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Abstract
Using the Langevin dynamics, we have calculated numerically the temperature
and concentration dependence of the complex alternating-current susceptibility
χ(ω, T ) for disordered systems of fine magnetic particles taking into account
the dipolar interparticle interaction. We demonstrate that the behaviour
of the χ(ω, T ) dependencies with increasing particle concentration (which
means increasing interaction strength) and with increasing frequency depends
qualitatively on the single-particle anisotropy and on the damping parameter
used in the corresponding Langevin equation.

1. Introduction

The most challenging problem in the physics of disordered systems consisting of fine magnetic
particles is the investigation of their dynamical properties, such as magnetic viscosity and ac
susceptibility. The major difficulty here is due to the long-range and anisotropic dipolar
interparticle interaction which prevents the development of both analytical and numerical
methods powerful enough to handle these systems. During the last decade some progress in
analytical methods for studying the thermodynamics of dipolar glasses and related systems
was achieved (see, e.g., [1, 2] and references therein), but adequate analytical treatment of
their dynamical behaviour will hardly ever be possible.

Corresponding numerical studies can be performed using either the Monte Carlo technique
or numerical solution of the stochastic Langevin equations. There has been, to our knowledge,
just a single attempt to study the corresponding dynamics using a Monte Carlo approach [3],
where several interesting results concerning the temperature and frequency dependence of
the ac susceptibility were obtained. However, in [3] only single-particle moment flips over
the energy barrier were considered. Although both the single-particle anisotropy field and
the interaction field were taken into account when evaluating the height of the corresponding
barrier, this algorithm is obviously an oversimplification of the problem—especially for the
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most interesting case of strongly interacting systems with low and moderate single-particle
anisotropies. Even if it were possible to overcome these difficulties, the two inherent draw-
backs of this approach would still persist: (i) the justification of the relation between the
Monte Carlo step and physical time is still highly questionable; and (ii) the purely dynamical
phenomena (in this case, the precession of magnetic moments) cannot be taken into account.

These difficulties are absent in the Langevin-equation formalism, which was used to study
the dynamics of systems of interacting fine magnetic particles in [4,5]. Unfortunately, as was
pointed out in [6], the method used for the solution of the corresponding stochastic equations
in [4,5] is not self-consistent due to the improper interpretation of the Langevin equation using
the Ito stochastic calculus (instead of the Stratonovich one). In [6] it was shown once more
that for systems with a multiplicative noise the proper interpretation of the Langevin equation
as the Stratonovich stochastic equation is really important. The authors of [6] study in the
framework of the corresponding formalism the ac susceptibility of a single-particle system
only, so proper Langevin-dynamics simulation of interacting many-particle systems of this
kind seems not to have been performed up to now.

In this paper we present detailed results obtained from numerical simulations using the
Langevin dynamics for disordered interacting systems of fine magnetic particles (a brief
report on this work has been accepted as a ‘regular contribution’ for the proceedings of ICM-
2000). We have studied the temperature dependence of the ac susceptibility of such systems
for various particle volume concentrations, single-particle anisotropy values and precession
damping parameters. The paper is organized as follows. In section 2 we describe our simulation
method, which is essentially based on (i) the Heune scheme for the solution of the stochastic
differential equations [6,7]; and (ii) the extended Lorentz-cavity method for the calculation of
the interaction field for dipolar glasses. In section 3 results for various fine-particle systems
are presented, and the qualitative difference not only between the systems with high and low
single-particle anisotropy values but also between the cases of low and moderate precession
damping is demonstrated. Section 4 contains a comparison with the few theoretical results
available [3, 8–12] and numerous experimental results, obtained mainly for ferrofluids (see,
e.g., [13–17] and references therein). Several suggestions concerning the explanation of the
observed discrepancies between the ‘numerical’ and real experiments are discussed.

2. Simulation method

We study an interacting system of randomly placed (but non-overlapping) identical spherical
fine magnetic particles which are assumed to be absolutely single domain. This means that
the motion of the particle magnetization can be described as the motion of a single vector µi ,
which represents the ‘rigid’-particle magnetic moment (i denotes the particle number). For
this reason we use as a starting point the stochastic Landau–Lifshitz–Gilbert equation [18] for
the magnetic moment motion:

dµi

dt
= γ

[
µi × (Heff

i + Hfl
i )

] − γ
λi

µi

[
µi × [

µi × (Heff
i + Hfl

i )
]]

(1)

where the precession constant γ is equal to the gyromagnetic ratio in the limit of small damping
λ � 1, Heff

i denotes the deterministic effective field acting on the magnetic moment of the ith
particle and Hfl

i represents the corresponding fluctuation field. Below, we consider the case
of identical particles and will omit the particle index i where it cannot lead to ambiguities.

