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In recent years, the success rate of solving major criminal cases through big data has been greatly improved. 0e analysis of
multimodal big data plays a key role in the detection of suspects. However, the traditional multiexposure image fusion methods
have low efficiency and are largely time-consuming due to the artifact effect in the image edge and other sensitive factors.
0erefore, this paper focuses on the suspect multiexposure image fusion. 0e self-coding neural network based on deep learning
has become a hotspot in the research of data dimension reduction, which can effectively eliminate the irrelevant and redundant
learning data. In the case of limited field depth, due to the limited focusing depth of the camera, the focusing plane cannot obtain
the global clear image of the target in the depth scene, which is prone to defocusing and blurring phenomena.0erefore, this paper
proposes a multifocus image fusion based on a sparse denoising autoencoder neural network. To realize an unsupervised end-to-
end fusion network, the sparse denoising autoencoder neural network is adopted to extract features and learn fusion rules and
reconstruction rules simultaneously. 0e initial decision graph of the multifocus image is taken as a prior input to learn the rich
detailed information of the image. 0e local strategy is added to the loss function to ensure that the image is restored accurately.
0e results show that this method is superior to the state-of-the-art fusion methods.

1. Introduction

Image fusion refers to the comprehensive processing of two
or more complementary source images obtained from dif-
ferent sensors to obtain a new fused image, which enables
the fused image to have higher credibility [1–4], clarity, and
better understandability. In the case of limited field depth,
due to the limited focusing depth of the camera, the focusing
plane cannot obtain the global clear image of the target in the
depth scene, which is prone to defocusing and blurring
phenomena. Multifocus image fusion technology is to fuse
multiple images with different focus positions in the same
scene into a fully focused image with more information [5].
At present, multifocus image fusion algorithms can be di-
vided into transform domain-based fusion method, space
domain-based fusion method, and deep learning-based
fusion method according to the fusion strategy.

0e fusion method based on the transform domain
generally uses a variety of decomposition tools to decompose
the source image into multilevel coefficients and then de-
signs different fusion rules according to the characteristics of
each level coefficient [6, 7]. Finally, it performs the inverse
multiscale transformation on the fused coefficients of each
level to obtain the fused image.0e design of transformation
tools and the design of fusion rules play an important role in
the fusion performance of transformation domain-based
fusion methods.

Common transformation tools include curvelet trans-
form (CVT) [8], nonsubsampled contourlet transform
(NSCT) [9], Laplacian pyramid (LP) [10], low-pass pyramid,
and gradient pyramid (GP) [11]. 0e fusion rules include
maximization, weighted average, saliency, and active con-
tour. 0e sparse representation (SR), higher-order singular
value decomposition (HOSVD) [12], and other sparse
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principal component analysis- (RPCA-) based multifocus
image fusion methods [13] have attracted more attentions.

0e fusion method based on the spatial domain can be
divided into three types according to the different focus
measurement objects: pixel-based, block-based, and region-
based. 0e pixel-based multifocus image fusion method can
extract the feature information from the source image and
retain the original information to the greatest extent. It has
the characteristics of high accuracy and strong robustness,
which includes dense scale-invariant feature transform
(DSIFT), guided filtering (GF), and image matting (IM).0e
multifocus image fusion method based on blocks and re-
gions adopts some segmentation strategies to divide the
source image into different blocks or regions and then selects
more focus blocks or regions as part of the fused image by
focus measurement [14]. 0e common focus measurement
methods include image gradient and spatial frequency. 0e
block size and segmentation algorithm can directly affect the
visual effect of the fused image, which is prone to “block
effect.” Both transform domain-based fusion methods and
spatial domain-based fusion methods require to manually
design the fusion rules. However, complex image scenes
limit the expressive ability of features and the robustness of
fusion rules.

