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We introduce the ε-susceptible-infected-susceptible (SIS) spreading model, which is taken as a benchmark for

the comparison between the N-intertwined approximation and the Pastor-Satorras and Vespignani heterogeneous

mean-field (HMF) approximation of the SIS model. The N-intertwined approximation, the HMF approximation,

and the ε-SIS spreading model are compared for different graph types. We focus on the epidemic threshold and the

steady-state fraction of infected nodes in networks with different degree distributions. Overall, the N-intertwined

approximation is superior to the HMF approximation. The N-intertwined approximation is exactly the same as

the HMF approximation in regular graphs. However, for some special graph types, such as the square lattice

graph and the path graph, the two mean-field approximations are both very different from the ε-SIS spreading

model.
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I. INTRODUCTION

We consider the spread of a virus in an undirected graph

G(N,L), characterized by a symmetric adjacency matrix A. As

a spreading model we use the susceptible-infected-susceptible

[1] (SIS) epidemic process, which is described as follows.

The arrival of an infection over a link and the curing of

an infected node are assumed to be independent Poisson

processes with rates β and δ, respectively. Only infected

nodes can infect their healthy direct neighbors. The effective

spreading rate is defined as τ = β

δ
. The viral state of a

node i at time t is specified by a Bernoulli random variable

Xi(t) ∈ {0,1}, where Xi(t) = 0 refers to a healthy node and

Xi(t) = 1 to an infected node. Every node i at time t is

either infected, with probability vi(t) = Prob[Xi(t) = 1] or

healthy (but susceptible) with probability 1 − vi(t). Since an

exact solution for any network has not been found yet, several

approximations of SIS epidemics have been developed.

A fundamental question in the study of epidemics is

whether a virus will spread through the entire network or

will die out. The answer to this question is given by the

epidemic threshold τc, which separates two different phases of

the dynamic spreading process on a network: if the effective

infection rate τ is above the threshold, the infection spreads

and becomes persistent in time; if τ < τc, the infection dies

out exponentially fast. Many authors (see [2–9]) mention

the existence of an epidemic threshold τc. Here, we focus

on the steady-state of two mean-field approximations of SIS

epidemics: the N-intertwined approximation [10,11] and the

Pastor-Satorras and Vespignani approximation [7]. A first-

order mean-field epidemic threshold τ (1)
c = 1

λ1(A)
, where λ1(A)

is the largest eigenvalue of the adjacency matrix A, was first

proposed by Wang et al. [9], and its existence rigorously

proved by Van Mieghem et al. [10,11]; later it appeared

in the physics community [12]. Van Mieghem et al. [10]

also showed that this mean-field threshold lower-bounds the

“in reality observed” epidemic threshold τ (1)
c = 1

λ1(A)
� τc.

A more accurate lower bound (the second-order mean-field

threshold) τc � τ (2)
c � τ (1)

c has been derived in [13]. Pastor-

Satorras and Vespignani [7] proposed the heterogeneous mean-

field HMF approximation, whose epidemic threshold [4,7] is

given by τHMF
c = E[D]/E[D2], where D is the degree of a

randomly chosen node in G.

Here we present a detailed comparison of the two mean-

field approximations. Usually, the quality of an approximation

is assessed by two criteria: (1) which approximation is closer to

the exact SIS model, and (2) which approximation’s epidemic

threshold is nearer to the epidemic threshold of the exact SIS

model. A direct comparison to the SIS model is, however, not

possible, because the steady state of the exact SIS model in a

finite network is, as shown in [10], the overall-healthy state,

which is equal to the absorbing state of the SIS Markov chain.

The presence of an absorbing state is a major complication

in the analysis of the SIS model. The steady state of both

the above mean-field approximations corresponds, in fact, to

the metastable state in the SIS model, which is not clearly

defined for finite networks [10]. Therefore, we define here the

metastable state of the SIS model via the steady state of the

ε-SIS model for a prescribed value of ε. The ε-SIS process

generalizes the SIS model by adding a nodal component to

the infection. We assume that each node i can be infected

spontaneously. The spontaneous infection process is a Poisson

process with rate ε. Hence, besides receiving the infection

over links from infected neighbors with rate β, the node i can

also itself produce a virus with rate ε. All involved Poisson

processes are independent. For ε > 0, the ε-SIS model has no

absorbing state and Markov theory guarantees a unique steady

state. When ε = 0, the ε-SIS model clearly reduces to the

“classical” SIS model. Hence, for small values of ε > 0, the

ε-SIS spreading model can be used to approximate the exact

SIS model. Here, the ε-SIS spreading model with a small value

of ε is used as a benchmark to compare the steady state of the

N -intertwined approximation and the HMF approximation on

different network types.