The deterministic field Heff in the basic equation (1) includes the external field Hext, the
anisotropy field Han and the interparticle interaction field Hdip. Below, we assume that all
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particles possess uniaxial anisotropy, so the anisotropy energy Ean is

Ean = −KV (m · n)2. (2)

Here K denotes the anisotropy constant, V is the particle volume and the unit vectors m

and n give the directions of the particle magnetic moment and the particle anisotropy axis,
respectively.

The interparticle interaction field for the system under consideration is due solely to the
magnetodipolar interaction and can be written as

H
dip
i =

∑

j �=i

3eij (eij · µj ) − µj

r3
ij

(3)

where eij = rij /rij and rij denotes the vector connecting the particles i and j .
Thermal fluctuations are included in the description of the magnetic moment motion via the

so-called ‘fluctuation field’ Hfl
i (t)whose cartesian components have the well known statistical

properties [18]

〈H fl
ξ,i〉 = 0 〈H fl

ξ,iH
fl
ψ,j 〉 = 2Dδij δξψ (4)

where i, j are the particle numbers, ξ, ψ = x, y, z and the ‘noise power’ D is proportional to
the system temperature T and depends on γ and the damping ratio λ as

D = λ

1 + λ2

kT

γµ
. (5)

At this stage it is convenient to introduce reduced units for (i) the particle magnetic moment
m = µ/MSV , where MS denotes the saturation magnetization of the particle material (so
|m| = 1), (ii) the magnetic field h = H/MS, (iii) the time τ = tγMS, (iv) the reduced
frequency w = ω/γMS, (v) the anisotropy constant β = 2K/M2

S and (vi) the distance
ρ = r/R, where R is the particle radius. In these units the basic equation (1) reads

dmi

dτ
= [

mi × (heff
i + hfl

i )
] − λi

[
mi × [

mi × (heff
i + hfl

i )
]]

(6)

and the reduced anisotropy field obtained from (2) is

han
i = βni (mi · ni ) (7)

and also the reduced interaction field can be expressed as

h
dip
i = 4π

3

∑

j �=i

3eij (eij · mj ) − mj

ρ3
ij

. (8)

The reduced temperature will be defined in units of the stray-field energy as T̃ = kT /M2
SV .

This definition is more convenient than the usual definition in units of the particle anisotropy
energy KV because it can also be used to study particles without intrinsic anisotropy and
enables a direct comparison of systems with different single-particle anisotropy values without
rescaling the temperature dependencies.

Care must be taken in the evaluation of the dipolar field (8) due to the long-range nature
of this interaction. In principle, for each particle the sum in (8) must be performed over all
other system particles (for finite systems) or using the Ewald method for systems with periodic
boundary conditions [19].

We employ periodic boundary conditions to reduce finite-size effects, so the Ewald method
would be the most appropriate choice. However, we have found that for all kinds of simulation
presented in this report it is sufficient to use the much simpler extended Lorentz-cavity method
as suggested and improved by many authors (see, e.g., [3, 20, 21]). In this method the
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contributions to the interaction field acting on the given particle from all the particles inside
the sphere with the ‘critical radius’ Rc around this particle are taken into account exactly (the
summation (3) is performed only over those particles j for which rij � Rc). The field from
the region outside this Rc-sphere is treated as the field of the homogeneously magnetized
media (with the corresponding average magnetization) inside the spherical cavity. The critical
radiusRc should be determined ‘experimentally’ using the obvious idea that for the appropriate
choice of Rc its further increase should not affect the results. We have found that the value
Rc = 2〈#r〉, where 〈#r〉 is the average interparticle distance, is sufficiently large for all the
particle concentrations used in our study. A typical example of the test simulations used to
determine the critical radius Rc is presented in figure 1, where the temperature dependence of
the susceptibility calculated for various Rc-values is displayed. It can be seen that on changing
the ratio Rc/〈#r〉 from 1.0 to 1.5 a substantial and systematic shift of the χ ′′(T ) is observed,
whereby the differences between the curves forRc/〈#r〉 = 1.5 andRc/〈#r〉 = 2.0 are random
and lie within the statistical errors. The results for Rc/〈#r〉 = 3.0 are indistinguishable from
those obtained for Rc/〈#r〉 = 3.0 and are not shown.

