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Suspension in Convective Layers and Style of Differentiation 

of a Terrestrial Magma Ocean 

VIATCHESLAV S. SOLOMATOV AND DAVID J. STEVENSON 

Division of Geological and Planetat&t Sciences, California Institute of Technolog•t, Pasadena 

Recent physical theories for the formation of the Earth suggest that about 4.5 b.y. ago the 
mantle of the Earth was partially or completely molten. Fractional crystallization of this hypo- 
thetical magma ocean would result in a strong chemical stratification of the Earth's mantle. Such 
a scenario is controversial from the geochemical point of view. However, it has been noted that 
the simple scenario of fractional crystallization could be avoidable in a convective magma ocean 
if crystals remain suspended. In this paper, the problem of suspension is developed with the 
help of an energetic approach: convection must do some work against gravitational settling. We 
distinguish three regimes of convective suspensions. Absolute or complete sedimentation occurs 
when the energy dissipation due to the settling exceeds the heat loss from the convective layer. 
This is possible only in large-scale systems like magma oceans and implies that cooling can pro- 
ceed only together with sedimentation, crystallization, and a decrease in the liquidus temperature 
at a constant pressure. A regime of partial differentiation occurs when the energy dissipation 
due to the settling is less than the total heat loss but larger than the power which can be spent 
by convection on the crystal reentrainment process. The differentiation is not complete, and a 
competition between the rate of cooling, the rate of sedimentation, and the rate of turbulent dif- 
fusion determines the degree of differentiation. The third regime is an absolute suspension wkich 
could be sustained for an indefinitely long time. In this case, sedimentation starts only when the 
crystal fraction reaches the maximum packing value: when the viscosity of the magma rapidly 
increases. The power which can be spent by convection on reentrainment is equal to ec•gd/cp of 
the total energy supply to the convective layer, where e < 1 is an efficiency factor. This factor is 
probably about 0.01 and has been estimated from one experiment on convective suspensions and 
with the help of an analogy with remixing in chenfically layered convective layers; we find that 
both cases are controlled by the energetics of convection. The crystal radius is one of the most 
crucial and uncertain parameters. If it exceeds about 10 -2 - 1 cm during crystallization of deep 
layers (> 15 GPa) or 10 -3 - 10 -1 cm during crystallization of shallow layers, the first regime 
("fractional crystallization") is unavoidable. The estimates depend on various poorly constrained 
parameters and processes, such as heat flux, viscosity, thermodynamical disequilibrium and highly 
variable viscosity convection. For absolute suspension the crystal size nmst be at least e 1/2 times 
less, or 10 -3 - 10 -1 cm and 10 -4 - 10 -2 cm, respectively, if e • 0.01. The partial differentiation 
occurs in a narrow (one decade) range between these two regimes. The radius of about I cm must 
be considered as an absolute upper bound above which fractional differentiation is guaranteed. 
These estimates for the critical crystal size are orders of magnitude lower than suggested previ- 
ously, and thus the problexn of crystal sizes becomes a central one for magma oceans. A necessary 
condition for reentrainment is the existence of local mechanisms. The absence of such mechanisms 

to reentrain the particles from the bottom would mean that an absolute suspension is impossible 
even if the energetics allows it. Turbulence is considered as a possible important factor. A simple 
model of convection predicts a strong turbulence, provided the viscosity is less than 109 - 10 lø 
P. Rotation reduces this critical viscosity to 10 s - 10 ø P but this is still sufficiently large and 
is reached only near the maximum packing crystal fraction. Power law or Bingham rheology of 
partial melts can exclude any turbulence already at 20 - 30% of crystal fraction. We also show 
that the energetic criterion for the absolute suspension with e • I coincides with the condition 
that the particle concentration gradient suppresses the tm'bulence. 

