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Abstract. The firefighter problem is the following discrete-time game on a graph. Initially,
a fire starts at a vertex of the graph. In each round, a firefighter protects one vertex not yet on
fire, and then the fire spreads to all unprotected neighbors of the vertices on fire. The objective of
the firefighter is to save as many vertices as possible. The surviving rate of a graph is the average
percentage of vertices that can be saved when a fire starts randomly at one vertex of the graph,
which measures the defense ability of a graph as a whole. In this paper, we study the surviving rates
of graphs with bounded treewidth. We prove that the surviving rate of every n-vertex outerplanar
graph is at least 1 −Θ( log n

n
), which is asymptotically tight. We also prove that if k firefighters are

available in each round, then the surviving rate of an n-vertex graph with treewidth at most k is

at least 1 − O(k
2 log n
n

). Furthermore, we show that the greedy strategy of Hartnell and Li [Congr.

Numer., 145 (2000), pp. 187–192] for trees saves at least 1−Θ( log n
n

) percent of vertices on average
for an n-vertex tree. Our results settle a conjecture and two problems of Cai and Wang [SIAM J.
Discrete Math., 23 (2009), pp. 1814–1826] in affirmative.
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1. Introduction. The firefighter problem is a discrete-time game on graphs in-
troduced by Hartnell [8] at a conference in 1995, who attempted to model firefighting
or virus control on a network. The game goes as follows. A fire breaks out at a vertex
of a graph G = (V,E), and then the fire and a firefighter make alternate moves on
the graph. In each round, the firefighter protects at most one vertex not yet on fire,
and the fire then spreads from all burning vertices (i.e., vertices on fire) to all their
unprotected neighbors. Once a vertex is burning or protected, it remains so during
the whole process. The process ends when the fire can no longer spread. All vertices
that are not burning are saved. The main objective of the firefighter is to save as
many vertices as possible.

Various aspects of the firefighter problem have been studied in the literature.
Finbow et al. [5] showed that it is NP-hard for the firefighter to save the maximum
number of vertices, even for trees of maximum degree three. Hartnell and Li [9]
proved that a simple greedy method for trees is a 0.5-approximation algorithm, and
MacGillivray and Wang [11] gave a 0-1 integer programming formulation of the prob-

∗Received by the editors April 5, 2010; accepted for publication July 29, 2010; published elec-
tronically October 12, 2010.

http://www.siam.org/journals/sidma/24-4/79113.html
†Department of Computer Science and Engineering, The Chinese University of Hong Kong,

Shatin, Hong Kong SAR, China (lcai@cse.cuhk.edu.hk). This author was partially supported by
Earmarked Research Grant 410206 of the Research Grants Council of Hong Kong SAR, China.

‡Corresponding author. School of Management, Xi’an Jiaotong University, Xi’an, Shaanxi 710049,
China (chengyx@mail.xjtu.edu.cn).

§The Institute for Theoretical Computer Science, Tsinghua University, Beijing 100084, China
(elad.verbin@gmail.com). This author was supported in part by the National Natural Science
Foundation of China grant 60553001 and the National Basic Research Program of China grants
2007CB807900 and 2007CB807901.

¶Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891
(yuanzhou@cmu.edu).

1322



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SURVIVING RATES OF GRAPHS WITH BOUNDED TREEWIDTH 1323

lem for trees and solved the problem in polynomial time for some subclasses of trees.
Cai, Verbin, and Yang [1] obtained a (1 − 1/e)-approximation algorithm and several
FPT (fixed-parameter tractable) algorithms for the problem on trees. Develin and
Hartke [3], Fogarty [7], and Wang and Moeller [15] considered the scenario where more
than one firefighter is available and examined the number of firefighters required to
contain the fire for d-dimensional grids. Scott, Stege, and Zeh [14] and Ng and Raff
[12] investigated the situation where the number of firefighters available varies over
time. Finbow et al. [4] looked into the expected number of burned vertices when fires
start randomly at fixed-size subsets of vertices, and Cai and Wang [2] studied the
average percentage of saved vertices when a fire randomly starts at one vertex of a
graph. Other variations of the problem have been discussed in the literature as well,
and recently Finbow and MacGillivray [6] have written a survey on the problem.

In this paper, we follow the approach of Cai and Wang [2] and Finbow et al. [4] to
consider the defending ability of a graph as a whole for the firefighter problem. For a
vertex v ∈ G, let ξ(v) denote the maximum number of vertices the firefighter can save
when a fire starts at v. Cai and Wang [2] defined the surviving rate of G, denoted by
ρ(G), to be the average percentage of vertices that can be saved when the fire starts
randomly at one vertex of the graph, i.e.,

ρ(G) =
1

n

∑
v∈V

ξ(v)

n
.

We note that the concept of surviving rates is closely related to the notion of expected
damage introduced by Finbow et al. [4], who investigated graphs of minimum expected
damage. To be precise, ρ(G) = 1− ed(G)/n, where ed(G) = 1

n

∑
v∈V (n− ξ(v)) is the

expected damage of G.