Figure 1. A test example for the choice of the cut-off radius (a system of particles with β = 2.0,
λ = 0.1 and concentration c = 0.08; reduced frequency w = 0.03). Susceptibility curves are
calculated using various values of the cut-off radius Rc as shown in the key.

To obtain physically consistent results one should interpret the basic Langevin equation
(6) in the Stratonovich sense [7]. It was recently pointed out once more [6] that for the case of
multiplicative noise (as in (6)) it is important which stochastic calculus (Ito or Stratonovich)
is used in the solution of the corresponding stochastic differential equation and that the
Stratonovich calculus should be used to obtain correct physical properties of magnetic systems.
For this reason we have used for the solution of (6) the stochastic Heune scheme [7] which is
known to converge quadratically to the Stratonovich solution of the corresponding stochastic
equation [22]. After trying several methods we have found that this scheme seems to represent
the optimal compromise when trying to achieve the maximal possible accuracy while keeping
the programming effort reasonably moderate.

The time step #τ used in the numerical solution of (6) was chosen (as usual) as large as
possible in order to perform simulations over sufficiently long times, but small enough to keep
discretization errors in the frames of the statistical accuracy of the results. We have found that
the value #τ = 0.05 is an appropriate choice for all parameter sets used in our simulations.

The real (χ ′(ω, T )) and imaginary (χ ′′(ω, T )) parts of the ac susceptibility of the system
were calculated in a standard way. First of all, several thousand time steps Lth were performed
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for the thermalization of the system starting from a random initial state. The corresponding
number of time steps Lth was determined from the requirement that after the thermalization
the system energy should remain constant in frames of thermodynamical fluctuations (no
systematic changes in the system energy should be observed). Afterwards an oscillating field

hz = h0 coswτ (9)

was applied to the system and the real and imaginary susceptibility parts were calculated as

χ ′(w, T̃ ) = 1

h0

1

Lτ

Lτ∑

l=1

〈ml,z〉 coswτl (10)

χ ′′(w, T̃ ) = 1

h0

1

Lτ

Lτ∑

l=1

〈ml,z〉 sinwτl (11)

where 〈ml,z〉 is the z-projection of the system magnetization per particle at the time step
l and τl = l #τ . The total number of steps Lτ was chosen such that for the given time
step #τ the measurements were performed during an integer number of field cycles Nc

(Lτ = 2πNc/w#τ ).
Additional checks were performed to verify the linearity of the system response by

performing the simulations with various oscillating-field amplitudes h0 and checking that
the susceptibilities obtained do not depend on the h0-value. Performing such tests, we have
looked for a universal criterion which would enable us not to have to perform the linearity
check for each set of the system parameters (e.g., single-particle anisotropy β and particle
volume concentration c). For an interacting system it is not possible to use for such a universal
criterion just the maximal value of a single-particle anisotropy field, hK = HK/MS = 2K/M2

S
(as was done in [6] for a single-particle case). The problem is that for various β- and c-values
the relation between the anisotropy and interaction field acting on a single-particle magnetic
moment may be very different. For this reason the h0-value chosen on the basis of just
the hK -value would be too small for systems with weak single-particle anisotropy and high
volume concentration. This, in turn, would result in unnecessarily large statistical errors in the
χ -‘measurements’.

For this reason we have adopted the following criterion for the h0-choice. For each pair
of (β, c) values and for a random orientation of single-particle moments, we have evaluated
the average magnitude htot of the total (anisotropy plus interaction) deterministic field acting
on each particle in the absence of an external field. Then we have chosen the oscillating-field
amplitude as a fraction of this average magnitude: h0 = ahtot. The value a = 0.2 was found to
be large enough to provide reasonably small statistical errors but still small enough to ensure
the linearity of the system response.

