
REVIEW
published: 16 February 2021

doi: 10.3389/fpubh.2021.559595

Frontiers in Public Health | www.frontiersin.org 1 February 2021 | Volume 9 | Article 559595

Edited by:

Marcia Hiriart,

National Autonomous University of

Mexico, Mexico

Reviewed by:

Hidetaka Hamasaki,

Hamasaki Clinic, Japan

Antonio R. Villa,

Universidad Nacional Autónoma de

México, Mexico

*Correspondence:

Bruno A. Marichal-Cancino

bruno.marichal@edu.uaa.mx

Specialty section:

This article was submitted to

Clinical Diabetes,

a section of the journal

Frontiers in Public Health

Received: 27 May 2020

Accepted: 12 January 2021

Published: 16 February 2021

Citation:

Chávez-Reyes J,

Escárcega-González CE,

Chavira-Suárez E, León-Buitimea A,

Vázquez-León P,

Morones-Ramírez JR, Villalón CM,

Quintanar-Stephano A and

Marichal-Cancino BA (2021)

Susceptibility for Some Infectious

Diseases in Patients With Diabetes:

The Key Role of Glycemia.

Front. Public Health 9:559595.

doi: 10.3389/fpubh.2021.559595

Susceptibility for Some Infectious
Diseases in Patients With Diabetes:
The Key Role of Glycemia
Jesús Chávez-Reyes 1, Carlos E. Escárcega-González 2,3, Erika Chavira-Suárez 4,

Angel León-Buitimea 2,3, Priscila Vázquez-León 1, José R. Morones-Ramírez 2,3,

Carlos M. Villalón 5, Andrés Quintanar-Stephano 1 and Bruno A. Marichal-Cancino 1*

1Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes,

Aguascalientes, Mexico, 2 Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Nuevo León, Mexico,
3Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de

Nuevo León, Nuevo León, Mexico, 4Unidad de Vinculación Científica de la Facultad de Medicina, Universidad Nacional

Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico, 5Departamento de

Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico

Uncontrolled diabetes results in several metabolic alterations including hyperglycemia.

Indeed, several preclinical and clinical studies have suggested that this condition may

induce susceptibility and the development of more aggressive infectious diseases,

especially those caused by some bacteria (including Chlamydophila pneumoniae,

Haemophilus influenzae, and Streptococcus pneumoniae, among others) and viruses

[such as coronavirus 2 (CoV2), Influenza A virus, Hepatitis B, etc.]. Although the

precise mechanisms that link glycemia to the exacerbated infections remain elusive,

hyperglycemia is known to induce a wide array of changes in the immune system

activity, including alterations in: (i) the microenvironment of immune cells (e.g., pH,

blood viscosity and other biochemical parameters); (ii) the supply of energy to infectious

bacteria; (iii) the inflammatory response; and (iv) oxidative stress as a result of bacterial

proliferative metabolism. Consistent with this evidence, some bacterial infections are

typical (and/or have a worse prognosis) in patients with hypercaloric diets and a stressful

lifestyle (conditions that promote hyperglycemic episodes). On this basis, the present

review is particularly focused on: (i) the role of diabetes in the development of some

bacterial and viral infections by analyzing preclinical and clinical findings; (ii) discussing

the possible mechanisms by which hyperglycemia may increase the susceptibility for

developing infections; and (iii) further understanding the impact of hyperglycemia on the

immune system.
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INTRODUCTION

Diabetes mellitus is a chronic and complex illness characterized by several metabolic alterations
including dyslipidemia and hyperglycemia, among others (1). According to the American Diabetes
Association (A.D.A.), diabetes mellitus (DM) can be classified into the following categories: (i)
type 1 diabetes mellitus (T1DM), characterized by the loss of pancreatic β-cells induced by an
autoimmune response; (ii) type 2 diabetes mellitus (T2DM), identified by the gradual loss of
insulin secretion and/or the development of insulin resistance; (iii) gestational DM, developed
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in some pregnant women; and (iv) other types of DM that
are due to miscellaneous causes (2, 3). Interestingly, patients
with uncontrolled DM (regardless of type) have alterations in
healing latency and susceptibility for developing some emerging
infectious (mainly bacterial) diseases. In addition, compared to
non-diabetic normoglycemic patients, DM patients are at higher
risk for developing the current severe acute respiratory syndrome
coronavirus 2 (SARS-COV2) caused by the coronavirus 2
(CoV2) that has shocked the world economy and created a
global health pandemic emergency named COVID-19 (4–7).
Moreover, the restoration of normoglycemia seems to be related
to a better prognosis for bacterial infections (5); whereas in
COVID-19 diabetic patients, no obvious conclusions have been
reached about the impact of normoglycemic treatments on the
development and outcome of this particular disease (8).

People with metabolic impairments (i.e., fasting
hyperglycemia, postprandial hyperglycemia and DM) show
greater ranges of glucose levels (2). Indeed, fasting hyperglycemia
(when food has not been taken for at least 8 h) is a metabolic
disorder characterized by levels of plasma glucose above
110 mg/dL, a condition commonly observed in diabetic
patients (9). Fasting hyperglycemia (from now on simply
referred to as hyperglycemia) has been involved in deleterious
effects such as tissue damage associated with oxidative stress
and immunological impairments (10), which increase the
susceptibility to acquire bacterial infections and COVID-19
(8, 11–17) (see below).

FIGURE 1 | Illustration of a hypothetical outcome in an experimental model of bacterial pneumonia in normal conditions vs. during hyperglycemia. Under

normoglycemia conditions the immune response handles successfully bacterial infections. Nevertheless, hyperglycemia impairs the immune response by inducing

several glucose-related factors, including those mentioned above. These scenarios could determine the outcome during bacterial infections.