This paper is organized as follows. Section II overviews the

N-intertwined approximation, the Pastor-Satorras and Vespig-

nani HMF approximation, and the ε-SIS spreading model in

detail. The steady state of infection in the ε-SIS model and

these two approximations are described in Sec. III. Section IV

compares the steady-state fraction of infected nodes in various
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types of graphs: complete graphs, star graphs, Erdős-Rényi

(ER) random graphs, small-world graphs, and Bárabasi-Albert

graphs. An analytic comparison of the epidemic thresholds

of the two mean-field approximations is shown in Sec. V.

Conclusions are summarized in Sec. VI.

II. DESCRIPTION OF THE ε-SIS MODEL

AND THE MEAN-FIELD APPROXIMATIONS

A. The ε-SIS spreading model

The ε-SIS spreading model was proposed recently by Hill

et al. [14] in their analysis of emotions as a form of infection in

a social contact network and earlier in [15] where ε is defined

as the driving field conjugate to the density of infected nodes.

Here, we will explain the simulation process, but defer to [16]

for an analysis of the ε-SIS model.

In our simulations we take a nodal-central, event-driven

approach. An event can either be the curing of a node or the

spreading of the infection from one node to another. Events

are stored in a timeline as tickets. A ticket contains, besides

the time and the event type (spreading or curing), the owner

of the ticket. The ticket owner is usually a node, but can also

be the system to allow for scheduling of administrative tasks.

Tickets are continuously taken from the timeline and passed

on to the owner.

If the ticket owner is a node, the ticket indicates either a

curing or a spreading event. In the case of a curing event,

the node simply changes its state from infected to healthy; in

the case of a spreading event, it will spread the infection to

the neighbor mentioned in the ticket. If the neighbor was not

already infected, it will now become infected and create one

or more tickets.

A newly infected node will always create a ticket for

its own curing event. According to continuous-time Markov

theory (see [17]), the time between infection and curing is

exponentially distributed with rate δ and is stored by the node

for future reference. An infected node also generates spreading

times at which it will spread the infection to its neighbors. The

spreading times are again exponentially distributed but now

with rate β. If the spreading time does not exceed the node’s

curing time, a ticket is created for the spreading event. All

newly created tickets are stored in the timeline. Finally, the

owner of the original ticket generates a new spreading time,

which, if not exceeding its own curing time, creates a new

spreading ticket for the same neighbor.

If the ticket is not owned by a node, it is a system ticket.

System tickets are used to cause the spontaneous infections

in nodes. Every node becomes infected spontaneously at

a rate ε, but to minimize the number of tickets in the

timeline, the system creates one spontaneous infection ticket

at the time. The time between spontaneous infection tickets

is exponentially distributed with rate Nε. When the system

receives a spontaneous infection ticket, it selects a random

node and tries to infect it. If the node is already infected,

nothing will change, whereas a healthy node will become

infected and create the tickets described above.

During the simulation, for each possible number of infected

nodes (0 to N ) how long the network was in a state with

that many nodes infected is recorded. The average number of

infected nodes during the simulation can be determined by

multiplying the number of infected nodes by the fraction of

time spent in that state, and sum over all the states.

B. The Pastor-Satorras and Vespignani HMF approximation

Pastor-Satorras and Vespignani [7] studied the susceptible-

infected-susceptible epidemic on networks and proposed the

heterogeneous mean-field approximation, in which the degree

distribution plays an important role. Highly connected nodes

are statistically significant and the strong fluctuations in the

degree distribution cannot be neglected. Consider the relative

density ρk(t) of infected nodes with given degree k, i.e., the

probability that a node with k links is infected. The fraction of

infected nodes in a network is denoted by ρ. The dynamical

mean-field reaction rate equation can be written as

∂tρk(t) = −δρk(t) + βk[1 − ρk(t)]	(ρ(t)).

	(ρ(t)) is the probability that any given link points to an

infected node. In steady state, y∞ = limt→∞ ρ(t) is a function

of τ only, and as consequence, so is 	(ρ(t)). By imposing

stationarity [∂tρk(t) = 0], when t → ∞, the relative density

reduces to

ρk(τ ) =
τk	(τ )

1 + kτ	(τ )
, (1)

where τ = β

δ
is the effective infection rate and

	(τ ) =
1

E[D]

N−1
∑

k=1

kProb[D = k]ρk(τ ). (2)

Here D is the degree of a randomly chosen node in the graph.

