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Abstract—This paper presents a distributed kinematic control
law for group coordination for several multicopters and a
payload suspended with wires from each multicopter. The
complete system with constraints on the wires are modeled
in 6 degrees of freedom (DOF), using the Udwadia-Kalaba
equation. Velocity controllers for the multicopters are developed
to realize the desired motion set by the kinematic controller. This
results in a system where the group of multicopters are able
to maneuver the payload to a desired position while keeping a
desired formation. The results are verified by simulations.

I. INTRODUCTION

In many years, especially in the military, a lot of research

has been done on modelling and control of a system con-

sisting of flying vehicles transporting a payload suspended

with ropes. Helicopters and other multi-rotors are particularly

useful for this task due to their hovering ability. Applications

span from crate transportation and fire extinguishing, to geo-

surveying and mine-detection [1].

Compared to a single multi-copter, several multi-copters

with a common lifting arrangement (e.g. lines) provides

significantly more stability and some added flexibility to

position the spatially distributed lifting arrangement in space

and attitude. For example, for rendezvous with objects in

order to recover and move them, the end effector could be

more stably positioned (less swinging due to e.g. winds)

and the end effector could also be a horizontally arranged

line segment that would be much easier to hook up with

the object to be recovered than a point-like effector. Rather

than a load at the end of a single line, a load handing in

multiple lines will be more stable and provide more accuracy

in e.g. geo-survey applications where the load could include

ground-penetrating radar or sensitive instruments to measure

magnetic field or gravity to be moved accurately as close to

the ground as possible.

The general problem of cooperative load transport have

been investigated in many papers, see e.g. [2], [3] and

references therein. In most of these, external cameras are

used to provide accurate positions of both the Unmanned

Aerial Vehicles (UAVs) and payload, to be used in feedback

control.

The use cases for this paper is aimed at out-door ap-

plications, where such external positional systems with the
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required accuracy and reliability may not always available.

Instead, the hexacopters will be equipped with other sensors

to measure their relative position to the load. Notable results

for multi-lift systems with small-size helicopters have been

reported by [4], [5] and [6]. In the latter, three helicopters

autonomously transported a sensor-node equipped with a

camera to the top of a building for aiding in a simulated

search and rescue mission.

In our research, we are using the commercially available

hexacopter from 3DRobotics [7]. The hexacopter is con-

trolled by an autopilot called ArduPilot [8], which is an open-

source autopilot, equipped with crucial flight components

such as inertial measurement systems and communication

links.

II. CONTRIBUTION

The purpose of this paper is to derive a kinematic control

law to guide a group of hexacopters to perform a transport

maneuver of a suspended load. The chosen approach is to be

used for a commercial hexacopter with autopilot, as seen in

Figure 1. Our autopilot takes desired Euler angles and desired

thrust as input signals.

Feedback to the kinematic controller is given by angle

sensors, which measures the relative angle between the hexa-

copter and the load. The overall kinematic controller uses an

approach that somewhat resembles the approach in [9], but

in this paper we explicitly use available measurements from

the angle sensor for feedback control.

Constraint

Hexa-

Load

Autopilot

Internal feedback

v
n
d

Angular[µ, l]T

Kinematic
controller

η

Sensor

copter

forces[Θ, f ]T

Velocity

Control[µd, ld]

Fig. 1. Block diagram of the system. The boxes “autopilot” and “hexa-
copter” are commercially available systems. µ and l represents relative angle
between the hexacopter and the suspended load. The velocity and kinematic
controllers are discussed in VI and VII, respectively.



A. Organization

First, in Section III, a model of a generic rigid body is pre-

sented, followed by some information about the hexacopter

in Section IV. The Udwadia-Kalaba equation is introduced

in Section V, along with definitions of the equations of

constraints for the suspended-load system. In Section VI,

a velocity controller for the hexacopter is designed. The

proposed kinematic control law is presented in Section VII,

followed by two simulations in Section VIII.

