAE=31.62 was achieved by
pFNum1 =320 in the first step of Crystall. In this case, The
second step of Crystall recommended 144 features, among
which 79 features were finally selected by Crystall.

E. REGRESSION PERFORMANCE COMPARISON OF

FEATURE SELECTION ALGORITHMS

Two regression performance metrics are utilized to evaluate
the proposed algorithm Crystall and the other four existing
feature selection algorithms. The performance metric MAE
is defined in the above section. And the metric Harrell’s
C-index is the generalized version of the area under the ROC
curve (AUC) [106], and has been widely used to evaluate the
regression models [107], [108].

The regression performance of Crystall is compared with
the four existing regression algorithms in the incremental
feature selection (IFS) framework [109]–[111], as shown
in Figure 6. Lasso and Ridge regressors are the L1- and
L2-regularizations [112], respectively. Elastic net (E-net)
is the weighted combination of both L1 and L2 regres-
sions [113]. The linear support vector regressor (lSVR) is
another popular regressor for the biomedical prediction prob-
lems [114], [115]. The features selected by each algorithm
are used to train a regression model by the same regression
algorithm.
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FIGURE 7. The regression performances of Crystall and its first step. The
performance metric MAE is used as the vertical axis, and the horizontal
axis lists the crystall and its first step (crystall-step1).

Crystall selected 79 features for the final lSVR model
and achieved MAE=31.62 and C-index=0.9823, as shown
in Figure 6. All the four existing algorithms achieved
MAE>140, which are much worse than Crystall, as shown in
Figure 6 (a). Figure 6 (b) illustrates that Crystall achieved C-
index=0.9823, outperforming the other four algorithms by at
least 0.0862 in C-index. SoCrystall performs better than these
four popular regression-based feature selection algorithms.

F. COMPARE CRYSTALL WITH ITS FIRST STEP

Crystall consists of three consecutive steps of feature selec-
tions, and this section evaluates how the first step of Crystall
(denoted as Crystall-Step1) performs, as shown in Figure 7.
The regression performance metric MAE is used to compare
the features selected by Crystall-Step1 and Crystall. The pre-
vious studies demonstrated that the module BackFS performs
very well on various feature selection problems, but its time
complexity is very high [91]. So a wrapper is integrated as
the second step of Crystall. Figure 7 illustrates that Crystall-
Step1 achieves much larger values of MAE when being com-
pared on the same number of features with Crystall. Crystall
achieves the smallest MAE=32.6700 for 80 features, while
Crystall-Step1 achieves the smallest MAE=198.7219 for
140 features.

G. EVALUATION OF THE EXISTING GENE PANELS

Four popular gene panels for breast cancers are evaluated
for their prediction capabilities of the patients’ survival time,
as shown in Figure 8. Themethylomic features corresponding
to the genes in each gene panel are collected and the BackFS
strategy is applied to refine the features of each gene panel.
As discussed in the above sections, Crystall deliv-

ered a regression model with 79 methylomic features and
MAE=31.62. Figure 8 (a) illustrates a similar pattern for all
the four gene panels. When the features are removed one-
by-one by their weights in the trained lSVR, the regression
metric MAE gets a slight improvement (decreasing) and then
is increased significantly. This supports the observation of
Crystall in Figure 5. Figure 8 (b) shows that the four existing

FIGURE 8. Prognostic evaluation of the Crystall model and the four
existing gene panels. (a) The BackFS curves of the four existing gene
panels. The horizontal axis is the number of features selected by BackFS
on that gene panel. The vertical axis is the regression performance metric
MAE. (b) Comparison of the best model optimized from crystall and the
four existing gene panels. The horizontal axis lists the algorithms. The
vertical axis is the value of the two metrics MAE and number of features
(Feature Number).

gene panels didn’t perform very well on estimating the sur-
vival time of each breast cancer patient, even after removing
the redundant features.

H. BIOMARKERS FOR PREDICTING WHETHER A PATIENT

SURVIVE 5 YEARS

This study uses 40 methylomic features to predict whether
a breast cancer patient survivals 5 years after the diagnosis.
These 40 features are evaluated for their individual differen-
tial expressions using the popular statistical method Ttest,
as shown in Table 1 and Figure 9. These 40 features are
selected by the algorithm TriVote among the 10,000 features
filtered by variance. Some features are even ranked as 48,799
(cg17099656, Pvalue=3.53e-1) and 98,508 (cg26647197,
Pvalue=9.79e-1) by Ttest.

So we carried out a recursive feature eliminating strategy
on these 40 features, as shown in Figure 9. Figure 9 (a) illus-
trates that the feature with the largest Pvalue is eliminated in
each iteration.Wemay see that the removal of even the feature
cg26647197 (Ttest rank=98,508, Pvalue=9.79e-1) reduces
the prediction model’s accuracy to 0.9276. If each iteration
removes the feature with the smallest Pvalue, the first removal
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TABLE 1. Summary of the 40 biomarkers for predicting the 5-year
survival of a patient. Columns ‘‘Feature’’ and ‘‘Gene’’ are the methylomic
feature name and the corresponding gene symbol of each feature.
Columns ‘‘Rank’’ and ‘‘Pvalue’’ are ranks and statistical Pvalue by Ttest.