INTRODUCTION 

Various arguments suggest that the Earth was once 

mostly or entirely molten. The first argument results from 

the recent accretion theories [Safronov, 1978; l/Vetherill, 
1985, 1990]. The population of planetesimals from which 
the Earth and the planets formed was not uniform but con- 

rained bodies of different sizes. The largest bodies could be 
about the size of Mars. Collisions bet•veen the Earth and the 

planetesimaJs of this size unavoidably caused global melting 

of the Earth and even partiM vaporization [Cameron and 
Benz, 1989; Benz and Cameron, 1990; Melosh, 1990]. A 
Mars-size impactor is believed to be needed in the impact 
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theory of the lunar origin [Stevenson, 1987; Newsom and 
Taylor, 1989; Benz et al., 1986, 1987, 1989; Cameron and 

Benz, 1991]. 
Another argument is that a dense, steam atmosphere 

maintained a very high surface temperature during accre- 

tion, allowing an upper molten layer of the mantle [Abe and 
Matsui, 1986; Matsui and Abe, 1986; Zahnle et al., 1988; 

Kasting, 1988]. 
The temperature increase due to gravitationaJ differen- 

tiation of iron [Flasar and Birch, 1973; Verhoogen, 1980] 
simultaneously with adiabatic compression and heating by 

short-living radiogenic isotopes [e.g., Safronov, 1978] can 
also produce melting of some part of the mantle. However, 
these effects become less important if the giant impacts took 

place. 

While the existence of a magma ocean seems to be un- 
avoidable from the point of view of the formation theories, 

it is controversial from the geochemical point of view [see 
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reviews by Ringwood, 1990; Taylor and Norman, 1992; Solo- 

matov and Stevenson, this issue (a)]. Existing geochemical 
models assume a simplified physical scheme of crystalliza- 

tion of magma oceans that is essentially a fractional crystal- 

lization with strong differentiation. However, it is unclear 

whether or not this style of differentiation can take place 

in magma oceans. As has been pointed out by Tonks and 

Melosh [1990], convection in magma oceans can play an im- 
portant role in preventing the differentiation. 

A central problem of differentiation of magma oceans is 
suspension in convective layers. Suspension of particles in 

a convective layer has been studied with the help of sev- 

eral different approaches. One approach is based on a phe- 

nomenological equation for the balance between the down- 

ward settling flux of particles due to the gravity and the 

upward flux due to the convective diffusivity [Barieft, 1969; 
Huppert and Sparks, 1980]. This approach has been applied 
to magma oceans by Abe [1991, 1992]. Although it can be 
used to find solutions for the particle distribution, it does 

not establish criteria for suspension; different assumptions 

about the boundary conditions can allow or forbid suspen- 
sion. 

In the other approach, the regions with closed particle 
trajectories in a steady convective flow are considered as 

the regions of suspension [Marsh and Mazey, 1985; Wein- 
stein et aL, 1988; R•dman, 1992]. The problem is that these 
closed trajectories are stable only for these given flows. Per- 
turbations (in chaotic cases) can move particles from these 
trajectories to those that bring them to the lower boundary 
of the convective layer. If there is no reentrainment mech- 

anism (as in the models considered), every particle h• a 
nonzero probability to reach the bottom and remain there. 

Eventually, all the particles must settle out. 

Laboratory experiments by Martin and Nokes [1988, 
1989] show that even in the case when the settling velocity 
is much smMler than the convective velocity, all the par- 
ticles may eventually settle. They argue that because the 

convective velocity at the lower boundary vanishes, the par- 

ticles cannot reenter the internM region and remain at this 

boundary. An important exception will be discussed later. 

Tonks and Melosh [1990] suggest that the turbulence is 
an essentiM factor and suspension occurs if the frictional ve- 

locity in the turbulent boundary layers is larger than the 

settling velocity of the particles. This analysis is possibly 
applicable to a shear turbulence, but the physics of the sus- 

pension in convective layers is quite different as we discuss 

in the present paper. 

Usually the infitience of the particles on the convective 

flow was ignored. However, Koyaguchi et al. [1990] find 
that already above some small (a fraction of percent) criti- 
cal solid fraction this influence is so big that the suspended 

particles suppress convection and create a layered convective 

system. These results were confirmed both experimentally 
and theoretically. A similar effect has been observed in a 

numerical study by Rudman [1992]. Thus, the effect of sus- 
pension on convection could be crucial. 