Successful tests of our program code were performed on a system of non-interacting
particles with aligned and randomly oriented anisotropy axes: results obtained with our
program were in quantitative agreement (in the frames of the statistical errors) with known
analytical results as well as with recent numerical calculations performed by Garcia-Palacios
and co-workers (see [6] and references therein).

3. Results and discussion

As was mentioned in the introduction, we have studied the dependence of the ac susceptibility
χ(ω, T ) on various system parameters: (i) particle concentration c (which controls the inter-
action strength); (ii) the single-particle anisotropy strength β; (iii) the damping parameter λ
(see basic equation (6)); and (iv) the frequency of the oscillating field ω.
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For most of the results presented below, simulations were carried out on a system consisting
of Np = 256 particles positioned randomly (but not overlapping) inside a cubic volume.
Periodic boundary conditions were assumed. For some key parameter sets, simulations were
repeated for Np = 512 particles to ensure that the results were independent of the system size.
For all parameter sets, susceptibility values were sampled for at least Nc = 20 oscillating-field
cycles, so for the typical reduced frequency studied,w = 0.03, aboutLτ ∼ 105 time steps were
required. Averaging over at least Nconf = 16 (mostly Nconf = 32) independently generated
spatial particle configurations was performed. A typical simulation run time for obtaining
a single χ(T ) dependence for a system with the parameters listed above (which means also
the averaging over 16–32 system configurations) on an Alpha 500 MHz workstation using a
program code written in Fortran90 was about 20–40 h.

The most interesting question concerning the behaviour of the systems under study is that
of the influence of the interparticle dipolar interaction on the system dynamics—in particular,
on its ac susceptibility χ(T ). To study this problem we have performed simulations for various
particle volume concentrations keeping all other system parameters fixed. The corresponding
results are shown in figures 2–6, where it can be clearly seen that changes in the χ(w, T̃ )

curves with the increasing particle concentration depend qualitatively on the single-particle
anisotropy value β and on the damping parameter λ.

Figure 2. χ ′′(w, T ) for large single-particle anisotropy β = 2.0 and low damping λ = 0.1.

We are interested mainly in the distribution of the free-energy barriers in the systems under
study, so below we shall show results concerning the imaginary part of the ac susceptibility
only.

3.1. High- and moderate-anisotropy cases

For moderate and large anisotropies (β � 1; see figures 2–4) the peak in the χ ′′(T̃ ) depend-
encies shifts towards lower temperatures with the growing particle concentration (increasing
interaction strength). This shift can be clearly seen especially for systems with low damping:
results for β = 2.0 and λ = 0.1 are shown in figure 2, and details of the corresponding χ ′′(T̃ )
peaks are displayed in figure 3. When the dissipation increases, the peak shift gets weaker and
it can hardly be seen for the moderate damping (figure 4, β = 2.0 and λ = 1.0). These results
mean that the dipolar interaction leads to a decrease of the free-energy barriers in fine-particle
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Figure 3. Peak details for figure 2.

Figure 4. χ ′′(w, T ) for large single-particle anisotropy β = 2.0 and moderate damping λ = 1.0.

systems with high and moderate anisotropies and this effect is more pronounced in systems
with low damping.

We would also like to point out another interesting feature of the χ ′′(T̃ ) curves for
the moderate-anisotropy case and low damping—the non-monotonic dependence of the
peak height on the particle concentration. To display this feature more clearly, we show
the enlargement of the corresponding peaks in figure 3, where χ ′′(T̃ ) dependencies for a
non-interacting system and for interacting systems with the particle volume concentrations
c = 0.02, 0.04 and 0.08 are shown. The peak height of the χ ′′(T̃ ) curves increases from the
non-interacting system up to the particle volume fraction c ≈ 0.04, after which it starts to
decrease (see the curve for c = 0.08 in the same diagram, figure 3, and the curve for c = 0.16
in figure 2). The effect is small, but clearly beyond our statistical errors. We have observed
this feature for systems with moderate single-particle anisotropy and low damping only—for
the moderate-damping case the peak height already decreases monotonically with increasing
concentration (figure 4). At present we do not have any qualitative physical explanation for
this phenomenon.
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Figure 5. χ ′′(w, T ) for small single-particle anisotropy β = 0.2 and low damping λ = 0.1.

Figure 6. χ ′′(w, T ) for small single-particle anisotropy β = 0.5 and moderate damping λ = 1.0.