Clearly, if τ = 0, then 	(0) = 0. Substituting (1) into (2)

leads to a self-consistent relation, from which 	(τ ) can be

determined as

	(τ ) =
τ	(τ )

E[D]

N−1
∑

k=1

k2Prob[D = k]

1 + kτ	(τ )
. (3)

Equation (3) has a trivial solution, 	(τ ) = 0. For a nontrivial

solution 	(τ ) > 0 to exist, Eq. (3) must satisfy the following

condition:

E[D]

τ
=

N−1
∑

k=1

k2Prob[D = k]

1 + kτ	(τ )
. (4)

Next, we introduce the following expansion:

1

1 + kτ	(τ )
=

∞
∑

j=0

(−1)j [kτ	(τ )]j ,

valid when kτ	(τ ) < 1 for all k, and

E[D]

τ
=

∞
∑

j=0

(−1)j

{

N−1
∑

k=1

Prob[D = k]kj+2

}

τ j	j (τ )

=
∞

∑

j=0

(−1)jE[Dj+2]τ j	j (τ ),

where the latter series converges for 	(τ ) < 1/(Dmaxτ ). Since

τ = 0 leads to 	(0) = 0, the nontrivial solution 	(τ ) > 0
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occurs when τ > τHMF
c � 0 by the definition of the epi-

demic threshold. When 	(τ ) is sufficiently small [	(τ ) <

1/(Dmaxτ )] and 	(τ ) > 0, we can write the above expansion

up to first order as

E[D]

τ
= E[D2] − τ	(τ )E[D3] + O(	(τ )2), (5)

in which τ	(τ )E[D3] > 0. Hence, when τ > τHMF
c but 	(τ )

is small enough to ignore the second-order terms O(	(τ )2),
we have from (5)

E[D]

τ
< E[D2],

implying that for all τ > τHMF
c , it holds that τ > E[D]

E[D2]
. Thus,

the epidemic threshold of the HMF approximation is

τHMF
c =

E[D]

E[D2]
.

The same result was also deduced differently in [18]. For a

regular graph [7] with degree r , E[D2] = E[D]2 = r2, the

epidemic threshold is τHMF
c = 1

r
= 1

λ1
.

Finally, we can evaluate the fraction y∞(τ ) of infected

nodes using the relation

y∞(τ ) =
N−1
∑

k=1

Prob[D = k]ρk(τ ). (6)

C. N-intertwined approximation

The HMF approximation considers the relative density

ρk(t) of infected nodes with given degree k during the epidemic

process. However, the state of each node is not taken into

account. The N-intertwined epidemic approximation [10,19]

is derived by separately observing each node. Every node i

at time t in the network is in one of two states: infected,

with probability Prob[Xi(t) = 1], and healthy, with probability

Prob[Xi(t) = 0]. Since a node can only be in one of two states,

Prob[Xi(t) = 0] + Prob[Xi(t) = 1] = 1. Since the curing and

infection processes are Poisson processes, the whole epidemic

process is a Markov process. If we apply Markov theory

straightforwardly, the infinitesimal generator Qi(t) of this

two-state continuous Markov chain is

Qi(t) =
[−q1;i q1;i

q2;i −q2;i

]

with q2;i = δ. Markov theory requires that the infinitesimal

generator is a matrix whose elements are not random variables.

However, this is not the case in our simple approximation:

q1;i(t) = β
∑N

k=1aij 1{Xk (t)=1}. Using a mean-field approxima-

tion [10] so that E[q1;i] = β
∑N

j=1 aij Prob[Xj (t) = 1], the

effective infinitesimal generator becomes

Qi(t) =
[−E[q1;i] E[q1;i]

δ −δ

]

.

Then, in accordance with Markov theory in [17, Eqs. (10)

and (11), p. 182], denoting vi(t) = Prob[Xi(t) = 1] and

Prob[Xi(t) = 0] = 1 − vi(t), the set of nodes obey the dif-

ferential equations

dv1(t)

dt
= β

N
∑

j=1

a1jvj (t) − v1(t)

⎛

⎝β

N
∑

j=1

a1jvj (t) + δ

⎞

⎠ ,

dv2(t)

dt
= β

N
∑

j=1

a2jvj (t) − v2(t)

⎛

⎝β

N
∑

j=1

a2jvj (t) + δ

⎞

⎠ ,

...

dvN (t)

dt
= β

N
∑

j=1

aNjvj (t) − vN (t)

⎛

⎝β

N
∑

j=1

aNjvj (t) + δ

⎞

⎠ ,

written in matrix form as

dV (t)

dt
= βAV (t) − diag(vi t)[βAV (t) + δu], (7)

where the vector V (t) = [v1(t) v2(t) · · · vN (t)]T . The average

number of infected nodes in G is equal to y(t) = uT V (t),

where u is the all-1 vector.