The present study is organized in the following way: (1) 
we develop a theory of convective suspensions and show that 

the suspension in a convective layer is controlled by the en- 

ergetics of convection. (2) The theory is compared with the 
experiments by Martin and Nokes [1988, 1989] where there 
was one reentrainment case. (3) The same energetic ap- 
proach is applied to the problem of chemical erosion in con- 

vective layers for which there are more data [Olson, 1984]. 

(4) The sedimentation regimes studied by Koyaguchi et al. 
[•.0] and Rudman [•2] are discussed from the perspec- 
tive of our theory. (5) The theory is applied to a magma 
ocean, and conditions for different regimes of suspension and 

sedimentation are suggested. (6) Turbulence as one of the 
local mechanisms responsible for reentrainment is studied 
in the case of convection with rotation and non-Newtonian 

theology. (7) The stabilizing effect of particle concentra- 
tion gradient on turbulent convection is studied in the last 
section. 

SUSPENSION OF PARTICLES IN A CONVECTIVE LAYER 

The relative motion between the liquid and the particles 

suspended in a convective layer always takes place indepen- 

dently of whether or not particles sediment at the bottom. If 

only the gravity effects are taken into account, then we have 

a permanent gravitational settling. To sustain suspension, 

convection must do some work. On the other hand, this 
power is limited. Thus, the necessary criterion is that the 

work per unit time which can be done by convection must 
be larger than the gravitational work per unit time required 
to suspend the particles. 

The work Ec per unit time done by highly developed con- 
vection is equal to the viscous dissipation and is expressed 

as [Golitsyn, 1978; Solomatov, 1993]: 

- - - - 

1 

P AFB+• QdAdzdz' , (1) 
where 

(2) 

is the ratio of the thickness of the layer d to the adiabatic 

temperature scale cp/ag and it is also known as the dis- 
sipation parameter, rij is the deviatoric stress tensor, ui 
is the velocity vector, uz is the vertical component of the 

velocity vector, d is the thickness of the convective layer, 
the thermodynamical parameters must be calculated as the 

effective ones for the multiphase medium [Solomatov and 
Stevenson, this volume (a)], FB is the bottom heat flux, A 
is the horizontal area of the layer, z and z' denote the ver- 

tical coordinate, Q is the internal heating per unit volume, 
g is the acceleration due to the gravity, p is the averaged 
density of the system, cp is the thermal capacity per unit 
mass, a is the thermal expansion, and particle settling is 
ignored for the moment. Note that a triple integration of 
the equations of thermal convection is necessary to obtain 
the correct formula [Golitsyn, 1978]. 

This integral is valid for both laminar and turbulent con- 

vection and was found for a plane horizontal layer in the 

case of steady heating for D << 1 (shallow layers). It 
can be shown that for the unsteady heating case the term 
-pcrOT/Ot must be added to Q, which can be interpreted 
as an effective heat production due to the cooling. (We note, 
however, that in a strict derivation there is also another term 

cruiOT/O•i, which gives zero contribution only if cp =const, 
or only if Ocp/O:r = Ocp/Oy = 0.) 

In the presence of the particles the equations are more 
complicated. The particle motion in a turbulent flow is de- 

scribed with the help of Tsen's equation [e.g., Soo, 1967]. 
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An approximation to Tsen's equation in which only the ter- 

minal velocity due to their buoyancy is taken into account is 

possibly a sufficient one [see discussion by Marsh and Maxey, 
1985]. In the first approximation we can take into account 
only this physically important effect' the relative motion be- 

tween the particles and the liquid due to the gravitational 

setfling. The work per unit time done by convection is now 
equal to 

Ec = •gd (AFt9 + VQ') (3) 
½p 

Q, _ I a OT 
d2A , 

where A is the surface area, and ep is the energy dissipation 
due to the particle settling per unit volume. 

In the case of highly developed convection the convective 

layer is almost adiabatic (or isothermM if D << 1) except for 
negligibly thin thetraM boundary layers. Thus the term with 

pcpOT/Ot can be approximated by an averaged temperature 
drop rate. Assuming also a uniform initiM distribution of 
particles, we find 

E• = qgd A (FB • F) (5) 
cp 

where F is the heat flux at the top of the convective layer: 

dT 

FA = F.A + M(Q - pc•) + E•, (6) 
T is the averaged temperature of the layer, and M is the 

mass of the magma ocean. 