In order to improve the feature expression ability and the
robustness of fusion rules, deep learning technology has
been introduced into multifocus image fusion research
[15–17]. Karim et al. [18] proposed a drone plane for
monitoring and targeting street crime criminals based on
real time image processing techniques. Liu et al. [19] used the
multiscale Gaussian filter with different standard deviations
to fuzzy process the random region on the gray image to
simulate the multifocus image. By using supervised learning,
the image was classified into focusing pixels and defocusing
pixels, and the focus map with the same size as the input
image was obtained. 0en, the focus decision graph was
generated by verifying the size and consistency of the focus
map. Finally, based on the judging criteria, the weighted
average strategy was used to obtain the fused images in the
spatial domain. Tang et al. [20] proposed a multifocus image
fusion method based on a pixel-wise convolutional neural
network (P-CNN). 0is model used Cifar10 as the training
set, and three kinds of pixels could be learned from adjacent
pixel information: focusing pixel, defocusing pixel, and
unknown pixel. After the source image was scored by
PCNN, a scored matrix representing the focusing level of the
pixel was formed. 0en, by comparing the scores matrix of
the two source images, then it obtained the decision graph.
Finally, the weighted average value of the two input images
was obtained according to the final decision graph filtered by
a threshold. 0e model had excellent performance in real-
time performance and fusion effect, but the limitation of
supervised learning was that accurate label data could not be
obtained for image fusion.

To further distinguish the private and public features in
multifocus images, Luo et al. [21] proposed a joint convo-
lution self-encoding network, which obtained the focus map
based on the image features learned by the private branch
and used the pixel-level weighted average rule to obtain the

fully focused fused image. 0is method adopted unsuper-
vised learning and did not need manually designed label and
achieved ideal results on subjective evaluations and multiple
objective evaluation. However, these methods only take
advantage of CNN feature extraction and classification ca-
pability and still use the manually designed fusion rules,
which makes the model unable to adjust the fusion strategy
according to the application scenarios.

To further realize the self-learning of fusion rules and
make full use of the feature extraction of CNN, combined
with the prior knowledge of manual features, in this paper, a
multifocus image fusion network with self-learning fusion
rules is designed. 0e multifocus image and its initial de-
cision graph are taken as the input of the network, so that the
network can learn more accurate detailed information. 0e
structural similarity index measure (SSIM) and local mean
squared error (MSE) are used as loss functions to drive
fusion rules.

0e rest of this paper is organized as follows. Section 2
designs the proposed approach and, after that, Section 3
describes experimental results. Finally, Section 4 concludes
the paper.

2. Proposed Multifocus Image Fusion

0is paper first introduces the network structure of multi-
focus image fusion, then discusses the network fusion in
detail, and finally discusses the loss function design.

2.1. Feature Extraction Network Based on Sparse Denoising
Autoencoder Neural Network. Figure 1 shows the sparse
denoising autoencoder neural network (SDNA-ENN).

0e whole network is divided into the input layer, coding
layer, fusion layer, decoding layer, and output layer. 0e
input layer includes the initial decision graph of multifocus
image A, multifocus image B, and multifocus image A. 0e
coding layer includes 9 trainable convolutional layers with a
convolution kernel size of 3× 3, and each convolutional layer
is followed by a ReLU layer. 0e coding layer can be divided
into the private branch PriA, public branch ComA of
multifocus image A, and the private branch PriB, and public
branch ComB of multifocus image B, where PriA and PriB
are used to extract the private features of the input images,
respectively. ComA and ComB share weights to extract the
common features from multiple input images. 0e fusion
layer cascades the feature map output by PriA and PriB along
the channel and then connects the cascaded feature map to
the next trainable convolution layer with a convolution
kernel size of 1× 1. 0e output feature map of ComA and
ComB is treated in the same way as PriA and PriB. 0e
decoding layer consists of four trainable convolution layers
with a convolution kernel size of 3× 3, and the last con-
volutional layer is used to reconstruct the fully focused
image. In this paper, a short connection is added to the public
branch to solve the problem of gradient disappearance
during the training process. Compared with the previous
networks, this new network adds fusion units and uses short
connections to improve the robustness of feature learning.
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2.2. Fusion Layer Design. In the study of multifocus image
fusion based on deep learning, the network fusion layer
usually contains two methods that can be used to fuse the
convolution features of multiple inputs:

(1) Cascade the convolution features of multiple inputs
along the channel, and then fuse them with the next
convolutional layer

(2) 0e multiple input convolution features are fused by
the pixel-level fusion rule

0e cascade fusion method stacks multiple inputs, so
that the network can learn sufficient feature information.