Cai and Wang [2] showed that ρ(G) ≥ 1−
√

2
n if G is an n-vertex tree, ρ(G) > 1/6

if G is an outerplanar graph, and ρ(G) > 0.3 if G is a Halin graph with at least five
vertices. They also proposed several problems/conjectures including the following
three as identified in [2]:
Problem 6.3 in [2]. For n-vertex outerplanar graphs (Halin graphs, respectively) G,

determine whether limn→∞ ρ(G) = 1.
Conjecture 6.4 in [2]. For every n-vertex tree T , ρ(T ) ≥ 1−Θ( logn

n ).
Problem 6.6 in [2]. Determine whether the greedy algorithm of Hartnell and Li [9] for

trees achieves an approximation ratio 1 − Θ( logn
n ) for the surviving rate of

n-vertex trees.
In this paper, we consider the surviving rates of trees and outerplanar graphs

(which are graphs of treewidth 1 and at most 2, respectively), and we settle the above
three problems/conjectures (Problem 6.3 in [2] for outerplanar graphs) in affirmative.
Furthermore, we study the surviving rates of graphs of bounded treewidth in general
when we allow multiple firefighters to protect vertices in each round. Let ξk(v) de-
note the maximum number of vertices that k firefighters can save when a fire starts
at vertex v, and call

ρk(G) =
1

n

∑
v∈V

ξk(v)

n

the surviving rate of G for k firefighters. We prove that for every graph of treewidth

k, ρk(G) = 1−O(k
2 logn
n ). Note that there are graphs of treewidth k that require at

least k firefighters to save any constant portion of vertices (see section 3).
Our paper is organized as follows (log is of base 2 in the paper). In section 2,

we show that the greedy strategy of Hartnell and Li [9] for trees on average saves
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at least 1 − Θ( logn
n ) percent of vertices, which answers Problem 6.6 in [2] and also

settles Conjecture 6.4 in [2] in affirmative. We also construct a tree to show that the
bound 1 − Θ( logn

n ) is tight, and we give another proof for Conjecture 6.4 in [2]. In
section 3, we use the main idea in the second proof for Conjecture 6.4 in [2] to show

that ρk(G) = 1−O(k
2 logn
n ) for graphs G of treewidth k. In section 4, we prove that

ρ(G) ≥ 1 − Θ( logn
n ) for n-vertex outerplanar graphs G, which settles Problem 6.3 in

[2] for outerplanar graphs.

2. Firefighting on trees. For the firefighter problem on trees, the following
greedy method of Hartnell and Li [9] achieves an approximation ratio 1/2 for the
number of saved vertices: the firefighter always protects a vertex that cuts off the
maximum number of nonburning vertices from the fire. In this section, we prove that
their greedy method on average saves 1 − Θ( logn

n ) percent of vertices, which thus
settles Problem 6.6 in Cai and Wang [2]. This also confirms Conjecture 6.4 in [2] that
the surviving rate of a tree is at least 1−Θ( logn

n ). Furthermore, we construct a class
of trees to show that this lower bound is optimal, and we give another proof for the
surviving rates of trees. The main idea of the second proof will be used in the next
section to deal with graphs of bounded treewidth.

2.1. Hartnell and Li’s method (see [9]). Let T be a tree. The greedy method
of Hartnell and Li [9] produces a strategy for the firefighter, which will be called an
HL-strategy for T . Note that an HL-strategy for T is not unique since, in each round,
there may be more than one vertex that the firefighter can choose to protect. A vertex
u is a fire source for a vertex v if, when the fire starts at u, the greedy method of
Hartnell and Li cannot always save v, i.e., there is an HL-strategy that will not save v.

Theorem 2.1. For a tree T , the greedy method of Hartnell and Li saves on
average at least 1 − Θ( logn

n ) percent of vertices when the fire starts randomly at one
vertex of T .

Proof. To prove the theorem, we need prove only that no vertex v ∈ T has more
than 3 + 2 log2 n fire sources. Let r be a fire source for v that is farthest away from v
in T and P = v0, v1, . . . , vk the (r, v)-path in T , where v0 = r and vk = v. Regard T
as a rooted tree with root r, and denote the subtree rooted at vertex x by T (x).

We first show that all fire sources for v are on the (r, v)-path P . Suppose that there
is a fire source u �∈ P for v. Then u is in T (v1) as any vertex not in T (v1) is farther
away from v than r. Since r is a fire source for v, some HL-strategy will not protect
v1 when a fire starts at r. Therefore |T (v1)| < n/2, and hence |T − T (v1)| > n/2,
which implies that |T − T (u)| > n/2 as T − T (u) contains T − T (v1). This indicates
that, when a fire starts at u, any HL-strategy would have saved the parent of u and
hence v, a contradiction to u being a fire source for v (see Figure 1(a)).