The integral in (3) is estimated as 

E• • agd AF= DAF, D << I. (7) 
Cp 

In the case of the deep multiphase magma ocean the dis- 

sipation parameter D is of the order of I (see below) and 
the above equations become less accurate. In this case, Ec 
can still be estimated as 

E•=AF, D•I. (S) 

The gravitationM work per unit time Ep required to sus- 
pend the crystals is equal to 

Ap 

E, = urgM,• = urg•M--, (9) 
where u r is the settling velocity of the particles, M r = 4M 
is the mass of the particles, 4 is the mass fraction of the 

particles, •p is the density difference between the particles 

and liquid, and the ratio •p/p is supposed to be small. 
The necessary criterion for suspension is 

< (10) 

When the Reynolds number for the particle settling and 
the crystal fraction are both small, then Stokes' formula 

[Landau and Lifshitz, 1989] is vMid' 

2g•pr • 
ur = 9n0 ' ( • •) 

where r is the particle radius, and •o is the viscosity of the 
liquid. 

The criterion (10) written for the particle radius becomes 

r < •2g•g&•p , 4<< 1, D< 1, (12) 

where the sphericity of the mantle was ignored and so M • 
pdA. 

If the crystal fraction is larger than about 0.1, then the 
Ergun-Orning formula must be used [Soo, 1967]. It can be 
simplified to 

4gApr2 (1 _ q•)2 (13) 
ur = 150•/0 •b ' 

Note that in the case of shallow layers this equation can be 

applied up to •b • •b,•, where •b,• is the maximum packing 
solid fraction. In the case of deep layers (much larger than 
compaction length [McKenzie, 1984]) this formula is possi- 
bly valid until •b ~ 1. In this case it describes the percolation 
law for the flow in porous media. 

In terms of the ratio of the settling velocity of the particles 

up to the convective velocity (Rouse number), 

,5' = ur (14) 

the above criteria are rewritten as follows. For laminar 

convection in the case •/ • const (•/ is the viscosity of the 
crystal-melt system) the theory and experiments give [GoHt- 
syn, 1978; Turcotte and Schubert, 1982] 

(agd dF) 112 u• ~ . (15) 
cp 

Ignoring a numerical factor, we can write the criteria for 
suspension as 

r 1 

$< d•b•/2' •b<< 1. (16) 
For the turbulent convection, using (43), we obtain 

r Re I/•' 

S < d (•1/2 ' • << 1, (17) 
The criterion derived gives only the upper bound for the 

suspension in convective layers because we do not know 

which fraction of the total power is spent on sustaining the 

suspension. In the following sections we will show that this 

fraction is possibly only about 1%. We define an efficiency 

factor e which is equal to the fraction of the maximum avail- 

able power of the convection that is spent on the gravita- 
tionM work against sedimentation. Thus, the equilibrium 

state in which the sedimentation is exactly compensated by 

the convective "resuspension" is described by the equation 

Er = eEc. (18) 

Thus while the usual efficiency of convection (the ratio of 
the total work per unit time to the total energy supply) is 
proportional to the parameter D = a, gd/c r (see (5) and 
also works by Hewitt et al. [1975] and 6olitsyn [1978]), the 
efficiency of convection for the suspension of particles is pro- 
portional to eD. 

Note that in the limit D ~ 1, the upper bound for the sus- 

pension is equivalent to the requirement that the heat pro- 

duction due to the particle settling must be simply smaller 
than the heat flux from the layer. This limit is relevant to 

magma oceans. 

ANALOGY BETWEEN EROSION AND SUSPENSION IN 

CONVECTIVE LAYERS 

Olson [1984] studied the problem of erosion in a two- 
layered convective system. Two layers of equal thickness 



5378 SOLOMATOV AND STEVENSON: SUSPENSION IN A MAGMA OCEAN 

had a stable density contrast due to different chemical com- 

position and were heated from below and cooled from above. 