For the N-intertwined approximation, the largest eigenvalue

λ1 of the graph’s adjacency matrix rigorously defines the first-

order epidemic threshold τ (1)
c = 1

λ1
. A second-order epidemic

threshold τ (2)
c � τ (1)

c is studied in [13] which also presents

a different derivation of the N-intertwined equations. The

threshold arises as a consequence of the mean-field approxi-

mation. A major property, proved in [10] as well as in [13],

of the N-intertwined approximation is that Vi(t) � Vi(t)|exact.

Hence, the N-intertwined approximation upper-bounds the SIS

epidemics and, consequently, τ (1)
c < τc.

III. THE STEADY-STATE INFECTION IN THE MODEL

AND TWO APPROXIMATIONS

A. The ε-SIS spreading model

In this paper, we use the ε-SIS model as a benchmark

to compare both mean-field approximations. Whereas the

classical SIS model has an absorbing state, the ε-SIS model

does not for ε > 0. The nonzero steady state of the ε-SIS model

is reached as time progresses. We believe that the steady-state

fraction of infected nodes in the ε-SIS model is the simplest

and best way to determine the number of infected nodes in

the metastable state of the SIS model. The metastable state

of the classical SIS model, although easily recognized, is

difficult to define precisely. One approach would be to run

many independent instances of the virus spreading process,

calculate the average number of infected nodes at sampled

points in time, and look for a plateau. This will, however, lead

to too low an average number of infected nodes as a function

of time, as for smaller values of the effective spreading rate,

many instances of the virus spreading process die out very

quickly. These died-out instances have a large impact on the

average number of infected nodes as a function of time. Since

instances of the virus that die out quickly do not reach a

metastable state they have to be filtered out, but that would

require an assessment of how long a “reasonable” outbreak

lasts. Such a reasonable outbreak will be dependent on the

effective spreading rate and on the network topology, which

makes it infeasible as a simulation method.
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FIG. 1. (Color online) The steady state of the classical SIS model (solid yellow line) and the metastable state of the ε-SIS model (dashed

blue line) in ER graphs (ε = 10−3).

As the ε-SIS model has a well defined steady state,

the steady-state number of infected nodes can be computed

precisely. We start our simulations with no nodes infected

and continue to run for a specified warm-up period. After

the warm-up period, the measurement period starts during

which we record the average number of infected nodes. For

all simulations we have taken the warm-up and measurement

period to be 107 time units and ε = 10−3 time units. We

have chosen the duration of 107 time units after careful

experimentations. The accuracy of the ε-SIS simulations have

been compared to the exact ε-SIS Markov chain (see [16]) for

small (N � 10) networks, where more than three digits were

accurate for all the considered τ ranges.

The steady-state number of infected nodes of the ε-SIS

model will be close to the average number of infected nodes

in the metastable state of the SIS model for small values of ε.

In Fig. 1, we show a reasonable instance of a virus outbreak

together with the steady-state number of infected nodes of

the ε-SIS model. These examples illustrate that the steady-

state average number of infected nodes of the ε-SIS model is

precisely the line around which the number of infected nodes

in the SIS model varies.

B. Pastor-Satorras and Vespignani HMF approximation

From (1) and (2), we obtain the set of nonlinear equations

τ
∑N−1

k=1 kProb[D = k]ρk

E[D] + τ
∑N−1

k=1 kProb[D = k]ρk

− ρ1 = 0,

2τ
∑N−1

k=1 kProb[D = k]ρk

E[D] + 2τ
∑N−1

k=1 kProb[D = k]ρk

− ρ2 = 0,

...

(N − 1)τ
∑N−1

k=1 kProb[D = k]ρk

E[D] + (N − 1)τ
∑N−1

k=1 kProb[D = k]ρk

− ρ
N−1

= 0. (8)

From the nonlinear set (8), the densities ρ1,ρ2, . . . ,ρN−1
can

be calculated, and after using (6), we obtain the steady-state

fraction y∞(τ ) of infected nodes.