Next we show that, if vi is a fire source for v, then |T (vi)| > 2|T (vi+2)|, where
1 ≤ i ≤ k − 2. Consider the situation when the fire starts at vertex vi. Since
|T − T (vi)| > n/2 (note that T − T (vi) contains T − T (v1)), any HL-strategy will
protect vi−1 at time 1. By the assumption that vi is a fire source for v, we see that
there is an HL-strategy that does not protect vi+2 but another grandchild v′′i of vi at
time 2. This implies that |T (v′′i )| ≥ |T (vi+2)| and hence that |T (vi)| > 2|T (vi+2)| (see
Figure 1(b)).

Now let vs(0), vs(1), . . . , vs(t) ∈ P be fire sources of v ordered from r to v. Then
|T (vs(i))| > 2|T (vs(i+2))| as T (vs(i+2)) is a subtree of T (vs(i)+2). Therefore

|T (vs(1))| > 2|T (vs(3))| > · · · > 2i|T (vs(2i+1))| > · · · ,

which implies t ≤ 2 + 2 log2 n as |T (vs(1))| < n and hence the lemma.
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Fig. 1. (a) All fire sources of v are on the (r, v)-path; (b) |T (vi)| ≥ 2|T (vi+2)|.

The above theorem answers Problem 6.6 in Cai and Wang [2] in affirmative that
the greedy method of Hartnell and Li [9] achieves an approximation ratio 1−Θ( logn

n )
for the surviving rate of a tree and also settles Conjecture 6.4 in Cai and Wang [2]
regarding the surviving rates of trees.

Corollary 2.2. The surviving rate of every tree is at least 1− Θ( logn
n ).

The above lower bound is the asymptotically best possible, which is established
by the following theorem.

Theorem 2.3. Let Th be a balanced complete ternary tree (i.e., each nonleaf
vertex has three children) of height h and with n vertices. Then ρ(Th) ≤ 1−Θ( lognn ).

Proof. We will prove the following: If the fire starts at a vertex v of height k
(0 ≤ k ≤ h), let Tk denote the subtree with v as its root, and then the number of
burnt leaves of Tk in the end is at least 1

2 (3
k+1) under any protecting strategy. Since

n, the number of vertices of Th, is
∑h

i=0 3
i = 3h+1−1

2 = Θ(3h), this implies that,
no matter what protecting strategy is adopted, when the fire starts randomly at one
vertex of Th, the minimum average percentage of vertices that will get burnt in the
end is at least

∑h
k=0

1
2 (3

k + 1)× 3h−k

n2
≥

∑h
k=0

3h

2

n2
=

(h+ 1)3h

2n2
= Θ

(
h

n

)
= Θ

(
logn

n

)

which implies the theorem.
In what follows we consider the subtree Tk with root v and assume that the fire

starts at v. Then, within Tk, the fire stops to propagate at time k. Thus, we can
assume without loss of generality that the number of protected vertices in Tk is at
most k. Furthermore, at time i (0 ≤ i ≤ k), the fire stops to propagate among the
vertices in Tk having distance at most i from the root v; therefore, we can assume
that there are at most i protected vertices in Tk which are within distance i from v.
Let aj denote the number of protected vertices in Tk that have distance j from v,

j = 0, 1, . . . , k. Then
∑i

j=0 aj ≤ i for i = 0, 1, . . . , k.
If the fire starts at v, for each leaf u of Tk which is saved in the end, there must

exist an ancestor w of u such that w is in Tk and w is protected at some time t, where
1 ≤ t ≤ k. Therefore, the total number of leaves of Tk that are saved in the end
cannot exceed

∑k
j=0 aj × 3k−j . Define bi =

∑i
j=0 aj , then bi ≤ i for i = 0, 1, . . . , k,
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and thus

k∑
j=0

aj × 3k−j =

k∑
j=1

(bj − bj−1)× 3k−j = bk +

k−1∑
j=1

bj × (3k−j − 3k−j−1)

≤ k +

k−1∑
j=1

j × (3k−j − 3k−j−1) =
3k − 1

2
.

Therefore, the total number of burnt leaves of Tk is at least 3k − 3k−1
2 = 3k+1

2 ,
which completes the proof of the theorem.

2.2. A different proof. We will give a protecting strategy different from Hart-
nell and Li’s strategy [9], to give a different proof for the surviving rate of trees.
This proof will also serve as a basis for coping with graphs of bounded treewidth in
section 3.

The idea is that if T is balanced, the strategy that protects only the parent of
the vertex where the fire starts is good enough. For more general cases where the
trees may not be balanced, we will “reduce” such cases to the case of balanced trees
by identifying a “large” subtree to protect in the second round. Before describing our
strategy in detail, we need to define a few terms. In a rooted tree, a vertex v (other
than the root) is a heavy vertex if the subtree rooted at v has more than half vertices
of the subtree rooted at the parent vertex of v; otherwise, v is a light vertex. Note
that, for any vertex, at most one of its children is heavy. If such a child exists, we
call it the heavy child. Clearly, in any path from the root to a leaf, there are at most
log2 n light vertices.

Theorem 2.4. For every n-vertex tree T , there exists a strategy where the fire-
fighter protects vertices in at most two rounds, such that the average number of burnt
vertices is at most 2 log2 n+ 2.