0e pixel-level fusion rule includes summation, taking
large and mean value [22]. 0e fusion strategy can be se-
lected according to the features of the data set. In multifocus
images, because the pixel value of the image represents the
information saliency, the proposed method in this paper
introduces the mean rule on the basis of cascading fusion to
ensure the diversity and accuracy of feature learning. 0e
concrete realization of the fusion layer design includes
weight initialization and weight constraint.

2.2.1. Weight Initialization. 0e weight initialization is to
simulate the weighted average fusion rule, and the features
extracted from the coding layer can be accurately fused by
the reasonable weight assignment in the fusion layer. 0e
output feature graphs of PriA, PriB, ComA, and ComB
coding layers are splicing along the channel, followed by a
trainable convolutional layer of 1× 1. 0e first and 1 + p
weight value of the k-th channel in the 1× 1 convolutional
layer is initialized to 0.5; that is,

Wl
k �W

I+p
k � 0.5, I � 1, . . . , 127; k � 1, 2 . . . , 127, (1)

where k is the channel number after the convolution op-
eration. I is the filter number of the k-th channel. P� 128,
which can be adjusted according to actual requirements.Wl

k

is the I-th weight value of the k-th channel.

2.2.2. Weight Constraint. Because the weight value may
appear numerical over-bounds phenomenon in the process
of network iteration, the constraints are added to each
weight value to realize the weight value fluctuation in the
effective range. According to the mean value rule in the
image fusion method, the sum of fusion coefficients of the
two images is 1. However, the activation function of the
training network adopts ReLU, for the k-th channel,∑p−1I�0W

I
k +∑2p−1

I�p W
I+p
k > 1. 0erefore, we make two im-

provements in this process. One is to improve the activation
cost function, the second is to apply the minimum/maxi-
mum norm weight constraint to the 2p weights of the k-th
channel in the fusion layer.

In order to make the activation units with fewer hidden
layers represent the most effective features, through the
traditional autoencoder neural network research, this paper
proposes to add sparse restriction to the hidden neurons in
the denoising autoencoder neural network (DAE), which
can suppress most of the output neurons and use fewer
activation units to represent features.

0e sparse denoising autoencoder network structure
consists of a sparse denoising autoencoder and a softmax
classifier as shown in Figure 2.X represents the original data
layer, X̃ represents the data layer with disturbing noise, and
H̃ represents the hidden layer.

Specifically, assuming that the number of input samples
is m. x represents the input. y represents the output. l
represents the layer number of the neural network. sl rep-
resents the neuron number in hidden layer l. 0en the

Source A

Source B

PriA

Initial decision
graph

PriB

ComA

ComB

Shared

C

C

Loss

Input layer
3 × 120 × 120

Encoder layer
64 × 120 × 120, 64 × 120 × 120, 128 × 120 × 120

Fusion layer
128 × 120 × 120

Decoder layer
128 × 120 × 120, 64 × 120 × 120, 64 × 120 × 120, 3 × 120 × 120

Output layer
3 × 120 × 120

C: channel cascade 

Figure 1: Structure of SDNA-ENN.

Scientific Programming 3



activation cost function of the sparse denoising autoencoder
neural network is defined as follows:

JSDAE(w, b) �
1

m
∑m
i�1

1

2
hw,b(x̃)

(i)
− y(i)






 




2( ) + β∑sl
j�1

KL ρ‖‖ρ̂j( ).
(2)

0e residual of each neuron in the hidden layer is

δli � − yi − ai( )f′ zi( ), when l is output layer,

δli � ∑s2
j�1

wjiδ
l+1
i

  + β −
ρ

ρ̂j
+

1 − ρ

1 − ρ̂j
( ) f′ zi( ), when l is hidden layer.


(3)

0en, the partial derivatives of weight and bias items are
calculated as follows:

∇WlJ(W, b) �
z

zWl
i

JSDAE(w, b) � a
l
jδ
l+1
i ,

∇blJ(W, b) �
z

zbli
JSDAE(w, b) � δl+1i .