C. N-intertwined approximation

The steady-state of the N-intertwined approxima-

tion is obtained from (7), after letting t → ∞ and

limt→∞
dvj (t)

dt
= 0, as

βAV (t) − diag(vi t)[βAV (t) + δu] = 0. (9)

Written as a nonlinear equation for a single node i, this

leads to

vi∞ =
β

∑N
j=1 aijvj∞

β
∑N

j=1 aijvj∞ + δ
= 1 −

1

1 + τ
∑N

j=1 aijvj∞
. (10)

The steady-state fraction y∞(τ ) of infected nodes can be

calculated using (10).

For example, for the complete graphs KN , when t → ∞,

vi∞ = y∞, from which the fraction of infected nodes (10)

reduces to

y∞ = 1 −
1

1 + τ (N − 1)y∞

or

y∞ = 1 −
1

(N − 1)τ
, (11)

which is exactly the same as for the HMF approximation in (8)

when ρk = ρN−1 = ρ = y∞, as also illustrated in Fig. 5.

D. Asymptotics for large τ

We present the exact steady-state asymptotics of the

epidemic for large τ . If τ is sufficiently large, the infection

state vj∞ = limt→∞ Prob[Xj (t) = 1] of a node j with dj

neighbors tends to be independent of the viral state of its

dj neighbors, because the neighbors are with overwhelming

probability infected. Hence, the nodal viral state of node

j is not intertwined anymore with that of its neigbors, but

independent, and is exceedingly well described by a two-state

continuous Markov process with infection rate β and curing

rate δ, where vj∞ = βdj

δ+βdj
= 1

1+1/τdj
= 1

1+s/dj
with s = 1

τ
.

The derivative for large τ or, equivalently, s → 0, is

dvj∞(s)

ds

∣

∣

∣

∣

s=0

= −
1

dj

.

The average steady-state fraction of infected nodes is

thus y∞(s) = 1
N

∑N
j=1 vj∞(s) and has a derivative at s = 0

equal to

dy∞

ds

∣

∣

∣

∣

s=0

= −
1

N

N
∑

j=1

1

dj

= −E

[

1

D

]
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which is precisely equal to that computed in [20] for the N -

intertwined mean-field approximation.

For the HMF approximation, we obtain, by substituting (1)

into (6) and using the transform s = 1
τ

,

y∞;HMF(s) =
N−1
∑

k=1

Prob[D = k]

1 + s
k	(s−1)

,

from which, using lims→0 	(s−1) = 1,

dy∞;HMF(s)

ds

∣

∣

∣

∣

s=0

= − lim
s→0

N−1
∑

k=1

Prob[D = k]
(

1 + s
k	(s−1)

)2

1

k

×
(

1

	(s−1)
−

s

	2(s−1)

d	(s−1)

ds

)

= −
N−1
∑

k=1

Prob[D = k]

k
= −E

[

1

D

]

because d	(s−1)

ds
|s=0 is finite. Indeed, taking the derivative of

the self-consistent relation (4),

E[D] =
N−1
∑

k=1

k2Prob[D = k]

s + k	(s−1)
,

yields

0 =
N−1
∑

k=1

k2Prob[D = k]

[s + k	(s−1)]2

(

1 − k
d	(s−1)

ds

)

or

d	(s−1)

ds
=

∑N−1
k=1

k2Prob[D=k]
[s+k	(s−1)]2

∑N−1
k=1

k3Prob[D=k]
[s+k	(s−1)]2

,

from which d	(s−1)

ds
|s=0 = 1

∑N−1
k=1 kProb[D=k]

= 1
E[D]

.

Hence, both mean-field approximations return both

lims→0 y∞(s) and the derivative
dy∞(s)

ds
|s=0 correctly in the

large-τ regime.

IV. COMPARISON OF THE STEADY-STATE FRACTION

y∞(τ ) OF INFECTED NODES VERSUS τ

This section compares the ε-SIS model and the two ap-

proximations for different graph types. We take the following

topologies into account: the bipartite graph, the star graph, the
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complete graph, the lattice graph, the path graph, the Erdős-

Rényi random graph, the Bárabasi-Albert scale-free graph,

and the small-world graph. The steady-state fraction y∞(τ ) of

infected nodes is calculated for increasing effective spreading

rates τ and ε = 10−3. The values of the N-intertwined

approximation, the HMF approximation, and the simulations

of the ε-SIS spreading model are shown in blue, red, and green

lines, respectively. The different markers indicate the sizes of

the graphs, e.g., circles in Fig. 2 indicate the results for graphs

with N = 10 nodes.