Remarkably, the effects of hypoglycemia induced by anorexia
on the clinical outcome of infected patients have been discussed
with no consensus (18). Moreover, Wang et al. (19) have
suggested that: (i) the pathogenic nature (i.e., bacterial, viral, etc.)
and infection profile may be key factors for the prognosis and
clinical outcome in a preclinical model of bacterial infection;
(ii) glucose plays a key role in the outcome of infected animals;
and (iii) survival of animals under bacterial sepsis (with Listeria
monocytogenes) was dramatically decreased when they were
gavage-fed. In contrast, if these animals received glucose (i.p.),
all animals died (19). As anorexia is an important stereotypic
behavior of the sickness response, it could be an adaptive strategy
for combating some infectious illnesses. In this sense, it has also
been reported that bacteria from other groups (e.g., Salmonella)
may induce inhibition of anorexia via Salmonella leucine rich
repeat protein (SlrP) which inhibits interleukin-1β (IL-1β). This
effect seems to maintain the conditions for increasing the
opportunity for Salmonella to infect other hosts (20). Although
these experiments were carried out in preclinical models, the
results suggest that glycemia is so important that hosts and
infectious agents have developed adaptive strategies to control
glucose levels during the progression of an infectious process
(11). Moreover, the control of glucose levels may determine the
infection course and/or the recovery times (Figure 1); therefore,
the understanding of the mechanisms involved on the hijacking
of glucose control during infections may have an enormous
medical utility.
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The relationship between hyperglycemia and susceptibility to
infections has been described extensively in diabetic patients.
Nevertheless, very few reports have analyzed the appropriate
management of glycemia according to the infection type,
immunological responsiveness, and clinical variables (i.e., patient
age, time or period elapsed with diabetes, etc.). To focus on
these aspects, the present review has considered information
on: (i) the effect of glycemia on infection outcome and
immune cells physiology; (ii) the biochemical alterations in
cell physiology during diabetes and/or hyperglycemia; and
(iii) the impact of pharmaceutical care interventions for
glycemia control on some of the most frequent emerging
infectious diseases.

METHODS AND INCLUSION CRITERIA

To consider the relevant literature in this theoretical review,
we searched for studies published in various databases such
as Science direct, Pubmed central and Google Scholar. These
databases included any combination of the main key terms
“bacterial infections,” “COVID-19,” “diabetes,” “influenza A
virus,” “hepatitis B and C viruses,” “human immunodeficiency
virus,” and “hyperglycemia” among themselves and with
important topics such as: “rheological properties of blood,”
“biochemical alterations of diabetic immune cells,” “immune
response on hyperglycemic environment,” “hypoglycemic drugs,”
“bacterial infection outcome,” and “comorbidities with COVID-
19.” Around 600 articles published from 1966 up to 2020 were
perused, and only 260 of those articles with experimental and/or
theoretical information which related hyperglycemia and/or
diabetes to bacterial infections and/or COVID-19 and some other
viruses were included in this review.

The Association Between Hyperglycemia
and Common Infectious (Mainly Bacterial)
Diseases in Diabetes
Effect of Hyperglycemia on the Immune Response
In general, alterations in the immune system during
hyperglycemia seem to be associated with mechanisms that
include lower secretion of inflammatory cytokines, depression
in neutrophils and T cells function, as well as decreases in
humoral immunity (21, 22). Moreover, it is documented
that hyperglycemia may delay the recuperation of tissues
(e.g., via changes in the secretion of growth factors and
collagenase levels) (12, 23); this, in turn, may lead to increased
susceptibility of these tissues to develop secondary emerging
infections (mainly bacterial). Other alterations in the immune
response induced by hyperglycemia can be explained by
biochemical and/or cellular events, such as: (i) creation of
advanced glycation end-products (AGEs), which reduce
the expression of myeloid cells surface proteins known as
class I major histocompatibility complex (24); (ii) decreased
migration of polymorphonuclear leukocytes, chemotaxis,
and/or phagocytic activity (25); (iii) inhibition on G6PD (see
below) (26); and (iv) increased apoptosis of polymorphonuclear
leukocytes and reduced transmigration through the endothelium

(27). Clearly, the control of glycemia may be mandatory
for dealing with emerging infections (mainly bacterial), in
view that: (i) some bacteria grow better in a high glucose
environment (28); and (ii) a hyperglycemic state seems to
negatively affect the body’s ability to respond to antimicrobial
therapy (29).

Common infections related to T1DM and T2DM are those of
the respiratory and urinary tracts. Indeed, it has been reported
that patients with T2DM have alterations in chemotaxis,
phagocytosis, antigen presentation and proliferation/function
of T cells in response to Mycobacterium tuberculosis, which
facilitates infection and its symptomatic progression (30).
Certainly, the impaired chemotaxis of leukocytes does
not depend on the type of diabetes mellitus (31). Other
tissues/organs that are also commonly compromised in diabetic
patients include the skin, bone marrow, gastrointestinal
tract and liver, among others (21, 22, 32). This susceptibility
for developing infections may lead to complications in the
management of diabetic patients, such as post-operative
infections, sepsis, chronic periodontitis, emphysematous
cholecystitis, emphysematous pyelonephritis, malignant external
otitis, rhinocerebral mucormycosis, gangrenous cholecystitis,
and others (21, 22, 32, 33).

It is noteworthy that foot infections are highly common in
patients with diabetes, which usually start after a foot wound
that eventually leads to ulceration. In this respect, neuropathy
seems to be an important component of foot ulceration which,
in turn, increases the risk of amputation (34). The wound
is predisposed to a loss of sensitivity because of the damage
in neuron fibers by pathophysiological mechanisms not fully
understood (34–36). It has been suggested that a vascular
endothelium damage produced by inflammation and oxidative
stress (36) may produce alterations in the microcirculation and,
finally, nerve damage (37).

In many cases, these infections cause ischemia at the wound
site, ultimately leading to amputations (38). Moreover: (i)
immunological disturbances in neutrophil functions such as
chemotaxis, phagocytosis and intracellular killingmay contribute
to exacerbate infections (12, 31, 38–41); and (ii) AGEs may
influence the appearance of a chronic immune imbalance by
activating pro-inflammatory cells which, in turn, would lead
to a chronic subclinical inflammation that hinders the correct
function of the immune system to fight infections and to deal
with wound healing (42).

Thus, the typical hyperglycemia present in patients with
diabetes could be related to an increased risk of different
types of infections. Interestingly, cancer patients treated with
glucocorticoids showed increased infection rates (43). Indeed,
glucocorticoids are direct immunosuppressors that may increase
hyperglycemia by hepatic gluconeogenesis and inhibition of
glucose intake (43, 44). All these lines of evidence, strongly
suggest that hyperglycemiamay induce an adequate environment
for several infectious pathogens; and hence, a suitable glycemic
control would decrease the rate of infection risk (45–49).