Proof. Our strategy is as follows. We first root the tree at an arbitrary vertex r.
Suppose the fire breaks out at v. In the first round, protect the parent vertex of v. (If
v is the root, then do not protect any vertex in the first round.) In the second round,
protect the heavy grandchild (that is, the heavy child of the heavy child) of v. Note
that, if such a heavy grandchild exists, it is also unique. If such a heavy grandchild
does not exist (that is, v does not have a heavy child, or the heavy child of v does
not have a heavy child), then do not protect any vertex in the second round. For the
remaining rounds, do not protect any vertex.

It is easy to see that the above strategy is valid, that is, we do not protect any
vertex that is already burnt. A vertex v is called a fire source of a vertex u under
the above protecting strategy if, when the fire starts at v and the above strategy is
adopted, u will eventually catch fire. We will show that, for every vertex u, the number
of fire sources of u is at most 2 log2 n+ 2. Clearly, this establishes Theorem 2.4.

From the description of the above strategy, it is not hard to verify that if v is a
fire source of u, then the following hold:

1. v is an ancestor of u in the rooted tree T (with root r);
2. Let v, v1, v2, . . . , u be the path from v to u. Then either v is the parent of u

or at least one from {v1, v2} is a light vertex.
Therefore, for any vertex u ∈ T , all the possible fire sources of u are on the unique
tree path from r to u and fall into one of the following three categories:

1. the vertices whose child on this path is a light vertex,
2. the vertices whose grandchild on this path is a light vertex,
3. the vertex which is the parent of u or is u itself.
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This implies that the number of fire sources of u is at most twice the number of light
vertices on the path from r to u, plus two, which is no more than 2 log2 n + 2. This
concludes Theorem 2.4.

3. Firefighting on graphs with bounded treewidth. We now consider the
firefighter problem for graphs of bounded treewidth by allowing more than one fire-
fighter in each round. We will show that k firefighters per round are necessary and
sufficient for graphs with treewidth k to save a constant portion of vertices. For the
formal definition of treewidth, please see section 3.1.

Theorem 3.1. For any n-vertex graph G of treewidth k, there exists a strategy
that places k firefighters at each round so that the average number of burnt vertices is

O(k2 logn), i.e., ρk(G) = 1−O(k
2 logn
n ).

First we note that, for graphs with treewidth k in general, k firefighters are indeed
necessary to save a constant proportion of vertices. Consider Kk,n−k, the complete
bipartite graph with k vertices on one side and n− k vertices on the other. It is easy
to see that this graph has treewidth k. Also, if we are given only k − 1 firefighters
at each round, then at most 2k − 2 vertices can be saved in the end, no matter at
which vertex the fire starts. Before proving our main theorem, we first give a brief
introduction to the notions of tree decomposition and treewidth.

3.1. Tree decomposition and treewidth. The notions of tree decomposition
and treewidth play important roles in graph theory and graph algorithms. They were
originally introduced by Robertson and Seymour [13] in their graph minor theory and
have received great attention since then.

Intuitively, a tree decomposition represents the vertices of a given original graph
as a connected portion (in fact, an induced subtree) of a tree, and there is an edge
between two vertices in the original graph only if the two corresponding portions of
the tree intersect.

Definition 3.2 (tree decomposition). Given an undirected graph G = (V,E),
a tree decomposition is a pair (X , T ), where X = {X1, X2, . . . , Xm} is a family of
subsets of V with m = O(|V |)1 and T is a tree whose nodes are the subsets Xi. In
addition, the following three properties hold:

1. The union of all subsets Xi equals V .
2. For each edge (u, v) in graph G, there is a subset Xi containing both u and v.

That is, vertices are adjacent in G only if the corresponding induced subtrees
intersect.

3. If Xi and Xj both contain a vertex v ∈ G, then all nodes Xk of the tree T
on the unique path between Xi and Xj contain v as well. That is, for any
v ∈ G, all the tree nodes containing v form a connected subset in T .

For instance, one trivial tree decomposition of G is with X = {V }, that is, tree T
has only one node which is the vertex set V of G. The width of a tree decomposition
(X , T ) is defined as maxXi∈X {|Xi| − 1}. The treewidth of a graph G is the minimum
width among all possible tree decompositions of G.

1In the general definition of tree decomposition, there is no requirement of m = O(|V |). In
our paper this requirement is necessary for later analysis. In fact, for any tree decomposition T , it
can be transformed into a nonredundant tree decomposition T ′ without increasing the width. Any
nonredundant tree decomposition has the extra property that, for any two tree nodes connected by
an edge, no one is a subset of the other. Moreover, the number of tree nodes of any nonredundant
tree decomposition is no more than the number of vertices of the original graph G. For proofs and
more details, the reader is referred to Chapter 10 of [10].
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It is easy to see that the tree decomposition of a graph is not unique. The
treewidth of every tree is one. In what follows, we always use tree node (or node, for
short) to refer to a node Xi in a tree decomposition which is a subset of vertices of
the original graph G, and we use vertex to refer to a vertex of the original graph G.
Also, we simply use T to denote the tree decomposition of a graph G when there is
no confusion. Next we describe the protection strategy, and then prove that, by using
this strategy, the average number of burnt vertices is limited to O(k2 logn).