A. Complete bipartite graphs

A complete bipartite graph KM1,M2
consists of two disjoint

sets S1 and S2 containing respectively M1 and M2 nodes. All

nodes in S1 are connected to all nodes in S2, while nodes within

a set do not connect. In this paper, we take M1 = N/4 nodes,

and M2 = 3N/4 nodes. The steady-state fraction y∞(τ ) of

infected nodes as a function of τ are computed in bipartite

graphs with N = 10, 20, 40, 80, 160, and 320 nodes. Figure 2

shows that the epidemic thresholds for the HMF approximation

and the N-intertwined approximation are close to that of the

ε-SIS spreading model (ε = 10−3) in complete bipartite

graphs. Since τ (1)
c of the N-intertwined approximation is nearer

to τc than τHMF
c of the HMF approximation, τ (1)

c provides the

better epidemic prediction for the SIS model in the complete

bipartite graph KM1,M2
. Moreover, in [13] it is proved that τc �

τ (2)
c � τ (1)

c , which means that the second-order N-intertwined
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Star graphs 
Blue (dark gray) line is the N-intertwined approximation
Yellow (light gray) line is the HMF approximation
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FIG. 4. (Color online) Comparison in star graphs.
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approximation is closer to the ε-SIS spreading model, and

therefore the better approximation in bipartite graphs.

Three interesting results can be observed by zooming in on

Fig. 2 as shown in Fig. 3. First, the N-intertwined approxima-

tion is an upper bound of the ε-SIS spreading model. Second,

the difference between the N-intertwined approximation and

the ε-SIS spreading model decreases with N . We observe that

the N-intertwined approximation almost overlays the ε-SIS

spreading model, when N = 320. Third, the HMF approxi-

mation is lower than the ε-SIS spreading model, showing that

the HMF approximation is not upper-bounding the SIS model.

B. Star graphs

The star graph K1,N−1 is a special bipartite graph where

one of the disjoint sets contains only one node while the other

set contains the rest of the nodes. The epidemic threshold for

the first-order N-intertwined approximation equals τ (1)
c = 1

λ1
.

For any connected graph, the spectral radius is bounded [21]

from above by λ1 �
√

2L − N + 1, and equality is reached

for the complete graph KN and the star K1,N−1. As a star

graph contains L = N − 1 links, we obtain

τ (1)
c =

1
√

2L − N + 1
=

1
√

N − 1
. (12)

The second-order mean-field threshold for the star was

estimated in [13] to be τ (2)
c = 1√

0.53N−1.3
, while exact com-
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FIG. 6. (Color online) Comparison in lattice graphs.
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FIG. 7. (Color online) Comparison in path graphs.

putations indicate that τc = 1√
N

√
1
2

ln N + ln ln N + O(1) for

large N .

Recall that the epidemic threshold of the HMF approxima-

tion is given by τHMF
c = E[D]

E[D2]
. For star graphs it holds that

E[D2] = N2−N
N

and E[D] = 2(N−1)

N
, so the HMF threshold

reduces to

τHMF
c =

2

N
. (13)

The equalities (12) and (13) indicate that, for N > 2,

the epidemic threshold of the N-intertwined approximation

is always larger than that of the HMF approximation in star

graphs. Figure 4 shows the superiority of the N-intertwined

approximation, especially when N is large. Nevertheless,

the two epidemic thresholds are both quite far from the

threshold of the ε-SIS spreading model (ε = 10−3) in star

graphs.

C. Complete graphs

The complete graph KN is a graph in which every node

pair is connected. For a complete graph τHMF
c = E[D]

E[D2]
=

N−1
N(N−1)2/N

= 1
N−1

; at the same time λ1 = N − 1. Hence,

the epidemic threshold of the N-intertwined approximation

τ (1)
c = 1

λ1
is equal to the threshold of the HMF approximation

τHMF
c = E[D]

E[D2]
. For KN , both approximations are very close
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FIG. 8. (Color online) Comparison in Erdos-Renyi random graphs.
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FIG. 9. (Color online) Comparation among the N-intertwined

approximation, the Pastor-Satorras approximation, and the ε-SIS

model in an ER network (N = 160).

to the ε-SIS spreading model (ε = 10−3) (see Fig. 5). This

is to be expected, since the mean-field approximation in

the N-intertwined approximation is best for dense graphs, as

explained in [10]. Moreover, for KN , the steady-state equations

(see Secs. III C and III B) in the N-intertwined and HMF

approximations are the same. The steady-state fraction y∞(τ )

of infected nodes as a function of τ has been deduced in (11).

D. Square lattice graphs

The square lattice graph is a two-dimensional grid. Ignoring

the boundary nodes, the square lattice can be regarded as a

regular graph, where all nodes have the same degree (ki = 4).