Finally, it is logical to assume that the changes in the
immune system produced by hyperglycemia as an occasional
(transient) event (e.g., stress) should be quite different from the

Frontiers in Public Health | www.frontiersin.org 3 February 2021 | Volume 9 | Article 559595

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Chávez-Reyes et al. Hyperglycemia: Risk in Infectious Diseases

changes induced by a chronic hyperglycemia. Nevertheless, in
any hyperglycemic condition (i.e., transient or chronic), patients
may be susceptible to some of the same clinical complications,
including poor wound healing and an increased rate of infection
(50). In fact, acute glucose elevation in critically injured
trauma patients may be predictive of infections (51); whereas
hyperglycemia at admission (with no indication about the cause)
is a predictor of infections in critically ill trauma patients
(52). Clearly, chronic hyperglycemia involves compensatory
mechanisms (not discussed here) that are absent when it is due to
an occasional event; in both cases, normalization of the glucose
levels seems to be a useful practice to improve the nosocomial
outcome (50, 53, 54).

Stress-Induced Hyperglycemia and Infections
Besides diabetes, another condition that commonly predisposes
to hyperglycemia is stress. The stress-induced hyperglycemia
(SIH) generally refers to a metabolic condition with a transient
hyperglycemia associated with clinical illness (55). The SIH is
a common problem in patients admitted to intensive care units
(ICU) (50), even in the absence of pre-existing diabetes (55), and
it is defined as an increase above 200 mg/dL of blood glucose
(52, 56, 57).

The SIH is especially dangerous in chronic critical illnesses
(58), as the organs’ functions become aberrant increasing the
risk of death. In less severe cases, SIH seems to affect the
normal immune response, since hyperglycemia (as discussed
above) is associated with an increased risk to infections
(50). Hyperglycemia is certainly related to a higher risk of
infections and sepsis in patients of ICU (59), an increased
risk of complications in patients who underwent orthopedic
trauma surgery (60), and surgical site infections in non-diabetic
orthopedic trauma patients (61) (see Table 1).

A stress response is associated with an increased pro-
inflammatory response characterized by the release of several
cytokines, including tumor necrosis factor-alpha (TNF-α), IL-
1 and IL-6, which are related to insulin resistance (59).
Indeed: (i) TNF-α inhibits tyrosine kinases and decreases
tyrosine phosphorylation of the insulin receptor (92); (ii)
IL-1 suppresses glucose transporter-4 (GLUT-4) translocation
by a decreased activation of the phosphoinositide-3-kinase
(PI3K) mechanism (93); and (iii) IL-6 increases the release
of adrenocorticotrophic hormone (94), with all the scenarios
resulting in insulin resistance.

Additionally, there may be an integration of a vicious cycle
when taking a hypercaloric fatty diet, which can also induce
an increase in catecholamines’ release (95), in combination
with lifestyle factors leading to chronic stress (resulting in a
plasma increase in catecholamines and cortisol). In this scenario,
catecholamines via β-adrenoceptors expressed in adipocytes,
liver, skeletal and smooth muscle cells may increase the
metabolism of glycogen and triglycerides for increasing blood
glucose, fatty acids, glycerol, and other local vascular actions (96–
98). Accordingly, this SIH may lead to immunosuppression (see
Figure 2).

The contribution of SIH in the diabetic patient is a complex
issue that seems to worsen the glycemic status of patients with

TABLE 1 | Main complications during bacterial infections in diabetic patients.

Pathogen Emerging

disease

Main complications in

diabetics

References

RESPIRATORY INFECTIONS

Streptococcus

pneumoniae

Pneumonia Respiratory failure, pleural

effusion, bacteremia,

septic shock

(62–64)

Mycobacterium

tuberculosis

Tuberculosis

(TB)

Impaired cell-mediated

immunity, renal failure,

micronutrient deficiency

and pulmonary

microangiopathy

(65, 66)

URINARY TRACT INFECTIONS

Escherichia coli and

Proteus sp.

Pyelonephritis Pherinephric and/or renal

abscesses,

emphysematous

pyelonephritis, renal

papillary necrosis,

urosepsis, and

hemolytic-uremic

syndrome

(5, 29, 67–

70)

GASTROINTESTINAL INFECTIONS

Helicobacter pylori Gastritis Macroangiopathy,

neuropathy, proteinuria

and microalbuminuria

(71–74)

SKIN AND SOFT TISSUE INFECTIONS

Staphylococcus

aureus and

Staphylococcus

epidermidis

Foot

infection

Amputation, osteomyelitis,

and death

(13, 75–78)

Combination of one

anaerobic and many

aerobic

microorganisms

Necrotizing

fasciitis

Fulminant local tissue

destruction, microvascular

thrombosis, and systemic

signs of toxicity

(79–81)

Escherichia coli,

Klebsiella sp., Proteus

sp., and

Peptostreptococcus

Fournier

gangrene

Sepsis, multiple organ

failure, and death

(82, 83)

HEAD AND NECK INFECTIONS

Pseudomonas

aeruginosa

Invasive

external otitis

Periostitis, osteitis,

chondritis, osteomyelitis,

multiple cranial nerve

palsies, and facial

paralysis

(84, 85)

Listeria

monocytogenes

Listeriosis Sepsis, meningitis,

hydrocephalus

(86–88)

References: (5, 13, 29, 62–80, 82–85, 89–91).

type 2 diabetes; whereas the autonomic damage induced by
neuropathy in type 1 diabetes leads to contradictory and non-
conclusive data (99). Patients with necrotizing fasciitis (and
diabetes) developed adverse outcomes when SIH generated
glycemic gaps with increases in glucose >146 mg/dL (86).
Thus, synergy of diabetes and SIH is a phenomenon of
high medical impact (both in infectious and non-infectious
clinical admission) that remains to be completely characterized
(53, 100–104).

Frontiers in Public Health | www.frontiersin.org 4 February 2021 | Volume 9 | Article 559595

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Chávez-Reyes et al. Hyperglycemia: Risk in Infectious Diseases

FIGURE 2 | Development of a vicious cycle induced by a stressful lifestyle. Stressors promote the behavior of hypercaloric food binge which, in turn, increases the

release of catecholamines and cortisol (immunosuppressants). Subsequently, catecholamines induce glycolysis, reinforce the maladaptive eating patterns, and

negatively modulate immune cell activity. On the other hand, cortisol induces chronic immunosuppression.

Infectious Diseases in Patients With
Diabetes: Exacerbation and Susceptibility
to SARS-CoV-2 and Other Viral Diseases
Diabetes is a condition that may potentiate infectious diseases
and predispose patients to acquiring more severe diseases. To
support this notion, a recent matched cohort study analyzed the
incidence infection rate from 306,011 patients (102,493 patients
with type 1 and 2 diabetes), and reported that patients with
diabetes (especially type 1) are more susceptible to developing
severe infectious diseases (105). In addition, patients with
diabetes are more vulnerable to fungal, viral, and bacterial
infections than the non-diabetic population, exhibiting a worse
prognosis once the infection is installed (106).

