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Abstract The applicability of suspension models to
polymer crystallization is discussed. Although direct
numerical simulations of flowing particle-filled melts
are useful for gaining understanding about the rheo-
logical phenomena involved, they are computationally
expensive. A more coarse-grained suspension model,
which can relate the parameters in a constitutive equa-
tion for the two-phase material to morphological fea-
tures, such as the volume fractions of differently shaped
crystallites and the rheological properties of both
phases, will be more practical in numerical polymer
processing simulations. General issues, concerning the
modeling of linear and nonlinear viscoelastic phenom-
ena induced by rigid and deformable particles, are
discussed. A phenomenological extension of linear
viscoelastic suspension models into the nonlinear
regime is proposed. A number of linear viscoelastic
models for deformable particles are discussed, focusing
on their possibilities in the context of polymer crys-
tallization. The predictions of the most suitable model
are compared to direct numerical simulation results and
experimental data.
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Introduction

The significant effects of flow on the crystallization
kinetics of polymers, specifically the increase of the
nucleation density and the transition from spherical
to anisotropic growth, have incited a great deal of
scientific effort, both experimental and theoretical. Ex-
perimental studies usually involve subjecting an under-
cooled melt to a short, well-defined flow in the early
stage of crystallization, where nearly all of the material
is still in the amorphous phase, and monitoring the
subsequent structure development by any one of a va-
riety of measurement techniques, including rheometry,
microscopy, and scattering and diffraction methods, or
a combination of these methods. Because our under-
standing of the phenomena occurring in the early stage,
which determine to a great extent the final semicrystal-
line morphology, is still incomplete, it is not surprising
that far less attention has been devoted to the influ-
ence of structure development on the rheology of a
crystallizing melt. However, once the mechanisms of
flow-induced crystallization are known, this will be the
first step in going from short-term flow to continuous
flow experiments, where the local process of phase
transformation is affected by the development of semi-
crystalline structures on an orders of magnitude larger
length scale and vice versa. These experiments will be
useful as validation for polymer processing simulations.

During the last decade, a number of concepts have
been proposed that deal with the rheology of crystal-
lizing polymer melts. Winter and coworkers (Horst and
Winter 2000a, b; Pogodina and Winter 1998; Pogodina
et al. 1999a, b, 2001; Winter and Mours 1997) observed
an apparent similarity to the rheology of chemical
gels, in which polymer molecules are connected by
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permanent crosslinks into a sample spanning network.
They considered crystallizing melts as physical gels, in
which crystallites were connected by amorphous “tie
chains.”

Janeschitz-Kriegl et al. (2003) estimated the fraction
of chains involved in nuclei in their experiments and
found it to be so small that, during the major part of the
crystallization process, no interaction among the nuclei
or the resulting spherulites was to be expected. To ex-
plain the observed nonlinear increase of the nucleation
density as a function of the mechanical work supplied to
the melt, they introduced the concept of flow-induced
activation of dormant nuclei (Janeschitz-Kriegl 2003;
Janeschitz-Kriegl and Ratajski 2005).

Another explanation of the strong self-enhancing
effect of nucleation was proposed by Zuidema (2000)
and Zuidema et al. (2001). They assumed that nuclei
locally act as physical crosslinks, increasing the proba-
bility that chain segments remain in an ordered state
long enough to serve as new nuclei. In other words,
gel-like behavior is not caused by the formation of
a percolating network of semicrystalline domains but
by effective branching of the amorphous phase. Low-
frequency rheological measurements, supporting this
idea, were recently published by Coppola et al. (2006).

A few attempts have been made to capture the
kinetics of flow-induced crystallization in a continuum
description, embedded in a formal theoretical frame-
work of nonequilibrium thermodynamics. For example,
the Poisson bracket formalism (Beris and Edwards
1994) was used by Doufas et al. (1999). In their model,
which was applied to flow-induced crystallization dur-
ing fiber spinning (Doufas et al. 2000a, b; Doufas and
McHugh 2001a, b) and film blowing (Doufas and
McHugh 2001c), details of the microstructure, e.g., size
and shape of the crystallites, are not taken into account.
The crystalline phase is simply modeled as a collection
of bead–rod chains. A Giesekus model is used for the
amorphous phase, with the relaxation time depending
on the degree of crystallinity χ as

λam = λam,0 (1 − χ)2 (1)

to account for the loss of chain segments due to crystal-
lization.

Hütter (2001) developed a flow-induced spherulitic
crystallization model based on the “general equation
for the nonequilibrium reversible–irreversible cou-
pling” or generic (Grmela and Öttinger 1997; Öttinger
and Grmela 1997). The microstructure enters his model
through the evolution of the interfacial area, obtained
from the Schneider rate equations (Schneider et al.
1988). This gives rise to a pressure term in the mo-

mentum balance, related to the surface tension, as well
as to an interfacial heat flux in the energy balance.
However, the extra stress tensor is written as the sum
of the viscous stress contributions from the matrix and
the spherulites,

τ = τ am + τ sc , (2)

as if the material were a homogenous mixture. Here,
“am” stands for the amorphous matrix and “sc” for
the partially crystalline, partially amorphous material
inside the spherulites, which we call the semicrystalline
phase. When both phases are incompressible, the par-
tial stresses are given by

τ am = 2 (1 − φ) ηam D (3)

and

τ sc = 2φηsc D , (4)

where φ is the volume fraction of spherulites, or degree
of space filling, and D is the deformation rate tensor.
Equations 2, 3, and 4 yield the effective viscosity

η = (1 − φ) ηam + φηsc . (5)

Thus, no connection is made between rheological
properties and microstructural features. Van Meerveld
(2005) and Van Meerveld et al. (2008) extended
Hütter’s model with a description of the viscoelastic
behavior of the melt and used it to simulate fiber spin-
ning. In contrast to Hütter et al. (2005), who developed
a single set of rate equations, allowing for changes
in crystallite shapes and growth directions, they used
two sets of rate equations to describe the evolution
of spherulites and oriented crystallites. Although mor-
phology development is incorporated in these models,
at the continuum level, the stress is determined by
the additive “rule of mixtures,” Eq. 2. The question
remains whether this is a realistic choice for describing
the rheology of crystallizing polymer melts.

The morphology that develops as nuclei grow into
crystallites with distinct shapes agrees with the basic
concept of a suspension: isolated particles (the crys-
tallites) are scattered throughout a continuous matrix
(the amorphous phase). It is well known that the rule
of mixtures fails to describe the volume fraction depen-
dence of the rheological properties of suspensions. The
same may hence be expected for crystallizing melts.
Boutahar et al. (1996, 1998), Tanner (2002, 2003), and
Van Ruth et al. (2006) therefore used ideas from sus-
pension rheology to describe the evolution of linear vis-
coelastic properties during crystallization, as a function
of the degree of space filling and the properties of the
individual phases.
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Crystallizing polymer melts differ from ordinary sus-
pensions in a number of ways. The crystallites grow,
they can have different shapes depending on the flow
history, and their properties evolve in time. The latter
can be shown by combined optical microscopy and
rheological measurements during crystallization. The
dynamic modulus continues to increase after the com-
pletion of space filling (Van Ruth et al. 2006). This is
the result of perfection of the semicrystalline phase,
also referred to as secondary crystallization. In this
paper, crystallites are therefore treated as particles
whose properties depend on their internal degree of
crystallinity,

χ1 = χ

φ
, (6)

thus providing the possibility to incorporate perfection
in the model. The surrounding amorphous phase acts
as a matrix, whose properties change as well. As yet
unpublished results (J.F. Vega, personal communica-
tion) show strongly increased storage and loss moduli,
measured at a constant frequency, directly after short
steady shear flows. At the same time scale, no signifi-
cant degree of space filling was observed by means of
optical microscopy (D.G. Hristova, personal commu-
nication). Therefore, these results cannot be explained
by particle-like effects of the crystallites on the overall
rheology. Coppola et al. (2006) drew the same con-
clusion from a comparison of dynamic measurements
on partially crystallized melts and on an amorphous
melt filled with solid spheres. However, for the partially
crystallized samples, the degrees of space filling were
probably underestimated (see the “Frequency sweeps
at different volume fractions” section).

To explain these observations, the amorphous matrix
will be described as a crosslinking melt, with flow-
induced nucleation precursors acting as physical cross-
links (Zuidema 2000; Zuidema et al. 2001). In the later
stages of crystallization, the flow is severely disturbed
by the presence of crystallites. Both phenomena have a
nonlinear effect on the kinetics of flow-induced crystal-
lization; furthermore, they are mutually coupled. The
influence of flow on the early-stage kinetics, related to
structure development within the amorphous matrix,
will be discussed elsewhere. Two-dimensional (2D)
simulations of flow-induced crystallization in a particle-
filled polymer melt have already been performed with-
out taking the physical crosslinking effect into account
(Hwang et al. 2006). Here, we focus on the later
stages of crystallization, which are dominated by space
filling and perfection of the internal structure of the
crystallites.

A suspension model for crystallization under real
processing conditions has to meet at least the following
requirements:

1. The model has to be applicable in the entire range
of volume fractions, i.e., from the purely amor-
phous state (φ = 0) to complete filling of the mate-
rial by the crystallites (φ = 1). This rules out dilute
suspension theories, although an interpolation be-
tween analytical results for φ → 0 and φ → 1 has
been applied with some success (Tanner 2003).