In this case, the equations of the N-intertwined approximation

and the HMF approximation are almost the same, as verified

from the simulations of the two approximations. Our simu-

lations (see Fig. 6) show that the epidemic threshold of the

ε-SIS spreading model (ε = 10−3) decreases with the size N

of the network. The HMF approximation performs slightly

better than the N-intertwined approximation in approaching

the ε-SIS spreading model in lattice graphs. The simulation

illustrates that neither the N-intertwined approximation nor

the HMF approximation predicts the epidemic threshold for

epidemic processes in lattices. We remark that, in the related

process of percolation, the critical probability [22–24] on the

square lattice is equal to 1/2.

E. Path graphs

The path graph is a example of a tree graph, in which every

root node has only one branch and only the last root node is not

branched at all. As shown in Fig. 7, the steady-state fractions

y∞(τ ) of infected nodes of the N-intertwined approximation

and the HMF approximation are far from that of the ε-SIS

spreading model (ε = 10−3). The epidemic thresholds of the

N-intertwined approximation and the HMF approximation are

both near 0.5, since the average degree of the path graph

is 2, ignoring boundary nodes. However, the steady-state

fraction y∞(τ ) of infected nodes of the ε-SIS spreading model

increases very slowly with τ between 0 � τ � 1, and seems

to always be around 0 in the range of network sizes that we

considered.
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FIG. 10. (Color online) Comparison in Barabasi-Albert scale-free

networks.

F. Erdős-Rényi random graphs

In this section we investigate the thresholds in Erdős-Rényi

random graphs,1 which have a binomial degree distribution

[25]. An Erdős-Rényi random graph is connected with high

probability, if p > pc ≈ ln N
N

for large N , where pc is the

disconnectivity threshold. All the graphs in the simulations

are generated with p = 2pc, and checked for connectivity.

Figure 8 shows that the steady-state fractions y∞(τ ) of infected

nodes of the N-intertwined approximation and the HMF

approximation for ER graphs N = 10, 20, 40, and 80, are

extremely close. However, they both differ from the epidemic

threshold of the ε-SIS spreading model, especially when N is

small. When N is large, the two approximations are close to

the ε-SIS spreading model (ε = 10−3) (see Fig. 9).

G. Bárabasi-Albert scale-free graphs

The Bárabasi-Albert (BA) graph2 [26] is a characteristic

model for complex networks because of its power-law de-

gree distribution. Power-law degree distributions are widely,

although approximately, observed in real-world complex

networks. The steady-state fraction of infected nodes as a

function of the effective spreading rate y∞(τ ) is computed

in a BA graph with N = 1000 and m = 4 and shown in

Fig. 10. The N-intertwined approximation is close to the HMF

approximation, but a little superior. This is to be expected,

since the N-intertwined approximation is better than the HMF

approximation in star graphs as explained in Sec. IV B, and

the BA model can be regarded as a set of hubs with star graph

features.

1An Erdős-Rényi random graph can be generated from a set of N

nodes by randomly assigning a link with probability p to each pair

of nodes.
2A Bárabasi-Albert graph starts with m nodes. At every time step,

we add a new node with m links that connect the new node to m

different nodes already present in the graph. The probability that a

new node will be connected to node i in step t is proportional to the

degree di(t) of that node. This is referred to as preferential attachment.
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FIG. 11. (Color online) Comparison in WS small-world networks.

H. Watts-Strogatz small-world graphs

Watts-Strogatz (WS) small-world graphs3 [27] have two

main properties: a small average hop count E[H ], similar to

Erdős-Rényi random graphs, and a high clustering coefficient

CG, similar to a ring lattice. The structural properties of small-

world graphs have been found in various real-world networks,

including social networks [28], neural networks [29], and

biological oscillators [30]. In this paper, the WS graphs are

generated with N = 40 and 80, ks = 6, and p = 0.1 and 1. In

Fig. 11 the steady-state fractions y∞(τ ) of infected nodes, as

predicted by the two approximations, are shown together with

the ε-SIS simulations. The N-intertwined approximation and

the HMF approximation are quite close to each other, but far

away from the ε-SIS spreading model. The τ (1)
c = 1

λ1
and the

τHMF
c = E[D]

E[D2]
in small-world graphs are near to each other no

matter what N and p are. This can be explained by observing

that most nodes have the same degree in WS graphs, justifying

the approximation of E[D2] by E[D]2 and τHMF
c = E[D]

E[D2]
by

1
E[D]

. Another consequence of the similar node degrees in WS

graphs is that E[D] is close to Dmax. Since λ1 is bounded from

below and above as E[D] � λ1 � Dmax ([21], article 43, p.