III. RIGID-BODY MODELLING

A. Kinematics

This section is a brief introduction to the nomenclature

used extensively in the field of surface vessels and UAVs,

as introduced by [10]. The NED frame, denoted {n}, is

assumed inertial. Coordinates in this frame, denoted η ∈ R
6

are [xn yn zn ΘT]T. Θ = [φ θ ψ]T denotes the Euler-

angles, as defined by the rotation sequence zyx [10]. The

body-fixed coordinate system, denoted {b}, is attached to

each rigid body. The body-velocities is given by

ν =
[

u v w p q r
]T

(1)

where ν1 = [u, v, w]T and ν2 = [p, q, r]T refer to

the translational and rotational motions, respectively, and

likewise for η1 and η2. When working with kinematics, it is

useful to define the following matrices [10]:

Rn
b :=





cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ





(2)

where c· = cos (·) and s· = sin (·). Rn
b is the rotation matrix

describing the rotation of the frame {b} relative to a frame

{n} subject the rotation Θ. Further,

S(λ) :=





0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0



 (3)

generates a skew symmetric matrix of λ ∈ R
3 satisfying

S(λ)T = −S(λ) and λ× λ = S(λ)λ. Finally, let

TΘ :=





1 sφsθ/cθ cφsθ/cθ
0 cφ −sφ
0 sφ/cθ cφ/cθ



 , ∀θ 6=
π

2
+ kπ, k ∈ Z

(4)

be the angular transformation matrix, relating angular speeds

in {n} and {b} by Θ̇ = TΘν2

To summarize, velocities in {n} and {b} are related by

η̇ = JΘν (5)

where

JΘ =

[

Rn
b (Θ) 03×3

03×3 TΘ

]

(6)

as defined in [10].

B. Kinetics

The rigid-body kinetics of a generic body can be written

[10]:

m(ν̇1 + ν2 × ν1) = τ 1 (7)

ICGν̇2 + ν2 × (ICGν2) = τ 2 (8)

where m is the mass of the body, ICG ∈ R
3×3 is the moment

of inertia about the centre of gravity. τ 1 ∈ R
3 is external

forces and τ 2 ∈ R
3 is external moments.

If one assume that {b} is located in the centre of gravity,

(7)–(8) can be rewritten to

Mν̇ +C(ν)ν = τRB (9)

where

M =

[

mI3×3 03×3

03×3 ICG

]

,

C(ν) =

[

mS(ν2) 03×3

03×3 −S(ICGν2)

] (10)

Further, the gravitational forces acting on the body, g(η),
can be written

g(η) = −

[

(Rn
b )

TfG
03×1

]

(11)

where fG = [0 0 mg]T is the gravitational force in {n} . The

resulting model now becomes:

η̇ = JΘν (12)

Mν̇ +C(ν)ν + g(η) = τ (13)

IV. HEXACOPTER DYNAMICS

A multi-copter has the ability to individually control the

moments τ 2 and the upwards thrust. Low-level control is

covered in numerous articles, including for instance [11], [12]

and [13].

Here we assume that the UAV is equipped with low-

level controllers, allowing us to send desired Euler angles

for roll, pitch and yaw as inputs. Additionally, the autopilot

receives a control input f ∈ [0 . . . 1] which sets the upwards

thrust force. f = 0.5 represents a stable hovering hexa-

copter. The force F generated by f = 0.5 equals mg, thus

F = (mg/0.5)f := kff .

In section VI, a controller for setting desired velocities in

{n} are designed.

V. LOAD DYNAMICS

In this section, a model of a slung-load system will be

derived. This is based on the work of [1].

A suspended payload connected to n hexacopters with n
wires produces a dynamical system with constraints given

by the wire lengths. This behavior can be modeled by

applying the principle of virtual work by D’Alembert using



a Lagrangian formulation [1]. But, as pointed out in [1], this

leads to quite extensive modeling when a variable number of

constraints must be handled.

Another way of dealing with constrained systems where

introduced by Udwadia and Kalaba [14]. This method gives

an explicit equation for additional forces acting on the

constrained bodies, and thus makes it simple to utilize for dif-

ferent configurations. Notice that the equations of Udwadia-

Kalaba and Lagrange are equivalent, as shown in [15].

A. The Udwadia-Kalaba equation

This section follows the derivation in [1]. Consider the

unconstrained Newtonian system

Mq̈u = Q (14)

where qu ∈ R
nq is the unconstrained generalized coordi-

nates of the system, and Q ∈ R
nq are generalized forces.

Now, let the system be subjected to n constraints in the form

A(q, q̇, t)q̈ = b(q, q̇, t) (15)

where A ∈ R
n×nq and b ∈ R

n and q the generalized

coordinates of the constrained motion of (14).

