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Abstract. The evaluation of the degree of susceptibility to landslides has become a major concern in 

mountainous areas, it is a key component of manager policies efforts in disaster prevention, mitigate risk and 

manage the consequences. The region of Al Hoceima is one of most mountain regions in Morocco, and is 

highly exposed landslides events. For this reason, the area was selected in order to determine its susceptibility 

to landslides using two methods. The purpose of this study is to evaluate and to compare the results of 

multivariate (logical regression) and bivariate (landslide susceptibility) methods in Geographical Information 

System (GIS) based landslide susceptibility assessment procedures. In order to achieve this goal, the selected 

methods were compared by the Seed Cell Area Indexes (SCAI) and by the spatial locations of the resultant 

susceptibility pixels. We found that both of the methods converge in 80% of the area; however, the weighting 

algorithm in the bivariate technique (landslide susceptibility method) had some severe deficiencies, as the 

resultant hazard classes in overweighed areas did not converge with the factual landslide inventory map. The 

result of the multivariate technique (logical regression) was more sensitive to the different local features of the 

test zone and it resulted in more accurate and homogeneous susceptibility maps. This information may have 

direct applications in landslides susceptibility research programs and can assist decision-makers in the 

implementation of preventive management strategies in the most sensitive areas. 

Keywords:  Landslide susceptibility, Multivariate, Bivariate, Al Hoceima, Morocco. 
 

1 Introduction  

Mass movements, In particular the landslides are 

very destructive factors, which cause every year lots of 

financial losses in mountainous area [1]. They 

can interact in very different ways and scattered in 

different places [2]. They are in general a manifestation 

of landmasses gravity displacement destabilized because 

of natural conditions.  

Landslide susceptibility expresses the spatial 

probability that a landslides, which exist or may 

potentially occurs in an area for different local 

environmental conditions [3]. The most important 

conditions for a landslide susceptibility zonation include 

geomorphology, geology, geotechnical parameters, 

hydrology, topography, meteorology and botany [1].  

The susceptibility of an area may be determined 

through very diverse, their comparison has largely fueled 

the scientific literature [4]. GIS and remote sensing has 

contributed largely to the development of these methods. 

Among the most recent methods used, there is the 

bivariate analysis based on Bayes' theorem named theory 

of evidence [5-7]. Actually, statistical methods seem to 

be more applicable and the preferred by the scientific 

community [8]. 

In Morocco, the identification, description and 

mapping of landslide hazard is a relatively new field of 

study. In the 1960's, [9] Avenard (1965) have mapped out 

the erosion in the Sebou basin. Since then, several studies 

have followed [10-15]. Most of these studies 

were conducted in Rif region, which is highly exposed to 

landslides hazards. However, the evaluation of the 

susceptibility to landslides in this area using probabilistic 

methods remains insufficient.  

The objective of this research is to: (i) 

systematically inventory region, characterize and map the 

landslides in the Al Hoceima region, (ii) Build a 

geographic information systems (GIS) database of these 

hazard events and its causative factors, (iii) Assess the 

susceptibility to landslides through a bivariate and 

multivariate probability model. (iv) Compare the results 

of the two selected calculation methods 
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2 Study area 

The study area (Al Hoceima region)

central part of the (Rif northern Mo

latitudes 34°00” to 35°20” N and long

3°50” W “figure 1”. The total surface ar

area is 414 km2. This Rif in general and

region is located in an area geologically

to earthquakes [16] and is considered 

affected by different ground instabilities 

Geologically, the Al Hoceima area 

internal domain of the Rif Belt relate

Orogeny. The area is formed by a range 

and is characterised by the stacking of 

units that extends from Paleozoic to C

these units, there is the external dorsal 

supports, as a tectonic klippe, the terrain

dorsal limestone and those of the Palaeo

nappes. These units overlay the terrains 

zone (Tertiary sole) “figure 1”. From a

point of view, Al Hoceima region is dom

and mountainous terrain characterized

slopes and by diverse topography. Eleva

a few meters to 1200m [34-35]. The Al

has a large forest area and under Medit

influences, it receives an annual rainfal

and 700 mm. 

 

Fig.1. Location map of the study area, Ce

limestone; Ci-2: Marl-sandstone from Priab

Cm:  Cretaceous Early Marl; Cs: Cretaceo

Jurassic limestone; Kt: Schist from ketama

siltstone; Qa: Quaternary; Ts: Marl of Tis

Ultrarif Jurassic Marl; mi: Triasic marl-clay o

rn: Marl-dolomitic. 
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3.1 Data sets and databas

The selection of causal fact

the susceptibility to landslides

reviewed multiple physical p

the world for the development

[17-19]. A preliminary analys

the number of parameters and

The choice of variables is bas

applicability at the scale of th

availability. Consequently, 

quantifiable variables were 

susceptibility of study area to la

Land cover: The spatial d
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recognized that bare soils favo
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analysis of a Landsat ETM+ im

Fracture density: lineation

landslide occurrence [21], to 

map, we used the results of
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fields data; Which allowed u

density map.  