2. The possibility to incorporate differently shaped
particles is essential for describing different semi-
crystalline morphologies. Here, spherulites and ori-
ented crystallites are represented by spheres and
cylinders, respectively, and we need a suspension
model that can deal with both.

3. To describe the evolution of linear viscoelastic
properties, as measured during crystallization, the
model must provide a relationship between these
properties and morphological features.

4. Quantitative description of most manufacturing
processes requires that the effect of crystallization
on the nonlinear viscoelastic behavior is captured
as well.

In the “Linear viscoelastic suspension rheology” sec-
tion, we briefly review how the effective dynamic me-
chanical properties of a linear viscoelastic suspension
can be obtained from an elastic suspension model by
means of the correspondence principle (Christensen
1969; Hashin 1965, 1970a, b). The consequences of
modeling crystallites as either rigid or deformable parti-
cles are discussed. No specific suspension model is used;
the discussion is of a general nature. A complemen-
tary phenomenological modeling approach to nonlin-
ear viscoelastic suspension rheology is introduced in the
“Nonlinear viscoelastic suspension rheology” section.
Its ability to qualitatively reproduce results from ex-
periments (Mall-Gleissle et al. 2002; Ohl and Gleissle
1993) and numerical simulations (Hwang et al. 2004a)
is investigated. The properties of a specific linear visco-
elastic suspension model are discussed in the “History
and relation to other models” and “Influence of phase
properties” sections. In the “Comparison to numerical
and experimental data” section, its predictions are
compared to numerical (Hwang et al. 2004a) and ex-
perimental (Mall-Gleissle et al. 2002) results for rigid
particle suspensions. In the “Application to crystalliza-
tion experiments” section, they are compared to experi-
mental data on quiescent and short-term shear-induced
crystallization of different polymer melts (J.F. Vega
and D.G. Hristova, private communications; Boutahar
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et al. 1996, 1998; Coppola et al. 2006). The conclusions
of this paper are summarized in the “Conclusions”
section.

Modeling

Various constitutive models are available to describe
the nonlinear viscoelastic behavior of the matrix of
the suspension, i.e., the amorphous phase of the crys-
tallizing melt. Differential models are most suited for
numerical simulations of complex flows. Some of the
most advanced are the Rolie-Poly model (Likhtman
and Graham 2003) for linear melts and the Pom-Pom
(McLeish and Larson 1998) and eXtended Pom-Pom
(XPP: Verbeeten et al. 2004) models for branched
melts. These and other differential models can be
written in a general form, involving a slip tensor,
which represents the nonaffine motion of polymer
chains with respect to the macroscopic flow (Peters and
Baaijens 1997).

The linear viscoelastic behavior of the matrix is char-
acterized by the complex dynamic modulus, which is a
function of the frequency ω,

G∗
0 (ω) = G′

0 (ω) + jG′′
0 (ω) (7)

and which is fitted by an M-mode discrete relaxation
spectrum, giving the storage modulus

G′
0 (ω) =

M∑

i

G0,i
λ2

0,iω
2

1 + λ2
0,iω

2
(8)

and the loss modulus

G′′
0 (ω) =

M∑

i

G0,i
λ0,iω

1 + λ2
0,iω

2
(9)

in terms of the moduli G0,i and relaxation times λ0,i.
The influence of particles on the linear viscoelastic
properties of a suspension is discussed next.

Linear viscoelastic suspension rheology

Our point of departure is the general expression for
the effective shear modulus G of a suspension of
elastic particles dispersed throughout an elastic matrix
(Torquato 2002),

(10)

where φ is the volume fraction of the dispersed phase;
s∼ is an array of shape factors that define the parti-
cle geometry; ν0 and ν1 are the Poisson ratios of the

continuous phase and the dispersed phase, respectively;
and μ is the ratio of the shear moduli of the phases,

μ = G1

G0
. (11)

In general, G0 and G1 only occur in suspension models
via this ratio. The dimensionless quantity fG = G/G0 is
known as the relative shear modulus. Expressions anal-
ogous to Eq. 10 can be written down for the effective
bulk modulus K, Young’s modulus E, and Poisson ratio
ν (Torquato 2002). Any two of these properties deter-
mine the mechanical behavior of an elastic material. In
viscous systems, the relative viscosity fη = η/η0 is used.

To describe suspensions where both the matrix and
the particles are linear viscoelastic, the effective dy-
namic shear modulus is written in the same form as in
the elastic case,

(12)

with μ∗ = G∗
1/G∗

0. This implies that G∗
0 and G∗

1 are
known in the same range of frequencies. The relative
dynamic shear modulus will later on be denoted by
f ∗
G(ω, φ) or, simply, by f ∗

G. However, one should keep
in mind that, besides the frequency and the volume
fraction, it also depends on the geometry of the par-
ticles and the material properties of the phases. The
dynamic modulus ratio μ∗ governs the frequency de-
pendence of f ∗

G, which makes it a complex quantity,

f ∗
G (ω, φ) = f ′

G (ω, φ) + jf ′′
G (ω, φ) . (13)

The Poisson ratios may, in principle, also be com-
plex. However, experiments on different thermoplastic
polymers have shown that the imaginary part of the
complex Poisson ratio ν∗ = ν ′ − jν ′′ has a maximum at
the glass transition temperature Tg, where it is about an
order of magnitude smaller than the real part, i.e., ν ′′ ∼
10−2, and that it decreases strongly upon departure
from Tg (Agbossou et al. 1993; Waterman 1977). We
therefore assume that, in the present case, all Poisson
ratios are real.

For a constant volume fraction, the correspondence
principle (Christensen 1969; Hashin 1965, 1970a, b)
relates the relative dynamic shear modulus f ∗

G to the
relative shear modulus of an elastic suspension with
the same microstructure. In the case of a steady-state
oscillatory deformation with frequency ω, f ∗

G is simply
obtained by replacing the moduli G0 and G1 in the
elastic model by their dynamic counterparts G∗

0 and
G∗

1. Of course, the volume fraction of crystallites in
a crystallizing polymer melt is not constant. However,
according to Tanner (2003), if φ changes slowly com-
pared to the characteristic time scale of stress relax-
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ation, the correspondence principle will still be a good
approximation.

At this point, it should be noted that the density
difference between the amorphous phase and the semi-
crystalline phase of a polymer has an influence on the
volume fraction, which is given by

φ = φ̃ρam

φ̃ρam +
(

1 − φ̃
)

ρsc

. (14)

Here, ρam and ρsc are the densities of the amorphous
and the semicrystalline phases, respectively. The vol-
ume fraction φ̃, uncorrected for the density difference,
is calculated as the volume of transformed amorphous
phase per initial unit volume of material. Equation 14
can easily be included in the rate equations for the
growth of the semicrystalline phase (Liedauer et al.
1993; Schneider et al. 1988). In the “Application to crys-
tallization experiments” section, where the actual vol-
ume fraction is determined directly from microscopic
images, no correction is necessary.

Crystallites as rigid particles

Because, in general, the dynamic modulus of a polymer
increases by several orders of magnitude during crys-
tallization, one may argue that the crystallites can be
considered rigid. Any suspension model should make
sure that, with this assumption, all occurrences of μ∗
cancel each other out. This is trivial; if the infinite
modulus ratio remained, the effective modulus of the
suspension would already go to infinity when adding
an infinitesimal amount of particles to the pure matrix,
which is unrealistic. If the Poisson ratios are real, as we
assume here, for rigid particles, the relative dynamic
modulus thus becomes real as well,

fG (φ) ≡ lim|μ∗|→∞ f ∗
G

(
φ, μ∗ (ω)

)
. (15)

The effective storage modulus is then given by

G′ (ω, φ) = fG (φ)

M∑

i

G0,i
λ2

0,iω
2

1 + λ2
0,iω

2
(16)

and the effective loss modulus by

G′′ (ω, φ) = fG (φ)

M∑

i

G0,i
λ0,iω

1 + λ2
0,iω

2
. (17)

Hence, upon adding particles, all moduli increase by the
same amount, which, moreover, is independent of the
frequency, whereas the relaxation times remain equal
to those of the matrix.

For suspensions in which the particles are essentially
rigid, the validity of Eqs. 15, 16, and 17 has been
confirmed by experiments, as well as numerical sim-
ulations. Schaink et al. (2000) investigated the indi-
vidual effects of Brownian motion and hydrodynamic
interactions on the viscosity of suspensions of rigid
spheres by means of Stokesian dynamics simulations.
They used a viscous fluid and a linear viscoelastic
fluid as the matrix and found that the hydrodynamic
contributions in both cases were similar. Expressions
for the components η′ = G′′/ω and η′′ = G′/ω of the
dynamic viscosity, equivalent to Eqs. 16 and 17, were
obtained. Using the relative viscosity from the viscous
simulation results, Schaink et al. were able to reproduce
some of the oscillatory shear data of Aral and Kalyon
(1997) for suspensions of glass spheres in a viscoelastic
fluid, namely, those with φ = 0.1 and φ = 0.2. See et al.
(2000) subjected suspensions of spherical polyethylene
particles in two different viscoelastic matrix fluids to
small-amplitude oscillatory squeezing flow. They found
that, indeed, independent of the frequency, the relative
quantities η′(φ)/η′

0 of one system and G′(φ)/G′
0 and

G′′(φ)/G′′
0 of the other system were all described by

a single master curve in the examined volume fraction
range, 0 ≤ φ ≤ 0.4.