We have also compared the temperature dependencies of the ac susceptibilities for various
frequencies keeping the particle concentration constant. The corresponding result for β = 2.0
is presented in figure 7, where χ ′′(w, T̃ ) curves for the particle volume fraction c = 0.08
and reduced frequencies w = 0.03, 0.1 and 0.3 are shown. It can be clearly seen that with
increasing frequency the peak position is shifted towards higher temperatures, whereby the
peak height decreases (see below for a comparison with experimental results).

3.2. Low-anisotropy case

For sufficiently small anisotropy values (how small depends on the dissipation parameter), the
χ ′′(w, T̃ ) peak shifts towards higher temperatures when the particle concentration increases—
see figure 5 (β = 0.2, λ = 0.1) and figure 6 (β = 0.5 and λ = 1.0). Such a shift can be
easily understood, because the low single-particle anisotropy β means that the interparticle
interaction already makes the dominant contribution to the effective field for moderate particle
concentration, thus leading to the increase of the average energy barrier height when increasing
the interaction strength (particle concentration).
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Figure 7. The frequency shift of the χ ′′(w, T ) dependencies for large anisotropy β = 2.0.

The frequency shift of χ ′′(T̃ , w) for the particle system with the low anisotropy β = 0.5
is shown in figure 8, where corresponding χ ′′-dependencies for the frequencies w = 0.003,
0.01 and 0.03 are displayed. The peak position moves towards higher temperatures with
increasing frequency for this system also; for the physical explanation for this—probably
almost universal—behaviour, see, e.g., [6]. Note, however, that the peak height now increases
when the frequency increases. This behaviour is qualitatively different from that in the high-
anisotropy case and thus is very important when comparing our results with experimental data
(see below).

Figure 8. As in figure 8, but for the system with the small anisotropy β = 0.5.

3.3. Comparison with other theoretical results

There is a substantial body of theoretical work done on this subject, but very few reliable
results for interacting dipolar magnetic systems have been obtained up to now—mainly due
to the already mentioned long-range and anisotropic nature of the dipolar interaction.
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To our knowledge, all analytical approaches applied for the calculation of the ac
susceptibility in such systems are based on the energy barrier approximation [23]. This
approximation assumes that the system can be considered as a set of more or less independent
subsystems each of which has its own relaxation time. The distribution of these relaxation
times is due to the different heights of the energy barriers E for corresponding subsystems. If
the distribution of the energy barriers ρ(E) is known, then the calculation of the corresponding
relaxation time distribution f (τrel) is a straightforward task—at least in the Arrhenius approx-
imation (τrel ∼ exp(E/T )). The last (and also trivial) step in this approach is the convolution
of the f (τrel) distribution obtained with, e.g., the kernel ωτrel/(1 + (ωτrel)

2) to obtain the
imaginary part of the ac susceptibility χ ′′(ω, T ).

For these reasons most authors attempt to calculate the distribution of the energy barriers.
Corresponding analytical methods are available only for the weak-interaction case—either
in the form of the local field theory [8, 9] or as the pair approximation (for the latest and
most detailed work, see [10]). The latter implicitly assumes that the pair interaction, i.e.,
interaction with the nearest neighbour, plays the dominant role and thus is valid for small
particle concentrations and hence in the weak-interaction regime only. Both methods lead to
the conclusion that the dipolar interaction leads on average to the decrease of the system energy
barriers—after averaging over the local field distribution [8,9] or the pair orientations [10] (see,
however, the discussion in [11]).

These conclusions seem to support our result that for large single-particle anisotropy
(the weak-interaction case; see figure 2) the χ ′′(w, T̃ ) peak shifts towards lower temperatures
which means that the energy barrier distribution moves towards lower barriers. However, it
should be noted that theories of this kind are not very well suited for checking numerical or
experimental results concerning the irreversible processes in magnetic systems in general and
ac susceptibility data in particular, because (i) the effect predicted by such theories is weak by
the very definition of the perturbation approach, (ii) the temperature dependence of the energy
barrier heights and the features of the energy landscape near the saddle point are ignored and
(iii) the precession of magnetic moments cannot be taken into account (which may be quite
important: compare, e.g., figures 2 and 4).