3.2. The strategy of placing firefighters. Our strategy is similar in spirit
to the strategy we developed for trees in section 2.2 and consists of two rounds of
protection. We use T , the tree decomposition of G, to design our strategy. First we
root T at an arbitrary node Xr ∈ X .

We need to define a few more terms and notations before we can describe our
strategy. Similarly, for each node Xi �= Xr in T , Xi is a heavy node if the subtree
rooted at Xi has more than half of the nodes of the subtree rooted at the parent node
of Xi; otherwise, Xi is a light node. Clearly every node has at most one heavy node as
its child. A path P(X0) = X0, X1, . . . , Xt in T is a heavy path if eachXi, 1 ≤ i ≤ t, is a
heavy child node of Xi−1 (node X0 can be either a heavy or a light node). For any two
nodes X and Y in T , let T (X,Y ) denote the unique path in T connecting X and Y .

For a vertex v in G, define Tv to be the induced subtree of T consisting of the
nodes containing v. (By the definition of treewidth, these nodes form a connected
portion of T , thus forming an induced subtree). Let r(Tv) denote the root of Tv,
which is the unique highest node of Tv in the rooted tree T . For any node X in T , we
use st(X) to denote the subtree of T with root X . Notice that st(r(Tv)), the subtree
of T with root r(Tv), is not necessarily the induced subtree Tv.

Now we are ready to describe our strategy. Suppose the fire starts at vertex
v in G. In the first round, we use up to k firefighters to protect the vertices in
P1(v) = r(Tv)\{v}. We will prove later that this step saves all the vertices appearing
in a node outside st(r(Tv)), and so, for the next round, we have to consider only
vertices of G that are within st(r(Tv)).

To describe which vertices will be protected in the second round, we need a few
more notations. Let I(v) = {u | Tv∩Tu �= ∅} be the set of vertices that coappear with
v in some node of T . Note that v ∈ I(v). By the definition of treewidth, any neighbor
of v in G is in I(v). Consider P(r(Tv)). The heavy path in T starts at r(Tv). (Recall
that a heavy path always goes downward in T .) We walk along the heavy path until
we come to a node l(v), which is the lowest node in the heavy path that still contains
at least one vertex from I(v) \ P1(v). In other words,

l(v) = argmax
X

{depth(X) | X ∈ P(r(Tv)), and X ∩ (I(v) \ P1(v)) �= ∅},

where depth(X) is the distance fromX to the root nodeXr. Notice that, by definition,
l(v) can be any (including the first and the last) node of P(r(Tv)). In the second round,
we protect the vertices in P2(v) = l(v)\I(v). Note that l(v) shares at least one vertex
with I(v); thus, P2(v) contains at most k vertices, and so k firefighters suffice. For
the remaining rounds we do not protect any vertex.

It is easy to see that, in the above strategy, we never protect a vertex that has
been burnt since, when the fire starts at vertex v, after the first round all the vertices
that might be on fire are in I(v), and no vertex of I(v) is in P2(v).

3.3. The average number of burnt vertices. We prove that, if the above
strategy is adopted, the number of fire sources for every vertex is at most O(k2 logn).
Define l′(v) to be the child of l(v) on the heavy path P(r(Tv)). If l(v) is the last node
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Fig. 2. (a) S1(v) and S2(v) are saved. (b) Branching node of v and x, b(v, x).

of the heavy path P(r(Tv)), then l′(v) does not exist. Note that, by definition,
v /∈ l′(v) since v ∈ I(v) \ P1(v).

We show that the first round protection limits the fire to the subtree st(r(Tv)),
and the second round protection keeps the fire away from a “heavy” subtree, st(l′(v)).
More accurately, let S1(v) be the set of vertices that do not appear in any node in
st(r(Tv)), and let S2(v) be the set of vertices that appear only in nodes of st(l′(v)). (If
l′(v) does not exist, then S2(v) is empty.) Then we have the following lemma (please
see Figure 2(a)).

Lemma 3.3. Protecting P1(v) in the first round saves all vertices in S1(v), and
protecting P2(v) in the second round saves all vertices in S2(v).

Proof. For the first part of the lemma, let u ∈ S1(v). Suppose u catches fire
in the end. Then there exists a path P = (v0 = v, v1, . . . , vq = u) from v to u
in G with all vertices catching fire in the end. Consider the edge in T connecting
r(Tv) and its parent node. The removal of this edge breaks T into two parts: (a)
st(r(Tv)), the subtree of T with root r(Tv), and (b) the rest. Note that Tv is within
part (a) and that Tu is within part (b). Consider the sequence of induced subtrees
Tv0 , Tv1 , . . . , Tvq . Each of them is a connected portion of T , and any two consecutive
terms in the sequence share at least one node in T . Therefore, there exists some
Tvi , 1 ≤ i < q such that Tvi contains nodes from both parts (a) and (b). Thus Tvi

contains node r(Tv) and vi �= v, and so vi ∈ r(Tv) \ {v} = P1(v), which implies that
vi is protected in the first round. However, this contradicts the assumption that vi
catches fire in the end.