Because we want to be able, in a later stage, to
extend our work with a model for perfection of the
semicrystalline phase and study its effect on mechanical
properties, we prefer to treat crystallites as deformable
particles. In this way, the possibility to model relatively
weak (low χ1), as well as stiff (high χ1), semicrystalline
structures also remains. Moreover, in numerical poly-
mer processing simulations, it is preferable to work with
a dynamic modulus that remains finite. This is not the
case if crystallites are modeled as rigid particles up to
large volume fractions.

Tanner (2003) proposed to use two separate models.
The first gives fG for small volume fractions, assuming
the crystallites to be rigid, according to Eq. 15. From the
second model, which describes the crystallizing melt at
large volume fractions, the additional relative dynamic
modulus

h∗
G = G∗

G∗
1

(18)

is obtained. Depending on the microstructure of the
system, we could, for example, use a model for densely
packed particles, i.e., the crystallites, with the amor-
phous phase filling the interstices, or a suspension
model with the amorphous phase as the particles and
the semicrystalline phase as the matrix. In any case,
the relevant dynamic modulus ratio is now μ∗−1. It is
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assumed that the amorphous phase essentially consists
of voids, so that

hG (1 − φ) ≡ lim
|μ∗|−1→0

h∗
G

(
1 − φ, μ∗−1 (ω)

)
. (19)

An interpolation between the solutions of the small-
and large-volume fraction models is necessary to insure
a continuous transition at intermediate volume frac-
tions. A linear interpolation has the general form

G∗ (ω, φ) = F (φ) G∗
0 (ω) + H (φ) G∗

1 (ω) (20)

with

F (φ) = [1 − w (φ)] fG (φ) (21)

and

H (φ) = w (φ) hG (φ) , (22)

where w ∈ [0, 1] is an empirical weighting function.
Tanner (2003) determined F and H directly, by fit-
ting them to the oscillatory shear data of Boutahar
et al. (1998) for a polypropylene melt containing dif-
ferent volume fractions of spherulites. A qualitative
agreement with the shear-induced crystallization exper-
iments of Wassner and Maier (2000) was found using
these empirically determined interpolation functions. It
should be noted that the experiments were limited to
very low shear rates (0.003 ≤ γ̇ ≤ 0.16).

If G∗
1(ω) is known and is fitted by a discrete relax-

ation spectrum of N modes, Eqs. 16 and 17 are now
extended to

G′ (ω, φ) = F (φ)

M∑

i=1

G0,i
λ2

0,iω
2

1 + λ2
0,iω

2

+H (φ)

N∑

k=1

G1,k
λ2

1,kω
2

1 + λ2
1,kω

2
(23)

and

G′′ (ω, φ) = F (φ)

M∑

i=1

G0,i
λ0,iω

1 + λ2
0,iω

2

+H (φ)

N∑

k=1

G1,k
λ1,kω

1 + λ2
1,kω

2
. (24)

In both the small-volume fraction model and the large-
volume fraction model, all moduli change by the same
amount while the relaxation times do not change. Due
to the interpolation, however, the overall relaxation be-
havior of the material varies with the volume fraction,
unless M = N and λ0,i = λ1,i.

Although it is possible to capture, in this rather sim-
ple way, the evolution of linear viscoelastic properties
during crystallization, we take a different approach.
The linear viscoelastic modeling presented here will be

extended to the nonlinear viscoelastic regime for ap-
plication in polymer processing simulations. The inter-
polation method is not suited to this purpose because
the optimal fitting parameters, defining the weighting
function w(φ), probably change with the processing
conditions.

Crystallites as deformable particles

In general, if G∗
1 is finite, f ∗

G is complex and Eq. 12
yields for the effective storage modulus

G′ = (
f ′
G − f ′′

G tan δ0
)

G′
0 (25)

and for the effective loss modulus

G′′ =
(

f ′
G + f ′′

G

tan δ0

)
G′′

0 (26)

with tan δ0 = G′′
0/G′

0 tangent of the loss angle of the
matrix. The fact that the expressions between paren-
theses in Eqs. 25 and 26 are different has an important
consequence. Equation 25 can be written as

G′ =
M∑

i=1

(
f ′
G − f ′′

G

λ0,iω

)
G0,i

λ2
0,iω

2

1 + λ2
0,iω

2
(27)

and Eq. 26 as

G′′ =
M∑

i=1

(
f ′
G + f ′′

Gλ0,iω
)

G0,i
λ0,iω

1 + λ2
0,iω

2
. (28)

It is clear that, if the effective relaxation times λi are
chosen equal to the relaxation times λ0,i of the ma-
trix, G′ and G′′ can only be described by the same
spectrum if f ′′

G = 0. All moduli then increase by the
same amount f ′

G relative to those of the matrix, so that
G′ and G′′ are shifted independent of the frequency,
corresponding qualitatively to the behavior of a rigid
particle suspension. However, f ′′

G = 0 only if μ∗ is real,
i.e., if G∗

1 is proportional to G∗
0 so that both have the

same frequency dependence, which is not the case in
suspensions encountered in practice or in crystallizing
polymer melts.

If f ′′
G 
= 0, f ∗

G must be determined in the whole range
of frequencies of interest, given the dynamic moduli
G∗

0(ω) and G∗
1(ω) of the individual phases. In numerical

simulations of crystallization during flow, G∗ can, at any
time step, be fitted by a new set of effective moduli
and effective relaxation times, using the set from the
previous time step as a first estimate. If the number of
modes is the same for each phase, they can be expressed
in terms of the moduli and relaxation times of the
matrix as

Gi (φ) = kG,i (φ) G0,i (29)
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and

λi (φ) = kλ,i (φ) λ0,i (30)

with 1 ≤ kG,i ≤ G1,i/G0,i and 1 ≤ kλ,i ≤ λ1,i/λ0,i. In this
way, a smooth transition from the matrix spectrum to
the particle spectrum is obtained. If the latter consists of
N < M modes, while going from φ=0 to φ=1, M−N
of the initial M modes should vanish. If N > M, N − M
new modes should appear. To ensure consistency, a
single criterion must be used to choose the number
of modes in the phase spectra and in the effective
spectrum.

Thus, we use a single suspension model, in contrast
to the interpolation method, where different models are
used at small and large volume fractions. Therefore,
we need a suspension model that is valid in the entire
range of volume fractions, as stated in the Introduction.
This severely limits the number of suitable models. We
will come back to this in the “Evaluation of a linear
viscoelastic model” section.

Nonlinear viscoelastic suspension rheology

The correspondence principle is only valid in the linear
viscoelastic regime because it relies on the fact that
the stress evolution is given by a Boltzmann integral
(Christensen 1969; Hashin 1970a, b). In the context of
modeling flow-induced crystallization during process-
ing, nonlinear effects will be important at least in the
amorphous phase, where the largest deformations take
place. In general, nonlinear viscoelastic constitutive
models contain the moduli Gi and the relaxation times
λi of the linear relaxation spectrum plus a number of
additional parameters. We assume that the correspon-
dence principle still applies to the linear viscoelastic
part of the rheology. The effective moduli and relax-
ation times are then related to those of the matrix by
Eqs. 29 and 30, respectively.

Experiments on suspensions of rigid particles in a
viscoelastic matrix have shown that the maximum strain
amplitude, below which linear viscoelastic behavior is
observed, decreases strongly with increasing particle
volume fraction (Aral and Kalyon 1997). Thus, even
though the matrix is linear viscoelastic, at a certain
volume fraction, the behavior of the suspension will
become nonlinear viscoelastic. This phenomenon may
also be expected to occur if the particles are not rigid,
although to our knowledge, no supporting data are
available.

The experimental results of Ohl and Gleissle (1993)
and Mall-Gleissle et al. (2002), in which suspen-
sions of essentially rigid spheres in viscoelastic matrix
fluids were subjected to simple shear flow, show a

pronounced influence of the volume fraction on the
normal stress differences. It was found that, for con-
stant φ, the steady-state first normal stress difference
N1 = τ11 − τ22 correlated with the shear stress as N1 ∼
τ n

12, where 1.63 ≤ n ≤ 1.68. When the volume fraction
of particles was increased at a constant value of the
shear stress, they saw that the first normal stress dif-
ference decreased. This means that the dependence of
N1 on φ is weaker than that of τ n

12 on φ.
Hwang et al. (2004a), who simulated 2D suspensions

of rigid discs in an Oldroyd-B fluid, found a similar
scaling of the time-averaged steady-state stress func-
tions N1 and τ12 with an exponent n = 2. Furthermore,
they showed that both the macroscopic shear viscosity
η = τ12/γ̇0, where γ̇0 is the externally applied shear
rate, and the macroscopic first normal stress coefficient
�1 = N1/γ̇

2
0 increase with γ̇0, as well as with φ. Mall-

Gleissle et al. (2002) also observed that the magnitude
of the second normal stress difference |N2| = |τ22 − τ33|
increased by the same amount as N1 upon increasing
the volume fraction at constant shear stress. This was
not the case in the simulations of Hwang et al. (2004a)
because the Oldroyd-B model does not predict a second
normal stress difference in planar shear.