The distribution of the energy barriers can be evaluated rigorously—i.e., beyond the
perturbation approach—using the numerical minimization of the thermodynamical action for
the transition between the two metastable states given [12]. Using this method, we were
able to show that in systems of fine magnetic particles with high and moderate anisotropies,
the energy barrier distribution does indeed move towards lower barriers with increasing
particle concentration [12]. But it is still quite difficult to draw conclusions concerning the ac
susceptibility based on this fact alone, for the reasons (ii) and (iii) mentioned above.

The ac susceptibility itself for an interacting system of fine magnetic particles was studied,
to our knowledge, only in [3], using the Monte Carlo method. Bearing in mind that this method
is not able to take into account the precession of magnetic moments, we can try to compare
results from [3] with our data obtained in the moderate-damping regime, where the precession
is expected to play a minor role (we have also performed simulations in the high-damping
case—for λ = 10—and could not find any qualitative differences between the high- and
moderate-damping cases). Simulations in [3] were carried out for particles with the anisotropy
K = 1.6×105 erg cm−3 and saturation magnetizationMS = 420 G, so the reduced anisotropy
constant for these particles is β = 2K/M2

S ≈ 1.8 and the results of [3] should correspond to
our data for β = 2.0.

Indeed, the shift of the χ ′′(ω, T ) peak with increasing particle concentration found in [3]
is qualitatively similar to our results (compare figure 2 from [3] with our figure 4). However,
the relative peak heights for various concentrations are considerably different. The same
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applies to the frequency shift of the χ ′′(ω, T ) curves (see figure 3 in [3] and our figure 7): the
χ ′′(T ) peak moves towards higher temperatures with increasing frequency for both result sets,
but the peak height increases with ω in [3], whereby according to our simulations it should
decrease with growing frequency for the high and moderate anisotropies β (figure 7). The
most probable reason for this discrepancy is that the Monte Carlo approach used in [3] takes
into account single-particle flips only, thus neglecting collective remagnetization processes.
Such processes are not expected to play a dominant role in systems with moderate and high
single-particle anisotropies, but for moderate anisotropy values can nevertheless affect the
results quantitatively.

3.4. Comparison with experimental data

The ac susceptibility of magnetic nanocomposites is one of their most important features
both from the fundamental point of view and from that of evaluation of their suitability for
numerous technical applications [24, 25]. For these reasons there exist a huge number of
experimental papers where χ(ω, T ) has been measured. From experimental data available for
various nanocomposites we have chosen mainly results obtained on frozen ferrofluids, because
(i) these systems can be characterized reasonably well and (ii) very accurate and reliable results
on ferrofluids are available (for the best experiments, see [13–15, 17]).

Corresponding measurements are usually performed on ferrofluids consisting of mag-
netite or maghemite particles. In most of the studies, the following system behaviour was
observed [13–17]:

(i) Concentration shift of χ(ω, T ): the peak in the χ ′′(ω, T ) curves moves towards higher
temperatures with increasing concentration c, whereby the height of this peak decreases
monotonically with growing concentration.

(ii) Frequency shift of χ(ω, T ): the peak in the χ ′′(ω, T ) curves moves towards higher
temperatures with increasing frequency ω, whereby the height of this peak increases with
growing frequency.

Such behaviour agrees very well (at least qualitatively) with our results for systems with
low single-particle anisotropies β = 0.2–0.5 (see figures 5, 6 and 8). However, there is
apparently an important disagreement between our simulation results and the experiments
cited above: the anisotropy β = 2K/M2

S (calculated from the K- and MS-values reported,
e.g., for particles studied in [13, 15]) for these measurements is about β ≈ 1.5–2.0, so the
opposite shift of the χ ′′(T ) peak with the particle concentration should be observed according
to our simulations (see figure 2 for the low-damping case) or this shift should be very weak
(figure 4, moderate damping). Below, we discuss two possible reasons for this discrepancy.

3.4.1. Particle aggregation. First of all, such a disagreement could be caused by the particle
aggregation in real ferrofluids. Such an aggregation would lead not only to the spatially
inhomogeneous particle distribution, but also to the correlations between the anisotropy axis
directions of the neighbouring particles (due to the particle rotation during the aggregation
process). These correlations would obviously increase the energy barriers in the system under
study, thus leading to the shift of the χ ′′(T̃ ) peak towards higher temperatures with increasing
particle concentration.