According to epidemiological studies, the most common
infectious diseases of hospitalization in children, adolescents
and adults with diabetes are lower tract respiratory infections
(pneumonia, among others), diabetic foot infection, skin and
soft tissue abscesses, and urinary tract infections (107, 108).
The respiratory tract infections are the primary comorbidity
associated with severe or lethal infections that increases
hospitalizations in individuals with diabetes (109, 110).

Pneumonia is the hospitalization leading cause of severe lower
respiratory tract infections, and it is an important risk factor for
infectious illnesses in diabetic patients (111). The main fungal
and bacterial pathogens associated with pneumonia infections
are Mycoplasma pneumoniae, Chlamydophila pneumoniae,
Legionella pneumophila, methicillin-resistant Staphylococcus
aureus, Haemophilus influenzae, and Streptococcus pneumoniae
(109). This diversity of pneumonia development pathogens
may denote a complex biological interaction between

wild microorganisms residing in the human body, the host
immunophysiology, and the pathogenic pneumonia specificity.

On the other hand, hormones like cortisol, glucagon and
catecholamines released during certain conditions, such as
trauma, infection and surgery (57) increase gluconeogenesis
and decrease peripheral glucose uptake (52). Interestingly,
the association between sympathetic hyperactivity (e.g.,
induced by chronic stress), hyperglycemia, hypothermia and
immunosuppression of the acquired immunity seems to be
mainly mediated by activation of α-adrenoceptors (112, 113).

Emerging global health studies have reported that other
respiratory tract infections with high mortality rate in patients
with diabetes, besides pneumonia (114), are those promoted by
viral agents. These include the influenza viruses, the Middle
East respiratory syndrome coronavirus (MERS-CoV), the severe
acute respiratory syndrome coronavirus (SARS-CoV) and, most
recently, the SARS-CoV-2 (see below), the last viral infection
outbreak across the globe (7, 17, 115, 116).

SARS-CoV-2 and Other Viral Diseases: Impact of

Hyperglycemia
Patients with hyperglycemia have been reported to be susceptible
to develop a severe form of COVID-19, which is a risk factor
for fatality (6, 17). Newsworthy, diabetes provides a ∼3-fold
higher risk of fatality as compared to the non-diabetic population
among the COVID-19 sufferers (7). Moreover, diabetes increased
the length of hospital stays for COVID-19 patients from 9.8
days in non-diabetic patients to 14.4 days in diabetic patients
in a retrospective cross-sectional study that was conducted in
England (14). In this regard, it has been described that a proper
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control of glycemia by antidiabetic drugs can be beneficial in
reducing the risk of death in diabetic patients with COVID-
19 (16). Indeed, it was inferred that DPP-4 inhibitors might be
beneficial to prevent or treat COVID-19 disease (117). Although
this certainly opens a new field of interest in the treatment
of SARS-CoV-2 pneumonia, further studies and research are
required on this topic.

Bacterial infections are frequently identified after typical viral
respiratory infections and they are important causes of morbidity
and mortality. In patients with COVID-19, bacterial comorbidity
has been reported to be low (i.e., an overall proportion of
6.9 %) in a recent metanalysis reported by Langford et al.
(118). Notoriously, the comorbidity was slightly higher in critical
patients (i.e., 8.1%) (118).

DM, hypertension, cardiovascular diseases, and obesity are
the top four comorbidities worldwide associated to critically ill
patients with COVID-19 and mortality (15, 119–121). Indeed,
5 to 10% of patients with SARS-CoV-2 pneumonia require
intensive care unit (ICU) admission and mechanical ventilation.
Patients requiring invasive mechanical ventilation are strongly
related to poor outcome with high mortality rate in Chinese and
American populations (122, 123).

Unfortunately, studies on the unfavorable outcomes and
mortality rate related to pathogenic co-infections that worsen
respiratory tract function in people with diabetes and COVID-
19 infection are limited (124). However, bacterial, and viral
pathogenic co-infections have been studied in patients with
SARS-CoV-2 pneumonia requiring ICU admission. These
studies showed that methicillin-sensitive Staphylococcus
aureus, Haemophilus influenzae, Streptococcus pneumoniae,
Enterobacteriaceae, Pseudomonas aeruginosa, Moraxella
catarrhalis, and Acinetobacter baumannii were the 28% of
bacterial strains isolated by experimental laboratory procedures
(cultures or PCRs assays) (125). Importantly, no viral co-
infection has been detected in the critically ill COVID-19
patients, supporting the idea that respiratory infections are often
depending on combinatorial factors associated to geography,
season, human physiology, and behavior, as well as pathogenic
interactions. Therefore, it is mandatory to determine the
different biological mechanisms used for each viral infection
and/or co-infection of pathogens that aggravate states of health
or disease to pursue appropriate treatments.

Admittedly, pathogenesis of COVID-19 viremia remains
unclear. However, some lines of evidence suggest that high
levels of systemic glucose increase glucose concentration in
the epithelial secretion of the respiratory tract, disrupting
the orchestration of the innate and humoral immunological
response. This includes, in particular, hyperglycemia-induced
changes in coagulation, worsening of endothelial function, and
reproduction of inflammatory cytokines (126).

Data about hospitalization for infectious diseases in
diabetic and non-diabetic subjects have been associated
with various hyperglycemic conditions on admission,
increasing poor outcomes and mortality rates. Moreover,
hyperglycemia on admission was clearly associated with
undiagnosed DM, strongly suggesting that an optimal
glycemic control that reduces glycemic fluctuations during

hospitalization should be a beneficial clinical practice for viremia
control (127).

The American Diabetes Association (A.D.A.) recommends a
blood glucose level of 140 to 180mg /dL (7.8 to 10.0 mmol/L)
for most critically ill patients and patients who are not in good
health. Glycemic control during clinical procedures could be
accompanied by insulin therapy if the hyperglycemia persists
starting at a threshold ≥ 180 mg/dL (128). Thus, patients with
COVID-19 and with/without DM should have a well-controlled
blood glucose (129).