(4)

0en, we calculate the L2-norm of 2p weights in the k-th
channel.

Sk �

���������������������
∑p−1
I�0

WI
k( )2 + ∑2p−1

I�p

W
I+p
k( )2

√√
. (5)

Sk is truncated in the range (Smin, Smax); that is,

St �

Smin, Sk < Smin,

Sk, Smin < Sk < Smax,

Smax, Sk > Smax,

 (6)

where Smin is the minimum L2-norm of input weight value.
Smax is the maximum L2-norm of input weight value.

Finally, each weight value of the k-th channel is
readjusted.

Wm
k �W

m
k × Zk, m � 0, 1, 2, . . . , 2p − 1,

Zk �
α × St +(1 − α) × Sk

c + Sk
,

(7)

whereWm
k is the m-th weight value of the k-th channel and

Zk is the constraint range of the weight value. α is the
proportion of constraint; when α� 1, the constraint is
strictly enforced, and when α< 1, the weight must be ad-
justed for each step. In order to avoid gradient explosion,
c � e− 3. After weight initialization and constraint, the rules
of the fusion layer are finally converted to

f̂k(x, y) �W
I
kfI(x, y) +W

I+p
k fI+p(x, y). (8)

2.3. 2e Design of Loss Function. In order to ensure that the
network can learn the features of the input image accurately
and effectively, the local strategy is added into the loss
function, including local structure similarity and local mean
square error.

2.3.1. Local Structure Similarity. Human visual system is
more sensitive to structural loss and deformation.0erefore,
the structural similarity index measure (SSIM) [23] can be
used to intuitively compare the structural information of
distorted images and original images. SSIM is mainly
composed of three parts: relevancy, brightness, and contrast
as shown in the following:

SSIM(X, F) �∑
x,f

2μxμf + C1( ) 2μxμf + C1( ) 2μxμf + C1( )
μ2x + μ2f + C1( ) σ2

x + σ2
f + C2( ) σxσf + C3( ),

(9)

qp fθ
• • • • • •

So�maxX
~
X

~
H

Figure 2: Structure of sparse denoising autoencoder neural network.
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where SSIM(X, F) represents the structural similarity of
source image X and fused image F. x and f represent the
image blocks in the source image and the fused image,
respectively. μx and σx represent the mean and standard
deviation of the image X, respectively. μf and σf represent
the mean and standard deviation of fused image F respec-
tively. σxf represents the covariance of the source image and
the fused image. C1, C2, and C3 are the parameters used to
stabilize the algorithm.

On the basis of SSIM, the corresponded region of image
X is extracted by combining the initial decision graph Xm of
the input image X.

X � min Xm, X( ). (10)

0e initial decision graph corresponding to the input
images A and B are XA and XB, respectively. According to
(10), corresponding regions A, B, and F of images A and B
and fused image F can be obtained, respectively. According
to (9), SSIM(A, tF) and SSIM(B, tF) can be calculated.

2.3.2. Local Mean Square Error. Mean square error is used
to measure the difference degree between the source image
and the fused image. 0e mean square error is inversely
proportional to the quality of the fused image. 0e smaller
value denotes higher fusion quality. Its calculation formula is

MSE(X, F) �
1

MN
∑M−1
i�0

∑N−1
j�0

(X(i, j) − F(i, j))2, (11)

whereMSE(X, F) represents the difference between the input
image X and the fused image F.

According to (11), MSE(A, tF) and MSE(B, tF) can be
obtained.

0e final loss function of the proposed network is

L � λ1(SSIM(A, F) + SSIM(B, F)) + λ2(MSE(A, F) +MSE(B, F)),

(12)
where λ1 and λ2 represent the weights of local structure
similarity and local mean square error, respectively. In this
paper, λ1 is used to adjust the similarity between the fused
image and the source image.0e larger λ1 denotes the higher
similarity between the fused image and the source image. λ2
is used to enhance the focus area of the source image in the
fused image. 0e larger λ2 denotes the significant focus area
of the source image. Based on the extensive experiments, this
paper sets λ1 � 5, λ2 � 5, respectively.