The dependence of N1 and τ12 on the volume frac-
tion of particles can be reproduced, at least qual-
itatively, by assuming that the “effective” velocity
gradient tensor can be written as

L (φ, γ̇0) = kL (φ, γ̇0) L0 (31)

to take into account that the macroscopic velocity field
L0 is locally disturbed by the presence of particles. The
undisturbed shear rate, defined as

γ̇0 = √
2D0 : D0 (32)

with D0 = 1
2

[
L0 + LT

0

]
the undisturbed deformation

rate tensor, together with the volume fraction of parti-
cles determines the strength of the disturbances kL ac-
cording to Eq. 31. To illustrate this phenomenological
model of particle-induced nonlinear effects, we choose
a single-mode upper-convected Maxwell model. Using
Eqs. 29, 30, and 31, the constitutive relation for the
extra stress tensor becomes

+
1

kλ λ0
τ = 2 kG kL G0 D0 .

��

(33)

In a steady-state simple shear flow, Eq. 33 yields the
shear stress

τ12 = kGkλkLG0λ0γ̇0 (34)

and the first normal stress difference

N1 = 2kGk2
λk2

LG0λ
2
0γ̇

2
0 = 2τ 2

12

kGG0
. (35)



650 Rheol Acta (2008) 47:643–665

In accordance with the numerical simulations of Hwang
et al. (2004a), the first normal stress difference, at a
given volume fraction, is proportional to the square of
the shear stress. They used an Oldroyd-B model for
the matrix, which leads to equivalent results if used
in combination with the phenomenological nonlinear
viscoelastic model discussed here. Furthermore, also in
accordance with these simulations and with the experi-
ments of Mall-Gleissle et al. (2002), the ratio of the first
normal stress difference and the nth power (here n = 2)
of the shear stress, both normalized by their values at
φ=0, is independent of the shear stress and shear rate:

β (φ) = N1 (φ, γ̇0) /N1 (φ = 0, γ̇0)
[
τ12 (φ, γ̇0) /τ12 (φ = 0, γ̇0)

]2 = 1

kG (φ)
. (36)

Figure 1 shows how τ12 and N1 change if the volume
fraction is increased from φ1 to φ2 while the macro-
scopic shear rate is kept constant. For rigid particles
(kλ = 1) not disturbing the macroscopic velocity field
(kL = 1), N1 increases linearly with τ12. However, the
results of Hwang et al. indicate that the dependence
of N1 on τ12, upon increasing the volume fraction at
a constant shear rate, becomes stronger than linear.
Here, this deviation is taken into account by the pa-
rameter kL, which is a function of the volume fraction
as well as the shear rate. Thus, with this parameter, a
shear thickening is introduced, which is also in accor-
dance with the simulations of Hwang et al. Moreover,
it qualitatively agrees with the experiments of Ohl and
Gleissle (1993) involving rigid particle suspensions with
shear thinning matrix fluids, where the shear thinning
effect was observed to decrease with increasing volume
fraction at high shear rates.
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Fig. 1 The volume fraction dependence of the first normal stress
difference and the shear stress at a macroscopic shear rate γ̇0

To describe the dependence of N2 on φ, a consti-
tutive model should be chosen that predicts a nega-
tive second normal stress difference in simple shear
flow. One option is to use a model with a Gordon–
Schowalter derivative (Larson 1988) and a nonzero
slip parameter ζ , like the Phan-Thien–Tanner (PTT)
model. However, it can be shown that β then de-
pends on the macroscopic Weissenberg number, Wi0 =
λ0γ̇0, which contradicts the experimental results. Via a
different approach, Tanner and Qi (2005) developed
a phenomenological nonlinear viscoelastic suspension
model, showing reasonable agreement with experimen-
tal data for N1 and N2. The stress tensor in their
model consists of two modes. One is described by a
PTT model, with ζ = 0 and including a volume fraction
dependence of the relaxation time, and the other by a
Reiner–Rivlin model with a volume fraction-dependent
viscosity. The latter causes the second normal stress dif-
ference. A definitive validation of the method proposed
here may be possible by starting with more advanced
constitutive models, like, for example, the Rolie-Poly
(Likhtman and Graham 2003), Pom-Pom (McLeish and
Larson 1998), or XPP (Verbeeten et al. 2004) models.

As shown in Fig. 1, shifting the shear stress and
the first normal stress difference by kG(φ), we should
end up on the line with slope n corresponding to the
volume fraction φ. Hence, experimental data such as
those of Mall-Gleissle et al. can be used to validate any
combination of a constitutive model for the matrix and
a suspension model for the influence of the particles on
the effective linear viscoelastic properties. Moreover,
numerical results like those of Hwang et al. allow for
the independent validation of linear viscoelastic models
for suspensions of rigid particles because the same con-
stitutive model for the matrix can be chosen as in the
simulations. Unfortunately, we are not aware of sim-
ilar experimental or numerical results for deformable
particles.

The parameter kL, which describes the nonlinear
viscoelasticity induced by the presence of particles, can
be found by fitting it to experimental or numerical data.
This procedure is not independent of the constitutive
model used for the matrix because different constitu-
tive models may yield different values for the exponent
n. For the upper-convected Maxwell and Oldroyd-B
models, where n = 2, we find

kL (φ, γ̇0) = N1 (φ, γ̇0) /N1 (φ = 0, γ̇0)

τ12 (φ, γ̇0) /τ12 (φ = 0, γ̇0)
. (37)

Figure 1 shows that this parameter determines the de-
viation from the curve N1 ∼ τ12, when the volume frac-
tion is increased at a constant macroscopic shear rate
γ̇0. Hwang et al. showed the dependence of kL on the



Rheol Acta (2008) 47:643–665 651

volume fraction and the macroscopic shear rate in their
2D simulations (Fig. 8 in Hwang et al. 2004a).

In the following, an elastic suspension model, taken
from the literature, is transformed to a linear viscoelas-
tic model by means of the correspondence principle.
Its predictions are compared qualitatively to the nu-
merical simulations of Hwang et al. and the experi-
ments of Mall-Gleissle et al. in the “Comparison to
numerical and experimental data” section and quantita-
tively to crystallization experiments in the “Application
to crystallization experiments” section. A quantitative
evaluation of the phenomenological model of nonlinear
viscoelastic suspension rheology, discussed above, is
beyond the scope of this paper.

Evaluation of a linear viscoelastic model

Analytical descriptions of the effects of particles on
the rheology of a suspension are generally restricted
to isolated particles or to interactions between pairs
of particles and are, therefore, valid only in dilute or
semidilute conditions, respectively. In the case of a crys-
tallizing polymer melt, however, we need a suspension
model that is applicable in the entire range of volume
fractions. An appropriate choice might be one of the so-
called self-consistent estimates, which have been used
for quite some time in the mechanical modeling of
elastic composites. Essentially, the effective properties
are found as follows: A stress or strain is prescribed at
the boundary of a unit cell, which gives a simplified pic-
ture of the microstructure. The mechanical response
of the unit cell is calculated, and when this response
becomes homogeneous, the effective mechanical prop-
erties are found.

The generalized self-consistent method of
Christensen and Lo (1979) was claimed by these
authors to be valid in the entire range of volume
fractions. Furthermore, it gives solutions for suspen-
sions of spherical particles and suspensions of long
parallel cylindrical fibers, corresponding to the dif-
ferent microstructures found locally in a crystallizing
polymer melt. The generalized self-consistent method
thus meets the first two requirements stated in the
Introduction. The third and fourth have already been
dealt with in the “Modeling” section. We therefore
discuss this model in detail here.

History and relation to other models

The generalized self-consistent method was originally
called three-phase model, but it was renamed by
Christensen (1990) in reference to the self-consistent

method (Hill 1965a, b; Budiansky 1965). This model,
which has an analogy in the theory of heterogenous
conducting materials (Bruggeman 1935), considers a
single particle embedded in a homogeneous matrix
with the effective properties sought. The generalized
self-consistent method, on the other hand, uses a unit
cell made up of a particle surrounded by a concen-
tric shell of the matrix material. This coated particle
is embedded in the effective homogeneous medium.
The difference between the two models can be inter-
preted as follows: “While the self-consistent method
seeks to predict the interaction of an inclusion and its
neighboring microstructure (the combined effect of the
matrix and other inclusions), this model includes (in
a certain approximate sense) the interaction between
the inclusion and the surrounding matrix, as well as the
neighboring microstructure” (Nemat-Nasser and Hori
1993). A coated particle unit cell was used earlier by
Fröhlich and Sack (1946) for elastic spheres in a viscous
matrix, by Oldroyd (1953) for viscous drops or elastic
spheres in a viscous matrix, by Kerner (1956) for elastic
spheres in an elastic matrix, and by Hermans (1967)
for unidirectional elastic fibers in an elastic matrix. Two
versions of the generalized self-consistent method exist:
a three-dimensional (3D) one in which the particle and
matrix domains of the unit cell are concentric spheres
and a 2D one in which they are concentric circles.
These give the solutions for spherical particles and long
parallel cylindrical fibers, respectively.