Whether such an aggregation takes place can be estimated by comparing the thermal
energy ET = kT (at the freezing temperature Tfreeze of the carrier fluid) with the energy
of the magnetodipolar interparticle interaction Edip ∼ (VMS)

2/r3
min for two particles with

the minimal possible separation between them, rmin (which, in turn, can be estimated as
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rmin = dp + 2hsurf when the particle diameter dp and the thickness of the surfactant layer hsurf

surrounding the particles are known). Corresponding estimations for the parameter values
typical for oil-based magnetite and maghemite ferrofluids (dp ≈ 10 nm, MS ≈ 400 G,
hsurf ≈ 5 nm, Tfreeze ≈ 200 K) lead to the conclusion that the thermal energy is several
times larger than the maximal dipolar interaction energy, so the aggregation is quite unlikely.
However, one should keep it in mind that such estimations are very sensitive to the assumed
particle sizes and the thickness of the surfactant layer. This means that, due to the unavoidable
size distribution of ferrofluid particles and ‘quality distribution’ of the surfactant layer, some
aggregates may be present in any ferrofluid—the only question is how many of them are
there. Another point is that for the water-based ferrofluids considerable aggregation due to the
concentration of particles on the boundaries between the growing ice crystals may occur.

3.4.2. Size-dependent anisotropy. The more probable reason for the discrepancy under
discussion is the following. The value of the anisotropy constant K reported for the given
ferrofluid sample is usually the average value obtained from the corresponding low-temperature
hysteresis loop of a sample [26]. Different particles contribute to this hysteresis loop—
and hence to the average K-value—with the weight proportional to their magnetic moment
µ. According to the susceptibility measurements, however, the particle contributions are
proportional to the square of their momentµ2 (see, e.g., [27]), which means that the contribution
of larger particles is much more significant in the latter case.

On the other hand, it is well known that the total effective anisotropy (as well as other
magnetic properties) of fine magnetic particles depends strongly on the particle size [28–30].
The reason is that this total anisotropy is the sum of the contributions arising from the
crystallographic, surface and shape anisotropies (the latter occurring due to the deviation
of the particle form from a perfect sphere). The last two contributions depend on the particle
size—the surface anisotropy due to the decreasing fraction of surface atoms with the growing
particle size and the shape anisotropy because the shape fluctuations may decrease when the
particle size and hence the number of particle atoms increases.

For all experimentally studied systems it was found that the total effective anisotropy
decreases with growing particle size [28–30]. Hence larger particles with larger magnetic
moments (which contribute significantly more to the susceptibility than to the magnetization
itself ) have much smaller values of the effective anisotropy β, thus leading to the shift of the
χ ′′(T ) peaks towards higher temperatures with increasing particle volume fraction; this is as
it should be for the low-anisotropy case (see figures 5 and 6). The increase of the particle
saturation magnetization MS with the growing particle size, which was recently confirmed
experimentally once more [31], would enhance this effect.

4. Conclusions

We have performed Langevin-dynamics simulations of the irreversible remagnetization
processes in systems of fine magnetic particles and were able to measure the corresponding ac
susceptibility as a function of the particle concentration, single-particle anisotropy, damping
parameter and frequency of the applied field. We have demonstrated that the ac susceptibility
peak can move with the increasing particle concentration (dipolar interaction strength) both
towards lower and towards higher temperatures, depending on (i) the single-particle anisotropy
and (ii) the damping parameter. This means, in turn, that the dipolar interaction can either
decrease the (free-) energy barriers in the system under study—if such barriers are already
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created by a relatively high single-particle anisotropy—or increase these barriers—if they are
mainly due to the dipolar interaction itself.

We point out that our method takes the dipolar interparticle interaction fully into account,
incorporating all the dynamic and static correlations between the particle magnetic moments.
For this reason, the discrepancy found between our results and real experiments performed
on ferrofluids with apparently the same single-particle parameters shows that some additional
features of the fine-particle systems should be taken into account to understand their dynamical
properties adequately. We propose that such a feature could be (leaving aside trivial reasons like
the particle aggregation) the dependence of the total single-particle anisotropy and the particle
saturation magnetization on its size. Further experimental studies of such dependencies are
clearly necessary to provide the corresponding quantitative input for numerical simulations
which could verify this idea.
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