Influenza A Virus
The influenza A virus (IAV) induces a self-limited infection in
most patients, which is characterized by several symptoms such
as myalgia, fever, and dry cough (130). Nevertheless, patients
with diabetes experience a more severe type of this disease
(131) that is represented by a triple risk of hospitalization and
double risk of fatality compared with non-diabetic sufferers
(132). Despite the fact that IAV infects upon 15% of the world’s
population every year (133), the full mechanisms underlying
its pathogenesis, especially on patients with diabetes, remain
thus far inconclusive. In this sense, Hulme et al. (132) reported
that the IAV infection in hyperglycemic conditions increases
the endothelial damage leading to a pronounced inflammatory
response; this explains, at least in part, the severity of the
symptoms in patients with diabetes (132). In support of this
notion, Kohio and Adamson (134) reported an enhanced IAV
replication rate in pulmonary epithelial cells under elevated
glucose concentrations in vitro.

Admittedly, the specific mechanisms that underline
susceptibility factors for viral infections development in
patients with diabetes (Table 2) are poorly understood. However,
an experimental study (132) that used an in vitro and in vivo
model of pulmonary epithelial-endothelial cells exposed to a
high glucose concentration (12mM) demonstrated an increased
barrier damage after co-cultured cells were infected with IAV;
this, in turn, augmented pulmonary edema associated with a pro-
inflammatory response (132). Thus, controlling hyperglycemia
seems to be important for hospitalized patients with severe viral
infections and diabetes (144).

Hepatitis B and C Viruses
The Hepatitis C virus (HCV) and Hepatitis B virus (HBV) are
known causes of hepatic decompensation, liver cirrhosis, and
hepatocellular carcinoma (HCC), being two major public health
problems worldwide (145–147). The evidence for a link between
HCV and DM has been proposed several decades ago (148). In
this sense, based on the meta-analysis of Gou and colleagues
(145), patients with T2DM are more prone to HCV infection
(∼3.5-fold increase) compared with the risk in the non-diabetic
group. In the case of HBV, the diabetic condition predisposes
to acquiring the infection (147, 149). Moreover, there is a high
association between diabetes and the higher risk for a worse
outcome of HCV and HBV infection (139, 141, 150, 151). HCV
patients with diabetes have a higher incidence of HCC compared
to non-diabetic HCV patients (radio 1.73) (152). Interestingly,
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TABLE 2 | Main complications during viral infections in patients with diabetes.

Pathogen Emerging

disease

Main complications in

patients with diabetes

References

RESPIRATORY INFECTIONS

Influenza virus Pneumonia Risk of admission to the

intensive care unit, fatal

outcome after infection,

increasing influenza

severity, and secondary

bacterial infections

(130, 135,

136)

Severe Acute Respiratory

Syndrome Coronavirus 2

(SARS CoV2) virus

COVID-19 Inflammatory storm in

atherosclerotic plaques,

increased viral secondary

infection to lung, acute

respiratory distress

syndrome, acute renal

failure, acute cardiac injury

and heat failure, and

increased risk for patient

mortality

(137, 138)

LIVER INFECTIONS

Hepatitis B virusa Hepatitis B Elevated serum

triglyceride level, blood

glucose abnormalities

steatosis and cirrhosis

(22, 139)

Hepatitis C virus Hepatitis C Reduced rate of sustained

virological response,

progression to fibrosis and

cirrhosis, and higher risk

for development of

hepatocellular carcinoma

(22, 140,

141)

OTHER INFECTIONS

Human

immunodeficiency

virus

HIV/AIDS Hypertension,

dyslipidemia, and acute

myocardial infarction

(142, 143)

aThe studies about the relationship between Hepatitis B virus and T2DM are

not consistent.

References: (22, 130, 135–143).

the use of several hypoglycemic drugs improves the prognosis for
this type of cancer (153, 154).

Human Immunodeficiency Virus
Human immunodeficiency virus (HIV) increases the risk for
developing T2DM (155, 156). Likewise, patients with HIV are
prone to diabetes in younger people and in the absence of obesity
(157, 158). In this sense, several hypotheses have been proposed
to understand the mechanisms for this link, including the effects
of antiretroviral drugs (ARVD), lipodystrophy, co-infections, and
autoimmunity (156). The use of ARVD in patients with HIV,
which include atazanavir, darunavir, and saquinavir, interfere
with the GLUT-4 dynamics by increasing insulin resistance and
reducing insulin secretion (159). On the other hand, it has
been recognized that the HIV infection and/or its treatment
can induce lipodystrophy (i.e., an abnormal distribution of fat
in the body); this raises the levels of TNF-α which, in turn,
contributes to increasing insulin resistance and finally triggering
diabetes (160). The third hypothesis to understand the relation
HIV-diabetes includes the co-participation of HCV; in this sense,

the increased intrahepatic TNF-α may be a trigger to develop
diabetes (161). Finally, the autoimmune hypothesis explains
that some HIV-patients may undergo beta cell destruction,
developing the autoimmune diabetes observed in some HIV-
infected patients (162).

Physicochemical Changes During
Hyperglycemia: Effects on the Immune
System
Rheological Properties and Blood Viscosity
Rheological properties of blood may impact function,
metabolism, motility and even the latency for clearing toxins of
blood cells (163, 164). Changes in rheological conditions have
been reported during diabetes and hyperglycemia, which may
alter red blood cells physiology and the local microcirculation
(163, 165). Indeed, some of the blood rheological properties that
have been reported to be disturbed during hyperglycemia and/or
diabetes include: (i) an increment in serum osmolarity (166);
(ii) erythrocyte deformation that is produced by glycosylation
of membrane proteins (167, 168); (iii) changes in pH (169);
and (iv) an increase in blood viscosity (164, 165). All these
alterations may impair the immune system activity and could
explain the impact that glycemia has on the clinical outcome
(Figure 1).

Furthermore, increased blood viscosity may lead to
hemoconcentration and vasodilatation that increases edema
(164). In close connection with this response, coagulation
directly affects blood viscosity, increasing the risk for developing
microangiopathy (168). In fact, anomalous erythrocyte
deformability and platelet aggregation impair microcirculation,
which leads to hypoxia in hyperglycemia and diabetes (170, 171).
In this sense, a decrease in oxygen supply could impair the
immune response because in those cells oxygen is essential
for destroying infectious microorganisms (172). As a result,
oxygen supplementation: (i) avoids surgical infections during the
perioperative period (173, 174); and (ii) can be used to prevent
infections and promote wound healing (175).