The system (14) can be transformed to a constrained

system by augmenting it with a constraint force Qc ∈ R
nq

as:

Mq̈ = Q+Qc (16)

In [14], (16) is solved by applying Gauss’s principle of

Least Constraints. This principle states that the acceleration

of the constrained system follows the vector closest to the

unconstrained acceleration, that satisfies the constraints. This

leads to a minimization problem, which can be solved using

the Moore-Penrose pseudoinverse. Moreover, the constrained

system’s acceleration q̈ can be found from (see [1] and [14]):

q̈ = q̈u +M−1/2(AM−1/2)+(b−Aq̈u) (17)

where (·)+ denotes the Moore-Penrose pseudoinverse. This

makes it possible to explicitly identify the constraint force

Qc as

Qc = M1/2(AM−1/2)+(b−Aq̈u) (18)

B. Equations of constraint for the suspended load

The next step is to develop equations for the constraints in

the form Aq̈ = b. Let wire j be attached to CG of hexacopter

j, and connected to the load CG. In the rest of this paper,

the subscript (·)j denotes element (·) for hexacopter j. The

vector from the load to hexacopter j is:

Ln
j = ηj − ηl (19)

Let the constraint equation be chosen as

gj = ||Ln
j ||

2 − d2j (20)

where dj is the length of wire j. It is desired to express the

resulting equations in {b} , so let the generalized acceleration

vector q̈ be:

q̈ =
[

ν̇1 ν̇2 ν̇j · · · ν̇m ν̇l

]T
(21)

Then,

d2

dt2
gj = 2(Ln

j )
T(Rn

b,j ν̇j −Rn
l ν̇l) + 2L̇T

j L̇j (22)

and we can recognize Aj and bj as

Aj = 2(Ln)T [ 03×6(j−1) Rn
b,j 03×3 · · ·

03×6(m−j) −Rn
l 03×3 ]

(23)

bj = −2L̇T
j L̇j (24)

We can now calculate the constrained accelerations from

(17).

C. Simulation and numerical considerations

The equations of constraints developed here, ensures that

the second-order derivative of gj equals 0. However, due to

numerical error in when integrating, gj = 0 will generally

not be achieved. This will make the length of the wires drift,

and is a well recognized problem in the litterature [16]. As

discussed in [1], several approaches to counter this problem

exists. [1] evaluates two approaches, and yields good results

by applying a virtual spring-damper approach. Here, a virtual

spring-damper system is added along all wires to ensure that

gj = 0. Further details can be found in [1] and [17].

VI. VELOCITY CONTROL DESIGN

As discussed in Section IV, the hexacopter autopilot takes

the Euler angles Θ and a thrust force f as input. The

translational force in {n} generated from the hexacopter

propellers are given by

τ
n = Rn

b





0
0

−F



 (25)

where F = kff . This can be expanded to:

τnx = −kff(sinψ sinφ+ cosψ cosφ sin θ) (26)

τny = −kff(− cosψ sinφ+ sin θ sinψ cosφ) (27)

τnz = −kff(cos θ cosφ) (28)

By using (26)–(28), Algorithm 1 summarizes how to generate

desired angles based on a desired force in {n} .

Algorithm 1 (Generation of translational forces). Given

desired force Fn
d ∈ R

3 to be applied by the motors. Let φ,

θ, and ψ be current roll, pitch and yaw angle, respectively.

The goal is to create desired angles φd, θd and ψd to realize

the desired force.

1) Using (28), set f = −Fn
d,z/(kf cos θ cosφ) to gain

upwards thrust and compensate for hexacopter tilt.



2) Using the current yaw angle ψ and F from Step 1, (26)–

(27) becomes a set of two equations with two unknowns.

Setting ψd = 0, gives

τnx =− kff(cosφd sin θd) (29)

τny = kff(sinφd) (30)

which can be solved for φd and θd.