46 and article 48, p. 52), we can approximate λ1 by E[D] and

τ (1)
c by 1

E[D]
, just like τHMF

c .

V. ANALYTIC COMPARISON OF THE EPIDEMIC

THRESHOLDS τ
(1)
c AND τ

HMF
c

In this section, we analyze the relation between the first-

order epidemic threshold of N-intertwined approximation,

τ (1)
c = 1

λ1
, and the epidemic threshold of the HMF approxima-

tion, τHMF
c = E[D]

E[D2]
. From the comparison in Sec. IV, we find

that the relation between the two epidemic thresholds strongly

depends on the graph type. The two epidemic thresholds are

equal to each other in regular graphs where each node has

degree r increasing with N . Indeed, since λ1 = E[D] = r

(see [21], article 43, p. 46]), and τHMF
c = 1

r
, we find that

τ (1)
c = τHMF

c . There are graphs for which τ (1)
c < τHMF

c , while in

3A Watts-Strogatz small-world graph can be generated from a ring

lattice with N nodes and ks edges per node, by rewiring each link at

random with probability p.

most cases, our simulations in Figs. 2, 4, 8, and 10 demonstrate

that τ (1)
c > τHMF

c .

Cases τ (1)
c < τHMF

c . The epidemic threshold τHMF
c is larger

than the first-order threshold τ (1)
c = 1

λ1
, when the assortativity4

ρD is zero. Van Mieghem et al. [21,32] have reformulated the

assortativity as follows:

ρD =
N1N3 − N2

2

N1

∑N
i=1 d3

i − N2
2

, (14)

where Nk = uT Aku is the total number of walks with k hops.

In [33], we have proved that λ1 �
N2

N1
= E[D2]

E[D]
= 1

τHMF
c

, when

ρD = 0.

Cases τ (1)
c > τHMF

c . Newman [31] pointed out that the

assortativity ρD of the ER graph and the BA graph is zero

when N is large. However, in most ER and BA graphs with

finite size, the assortativity is only approximately zero. Our

simulations in Figs. 8 and 10 show that τHMF
c � τ (1)

c in ER and

BA graphs, demonstrating that the precise ρD = 0 condition

in (14) that led to N1N3 = N2
2 is not valid. Moreover, we

have already proved that τHMF
c � τ (1)

c in star graphs (see

Sec. IV B).

It would be interesting to find all or the most prominent

graph classes in which τ (1)
c > τHMF

c and in which τ (1)
c < τHMF

c .

VI. CONCLUSION

Many approximations of the SIS model have been proposed

to understand SIS epidemics. In this paper, we studied which

mean-field approximation, the N-intertwined or the HMF,

is better in approaching the SIS epidemic model. A direct

comparison to the SIS model is, however, not possible, because

the steady state of the exact SIS model in a finite network is the

overall-healthy state. Although an infection in the SIS model

will eventually die out, for high enough effective spreading

rates the fraction of infected nodes as a function of time is

metastable. We proposed to define the number of infected

nodes in the metastable state of the SIS model via the number

of infected nodes in the steady state of the ε-SIS model for

a prescribed small value of ε. From the comparison between

the N-intertwined and HMF approximations with the ε-SIS

spreading model, we conclude that, overall, the N-intertwined

approximation is better than the HMF approximation, except

for square lattice graphs and path graphs. We have seen that the

N-intertwined approximation can approach the ε-SIS epidemic

model well in most graph types. The simulations show that the

N-intertwined approximation almost overlaps with the ε-SIS

spreading model, when the size of the network is large enough.

While the HMF approximation is better than the N-intertwined

approximation in the square lattice and path graphs, the

difference between the two is small. Moreover, they are both

far away from the ε-SIS spreading model. We also showed that

4The degree correlation, also called the assortativity ρD , is computed

as the linear correlation coefficient of the degree of nodes connected

by a link [31]. It describes the tendency of network nodes to connect

preferentially to other nodes with either similar (when ρD > 0) or

opposite (when ρD < 0) properties, i.e., degree.
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the N-intertwined approximation and the HMF approximation

are exactly the same in regular graphs with the degree of

nodes increasing with N , such as complete graphs, and are

similar in small-world graphs. In addition to our simulation

results, we showed analytically the conditions under which

the epidemic threshold of the N-intertwined approximation

is larger than, smaller than, or equal to that of the HMF

approximation.
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