FIGURE 9. Performance evaluation by removing features from the subset
of biomarkers for predicting the 5-year survival of breast cancer patients.
(a) Recursively removing a feature with the largest Pvalue. (b) Recursively
removing a feature with the smallest Pvalue. The horizontal axis is the
number of remaining features. And the vertical axis is the value of the
four classification performance metrics, i.e., Sp, Sn, bAcc and Acc.

reduces the model’s Acc to 0.9140, as shown in Figure 9 (b).
So every one of the 40 features has its essential contribution to
the prediction model of whether a breast cancer patient may
survive five years after the diagnosis.

TABLE 2. The 79 methylomic biomarkers and their annotations for the
regression model of the breast cancer patients’ survival time. The
methylomic biomarkers are in the column ‘‘Feature’’. Columns ‘‘Chr’’ and
‘‘Position’’ are where each methylation residue locates. Column ‘‘Gene’’
gives the gene symbol covering this methylomic feature.

More than half (21) of the 40 biomarker genes are known to
be associated with breast cancers. The methylomic biomarker
cg24141198 locates in the 3’ UTR (untranslated region)
of the protein-coding gene N-Ras, which is annotated be
an oncogene in many cancer types, including melanoma
and thyroid cancer, etc [116]. N-Ras is also observed to
be prognostically associated with breast cancers [118, 119].
Another biomarker cg06850283 is within the promoter prox-
imal region TSS1500 of the protein-coding gene Fibroblast
Growth Factor 10 (FGF10). The antisense RNA molecule 1
of FGF10 (abbreviated as FGF10-AS1) is a long non-coding
RNA, which is associated with the prognosis of triple-
negative breast cancer (TNBC) patients [119].

I. BIOMARKERS FOR REGRESSING THE SURVIVAL TIME

OF A BREAST CANCER PATIENT

The regression model in this study is the linearly weighted
sum of the above 79 features, as shown in Table 2. A feature
with a larger absolute value of its weight contributes more
than a feature with a smaller value. The top three biomark-
ers are cg18454685 (Calcium Voltage-Gated Channel Sub-
unit Alpha1 G, abbreviated as CACNA1G), cg21405799
(N-Terminal EF-Hand Calcium Binding Protein 2, abbrevi-
ated as NECAB2) and cg02143877 (Cytochrome P450 Fam-
ily 24 Subfamily A Member 1, abbreviated as CYP24A1),
according to the GeneCards annotations [120].

The two biomarkers CACNA1G and CYP24A1 are
involved in the prognosis of breast cancers according to the
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literature [121]. The protein CACNA1G and the other family
members of the voltage- gated calcium channels (VGCCs)
tend to be lowly expressed in many types of cancers, includ-
ing lung and breast cancers [122]. And CACNA1G is asso-
ciated with the prognosis of bladder cancer and colorectal
cancer [124, 125]. The protein CYP24A1 is involved in
the breast cancer cell proliferation through interacting with
the cellular apoptosis susceptibility protein (CAS) [125].
The repressed expression of CYP24A1 is involved in the
prognosis of breast cancers [126].
The secondly-ranked biomarker NECAB2 is not associ-

ated with either breast cancer and prognosis in the literature
database PubMed [121]. NECAB2modulates the expressions
and functionalities of various cell surface receptors [128,
129]. Based on the biomarker CACNA1G discussed in the
above, the hypothesis may be worth of experimental confir-
mation that NECAB2 impacts the prognosis of breast cancers
through interacting with the system of the voltage-gated cal-
cium channels [122].

V. DISCUSSION

This study tries to answer the question of how long a breast
cancer patient may live after the diagnosis. Most of the exist-
ing studies focus on the statistical associations of molecular
biomarkers with the 5-year survival rates of breast cancer
patients. The above personalized question remains largely
unresolved. This study formulates the question into two
machine learning problems. The first problem is whether a
patient will live longer than 5 years or not, and the second
problem is the length of a patient’s remaining life for those
who will die within 5 years.
The best binary classification model achieves

Acc=1.0000 using 40 methylomic features for the first prob-
lem. The best regression model with 79 methylomic features
achieves the regression performance MAE=31.62 days for
the question how long a patient will live.
Due to the limitations in the cohort size and ethics com-

position, the proposed models may need further tuning with
more independent validation samples and a more balanced
ethics composition. Due to the limited availability of other
datasets with the similar number samples andmethylome pro-
filing technology, we didn’t find an independent validation
dataset for the proposed prediction models. The generality of
this study will be validated with more available datasets.
After the proposed models were further validated by the

independent datasets in the future studies, a breast cancer
patient may be diagnosed using a methylome profile about
whether this patient could live for at least 5 years or shorter
than 5 years, and how long this patient may live if the
diagnosis is shorter than 5 years. Those patients predicted to
live shorter than 1 year may need more frequent follow-up
Computed Tomography (CT) imaging examinations.
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