Further, by the parameterization of C(ν) in Section III,

it can be shown that the translational motion in {n} can be

written as:

mv̇n = Fn
g + Fn

l + τ
n (31)

where Fn
l and Fn

g is pull by gravity and the load. The load

disturbs the motion of the helicopter with a force |Fl| pointed

along the wire. The direction of the wire is represented by the

angles [µ, l]T, which is defined by Figure 2. The components

of this force can be calculated as

Fn
l =





Fl,x

Fl,y

Fl,z



 =





−|Fl| cos l cosµ
−|Fl| sin l cosµ
|Fl| sinµ



 (32)

The pull from the suspended laod needs to be compensated

for, in addition to gravity. Let the desired thrust in {n} be:

τ
n = −Fn

g − Fn
l +α (33)

where α is an additional control force to be designed. Given

reference velocities vn
d in {n} , we propose the following

control law:

Theorem 1. Given a desired velocity vn
d , the controller

α = mv̇n
d+Kp(v

n
d−Rn

b ν1)+Kd(v̇
n
d−Rn

b (S(ν2)ν1+ν̇1))
(34)

where Kk ∈ R
3×3 = Kk > 0, k ∈ {p, d} will render

the equilibrium point vn = vn
d of (31) exponentially stable

(GES).

Proof: Let ṽ := vn−vn
d . By using ν1 = (Rn

b )
T
η̇1 and

ν̇1 = (Ṙn
b )

T
η̇ + (Rn

b )
T
η̈1, inserting into (34) yields:

α = mv̇n
d −Kpṽ −Kd

˙̃v

By using (31), we get

˙̃v = −(mI+Kd)
−1Kpṽ

which proves that the zero-equilibrium ṽ = 0 is GES.

VII. GROUP COORDINATION

Let the position of hexacopter j relative to the load be

expressed in the spherical coordinates
[

lj , µj , dj
]

, as

described in Figure 2. Then, the desired velocity calculated

from the following controller will bring the system into a

desired configuration:

Theorem 2. Let ld ∈ R
m be evenly distributed in (−π . . . π].

Given desired configuration angle µd, n hexacopters will

evenly distribute themselves with the kinematic control law

vn
d,j = Rn

l,j

[

k1(µd,j − µj) −k2(ld,j − lj) 0
]T

(35)

Proof: Let there be a coordinate frame {lj} centered

in hexacopter j, which is rotated such that zl,j points

towards the suspended load, yl,j is directed along zl,j × zn,

and xl,j completes the right-hand rule (see Figure 2). Let

ul,j , vl,j , wl,j be linear velocities along xl,j , yl,j , zl,j ,

respectively.

A coordinate transformation between {lj} and {n} is given

by a principal rotation π + lj over the zn-axis, followed by

a rotation π/2− µj over the yn-axis [10].

Rn
l,j = Rz,π+ljRy,π

2
−µj

=





− cos lj sinµj sin lj − cos lj cosµj

− sin lj sinµj − cos lj − sin lj cosµj

− cosµj 0 sinµj





(36)

From the definition of {lj}, we have

µ̇j = dul,j

l̇j = −dvl,j

Let (̃·) := (·)d− (·). Then, by ul,j = k1µ̃j and vl,j = −k2 l̃j :

˙̃µj = −dk1µ̃j (37)

˙̃
lj = −dk2 l̃j (38)

which makes the zero-equilibrium points in (37)–(38) ex-

ponentially stable. Set v
l,j
d,j = [ul,j , vl,j , 0]T. Then, the

reference velocity in {n} is given by

vn
d,j = Rn

l,jv
l,j
d,j (39)

The desired velocity vn
d,j gained from (35) is then used

together with (34) to generate a desired thrust for each

hexacopter. The angles µj and lj can be measured by first

measuring angles relative to {b} by on-board angular sensors,

and supplying with information in Θ. More specifically, lj
requires knowledge of the heading ψ, while µj requires the

current roll φ and pitch θ angles.

zl,2

yl,2

zl,1

yl,1

zl,3

yl,3

l1 = 0

yn
xn

l3

l2

(a) Top view. Three hexacopters are
positioned evenly around a load in
the center.

zl,2

xl,2

zl,1

xl,1

zl
xl

µ1

yl,2

µ2

h

d

(b) Side view where you can see
two hexacopter bodies and their rel-
ative position to the load.

Fig. 2. Illustration of the l-frame.

VIII. SIMULATION STUDY

A. Simulation 1: Formation stabilization

In this section a simulation with three identical hexacopters

will be conducted. The three hexacopters are connected to



a load with three ropes, assumed massless. The system is

modelled using the results in Section V. Each hexacopter

has a mass of 4 kg, while the load weights 0.5 kg. The ropes

are connected to the CG of both the load and the hexacopters.