Lithology: Represents a ma

lithological map is based on 

obtained by the segmentation
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 the study area; and ii) data 

, the seven following 

e chosen to evaluate the 
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l distribution of landslides is 

/land cover. Indeed, it is 

avor terrain instability [20]. In 

map was produced by the 

M+ image (year 2000).  

on has an effective role in a 
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of the analysis of satellite 
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instability [1]. The erosion of stream banks can cause the 

triggering of a landslides or its reactivation.  

Seismicity: Using a global catalog of landslides, [24] 

Keefer had identified that the area where landslides are 

likely to occur, increases with magnitude of earthquakes 

and that a minimum magnitude of 4 is required to trigger 

a landslide. 

3.2 Bivariate method 

The weight of evidence method is based on a 

statistical bayesian bivariate approach. Actually is being 

used in several geology fields, and the interest for this 

method extended in the field of landslide hazard 

assessment is constantly increasing [25, 6, 7].  

A detailed description of the mathematical 

formulation of the method is available in [26] and 

mathematical relationships for landslide hazard mapping 

is available in [27]. The method calculates the weight for 

each predictive factor based on the presence (positive) or 

absence (negative) of the training point theme units (D) 

within the area of each binary predictor theme (B), as 

indicated in [28]: W = ln {B/Vd}{B/Vd }                                                     (1) W = ln {B/Vd}{B/Vd }                                              
(2) 
 

A positive weight (Wi+) indicates that the causative 

factor is present at the landslide location and there is a 

positive correlation between presence of the causative 

factor and landslides. A negative weight (Wi-) indicates 

an absence of the causative factor and shows the level of 

negative correlation. The difference between the two 

weights is known as the weight contrast, Wf (W+ - W-), 

and the magnitude of contrast reflects the overall spatial 

association between the causative factor and landslides. 

In weights-of-evidence model, the combination of 

causative factors assumes that the factors are 

conditionally independent of one another with respect to 

the landslides [26]. 

The calculation of weights of evidence assumes 

conditional independence among the causative factor 

input to the model. One technique to assess the 

conditional independence between pairs of binary 

causative factor is to calculate a Chi-squared statistic 

(X2) to assess the variation between the expected and 

observed occurrences on and off the patterns in the two 

factor. 

The pairwise test between two evidential factors 

involves a contingency table calculation, applicable only 

to locations at which landslides occur. The rows of the 

contingency table are the classes of one evidential factor, 

and the columns of the contingency table are the classes 

of the second factor. Each cell (i,j) of the table records the 

number of landslides occurring for a specific overlap of 

the i-th class of factor 1 and the j-th class of factor 2.  

The null hypothesis of conditional independence is 

tested by determining if the measured chi-squared value 

exceeds a theoretical chi-squared value, given the level of 

significance. The (α) is the number of rows – 1 times the 

number of columns - 1. So for binary themes, the (α) =1. 

The level of significance for most tests is taken as 95%, 

equal to (1-probability) or (α) =0.05 [5, 29] Probability 

values (α) <0.05 indicates some conditional probability, 

or the failure of the conditional independence test at the 

95% level. Low values of probability indicate conditional 

independence and the lower the value the greater the 

indication of conditional independence. The main 

problem of this test is a sensitivity in the number of 

landslides taken into account, the results varying by 30% 

[30, 31]. 

 

3.3 Multivariate (logical regression) method  

As with the weight of evidence method, the logical 

regression has been largely used to study the 

susceptibility to landslides. Indeed, it allows forming a 

multivariate regression relation between causative factors 

that might affect the probability of the landslide 

occurrence [32]. The predicted values, which range from 

0 to 1, can be defined by the following formulas [33], 

32]: 

p =ez/(1+ ez)                                                                  (3) 

z= b0+ b1 x1 + b2 x2 + …..+bn xn                              (4) 

where P is the probability of landslide occurrence 

(landslide susceptibility index), z is the linear logistic 

model, b0 is the intercept of the model, n is the number of 

landslide–causative factors, b is the weight of the each 

factor, and x is the landslide conditional factors. 

Logistic regressions have several advantages, namely 

[34]: 

1. They work with quantitative and / or categorical 

variables 

2. No analysis of factor conditional independence (X2 

test) is necessary to obtain consistent results; 

3. The method of calculation does not necessarily 

require a partition of the study area by homogeneous 

units  

3.4 Comparison of methods 

The results susceptibility maps produced from 

bivariate  analysis and logical regression analyses. Both 

of them produced acceptable results will be compared 

depending on how their high susceptibility classes differ 

or converge. Therefore, the seed cell area index (SCAI) 

was used which is the area percent values divided with 

the landslide seed cell percent values. The high and very 
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high susceptibility classes should have very small SCAI 

values and low and very low susceptibility classes to 

have higher SCAI values. 
 