Table 1 summarizes the main properties of the gen-
eralized self-consistent method and some other suspen-
sion models. Palierne (1990) developed a model for
incompressible linear viscoelastic emulsions in which
the drops are at least approximately spherical. For di-
lute emulsions, he considered a single drop suspended
in the effective medium. Not surprisingly, neglecting
the effect of surface tension, the result is the same as
the analytical solution of the self-consistent method in
the dilute limit, taking the matrix as incompressible
(Hill 1965b). In contrast to both the self-consistent and
the generalized self-consistent methods, the derivation
of the nondilute Palierne model is based on a unit cell
in which one particle is at the center of a sphere filled
with the matrix and other particles, which in turn is
surrounded by the effective medium. If the effect of
surface tension is again neglected, it turns out that the
result is exactly the viscoelastic analogue of the model
of Kerner (1956) for all volume fractions (Graebling
et al. 1993; Palierne 1990). Through a similar deriva-
tion for an elastic suspension of spheres, Uemura and
Takayanagi (1966) also arrived at the same effective
shear modulus as Kerner, although a different expres-
sion for the effective Poisson ratio was obtained.
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Table 1 Attributes of some suspension models

Model Phases Particles Volume fraction Ref.

SCM

E

Spheres
Small or large

Hill (1965b)
Cylinders Hill (1965a)

GSCM
Spheres Arbitrary, size distribution

Christensen and Lo (1979, 1986), Christensen (1990)
Cylinders should admit φ → 1

Torquato, exact
Arbitrary

Arbitrary Torquato (1997)
Torquato, TOA Small to moderate Torquato (1998)

Palierne
LVE Spheres Small to moderate

Palierne (1990)
Bousmina Bousmina (1999)

SCM self-consistent method, GSCM generalized self-consistent method, TOA third-order approximation, E elastic, LVE linear
viscoelastic

Christensen and Lo (1979) demonstrated that the
elastic shear modulus predicted by the 3D general-
ized self-consistent method lies between the classical
upper (Hashin 1962) and lower bounds (Hashin and
Shtrikman 1963; Walpole 1966) for all volume frac-
tions, whereas Kerner’s result coincides with the lower
bound. Contrary to Palierne’s model, the 3D gen-
eralized self-consistent method is only equivalent to
Kerner’s model for vanishing volume fraction of
spheres. Whereas Palierne did not consider drops close
to contact with each other, Christensen (1990) derived,
by physical reasoning similar to that of Frankel and
Acrivos (1967), the functional form of fG(φ) and of
the relative transverse shear modulus fG23(φ) for rigid
spheres and unidirectional rigid cylinders, respectively,
when φ → 1. They were found to agree with the cor-
responding asymptotic forms of the generalized self-
consistent method, for a compressible matrix and for
an incompressible matrix. Of course, the volume frac-
tion can only go to one if the distribution of particle
diameters is sufficiently broad, so that small particles
can fill the spaces between larger particles.

Bousmina (1999) proposed an emulsion model based
on the 3D generalized self-consistent method, extend-
ing the particle modulus with a term due to surface
tension. In the coefficients of the quadratic function,
one of whose roots is f ∗

G (see Eq. 41 later on), only
terms of order φ were retained. It is therefore not
surprising that only small differences with Palierne’s
model were observed. The expressions for the coeffi-
cients given in Bousmina’s paper contain a few errors,
apparently mostly because he was unaware of an erra-
tum (Christensen and Lo 1986) to the original paper
on the generalized self-consistent method; the correct
expressions are included here in the Appendix.

Christensen (1990) validated the 3D generalized
self-consistent method with respect to experimental
data on suspensions of rigid spheres. The results proved

superior to those of two homogenization schemes
widely used at that time, i.e., the Mori–Tanaka method
(Benveniste 1987) and the differential scheme (Phan-
Thien and Pham 1997), especially for volume frac-
tions φ > 0.4. However, Nemat-Nasser and Yu (1993)
pointed out uncertainties in some of the experimental
data used for comparison, which were compiled by
Thomas (1965). Segurado and Llorca (2002) performed
3D numerical simulations of suspensions of spheres in
an elastic matrix, where 0 ≤ φ ≤ 0.5. They compared
their results to the predictions of the Mori–Tanaka
method, the generalized self-consistent method, and
the third-order approximation (Torquato 1998) of an
exact series expansion for the effective stiffness tensor
of elastic two-phase media (Torquato 1997). The gener-
alized self-consistent method performed just as well as
this third-order approximation when the particles were
deformable, except that the effective bulk modulus was
predicted slightly more accurately by the third-order
approximation. For rigid spheres, the latter also yielded
somewhat better results.

Because the generalized self-consistent method is
much easier to implement than Torquato’s third-order
approximation, we will use it to determine the linear
viscoelastic properties of a suspension with the aid of
the correspondence principle. As explained above, the
suspension is represented by a unit cell consisting of a
particle and a surrounding matrix shell. Their radii are
a and b , respectively. The volume fraction of particles
is given by

φ =
( a

b

)3
(38)

for the 3D coated sphere unit cell and

φ =
( a

b

)2
(39)
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for the 2D coated cylinder unit cell. The unit cell is
suspended in an infinitely extending effective medium,
which has the effective properties of the suspension.
These properties are found when the response of the
unit cell to a given load equals the response of the
homogeneous effective medium. In the 3D generalized
self-consistent method, the relative shear modulus (see
Eq. 10) is obtained from the quadratic equation

Af 2
G + BfG + C = 0 , (40)

where the coefficients A, B, and C depend on φ, μ, ν0,
and ν1. These coefficients are given in the Appendix.
The relative bulk modulus was found to be the same as
in the composite spheres model of Hashin (1962).

For elastic suspensions of long parallel cylindrical
fibers, Hashin and Rosen (1964) derived the compo-
nents of the fourth-order stiffness tensor, except the
shear modulus in the transverse plane. The 2D general-
ized self-consistent method gives the relative transverse
shear modulus as the solution of a quadratic expression
similar to Eq. 40, but with different coefficients. These
are also included in the Appendix.

In accordance with the correspondence principle, the
relative dynamic modulus is obtained from

A∗ f ∗
G

2 + B∗ f ∗
G + C∗ = 0 , (41)

where the complex coefficients A∗, B∗, and C∗ follow
from A, B, and C when μ is replaced by μ∗. For
a crystallizing polymer melt, we propose to calculate
the effect of the presence of spherulites by means
of the 3D generalized self-consistent method and to use
the resulting effective medium as the matrix in the 2D
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Fig. 2 Influence of the Poisson ratio of the matrix on the relative
modulus of an elastic suspension of spheres (μ = 103, ν1 = 0.5)
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Fig. 3 Influence of the Poisson ratio of the particles on the
relative modulus of an elastic suspension of spheres (μ = 103,
ν0 = 0.5)

generalized self-consistent method, which accounts for
the influence of oriented crystallites.

Influence of phase properties

First of all, let us take a look at the original 3D gener-
alized self-consistent method for elastic suspensions of
spheres, according to which the relative shear modulus
fG is obtained from Eq. 40 with real coefficients A,
B, and C. The curve of log( fG) vs φ for μ = 103 and
ν0 = ν1 = 0.5, plotted in Figs. 2 and 3, has two inflection
points: one at φ ≈ 0.70 and the other at φ ≈ 0.95. In
between these points, the second derivative is negative,

∂2 log( fG)

∂φ2
< 0 , (42)

and consequently, a “shoulder” appears in the curve.
Beyond φ ≈ 0.95, fG swiftly approaches its final value
fG(φ = 1) = μ; note that fG at φ = 0.95 is still smaller
than μ/2.

The shape of the relative modulus curve depends
most strongly on the Poisson ratio of the matrix and
on the modulus ratio. Figure 2 shows that, upon low-
ering ν0 while keeping ν1 = 0.5, fG decreases and the
shoulder vanishes quickly: at ν0 = 0.49, it is not recog-
nizable anymore. Decreasing ν1 while ν0 = 0.5 has a
much weaker influence on fG, as seen in Fig. 3, and the
shoulder remains. Thus, even at large volume fractions,
compressibility of the matrix has a more profound
influence on the results of the 3D generalized self-
consistent method than compressibility of the particles.
Furthermore, the shoulder diminishes at lower values
of the modulus ratio, as shown in Fig. 4. It should be
noted that the logarithmic scale used on the vertical
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Fig. 4 Influence of the modulus ratio on the relative modulus of
an elastic suspension of spheres (ν0 = ν1 = 0.5)

axes of these figures exaggerates the effects mentioned.
For the second derivative of fG with respect to φ, one
finds

∂2 fG

∂φ2
<

1

fG

(
∂ fG

∂φ

)2

(43)

if Eq. 42 is satisfied. Because the right-hand side of
Eq. 43 is always positive, when fG is plotted on a
linear scale, a smaller decrease of ν0 or μ suffices to
make the shoulder vanish: it is already gone at a matrix
Poisson ratio ν0 = 0.498 for ν1 = 0.5 and μ = 103, and
at a modulus ratio μ = 50 for ν0 = ν1 = 0.5.

To our knowledge, this peculiar feature of the gener-
alized self-consistent method has never been reported
before. Looking at the material parameters in previous
publications, it is easy to see why. Christensen and
Lo (1979) simulated suspensions with modulus ratios
μ = 23.46 and μ = 135.14. According to Fig. 4, the
latter is high enough to cause an observable shoulder
in a suspension with an incompressible matrix, but
Christensen and Lo used a matrix with ν0 = 0.35, which
is too low even when μ = 103 (Fig. 2). In the later work
of Christensen (1990), the compressibility effect was
obscured because only rigid particles were considered
(μ → ∞). The high end of the curve is then stretched
to infinity, so that the shoulder is smoothed out.
Segurado and Llorca (2002) used the 3D generalized
self-consistent method to simulate both suspensions of
rigid spheres and suspensions of deformable spheres. In
the latter case, the matrix was, again, too compressible
(ν0 = 0.38) and the modulus ratio too low (μ = 26.83).
Apart from that, the maximum volume fraction used in
their calculations was φ = 0.5, which is below the range
where the shoulder develops.