The proof for the second part of the lemma is similar. Let w ∈ S2(v). Suppose
w catches fire in the end. Then there exists a path P ′ = (v′0 = v, v′1, . . . , v′q = w)
from v to w in G such that all vertices of P ′ catch fire in the end. Consider the edge
in T connecting l(v) and l′(v). The removal of this edge breaks T into two parts:
(a) st(l′(v)), the subtree of T with root l′(v), and (b) the rest. By the definition
of S2(v), Tw is within part (a). Also, Tv is within part (b) since otherwise Tv must
contain l′(v) (note Tv is connected) which contradicts that v /∈ l′(v). Consider the
sequence Tv′

0
, Tv′

1
, . . . , Tv′

q
. By similar arguments there must exist some Tv′

i
, 1 ≤ i < q,

such that Tv′
i
contains nodes from both parts (a) and (b). Thus Tv′

i
contains nodes
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( ( ))vP r T
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Fig. 3. (a) Decomposition of T (Xr , r(Tx)) into O(logn) sections. (b) b(v, x) = b(S) for all the
vertices v such that r(Tv) ∈ S.

l(v) and l′(v). It follows that v′i ∈ l(v) and v′i ∈ l′(v). By the assumption that v′i
will catch fire in the end, thus v′i ∈ I(v) since otherwise v′i ∈ P2(v) = l(v) \ I(v)
will be protected. Also, that v′i will catch fire implies that v′i /∈ P1(v), and thus
v′i ∈ I(v)\P1(v). However, this contradicts v

′
i ∈ l′(v) since, by definition, l′(v) cannot

contain any vertex from I(v) \ P1(v).
For any v ∈ G and for any vertex x ∈ G such that r(Tx) is in the subtree st(r(Tv)),

define b(v, x), the branching node of v and x, as the lowest common node of P(r(Tv))
and T (r(Tv), r(Tx)). Please see Figure 2(b).

Lemma 3.4. If v is a fire source of x, then the following hold: (1) r(Tx) is in the
subtree st(r(Tv)); and (2) there exists some vertex u ∈ b(v, x) such that v ∈ r(Tu).

Proof. The first statement is easy to obtain from the first part of Lemma 3.3.
For the second statement, notice that b(v, x) is not lower than l(v) in the heavy path
P(r(Tv)). Since otherwise x ∈ S2(v), and by the second part of Lemma 3.3 when the
fire starts at v, x will be saved in the end which contradicts v being a fire source of x.
Also, by the definition of l(v), each node on the segment in P(r(Tv)) from r(Tv) to
l(v) (inclusively) contains at least one vertex in I(v) \ P1(v). Actually, assume that
w ∈ I(v) \ P1(v) is in l(v). Then Tw and Tv share at least one node, and it is not
hard to see that any node on the path from r(Tv) to l(v) contains at least one vertex
from {w, v}, which is a subset of I(v) \P1(v). Therefore, b(v, x) also contains at least
one vertex in I(v) \ P1(v). Let u denote this vertex. Then v ∈ r(Tu) since Tu and
Tv share at least one node and r(Tu) cannot be an ancestor of r(Tv); otherwise, u ∈
P1(v).

Lemma 3.5. For each vertex x ∈ G, let Sx denote the set of all fire sources of x.
Then |Sx| = O(k2 logn).

Proof. Recall that Xr is the root of T , the tree decomposition of G. By the first
statement of Lemma 3.4, Sx ⊆ {v | r(Tv) ∈ T (Xr, r(Tx))}, where T (Xr, r(Tx)) is the
path connecting Xr and r(Tx) in T . Thus, we need to examine only the vertices v
such that r(Tv) is in T (Xr, r(Tx)).

Clearly there are at most 	log2 m
 = O(log n) light nodes in T (Xr, r(Tx)). (Note
that m = O(n).) The deletion of these light nodes divides T (Xr, r(Tx)) into O(log n)
sections. We add each light node to the section that immediately follows it. For each
section S, let b(S) denote the lowest tree node of S, and let v(S) denote the set of
vertices {v | r(Tv) ∈ S} (please see Figure 3(a)).
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By definition, any heavy path in T starting at a node in S will reach node b(S)
but cannot go any farther along T (Xr, r(Tx)), that is, it will branch away from
T (Xr, r(Tx)) at b(S). Thus, b(S) is the branching node for all the vertices in v(S) and
x. Note that this is still true for the case where S is the last section of T (Xr, r(Tx)).
In other words, for any v ∈ v(S), we have b(v, x) = b(S) (please see Figure 3(b)).