4 Results and discussion 

4.1 Landslides inventory and predictive factors 
mapping 

At a scale of 1:50,000 to 1:30,000 through 

interpretation of multiple data sources (satellite image, 

geological and geomorphological maps) combined with 

field data, a landslide inventory maps was 

constructed “figure 3”. It shows the spatial distribution of 

existing landslides that have moved in the past. 187 

landslides of various dimensions have been distinguished, 

they cover an area of 30 km2 accounting for 7 % of the 

study area. The rotational and translational landslides 

represents the majority with 80% of the total number of 

observed landslides, followed by flows (12%) and falls 

(8%). 

 
Fig.3. Inventery landslides map  

Figure 4 shows the predictive variables maps for the 

study area: (i) the land use “figure 4a”, shows a 

dominance of bare soils with about 57% followed by 

agricultural areas and urban area with about 33%. It is 

noted that the majority of inventoried landslides (60%) 

occur in areas with bare soil. (ii) the orientation of the 

lineaments is dominated by the NE-SW direction. The 

highest fracturing density is found in the NW of the study 

area “figure.4b”. The main lithological units of the study 

area have been grouped into four categories “figure 4c”, 

which according to their percentages are: 43.05% of 

quartzitic sandstone, 37.78% of shale, 14.05% of land 

Marl-schist, and finally 5.09% of the limestones. In this 

sense, it should be noted that most of inventoried 

landslides in our study area are related to the presence of 

clays, marls and shales. With regard to slope, the majority 

of the territory has a slope higher than 6% “figure 4d”. 

The maximum values are naturally found in mountain 

areas where the slope usually exceeds 20%. The Aspect 

map shows that the most exposed areas are in the 

mountainous areas on the western side of the study area 

“figure 4e”. The study area is traversed by a very dense 

hydrographic network but the rivers are non-permanent 

limited to periods of high floods “figure 4e”. It has a 

strong seismicity at the NW but the magnitudes do not 

exceed 5 “figure 4g”.  

Generally, in case of landslides, evaluation of a 

prediction result is based on predictive ability of the 

prediction result. The best validation method is to see if 

the prediction result may be identical with inventory 

landslides. 

Table 1. Shi-sequar result for each predictive factor; Probability 

values depend on chi-squared values (number of degrees of 

freedomX2) and Values α < .05 indicate some conditional 

dependence. 

Parameters Test 
Fracture 

density 
Seismicity Lithology 

Hydrographic 

network 

density 

Aspect 
Land 

use 

Slope 
X2 109 6 30 43 117 19 

α 0.00 0.99 0.00 0.00 0.00 0.00 

Fracture 

density 

X2 

 

34 87 47 12 12 

α 0.00 0.00 0.00 0.76 0.71 

Seismicity 
X2 

  

 

25 24 10 18 

α 0.00 0.00 0.84 0.35 

Lithology 
X2 

   

14 18 27 

α 0.59 0.33 0.00 

Hydrographic 

network 

density 

X2 

  

6 15 

α 0.99 0.56 

Aspect 
X2 

  
26 

α 0.00 

In trying to determine the best combination of 

predictive factors and landslide occurrence, the 

conditional independence was tested for each parameter. 

The table 1 shows chi-square for all possible pairs. As a 

result, for the degree of dependency, which exceeds the 

76 per cent, it evidence a dependence between 

Hydrographic network density-Aspect (99%) and 

between Slope-Seismicity (99%) and Aspect-Seismicity 

(84%). Based on these results, we selected four models: a 

benchmark model combining all parameters and three 

other models by combining only independent factors 

“table 2”. 

Table 2. The variables combinations 

Model Combination 

M1 Slope (S) + Fracture density (Frd) + Seismicity 

(Ss) + Lithology (Lth) + Hydrographic network 

density (Hyd) + Aspect (As) + Land use (Lu) 

M2 Frd + Lth + Hyd + Lu + Ss 

M3 Frd + Lth + Hyd + Lu + S 

M4 Frd + Lth + As + Lu + S 

4.2 Application of weights of evidence mode and 
logistic Regression 

4
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Fig.4. parameters maps 
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5 Conclusion  

Landslides are very tragic 

regularly in a variety of plac

many quantitative methodolog
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factors. In this paper, two m

tested in the Al Hoceima are
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Seven predictive factors w
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from DEM and the rest from a

area. This study shows that the 

is appropriate for study area an
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zones at the south are the areas whic

susceptibility values in comparison with

plain which have the lowest values. 

Fig.6. Regression logistic adopted 

 

Fig.7. ROC compared graphs
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