To round off and complete the above rheological scenario, it
is to be noted that the concentration of fibrinogen and globulins
are also important factors involved in blood viscosity (168). In
fact, an increase in plasma fibrinogen in diabetic patients is a
determining factor for blood viscosity (176). This, in turn, will
alter oxygen supply resulting in an impaired immune response.

pH
Any change in pHmay be detrimental for the proper functioning
of the whole body (169), including the diabetic sufferers. In this
sense, diabetic ketoacidosis (DKA) is a common hyperglycemic
condition that affects both T1DM and T2DM patients, resulting
in a decreased venous blood pH (below 7.3) (177). DKA results
from an altered metabolism of glucose mainly produced by a
decreased or abolished production of insulin (178). This, in turn,
promotes the metabolism of triglycerides into glycerol and fatty
acids, with the latter being further oxidized to ketone bodies,
mainly acetoacetate and β-hydroxybutyrate (178, 179). Ketone
bodies are weak acids that weigh down blood buffering capacity
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(carried out by bicarbonate anion), altering pH and resulting in a
metabolic acidosis (177, 180).

As the most severe complication of DM, patients with DKA
have more difficulty to handle infections (179, 181). Admittedly,
it is not clear whether DM may increase the susceptibility for all
infections; however, many of them (mainly the bacterial ones) are
more severe, frequent and/or typical of diabetic patients (21). For
instance, some of the most common infections in these patients
are pneumonia and urinary tract infections (179, 182), as well
as other infections difficult to manage, such as mucormycosis
(183, 184), aspergillosis (185), tuberculous meningitis (186), and
pulmonary coccidioidomycosis (187).

Several reports have shown the role of pH in the immune
response. For example, with a pH below 6.5: (i) the mobility of
polymorphonuclear leukocytes was impaired (188), which could
result in delayed migration of leukocytes; (ii) chemotaxis was
inhibited (188, 189); and (iii) the production of superoxide anion
was decreased in neutrophils (190), resulting in an impaired
“respiratory burst” (191). However, phagocytosis in bovine
neutrophils was hardly affected when they were challenged with
Staphylococcus aureus at acidic pH (192). Moreover, Loeffler
et al. (193) reported an inhibition in lymphocytes proliferation
induced by interleukin-2 (IL-2) at acidic pH. Nevertheless,
only some functions seem to be affected in lymphocytes at
an acidic pH, namely, at pH 6.7 (as compared with pH 7.1)
an increase in lymphocytes mobilization was reported (194,
195). A possible explanation for this finding is that every cell
type and specific functions are differentially altered by pH
gradients. Obviously, further studies are required to understand
the molecular mechanisms underlying each cellular type and the
corresponding physiological phenomena.

Other important alterations induced by hyperglycemia in
the circulatory system are related to a miss-functionality of
the enzymatic machinery of blood cells, including Na+/K+-
ATPase activity and glucose-6-phosphate dehydrogenase (G6PD)
(see below).

Alterations in Na+/K+-ATPase Activity
Na+/K+-ATPase is a transmembrane protein responsible for
maintaining intracellular Na+/K+ balance by generating the
gradients of Na+ and K+ (196). This enzyme is expressed
ubiquitously in almost all cell types, regulating a plethora
of functions such as the reabsorption of glucose and amino
acids (which depends on a Na+ gradient) in distal convoluted
tubule, motility in sperm cells, action potentials in synaptic
neurons, etc. (197). In erythrocytes, this enzyme is involved
in maintaining their volume and water homeostasis (198);
while in lymphocytes, their proliferation induced by a variety
of stimulus is dependent on Na+/K+-ATPase activity (199).
Interestingly, Na+/K+-ATPase activity is decreased in the
erythrocytes from T2DM sufferers (198, 200), but its expression
remains unaltered (201). These findings suggest that the activity
of Na+/K+-ATPase may be used as a potential biomarker
for detecting early phases of T2DM (202). Within this
context, one theory that explains the effects of hyperglycemia
on Na+/K+-ATPase is by glycosylation, which induces the
impairment of the ATPase activity in erythrocytes (202).

In fact, this enzyme has several glycosylation sites located
at β-subunits, some of them related to protein maturation
(203) and other functional processes (197). These lines of
evidence show the importance of glycosylation in Na+/K+-
ATPase activity.

On the other hand, Na+/K+-ATPase partake in the
functionality of immune cells (199, 204, 205). Indeed,
proliferation of lymphocytes is dependent on Na+/K+-ATPase
activity (199) and the expression of nuclear factor of activated
T cells transcription complex (NFAT) of thymocytes (206); this
factor is essential for the production of Interleukin-2 (207), a
cytokine produced by lymphocytes during a microbial infection
(208). Hence, immunologic and hematologic deficiencies in
diabetic patients are related to multiple alterations, which may
include aberrant activity of the Na+/K+-ATPase.

In agreement with the above findings, a reasonable possibility
to explain the alterations in immune system activity during
diabetes is that the Na+/K+-ATPase activity could be equally
decreased in both lymphocytes and erythrocytes (since these cell
types are in the same environment) (201). Besides this, protein
glycosylation can occur by enzymatic, but also by non-enzymatic
ways; in this respect, glucose is chemically attached to proteins by
Schiff base and Amadori product adducts, resulting in a variety of
biological effects, including inactivation of enzymes (209), such
as Na+/K+-ATPase. It has even been reported that a deficiency
in glucose-6-phosphate dehydrogenase, an enzyme altered in
diabetes, increases protein glycosylation (210), supporting the
idea previously proposed (see below).

Glucose-6-Phosphate Dehydrogenase
Glucose-6-phosphate dehydrogenase (G6PD) is an enzyme
expressed ubiquitously in all mammalian tissues. It plays an
important role in the pentose pathway catalyzing the first
reaction in this metabolic route, which is necessary to convert
glucose into pentose sugars (211). This pathway produces
nicotinamide adenine dinucleotide phosphate hydrogen
(NADPH), an antioxidant molecule that catalyzes the reaction to
regenerate reduced glutathione (212).

Many studies have reported the importance of G6PD in
antioxidant defense against toxicity of reactive oxygen species
(ROS) (211, 213). Interestingly, a relationship is established
between diabetes and a decrease in G6PD activity in a variety of
cells from rats (212) and humans (214). Additionally, this enzyme
plays an important role against infections (213, 215) and in T cell
proliferation (216). In keeping with this view, a deficiency of this
enzyme in leukocytes is related to serious infectious diseases, such
as chronic granulomatous disease (172, 217).