3. Experiment and Analysis

In order to verify the performance of the proposed fusion
method, we conduct comparison experiments with seven
state-of-the-art fusion methods, namely, DE [24], NFBD
[25], GDMC [26], LRRW [27], NNSR [28], CFM [29], and
FRL-PCNN [30]. 0e experiment environment is MAT-
LAB7a, Windows10, GPU TX1060, Memory 16G, and
Intel(R) Core(TM) i7-67001. 0e Keras framework of
Tensorflow is used for network training in this paper. All

the comparison methods use the same parameters [31, 32].
0en, the detailed subjective and objective comparison
and analysis are carried out on multiple multifocus
images.

Because suspects are classified as the country secret data,
this paper tests suspects and open datasets in the laboratory.
0e results are only from the public datasets. 0is paper
conducts experiments on 60 pairs of multifocus images. 20
pairs are from the open-source dataset Lytro [33], the other
20 pairs have been widely used in the study of multifocus
image fusion, and another 20 pairs are from actual suspect
images. 0e sliding window method is adopted to take
blocks with a stride length of 14. Each image in the dataset is
divided into M image blocks with 224× 224pixel. 0e initial
decision graph acquisition in this paper consists of three
parts: segmentation, mapping, and reprocessing. First, each
image in the dataset is segmented into blocks with 4× 4
pixel, and the spatial frequency is calculated. 0en, the
spatial frequency matrix is mapped to the original size of the
source image, and the overlap part is processed with the
mean value to obtain the spatial frequency map. 0e binary
map is obtained by comparing the size. Finally, the initial
decision graph of the network is obtained through consis-
tency verification and guided filtering. 0e fusion results
with different methods are shown in Figures 3–8.

To compare the fusionmethodsmore intuitively, this paper
selects a smaller region at a certain contour in each fused image,
marks it with rectangular box, and gives an enlarged region.
We give an analysis for image “disk.” It can be seen from
Figure 7 that the above methods can obtain fully focused
images with good subjective vision. DE andNFBDpresent false
information such as “artifact” in the edge of alarm clock. 0e
fusion effect of IM is good, but there is a certain “Gibbs”
phenomenon in the disk area, and some details are lost. GDMC
shows fuzzy distortion in the local amplification region due to
the emphasis on looking for boundaries and the focus metric is
performed within a single block. 0e fusion results from
LRRW, NNSR, CFM, and FRL-PCNN are good, but there is a
slight “sag” on the left edge of the alarm clock.

Comparatively, the visual effect of the proposed method
in this paper is similar to the subjective visual effect of other
methods. It can be seen from the enlarged area in Figure 7
that the proposed method in this paper handles the details
well, especially the edge area of the alarm clock is smooth
and natural. A better fusion result is obtained. Since the
initial decision graph of the focused image and the local
strategy of the loss function are added into the network, the
obtained fused image by the proposed method in this paper
performs well in the retention of key information and is
suitable for human visual perception. Figures 3–6 and 8
show the fusion results of the other 5 pairs of multifocus
images in various fusion methods. As can be seen from the
figures, all the methods can better fuse the multifocus image
to some extent. Compared with other methods, the proposed
method achieves better fusion results.

To objectively evaluate the results of each fusion method,
this paper uses the evaluation index: entropy (EN), QW
proposed by Piella and Heijmans, correlation-coefficient
(CC), and Visual Information Fidelity (VIFF) to verify the
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effectiveness of the proposed method. Entropy is an index
based on information theory, which is used to reflect the
amount of information in an image. If the entropy value is
relatively large, it indicates that the fused image contains
relatively more information. QW is a variant of the universal
image quality index, which explores the position and size of
distorted pixels by assigning high weights to visual saliency
areas. 0e greater QW denotes the better fusion effect. 0e
correlation coefficient measures the correlation between the

source image and the fused image. 0e correlation value is
positively correlated with the fusion effect. 0e VIFF is an
index that simulates the subjective vision of human eyes to
measure the fidelity of fused image. It includes four steps:
partitioning, evaluation, calculating the fidelity of subband,
and calculating the total fidelity. 0e higher VIFF presents
the lower the distortion between the fused image and the
source image. In order to ensure the fairness of objective
evaluation, all indexes use the same parameters.