When the 2D generalized self-consistent method is
used to calculate the relative transverse shear modulus
of an elastic fiber-reinforced material, the results show
the same dependence on the Poisson ratios and the
modulus ratio. Applying the generalized self-consistent
method to a suspension of linear viscoelastic materials,
similar effects are observed in the storage modulus and
the loss modulus.

Comparison to numerical and experimental data

As explained in the “Nonlinear viscoelastic suspension
rheology” section, models for the effects of particles
on the linear viscoelastic properties of a suspension,
governed by the multipliers kG,i for the modulus and
kλ,i for the relaxation time, can be validated by nu-
merical simulations. Hwang et al. (2004a) presented
results for a sheared 2D system, consisting of rigid
discs suspended in an Oldroyd-B fluid. Their simu-
lation method, based on sliding rectangular domains
with periodic boundary conditions, was extended to
three dimensions to describe suspensions of spherical
particles (Hwang et al. 2004b). It was also modified for
2D extensional flow, based on stretching rectangular
domains with periodic boundary conditions (Hwang
and Hulsen 2006). An alternative method for 2D exten-
sional flow, using a fixed grid, was developed recently
by D’Avino et al. (2007a, b). The 2D shear results
are considered here. Figure 5 shows the time-averaged
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generalized self-consistent method (circles). The angle brackets
indicate that the steady-state properties were obtained from the
simulations by averaging over time
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steady-state first normal stress difference 〈N1〉 vs the
time-averaged steady-state shear stress 〈σ12〉 (σ12 is the
sum of the viscous mode and the viscoelastic mode in
the Oldroyd-B model). Each line corresponds to the
simulation results at a constant area fraction of disks,
which is equivalent to a volume fraction of infinitely
long parallel cylinders, and different shear rates.

Because of the rigidity of the particles, kλ,i = 1 and
kG,i = fG is a real number, which is obtained from
the 2D generalized self-consistent method. Irrespec-
tive of the shear rate, shifting τ12(φ = 0) to the right
and N1(φ = 0) upwards by the same factor fG(φ), we
should end up on the line corresponding to the area
fraction φ (see Fig. 1). The circles in Fig. 5 indicate
the results of the 2D generalized self-consistent method
at an arbitrary constant shear rate. It turns out that
these agree with the simulations up to φ ≈ 0.10. At
larger area fractions, the 2D generalized self-consistent
method predicts a much stronger increase of fG than
the simulations. This is not entirely surprising because
Hwang et al. (2004a) determined the steady-state sus-
pension properties from simulations with a single par-
ticle in a periodic domain. The authors already noted
that this method does not give realistic results for highly
concentrated systems. Nevertheless, an area fraction of
10% is quite small.

We also compared the predictions of a single-mode
upper convected Maxwell model, combined with the
3D generalized self-consistent method, to the experi-
mental data of Mall-Gleissle et al. (2002). As seen in
Fig. 6, the data are underpredicted already for φ = 0.05.
Better results would probably have been obtained with
a more advanced constitutive model. However, even
for relatively simple ones, like the Giesekus model or
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Fig. 6 The steady-state first normal stress difference and shear
stress from experiments (symbols, Mall-Gleissle et al. (2002)) and
from the 3D generalized self-consistent method (lines)

the PTT model, no analytical solutions can be derived
for τ12 and N1. The relaxation behavior of the matrix
has to be known to calculate them numerically. Unfor-
tunately, we do not have this information.

Application to crystallization experiments

We looked at two types of rheological measurements
on crystallizing polymer melts to investigate whether
suspension models can indeed capture the phenom-
ena observed in these experiments. In the first type
of experiment, after different short periods of shear,
the evolution of the linear viscoelastic properties was
followed in time at a constant frequency (J.F. Vega,
personal communication). In the second type, the linear
viscoelastic properties were measured over a range of
frequencies for different constant volume fractions of
crystallites (Boutahar et al. 1996, 1998; Coppola et al.
2006).

The results from these experiments were used to
validate the generalized self-consistent method, as well
as the interpolation method, which was described in
the “Crystallites as rigid particles” section. While the
latter usually treats the highly filled polymer melt as
a suspension of amorphous particles in a semicrystal-
line matrix, the former always takes the crystallites as
particles. It has been mentioned in the “History and
relation to other models” section that, to allow φ → 1,
the generalized self-consistent method assumes a broad
distribution of particle diameters. This is generally not
the case in a crystallizing polymer melt, but there,
complete space filling is achieved in a different way.
After impingement of the crystallites, further growth
will be restricted to the directions in which amorphous
material is still present, until all of it has been incor-
porated in the semicrystalline phase. Formally, because
the crystallites become irregularly shaped, the gener-
alized self-consistent method does not apply anymore.
However, we do not expect the rheological properties
of a highly concentrated suspension to be very sensitive
to variations in particle shape.

Evolution of linear viscoelastic properties
after short-term shear

Flow-induced crystallization experiments, carried out
in our own group (J.F. Vega, personal communication)
are considered first. An isotactic polypropylene melt
(HD 120 MO, supplied by Borealis) was subjected
to different short periods of shear. Subsequently, its
linear viscoelastic properties were monitored in time by
means of oscillatory shear measurements. The results
are shown in Fig. 7. It is clear that, immediately after
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the flow, the dynamic modulus of the material, which
was then still largely amorphous, was already increased
significantly. The first values of G′ and G′′ measured
after the flow were used as G′

0 and G′′
0 in the model

calculations. The plateaus of G′ and δ, reached in the
late stage of crystallization, were extrapolated to the
earlier stages by the functions

G′
1 (t) =

{
G′

1 (t1) for t ≤ t1
G′

1 (t1)
[

t
t1

]m
for t > t1

(44)

and

δ1 (t) =
{

δ1 (t1) for t ≤ t1
δ1 (t1) + cδ ln

(
t
t1

)
for t > t1

(45)

and these extrapolations were used as the linear vis-
coelastic properties of the semicrystalline phase. The
values of the parameters in Eqs. 44 and 45 are given
in Table 2. The characteristic time t1, indicating the
transition from the space-filling stage to the perfection
stage, was defined as the intersection of the extrap-
olated linear fits of the log(G′)–log(t) data in these
stages, as shown in Fig. 8.
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Fig. 8 Close-up of the storage moduli from Fig. 7. Part of the data
points were omitted and the curves corresponding to ts = 3s and
ts = 6s were shifted vertically by factors 1.2 and 1.5, respectively,
for the sake of clarity. The solid lines are fits of the data in the
plateau region and in the region of strong increase of G′. The
dashed lines indicate t1 and G′

1(t1)

In the experiments with 3 and 6 s of shear, oriented
crystallites were observed. There, the effect of the
spherulites was calculated by the 3D generalized self-
consistent method, and the resulting effective rheolog-
ical properties were used as matrix properties in the
2D generalized self-consistent method. The evolution
of the volume fraction of spherulites was determined
from optical micrographs taken during the flow and
the subsequent crystallization (D.G. Hristova, personal
communication). The result for the quiescent melt is
shown in Fig. 9. The volume fraction of oriented crys-
tallites could not be determined accurately in this way.
Therefore, the degree of crystallinity χ , derived from
in situ wide-angle X-ray diffraction (WAXD) mea-
surements (D.G. Hristova, personal communication),
was used to estimate the total semicrystalline volume
fraction φ. By definition, φ and χ are related as

φ (t) = χ (t)
χ1 (t)

. (46)

The integrated intensities XW AX D of the diffraction
peaks, which are normalized by the total integrated
intensities, are included in Fig. 9 for the quiescent

Table 2 Parameters for calculating the rheological properties and degree of crystallinity of the semicrystalline phase by means of
Eqs. 44, 45, and 47

ts [s] t1 [s] G′
1 (t1) [Pa] δ1 (t1) [◦] χ1 (t1) [-] m [-] cδ [◦] cχ [s−1]

0 2.89 × 103 4.83 × 107 3.48 – 9.00 × 10−2 −1.29 × 10−1 –
3 4.25 × 102 4.80 × 107 4.83 4.98 × 10−1 7.02 × 10−2 −3.40 × 10−1 6.67 × 10−5

6 3.22 × 102 4.68 × 107 4.97 5.40 × 10−1 7.11 × 10−2 −3.40 × 10−1 0
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Fig. 9 Space filling during quiescent crystallization, obtained
from optical microscopy (crosses), along with the integrated
WAXD intensity during quiescent crystallization (circles) and
after shearing at γ̇ = 60s−1 for ts = 3s (triangles) and ts = 6s
(squares). Solid lines are fits of the WAXD data in the plateau
region. Dashed lines indicate t1 and χ1(t1)

and flow-induced crystallization experiments. Compar-
ing the WAXD and optical microscopy results for the
quiescent experiment, it is seen that XW AX D is close to
but slightly above φ up to φ = 0.3. Because the degree
of crystallinity is, by definition, always smaller than the
degree of space filling, we conclude that XW AX D > χ .
On the other hand, the values of t1 derived from the
storage modulus measured during flow-induced crystal-
lization (Table 2) correlate well with the onset times of
the plateaus in the WAXD data. So at least the time
scale is correct, provided that t1 corresponds to φ = 1
as observed in the quiescent crystallization experiment.
We assumed XW AX D to be an adequate measure of the
internal degree of crystallinity χ = χ1 in the plateau
region, where the highest signal-to-noise ratio was ob-
tained. Unfortunately, however, the development of χ

and χ1 during the space-filling process could not be
reconstructed from these data.