Admittedly, the specific molecular mechanisms that explain
the effects of chronic hyperglycemia on G6PD activity in immune
cells remain uncertain. For example, Xu et al. (26) showed
evidence of inhibition of this enzyme via phosphorylation by
protein kinase A in kidney cortex of diabetic rats pretreated
with streptozotocin. Similar results were observed in aortic
endothelial cells cultured under hyperglycemic conditions (218).
Another possibility to explain the effect of glucose on G6PD
activity is via protein glycosylation produced by a high glucose
concentration (219).
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In summary, the above physicochemical alterations
resulting from hyperglycemia impair the immune response,
predisposing diabetic subjects to acquire infections as well as
exacerbates them.

Potential Benefits of Hypoglycemic Drugs
on the Outcome of Clinical Infections
Hypoglycemic Drugs and Their Clinical Effects on

Bacterial Infections
An uncontrolled blood glucose level is associated with an
increase in microvascular and macrovascular complications
in diabetic patients (220). Likewise, a hyperglycemic state
results in multiple consequences, including osmotic diuresis,
fluid/electrolyte imbalance, poor wound healing, impaired
immune response, and increased susceptibility to infections,
among others (22, 221). Accordingly, these pathophysiological
conditions have led to the implementation of therapeutic
strategies for a tight glycemic control in patients with T2DM,
resulting in the development of the so-called glucose-lowering
drugs (i.e., Oral Antidiabetic Drugs; OADs).

Several lines of evidence have shown that the use of OADs to
maintain tight blood glucose concentrations between 80 and 110
mg/dl decreases infection-related complications and mortality
(see Table 3). For example, metformin, which is the first-line
pharmacological agent for T2DM treatment (233), reduced
airway glucose permeability and prevented the higher load of
Staphylococcus aureus (S. aureus) induced by hyperglycemia
(224). Similarly, metformin pre-treatment inhibited the
glucose-induced growth of Pseudomonas aeruginosa, increased
transepithelial electrical resistance (TEER) and decreased

glucose flux in an epithelial cell culture model (234). In this
sense, mutants of genes affecting glucose uptake of P. aeruginosa
decreased the bacterial loads on streptozotocin-induced
hyperglycemic mice compared to control.

Interestingly: (i) metformin pre-treatment of hyperglycemic
animals reduced both airway glucose and bacterial load (234);
(ii) the incidence of tuberculosis has been related to abnormal
glucose levels, whereas metformin is a protective agent in
the treatment of tuberculosis in diabetic patients (235); (iii)
metformin treatment was also associated with an increased risk
of bacterial pneumonia in patients with chronic obstructive
pulmonary disease from a nationwide cohort study (Taiwan)
(236); and (iv) pneumonia is a swelling disease usually caused
by a bacterial infection commonly associated with diabetic
patients (237).

Consistent with the above findings, diabetic patients with
community-acquired pneumonia (CAP) developed worse results
and longer hospital stays in comparison to patients with CAP
without diabetes (238); accordingly, it is important to discuss the
relationship between the use of OADs and pneumonia. Indeed,
these data support airway glucose as a critical determinant of
increased bacterial load during diabetes (225).

Moreover, Mendy et al. (223) analyzed data from the National
Health and Nutrition Examination Survey during 1988–1994
and 1999–2010 for participants aged 40 years or older who had
diabetes and were followed up for mortality through 2011. Their
results showed that metformin was associated with a decreased
risk for chronic lower respiratory diseases (CLRD) mortality
in the overall population (HR: 0.39, 95% CI: 0.15–0.99) and
among participants with baseline CLRD (HR: 0.30, 95% CI:
0.10–0.93) (223).

TABLE 3 | Pharmacodynamics of some hypoglycemic drugs and their reported effects on infectious processes.

Drug Mechanism of action Reported effects on infectious processes

Metformin It decreases hepatic production and intestinal absorption

of glucose with an improvement in insulin sensitivity (222)

Decreased risk of chronic lower respiratory diseases (223)

Reduced infection with S. aureus and P. aeruginosa in mice (224)

Inhibited growth of P. aeruginosa in airway epithelial cell line

(Calu-3) in vitro (225)

Reduced risk of Mycobacterium tuberculosis infection compared

to those which received sulfonylureas as initial treatment for

diabetes (226)

Reduction of ∼20% in the risk of sepsis (227)

Sulfonylureas It increases insulin secretion via ATP-sensitive potassium

channel- pathway (228)

Inefficient to reduce the risk of sepsis (227)

Acarbose It inhibits the alpha-glucosidase enzymes in the small

intestine, delaying the breaking down complex

carbohydrates and sucrose (229)

N/D

Thiazolidinediones Interaction with the nuclear peroxisome

proliferator-activated receptor-gamma (PPAR- γ),

regulating the transcription of several insulin responsive

genes (230)

Moderate reduction in the risk of sepsis (227)

Dipeptidyl peptidase 4(DPP-4)

inhibitors

It increases insulin secretion and inhibits the release of

glucagon (231)

No association between DPP-4 inhibitors and risk of sepsis (227)

Sodium-glucose co-transporter

2 (SGLT2) inhibitors

Inhibit renal reabsorption of glucose (232) N/D

References: (222–232).

N/D, not determined.
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Likewise, Pan et al. (226) investigated the effect of metformin
vs. sulfonylureas on tuberculosis risk in patients with T2DM.
The study demonstrated that patients with T2DM treated with
metformin in the initial 2 years, had a significant reduced risk
of tuberculosis as compared to those receiving sulfonylureas as
initial treatment (226).

Furthermore, Shih et al. (227) reported the relationship
between the use of AODs and the risk of hospitalization for
sepsis. The authors found that the use of metformin was
associated with ∼20% reduced risk of sepsis as compared
with non-use. In contrast, meglitinides and sulfonylureas
were associated with increased risk of future sepsis events,
but this association was not evident among recent and
current sulfonylurea users. Moreover, the DPP-4 inhibitors
and thiazolidinediones on sepsis were neutral, nevertheless, the
occurrence of sepsis in current thiazolidinediones users was
reduced (227).

On the other hand, some studies have shown that
pretreatment with dapagliflozin, a sodium-glucose co-
transporter 2 inhibitor, reduced blood and bronchoalveolar
lavage glucose concentrations and P. aeruginosa CFU in leptin
receptor-deficient (db/db) mice, as compared to those seen in
wild type (WT) mice (239).

In summary, the available evidence thus far has established
the increased susceptibility to certain types of infections
related to hyperglycemia in T2DM. Clearly, further studies
on the mechanisms regulating OADs and bacterial action on
specific tissues/organs are required. Such studies could yield
potential alternatives to prevent/suppress hyperglycemia and
bacterial infections.