Now we count the number of fire sources of x that are in v(S). By the second
statement of Lemma 3.4, for each v ∈ v(S) that is a fire source of x, there exists at
least one vertex u ∈ b(v, x) = b(S) such that v ∈ r(Tu). Since the tree node b(S)
contains at most k + 1 vertices of G, there are at most k + 1 such u’s. Moreover,
for any such u, there are at most k + 1 vertices v such that v ∈ r(Tu). Thus, there
are at most (k + 1)2 vertices in v(S) that are fire sources of x. Since Sx, the set of
all the fire sources of x, is the union of all the subsets of fire sources of x belonging
to v(S) for the at most O(log n) sections S of path T (Xr, r(Tx)). Therefore, |Sx| =
O(k2 logn).

By the above lemma, our strategy ensures that the average number of burnt
vertices of any graph G with treewidth k is O(k2 logn). This concludes Theorem 3.1.
We remark that the bound O(k2 logn) seems not to be optimal, and it may be possible
to reduce it to O(k logn).

4. Firefighting on outerplanar graphs. A graph is an outerplanar graph
if it has a planar embedding with all vertices on the boundary of the outer face.
Since outerplanar graphs have treewidth at most 2, the result from the last section
immediately implies that two firefighters can save all but O(log n) vertices on average.
However, in this section we will show that one firefighter is enough to achieve this,
i.e., the surviving rate of outerplanar graphs is also at least 1−Θ( logn

n ), which settles
Problem 6.3 of Cai and Wang [2] for outerplanar graphs. Notice that this lower
bound is asymptotically tight as it is asymptotically tight for trees (Theorem 2.3),
and outerplanar graphs form a superset of trees.

To establish a lower bound for the surviving rate of outerplanar graphs, we need to
consider only maximal outerplanar graphs, i.e., outerplanar graphs where the addition
of any edge will destroy the outerplanarity. Let G = (V,E) be a maximal outerplanar
graph, i.e., a planar embedding of a maximal outerplanar graph with all vertices on
the boundary of the exterior face. We will establish our result for G by considering the
dual graph G∗ = (V ∗, E∗) of G constructed as follows: place a vertex inside each face
of G, and, if two faces have an edge e in common, join their corresponding vertices
by an edge e′ crossing only e.

The firefighting problem on vertices of G can be transformed into that on faces
of the dual graph G∗: A fire starts at a face of G∗ and spreads from a burning face f
to each unprotected face sharing a common edge with f in one unit of time. In each
unit of time, a firefighter can protect one face not yet on fire. See Figure 4 for an
example.

Let x denote the vertex in G∗ corresponding to the exterior face of G. It is well
known that G∗ − x is a tree of maximum degree 3 as every face of G (except the
exterior face) is a triangle. We turn G∗−x into a rooted binary tree T = (VT , ET ) by
picking up a leaf r as the root (see Figure 4(b) for an example). Note that each edge
in G∗−T connects a vertex v of T with vertex x, and, for convenience, we also regard
vertex x as a child of v. For each vertex v ∈ VT \ {r}, all vertices on the (r, v)-path
are ancestors of v. For each vertex v ∈ VT \ {r}, we use p(v) to denote its parent in
T , Tv the subtree rooted at v, and depth(v) the depth of v which is the distance from
the root to v. We also designate left and right children of each vertex v ∈ VT \ {r} in
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(b) The dual G∗. G∗ − x forms a rooted binary
tree with root r.

Fig. 4. A maximal outerplanar graph G and its dual G∗. For example, a fire starting at vertex
17 in G is equivalent to a fire starting at face 17 in G∗. After one time unit the fire will spread to
the face neighbors 16, 15, 13, 10, 6, 19, and 18 of face 17 in G∗, and the firefighter can protect one of
these neighbors (or any face other than 17).

a natural way: We start with edge vp(v) and turn around v clockwise in a very small
circle; the first edge we cross connects v with its right child, and the other child of v
is its left child.2

We will use T to design our strategy for the dual graph G∗, and we will define
a few more terms before we can describe our strategy. A vertex v ∈ VT \ {r} is a
heavy vertex if Tv contains more than half of the vertices of Tp(v) and is a light vertex
otherwise. Clearly each vertex has at most one heavy vertex as its child, and every
path from the root has at most 	logn
 light vertices. A path P (v0) = v0, v1, . . . , vt is
a heavy path if each vi, 1 ≤ i ≤ t, is a heavy vertex (vertex v0 can be either a heavy
or a light vertex), and a vertex vi, 1 ≤ i ≤ t − 1, is a turning vertex if vi is the left
(right, respectively) child of vi−1 and vi+1 is the right (left, respectively) child of vi.

For a subtree Tv of T , we use T x
v to denote the induced subgraph G∗[V (Tv)∪{x}].

For each face f in G∗, its top vertex, denoted by vf , is the vertex on the boundary
of f with minimum depth in T . Note that, except for the root r, each vertex in T
is a top vertex of exactly one face. Finally we define two important faces for f : for
the two faces enclosing T x

p(vf )
in G∗, the one that contains both vf and p(vf ) in its

boundary is the critical face of f , and the other one is the nearly critical face of f
(see Figure 5(a)). Note that, if we protect the critical and near-critical faces of f in
sequence, the whole subgraph T x

p(vf )
will be cut off from the rest of T .