The integrated WAXD intensity in the plateau re-
gion was fitted by a linear function of time and ex-
trapolated to obtain χ1(t > t1). We assumed that no
secondary crystallization took place up to t = t1 in any
of the experiments considered here, so,

χ1 (t) =
{

χ1 (t1) for t ≤ t1
χ1 (t1) + cχ [t − t1] for t > t1

. (47)

Furthermore, for lack of better experimental data,
XW AX D was taken as χ and the experimental data were
scaled according to Eqs. 46 and 47 to obtain the total
volume fraction. The results are shown in Fig. 10.

The volume fraction of spherulites φsph was deter-
mined from optical microscopy in the same way as for

the quiescent experiment. The volume fraction of
spherulites in the amorphous phase,

xsph = φsph

1 − φ + φsph
, (48)

was used in the 3D generalized self-consistent method
to calculate the linear viscoelastic properties of the
effective matrix in the 2D generalized self-consistent
method. There, the volume fraction of oriented
crystallites,

φori = φ − φsph , (49)

was used to calculate the linear viscoelastic properties
of the crystallizing melt.

The results of the generalized self-consistent method
are compared to those of the interpolation method in
Fig. 11. The main difference is that G′(t), according
to the generalized self-consistent method, goes through
two inflection points before reaching the plateau G′ =
G′

1. This is due to the shoulder in f ∗
G(φ), as discussed in

the “Influence of phase properties” section. The shoul-
der is followed by a decreasing G′ for the experiment
with 6 s of shear. This is caused by our estimate of
the volume fraction of oriented crystallites, which goes
through a maximum and then drops back to zero. The
more pronounced local extrema in δ at large volume
fractions (Fig. 12) are caused by local extrema in G′′,
which, depending on the phase properties, may arise in
the linear viscoelastic generalized self-consistent meth-
od. For the interpolation method and the generalized
self-consistent method, the data for the highest shear
time are not captured. This can be explained by the lack
of information about the shape and orientation of par-
ticles in the interpolation method and by uncertainties
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Fig. 10 Space filling, estimated from WAXD for the flow-
induced crystallization experiments, as explained in the text
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Fig. 11 Evolution of the storage modulus under quiescent con-
ditions (circles) and after shearing at γ̇ = 60s−1 for ts = 3s (tri-
angles) and ts = 6s (squares). Dashed lines were obtained by the
interpolation method, Eq. 23, using a hyperbolic tangent function
for w(φ). Solid lines correspond to the generalized self-consistent
method, using Eq. 41 with the coefficients given in Table 4 in the
Appendix and Eq. 66 from the Appendix

in the estimate of the oriented volume fraction used in
the generalized self-consistent method.

The degree of space filling is often estimated by a
linear scaling of the storage modulus (Gauthier et al.
1992; Khanna 1993). This can be rewritten as

G′ (t) = G′
0 (t) + [

G′
1 (t) − G′

0 (t)
]
φ (t) . (50)

Figure 13 shows that the rheological data are not re-
produced from the microscopic images by Eq. 50. Also
plotted is the logarithmic scaling law,

G′ (t) = G′
0 (t)

[
G′

1 (t)
G′

0 (t)

]φ(t)

, (51)

which was used by Pogodina et al. (1999b). It performs
much better than the linear scaling law, though not as
well as the generalized self-consistent method and the
interpolation method.

Frequency sweeps at different volume fractions

We first consider the experiments of Coppola et al.
(2006). They cooled down a poly(1-butene) melt to a
temperature Tc below the nominal melting tempera-
ture Tm and let it crystallize at Tc for a controlled
amount of time. Then, they applied an inverse quench
(Acierno and Grizzuti 2003) to a temperature Tiq close
to, but still below, Tm and measured the rheological
properties by means of a multiwave technique, which
extended the experimentally accessible range of fre-
quencies down to the order of 10−3 rad/s. This revealed
that the plateau in the storage modulus, observed at
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Fig. 12 Evolution of the loss angle, measured under different
conditions and calculated by the interpolation method and the
generalized self-consistent method, indicated by the symbols and
lines as in Fig. 11

low frequencies, did not continue all the way down
to zero, as in a chemical or physical gel, but fell off
at a certain frequency. This supports the idea that
crystallization precursors and/or crystalline nuclei act
as physical crosslinks but are too far apart to form
a percolating network (Zuidema 2000; Zuidema et al.
2001).

The results of Coppola et al. are reproduced in
Fig. 14. Different volume fractions of spherulites were
obtained by varying the duration of crystallization at
Tc. The rheological properties of the partially crystal-
lized melts were compared to those of an amorphous
melt containing, according to the authors, a much larger
volume fraction of solid spheres. The effect observed
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Fig. 13 Evolution of the storage modulus, measured under dif-
ferent conditions, indicated by the symbols and as in Fig. 11.
Dashed lines correspond to the linear scaling law, Eq. 50, solid
lines to the logarithmic scaling law, Eq. 51
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Fig. 14 Storage modulus measured by Coppola et al. (2006)
for crystallizing melts (open symbols) and an amorphous melt
containing glass beads (crosses). Lines correspond to the 3D
generalized self-consistent method

in the low-frequency rheology was much smaller than
in the partially crystallized melts, from which the au-
thors concluded that, indeed, the behavior of the latter
cannot be explained by gelation. However, they de-
termined the volume fraction by means of the linear
scaling law, Eq. 50. Based on the results discussed in
the previous section, we believe that the actual volume
fraction was much larger and we expect it to be more
accurately estimated by the generalized self-consistent
method. The results of this model are included in
Fig. 14. The low-frequency behavior was obviously not

Table 3 Volume fraction of spherulites, as obtained from the
linear scaling law, Eq. 50 (φG′(t)), from differential scanning
calorimetry (φDSC), and from the 3D generalized self-consistent
method (φGSCM) for the two sets of experiments

φGSCM φG′(t) φDSC

Coppola et al. (2006)
0.25 0.0058
0.30 0.0129
0.40 0.0280
1 1

φbeads

0.12 0.12
Boutahar et al. (1996, 1998)

0.06 0.1
0.11 0.2
0.16 0.3
0.23 0.4
0.32 0.5
0.41 0.6
0.55 0.7
0.73 0.8

captured for the partially crystallized melts, nor for
the particle-filled melt. Therefore, the model was fitted
to the data at high frequencies. The volume fractions
obtained through both approaches are listed in Table 3.
According to the generalized self-consistent method,
the samples were highly filled with spherulites. Unfor-
tunately, no optical data are available to validate this
result.

Experiments on two fundamentally different materi-
als were published by Boutahar et al. (1996, 1998). One
material was a heavily nucleated polyethylene melt,
whose morphology looked like that of a colloid. The
crystalline nuclei were very small, close together, and
highly imperfect. The other was an isotactic polypro-
pylene melt, containing large, well separated spheru-
lites. We will consider the data for this suspension-like
material here.

The evolution of the storage modulus and the loss
modulus is depicted in Figs. 15 and 16, respectively.
From Boutahar et al. (1996), we estimated G′

1 = 107 Pa
and G′′

1 = 6 × 105 Pa. The results are not very sensitive
to the values used. Although, at the largest volume frac-
tion, G′′ exceeds G′′

1 around ω = 1rad/s, the absolute
value |G∗| is always smaller than |G∗

1|, as it should be.
The generalized self-consistent method was again fitted
to the data at high frequencies. Also for these experi-
ments, the model fails to capture the observed strong
increase of the storage and loss moduli with increasing
volume fraction at low frequencies. However, the fitted
volume fractions correspond very well to the values
obtained by Boutahar et al. from differential scanning
calorimetry (Table 3).
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Fig. 15 Storage modulus measured by Boutahar et al. (1996,
1998) (dots) and obtained from the 3D generalized self-consistent
method (lines)
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Fig. 16 Loss modulus measured by Boutahar et al. (1996, 1998)
(dots) and obtained from the 3D generalized self-consistent
method (lines)

Modeling of low-frequency suspension rheology

A few models describe the development of a low-
frequency plateau in G′ and G′′. In the Palierne model,
it is governed by the surface tension. However, be-
cause spherulites behave like solid particles rather than
liquid drops, the surface tension is probably negligi-
ble in a crystallizing melt, at least for the relatively
large volume fractions (corresponding to large radii
of spherulites) where the plateau is first observed.
Van Ruth et al. (2006) carried out quiescent crystal-
lization experiments, similar to those of Boutahar et al.
(1996, 1998). They used the Palierne model with an
equilibrium modulus,

Geq = c (φ − φ0)
m , (52)

added to G′, which could be fitted to the experimental
data with realistic values of the parameters φ0 and m.
However, the results of the Palierne model for G′′ were
not shown. A Cross model was used to fit the dynamic
viscosity |η∗| for each volume fraction separately.