Moreover, the risk for developing infections is increased in
hyperglycemic environments, where there is a lower production
of interleukins, a reduced chemotaxis and phagocytic activity,
and a gastrointestinal dysmotility (22). The use of specific OADs
such as metformin is associated with reduced hospital-treated
infections, septicemia prognosis, and some kinds of respiratory
illnesses (224, 240). Indeed, another study in diabetic patients
has shown a reduction in autoimmune diseases by an acute
intervention with OADs, such as DPP-4 in combination with
other hypoglycemic drugs (241). One mechanism that may
improve those immune response effects is through GLP-1 action
that induces insulin secretion and inhibits glucagon secretion,
ameliorating the glycemic variability (242).

To conclude this section, it is to be noted that experimental
anorexia seems to play an important protective role in supporting
the recuperation of bacterial infections (19). Moreover, mortality
in critical illnesses (e.g., sepsis, severe burning, etc.) may
increase via alterations in immune cell activity that, in turn,
may be mediated by the release of stress hormones (cortisol,
catecholamines, etc.) and the hyperglycemia that these hormones
induce (57). As hyperglycemia impairs periphery glucose usage,
administration of insulin improves cellular uptake and attenuates
the inflammatory response (57).

A higher risk of CAP was found with other OADs, except
with dipeptidyl-peptidase 4 (DPP-4) inhibitors (237). Indeed, in a
retrospective cohort and a meta-analysis study, DPP-4 inhibitors
failed to increase the risk of pneumonia during diabetes (243).

These controversial data about the use OADs and the outcome of
bacterial infections in diabetic patients point out the necessity for
more detailed analyses and clinical observations.

In view that hyperglycemia may be a determinant factor in
the outcome for bacterial infections, any effort for controlling
the increases glucose levels is valuable. Another interesting
approach may be the supplementation with calcium and vitamin
D because it decreases insulin resistance and hyperglycemia
(244); nevertheless, some strategies must be considered to ponder
the risks and benefits.

Further Considerations
Hypoglycemia occurs when there exists a lack of adequate
food intake, excessive exercise, a stressful experience, excessive
alcohol consumption, concurrent infections, severe digestive and
urologic diseases, and/or after taking antidiabetic medications
(245). This suggests that hypoglycemia is an endocrine alarming
signal that is triggered to level the required concentrations of
blood glucose in the body.

Considering that fasting plasma glucose is normally
maintained between 70 and 99 mg/dL (2), a biomarker
associated with high blood glucose levels is HbA1c, whose
normal range is between 4 and 5.7% in healthy people. Less
than 7% of HbA1c is found in controlled people with diabetes,
and above 8% is found in people with uncontrolled diabetes
(246). Low or high levels of HbA1c have been related to severe
hypoglycemic episodes with a glucose-lowering regimen in
patients with diabetes (247).

Glycemic control and reduction of hyperglycemia or
hypoglycemia events are the main challenges in the clinical
experience to achieve decreases of blood glucose variability
(248). Indeed, levels of glucose and its constant fluctuations
are good indicators of organ dysfunctions such as those
associated with infections (249). Patients with diabetes often
suffer from chronic low-grade infections such as periodontitis
and foot ulceration. Surgery-site infections and susceptibility
to septic shock increase with pre and post-operative glucose
levels and their variability (250, 251), suggesting that glucose
monitoring is one of the key elements in hyperglycemia and
hypoglycemia management diseases where the immune system
is compromised.

Glucose variability is currently considered more deleterious
than chronic hyperglycemia in the development of diabetes-
related complications (252). However, some studies suggest
that an intensive glucose control does not improve some of
the diabetes-associated complications such as cardiovascular
failures, raising the mortality rate (253). Furthermore, a tight
glucose control induces hypoglycemic episodes and the increased
response of the immune system, impacting on coagulant factors,
pro-inflammatory cytokines, proatherogenic cell adhesion
molecules, and nitric oxide-mediated vasodilatation. Innate
immunity response is activated nearly after acute or chronic
infections are experienced by diabetes sufferers. For this, the
study of the suppression of innate immune system is a key factor,
since it exacerbates the inflammatory response after an acute
hypoglycemia episode, inducing prothrombotic changes and
increasing platelet reactivity (254).
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Another consideration is that under normal and
pathophysiological metabolic functions, individuals course
with glucose swings during the day (255), correlating them
with the gastric emptying rate and postprandial glucose levels.
Glycemic fluctuations are limited by low glucose levels that slow
the gastric emptying or by high glucose that accelerate it (256).
However, a hypoglycemic state promotes reverse effects; hence,
the gastric emptying is accelerated and the absorption speed
of nutrients is increased to reach the physiological glycemic
levels, suggesting that gastrointestinal motility and gastric motor
function are important factors to consider for a therapy of
glycemic control (257).

During physiological gastric emptying, carbohydrates and
proteins are evacuated faster than lipids for their caloric content.
The evacuation of these macronutrients begins at 20 to 40min
after food intake and when they reach the intestine, incretin
hormones are secreted to blood. Glucagon-like peptide-1 (GLP-
1) is an incretin hormone that stimulates insulin secretion,
reduces glucagon secretion, and delays gastric emptying in a
glucose-dependent manner (256, 258).

Significantly, glucose-lowering therapies through the use
of diverse drug classes have been reported as an important
source of heart failure risk, particularly with differential
effects on insulin (259). Consequently, older patients are
the most affected population, especially if a diminished food
intake, excessive alcohol use, combination of non-prescribed
medications, concomitant infections, and diabetic complications
are also taken into account (260). Because of this, an intervention
with a forced hypoglycemia should be considered with caution
according to disease timing, age, nutritional behaviors, type of
medications and concomitant infections.

GENERAL CONCLUSION

Hyperglycemia clearly induces physiological and immunological
disorders in body tissues/organs that may predispose and
exacerbate some infectious diseases. Therefore, the control of
glucose levels could be an alternative tool to contribute to the
fight against infections not only in diabetic patients, but also

in other conditions that induce hyperglycemia, such as SIH. In
addition, several studies have shown the potential benefits of
controlling it (e.g., pharmacological approaches), opening a new
option to improve the outcome of some infections (bacterial and
viral). It is worth noting that the authors of this review agree
that glycemic control is necessary as part of good intervention
strategies to treat current and emerging infectious diseases.
Admittedly, the clinical evidence for reducing glycemic exposure
requires more supportive data, specifically for hypoglycemia
as a tool to fight infections in humans. Notwithstanding, this
review summarizes enough preclinical evidence to increase our
chances of beating infections by focusing on the key role of
glycemic control.
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