The autopilot is simulated with a PD-type controller width

a bandwidth of 5 rad/s. The controller also has a maximum

value for the roll and pitch angles set to 15◦ to ensure smooth

flights.

The load is initially placed at [0, 0, 0]T, while the hexa-

copters are placed around the load, each with a distance of

dj = 2, with the following coordinates:

[

µ1

l1

]

=

[

30◦

−180◦

]

,

[

µ2

l2

]

=

[

45◦

−60◦

]

,

[

µ3

l3

]

=

[

60◦

60◦

]

The desired µd for all hexacopters are µd = 45◦. Further,

the desired lds are

ld,1 = −120◦, ld,2 = 0◦, ld,3 = 120◦

The numerical integration is done with Runge-Kutta 4,

running at 100 Hz. The results can bee seen in Figures 3–5.

In the simulations, the variables µ and l must be calculated

from the current position of the load and each hexacopter.

Let x̄j = [x̄j , ȳj , z̄j ] := ηj − ηl. Then, µj and lj can be

calculated by:

µj = atan





−z̄j
√

x̄2j + ȳ2j



 (40)

lj = atan2(ȳj , x̄j) (41)

which is valid for x̄2j + ȳ2j 6= 0, that is, when the load is not

directly above or below a hexacopter.

B. Results and discussions

Figure 3 shows the time plot of µ and l for all three

hexacopters. It it seen that the controller forces µj and lj
to their desired values. Further, the constrained acceleration

of the load can be seen in Figure 4(a). It is seen that after the

hexacopters reach their position, they stabilize the position

of the load. But, as can be seen by Figure 4(b), the position

of the load drifts a bit while they get into formation. This

is due to the fact that no attempt to control the position of

the load is done in this simulation. This is done in the next

section.

Further, the roll and pitch of hexacopter 1 can be seen in

Figure 5. It can be seen that the stationary value is not zero,

indicating that the hexacopter must be tilted to compensate

for the additional pull from the load-wire.

C. Simulation 2: Load transport

The start of this simulation is identical to that of the

previous section, but here, after a stable formation is reached,

an additional velocity component is inserted to transport the

load to a desired location. Let ηl,d ∈ R
3 be the desired

position of the load. Further, let vn
d,p ∈ R

3 be the velocity

component to guide the load to its desired position, be
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(b) Error in l for hexacopter 1-3 (in
degrees).

Fig. 3. µ and l for all hexacopters. In both 3(a) and 3(b), the blue line is
for hexacopter 1, the dashed green for hexacopter 2, and the dash-dotted
line for hexacopter 3.
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0

0.5

1

time [s]

Load Acceleration

(a) Load constrained accelera-
tion.

0 5 10
−0.5

0

0.5

time [s]

Load Position

(b) Load position. It is seen that
the position drifts a bit from the
initial position.

Fig. 4. Load acceleration (4(a)) and position (4(b)). In both figures, blue,
green and red represents the directions xn, yn and zn, respectively.

vn
d,p = Kl(ηl,d − ηl)

so that after the desired configuration is reached, the total

reference velocity is vn
d,p + vn

d,j , where the last term is

calculated from (39). In this simulation, ηl,d = [1, 5, 0]T

and Kl = 1. The results of the simulation can be seen in

Figures 6–9.

D. Results and discussions

In Figure 6, it is seen that the error in µj and lj stays

at zero during the transport manoeuvre, which shows the

feasibility of the proposed controller. Further, Figure 7(b)

shows that the load is transported to the desired location

[1, 5, 0]T. From Figure 8, it is seen that the velocity-

controller for hexacopter 1 follows the desired velocities. A

time-lapse of the maneuver can be seen in Figure 9, at the

times indicated in the figure.

IX. CONCLUSIONS

We have derived a nonlinear kinematic control law for

cooperative load transport using multiple hexacopters. The

proposed control law can be used as a guidance law for a

hexacopter with autopilot. Numerical simulations verify the

results.
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Fig. 5. Roll (5(a)) and pitch (5(b)) for hexacopter 1.
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Fig. 6. µ and l for all hexacopters in Simulation 2. In both 6(a) and 6(b),
the blue line is for hexacopter 1, the dashed green for hexacopter 2, and the
dash-dotted line for hexacopter 3.
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