(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) (j)

Figure 3: 0e “girl” source images and result images with different algorithms. (a, b) Source images; (c–j) the fusion images of DE, NFBD,
GDMC, LRRW, NNSR, CFM, FRL-PCNN, and proposed method.
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(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 4: 0e “tree” source images and result images with different algorithms. (a, b) Source images; (c–j) the fusion images of DE, NFBD,
GDMC, LRRW, NNSR, CFM, FRL-PCNN, and proposed method.

(a) (b)

(c) (d)

(e) (f )

Figure 5: Continued.
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(g) (h)

(i) (j)

Figure 5: 0e “sea” source images and result images with different algorithms. (a, b) Source images; (c–j) the fusion images of DE, NFBD,
GDMC, LRRW, NNSR, CFM, FRL-PCNN, and proposed method.

(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 6: Continued.

8 Scientific Programming



(i) (j)

Figure 6: 0e “golf” source images and result images with different algorithms. (a , b) source images; (c–j) the fusion images of DE, NFBD,
GDMC, LRRW, NNSR, CFM, FRL-PCNN, and proposed method.

(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) (j)

Figure 7: 0e “disk” source images and result images with different algorithms. (a, b) Source images; (c–j) the fusion images of DE, NFBD,
GDMC, LRRW, NNSR, CFM, FRL-PCNN, and proposed method.
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

(i) (j)

Figure 8: 0e “temple” source images and result images with different algorithms. (a, b) Source images; (c–j) the fusion images of DE,
NFBD, GDMC, LRRW, NNSR, CFM, FRL-PCNN, and proposed method.

Table 2: 0e objective metrics of different fusion approaches for
image “tree”.

Method EN QW CC VIFF

DE 7.4493 0.8894 0.9721 0.8625
NFBD 7.4512 0.8942 0.9738 0.8756
GDMC 7.4528 0.8953 0.9742 0.8747
LRRW 7.4538 0.8974 0.9758 0.8827
NNSR 7.4688 0.8995 0.9763 0.8875
CFM 7.4848 0.9027 0.9778 0.8957
FRL-PCNN 7.5128 0.9037 0.9781 0.8998
Proposed 7.6456 0.9122 0.9829 0.9025

Table 1: 0e objective metrics of different fusion approaches for
image “girl”.

Method EN QW CC VIFF

DE 7.8668 0.8654 0.9811 0.7298
NFBD 7.8651 0.8552 0.9824 0.7398
GDMC 7.8662 0.8741 0.9825 0.7399
LRRW 7.8674 0.8742 0.9822 0.7435
NNSR 7.8662 0.8746 0.9827 0.7471
CFM 7.8673 0.8755 0.9836 0.7488
FRL-PCNN 7.8695 0.8768 0.9839 0.7527
Proposed 7.8698 0.8879 0.9857 0.7879
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Tables 1–6 display the fusion objective evaluation results
on 6 pairs of multifocus images with the eight fusion
methods. As can be seen from the tables, the proposed fusion
method has obvious advantages over other fusion methods
in terms of the fusion indexes. In general, the proposed
method achieves the best results in terms of QW, CC, EN,
VIFF, and average accuracy index, indicating that this new
algorithm is an effective fusion method.

4. Conclusions

In this paper, an end-to-end unsupervised multifocus image
fusion algorithm based on sparse denoising autoencoder
neural network is proposed. Combined with the prior
knowledge of multifocus image, the network can learn ac-
curate image details. Reasonable weight initialization and
weight constraint are designed in the fusion layer. Local
structure similarity and local mean square error strategies
are used in the loss function to drive the fusion unit to learn
the fusion rules effectively. Experimental results show that
the proposed method not only can realize the fusion rules in
the fusion process of self-learning. In addition, good results
can be obtained in subjective vision and objective evaluation.
It is of great significance to further understand the multi-
focus image fusion mechanism based on deep learning and
to study the general multi-modal image fusion framework.
In the future, more newest deep learning methods will be
utilized to analyze the multifocus image fusion.
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