The self-consistent method predicts a percolation
threshold, where the modulus rises or drops steeply, ap-
proaching the threshold from below or above, respec-
tively. It diverges to infinity, respectively zero, when
both phases are incompressible and the particles are
much stiffer than the matrix. This happens at φ = 0.4
for spheres (Hill 1965b) and at φ = 0.5 for cylindrical
fibers (Hill 1965a). When applied to a linear viscoelastic
suspension by means of the correspondence principle,
the effect is mainly observed at low frequencies as
a plateau in G′. This was shown by Wilbrink et al.

(2005). However, the self-consistent method did not
agree quantitatively with their suspensions, for which
the percolation threshold was around φ = 0.10.

Albérola and Mélé (1996) incorporated the con-
cept of percolation in the generalized self-consistent
method. In their modified unit cell, the part of the
matrix trapped inside particle clusters is represented
by a sphere, which is surrounded by two concentric
shells, representing the particles and the nontrapped
matrix. This double-coated sphere is surrounded by
the effective medium. Hervé and Zaoui (1993, 1995)
extended the generalized self-consistent method to par-
ticles coated by an arbitrary number of layers. Their
model was used by Albérola et al. to calculate the rhe-
ological properties of a suspension with clustering de-
formable particles. According to the simulation results
of Hwang et al. (2004a, b, 2006), extensional stresses be-
tween particles in a sheared viscoelastic matrix enhance
their tendency to form clusters. Therefore, we ap-
plied the modified generalized self-consistent method
to the experiments described in the previous section.
However, it turned out that the percolation threshold
shifts f ∗

G similarly for all frequencies. Hence, the shoul-
der, observed experimentally at low frequencies, is not
reproduced by this model.

Conclusions

The approach to suspension-based rheological mod-
eling of crystallizing polymer melts, presented in this
paper, has several advantages. Linear viscoelastic sus-
pension models are available to obtain the modulus
and relaxation time multipliers kG,i and kλ,i. These ac-
count for the influence of crystallites on the relaxation
spectrum used in the constitutive model for the melt.
The fact that crystallites can be described as nonrigid
particles prevents problems at high degrees of space
filling. The phenomenological nonlinear viscoelastic
suspension model qualitatively reproduces results of
numerical simulations but is much less expensive com-
putationally and can therefore easily be used in indus-
trial processing simulations. Only standard rheological
experiments are needed to quantify the phenomenolog-
ical parameter kL.

After considering several linear viscoelastic suspen-
sion models, we used the generalized self-consistent
method (Christensen 1990; Christensen and Lo 1979,
1986) because of its simplicity and because, in combina-
tion with the nonlinear viscoelastic model, it satisfies all
the requirements stated in the Introduction. Combined
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rheometry and optical microscopy showed that a widely
used linear scaling of the storage modulus (Gauthier
et al. 1992; Khanna 1993) severely underpredicted the
degree of space filling. The generalized self-consistent
method described the evolution of linear viscoelastic
properties during crystallization rather well, at least at
moderate to high frequencies; the low-frequency be-
havior (Boutahar et al. 1996, 1998; Coppola et al. 2006)
was not captured. An extension of the generalized self-
consistent method, including percolation (Albérola and
Mélé 1996), did not solve this problem; the relative dy-
namic modulus was merely shifted in a similar manner
for all frequencies.
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Appendix

3D generalized self-consistent method and Bousmina’s
linear viscoelastic model For the 3D generalized self-
consistent method, the coefficients are summarized in
Table 4. Some of the expressions given by Bousmina
(1999) as first-order approximations of A, B, and C
contain errors, most of which are due to misprints

in Christensen and Lo (1979). Bousmina’s Eqs. 54–59
should read

A = K1 [24K2 − 150K3φ] , (53)

B = 1

2
K1 [9K2 + 375K3φ] , (54)

C = 1

4
K1 [−114K2 − 675K3φ] , (55)

K1 =
[

5

2

(
G∗

1 + α/R
G∗

0

− 8

)
(56)

+ 7

(
G∗

1 + α/R
G∗

0

)
+ 4

]
, (57)

K2 =
(

G∗
1 + α/R

G∗
0

+ 3

2

)
, (58)

K3 =
(

G∗
1 + α/R

G∗
0

− 1

)
. (59)

2D generalized self-consistent method Under the as-
sumption of transverse isotropy, Hooke’s law for an
elastic fiber suspension can be written in matrix form
according to

⎡

⎢⎢⎢⎢⎢⎢⎣

τ11

τ22

τ33

τ12

τ13

τ23

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C22 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C22 − C23

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

2ε12

2ε13

2ε23

⎤

⎥⎥⎥⎥⎥⎥⎦

(60)

Table 4 Parameters used in the 3D generalized self-consistent method (Christensen and Lo 1979, 1986; Christensen 1990)

Shear modulus G, Eq. 40

A
B
C

⎫
⎬

⎭ = c1

(
G1
G0

− 1
)

η1φ
10/3 + c2

[
63

(
G1
G0

− 1
)

η2 + 2η1η3

]
φ7/3 + c3

(
G1
G0

− 1
)

η2φ
5/3 + c4

(
G1
G0

− 1
)

η2φ + c5η2η3

with... ... for A: ... for B: ... for C:

c1 8 (4 − 5ν0) −4 (1 − 5ν0) −4 (7 − 5ν0)

c2 −2 4 −2
c3 252 −504 252
c4 −50

(
7 − 12ν0 + 8ν2

0

)
150 (3 − ν0) ν0 −25

(
7 − ν2

0

)

c5 4 (7 − 10ν0) −3 (7 − 15ν0) − (7 + 5ν0)

η1

(
G1
G0

− 1
)

(7 − 10ν0) (7 + 5ν1) + 105 (ν1 − ν0)

η2

(
G1
G0

− 1
)

(7 + 5ν1) + 35 (1 − ν1)

η3

(
G1
G0

− 1
)

(8 − 10ν0) + 15 (1 − ν0)
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Table 5 Parameters used in the composite cylinders model (Hashin and Rosen 1964) and the 2D generalized self-consistent method
(Christensen and Lo 1979, 1986; Christensen 1990)

Longitudinal Young’s modulus E11, Eq. 68
D1 1 − ν1 D4 2ν2

0
φ

1−φ

D2
1+φ
1−φ

+ ν0 F1
ν0φ

E1
E0

+ν1(1−φ)

ν1φ
E1
E0

+1−φ

D3 2ν2
1 F2

ν1
ν0

F1

Poisson ratio ν12, Eq. 70

L1 2ν1
(
1 − ν2

0

)
φ + ν0 (1 + ν0) (1 − φ)

L2
(
1 − ν1 − 2ν2

1

)
φ

L3 2
(
1 − ν2

0

)
φ + (1 + ν0) (1 − φ)

Transverse shear modulus G23, Eq. 40

A 3c1c2φ (1 − φ)2 + (
c2η0 − c3φ

3
)
(c1η0φ − c4)

B −6c1c2φ (1−φ)2+[
c2 (η0−1)−2c3φ

3
]
(c1φ+c4)

C 3c1c2φ (1 − φ)2 + (
c2 + c3φ

3
)
(c1φ + c4)

c1 c2 c3 c4 η0 η1
G1
G0

−1 G1
G0

+η1
G1
G0

η0−η1
G1
G0

η0+1 3−4ν0 3−4ν1

with the index 1 corresponding to the direction of the
fiber axes and the indices 2 and 3 corresponding to per-
pendicular directions in the transverse plane. Hashin
and Rosen (1964) conveniently selected the following
moduli to describe the mechanical behavior of the sus-
pension: the plane-strain bulk modulus

K23 = C22 + C23

2
, (61)

the transverse shear modulus

G23 = C22 − C23

2
, (62)

the longitudinal shear modulus

G12 = G13 = C44 , (63)

the longitudinal Young’s modulus

E11 = C11 − 2C2
12

C22 + C23
, (64)

and C11. In the case of a random arrangement of the
fibers across the 23-plane, they found

K23

K0
= (1 + 2ν0φ) K1

K0
+ 2ν0 (1 − φ)

(1 − φ) K1
K0

+ 2ν0 + φ
, (65)

G12

G0
= (1 + φ) G1

G0
+ 1 − φ

(1 − φ) G1
G0

+ 1 + φ
, (66)

E11

E0
=

[(
E1

E0
− 1

)
φ + 1

]
(67)

×
[

D1 − D3 F1 + (D2 − D4 F2)
E1
E0

D1 − D3 + (D2 − D4)
E1
E0

]
, (68)

and

C11 = E11 + 4ν2
12 K23 , (69)

where

ν12 = ν13 = L1φ
E1
E0

+ L2ν0 (1 − φ)

L3φ
E1
E0

+ L2 (1 − φ)
(70)

is the Poisson ratio for uniaxial stress in the direction
of the fiber axes. The parameters D1, D2, D3, D4, F1,
F2, L1, L2, and L3 depend on the properties of the
individual phases and on φ and are given in Table 5. The
same effective properties follow from the 2D gener-
alized self-consistent method, which additionally gives
the relative transverse shear modulus G23/G0 from
Eq. 40 with the parameters A, B, and C from Table 5.
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