We are now ready to describe our strategy for the firefighting in the dual graph
G∗. Let f be the face where the fire breaks out. Our strategy consists of at most four

2When designating the left and right children of a vertex v ∈ VT \ {r}, we also take the exterior
vertex x into account. That is, if v has one (zero, respectively) child in T , then there must be one
(two) edge(s) in G∗ connecting v and x; we also regard x as a child of v. For example, in Figure
4(b), e is the right child of s, d is the left child of c, and x is both the left and right children of f .
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(a) In the first two rounds, we
use Rule 2 to protect critical
and nearly-critical faces f1 and
f2 of f .

f

vf

p(vf)

I

I

II

f1
f2

f3
w

P (p(vf))

(b) In the 3rd round, we use
Rule 3 to protect face f3.
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(c) In the 3rd and 4th rounds,
we use Rule 4 to protect faces
f4 and f5.

Fig. 5. Our strategy when the fire starts at f . Grey faces are protected. The Roman numeral
in a face indicates the earliest time for the face to catch fire.

rounds of protection: the first two rounds will contain the fire in T x
p(vf )

, and the next

two rounds will go along the heavy path P (p(vf )) to save all faces inside a “heavy
subgraph” of T x

p(vf )
. The strategy is given by the following four rules carried out in

order.
Rule 1. We do nothing if depth(vf ) ≤ 1; otherwise, we use Rules 2–4.
Rule 2. For the first two rounds, we protect the critical and nearly critical faces of f

in turn to contain the fire inside subgraph T x
p(vf )

(see Figure 5(a)).

Rule 3. If the heavy path P (p(vf )) has at least six vertices and no turning vertex
among the first five vertices, let w be the its sixth vertex. In the third round,
we protect the face whose top vertex is p(w) to save all faces inside subgraph
T x
w (see Figure 5(b)). We do nothing in the fourth round.

Rule 4. If the condition in Rule 3 doesn’t hold (thus the strategy in Rule 3 hasn’t
been carried out), and if the heavy path P (p(vf )) has at least nine turning
vertices, then let w1 and w2 be the eighth and ninth turning vertices. Let f4
and f5 be the faces whose top vertices are p(w1) and p(w2). We protect f4
and f5 in the third and fourth rounds to save all faces inside subgraph T x

w2

(see Figure 5(c)).
It is easy to see that the strategy is valid as it does not protect any burning faces.

A face f is a fire source for g if, when the fire starts at face f , our strategy may not
save face g. A vertex u is a bad ancestor of a face g if there is a fire source f for g with
depth(vf ) > 1 such that vf is a child of u. We now show that our strategy ensures
that the average number of burnt faces in G∗ is O(log n). For this purpose, we first
put an upper bound on the number of bad ancestors.

Lemma 4.1. Every face g has at most O(log n) bad ancestors.
Proof. By Rule 2, we know that when the fire starts at a face f with depth(vf ) > 1,

all faces outside T x
p(vf )

are saved because of the protection of the critical and nearly

critical faces of f in the first two rounds. Therefore, any bad ancestor of g is an
ancestor of vg and hence is on the (r, vg)-path P of T .

To put an upper bound on the number of bad ancestors of g in P , we first
decompose P into sections. Because P contains at most 	logn
 light vertices, the
deletion of these light vertices divides P into at most 	logn
 + 1 sections. We add
each light vertex to the section that immediately follows it. Let S be an arbitrary such
section. The turning vertices on S further divide S into sections, which we refer to as
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r

vg

section

mini-section

Fig. 6. Decomposition of the (r, vg)-path into sections and further into minisections.

minisections (see Figure 6). We add each turning vertex to the end of the minisection
that immediately follows it. Suppose v ∈ P is a bad ancestor of g. By Rule 4, we
see that v can reside only in the last nine minisections for each section. For each
minisection, we see from Rule 3 that v can be only one of the last four vertices in the
minisection. It follows that the number of possible bad ancestors of g in each section
is at most 36, implying that the total number of possible bad ancestors on P is at
most 36(	logn
+ 1), which completes the lemma.

With Lemma 4.1 at hand, we can now establish the surviving rate of outerplanar
graphs.

Theorem 4.2. The surviving rate of every n-vertex outerplanar graph is 1 −
Θ( logn

n ).
Proof. As mentioned earlier, the firefighting problem on vertices of an outerplanar

graph G is equivalent to that on faces of its dual graph G∗. From Rules 1 and 2, we
see that every fire source f for a face g satisfies either (a) depth(vf ) ≤ 1 or (b) p(vf )
is an ancestor of vg. There are at most four faces satisfying (a), and the number of
fire sources satisfying (b) is at most twice the number of bad ancestors of g as each
vertex in T has at most two children.

Since the number of bad ancestors of g is at most O(log n) (by Lemma 4.1), the
number of fire sources for g is no more than 4+ 2O(log n) = O(log n). Therefore, our
strategy saves at least n−O(logn) vertices on average, and the theorem easily follows
from this and Theorem 2.3.
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