The mixing between these two layers due to a slow erosion 
at the interface was studied. The experimental results can 

be rewritten in the following form: 

1 dAp_ o•F (19) Ap dt -- --0.05Ap----•, 
where p is a mean density of the layers, Ap is the density 

contrast between the layers, d is the total thickness of the 

two-layered system, and F is the heat flux. 

Below we show that this formula follows from the energet- 

ics of convection, as in the case of the suspension problem. 

The approach is similar to that of Olson [1984], but it is 
based on a mote strict energetic equation [Golitsyn, 1978] 
used in the previous section. It is also worth noting that 

Sleep [1988] obtained a similar formula (if the coefficients are 
ignored) when considering the carrying ability of plumes. 

The totM gravitational energy of the system is equal to 

where index "1" refers to the upper layer and index "2" to 

the lower layer, A is the surface area. 

During the erosion the total thickness of the layer is con- 
stant and the total mass is also conserved. After some sim- 

ple manipulations, we find an expression for dEG/dt for the 
small time intervals (when the changes are small)' 

dEG _ 1• dAp dt - gAd• -- dt ' (21) 
Note that the energy increases with time. This is the 

result of the work done by convection. According to our 
theory, the work per unit time which can be done by con- 

vection is expressed as follows: 

E½onv = ee•gd AF, (22) 
cp 

which is applied to the total t;vo-layered system. 
From the equation 

dE6 

= dt 
we immediately obtain that 

i dAp o•F 
= -s, 

Ap dt Apd' 

which is exactly the equation (19) found by Olson [1984]. 
The efficiency factor e is equal to 

= o.6%. (25) 

Thus the energetic approach gives the right formula for 
the erosion problem, and the efficiency factor e is constant. 

COMPARISON WITH MARTIN AND NOKES [1988, 1989] 

In the experiments by Martin and Nokes [1988, 1989] 
there was no reentrainment except for one case. Below we 

consider two questions. Did a turbulence as a possible local 

mechanism of reentrainment [ Tonks and Melosh, 1990] take 
place in their experiments? The second question is: can our 

theory explain the absence of reentrainment in most exper- 

iments and the observed reentrainment in one experiment? 

Table 1A of Martin and Nokes [1989] includes the experi- 
mental parameters, among which are the Rayleigh number 
Ra, the Prandtl number Pr, the Nusselt number Nu, the 
Rouse number S, and the rms vertical component of the con- 

vective velocity Wrms. The ratio of the thermal diffusivity • 
to the thickness of the layer d is equal to 7.05 x 10 -5 cm s -2 . 
The Reynolds number is calculated as 

Re = pWrmsd __ Wrmsd (26) 
• -- •Pr' 

and covers the range Re = 0.03- 1650 (see also Table 1 for 
a part of the experiments). Laminar and turbulent regimes 
are separated by the critical value of the Reynolds number 

about 30-40 [e.g., Kraichnan, 1962] ( and see also the fol- 
lowing sections) and thus both regimes were studied. The 
reentrainment was observed at the lowest Reynolds number 

Re = 0.03 and certainly took place in the laminar regime. 
This means that the turbulence was not the crucial factor 

in this particular case. 

For a quantitative comparison with our theory, we con- 

sider only the case where the convection is driven by heating 

from below and cooling from above. This is the case where 
the reentrainment was observed. 

We have to rearrange all the criteria in such a way that 

they would involve the known parameters. The critical solid 

fraction 4½r for an interface formation [Koyaguchi et al., 
1990] (see the next section) is calculated as 

c•r po•AT 2 (_•)2• Ra = = (;7) 
where a is the thermal expansion and AT is the temperature 
difference across the layer. 

The equilibrium solid fraction •beq is expressed from (12) 
in terms of tabulated parameters as 

9c•/0F _ 2_. (•) 2 (•)2 eRa Nu : . (2S) 
Unfortunately, the crystal radius and the density differ- 

ence between the particles and the fluid were not published, 

and thus the particle radius is known only in some range. 
We assume the radius 0.13 mm corresponding to the mean 
radius of the particle range with the smallest radii. The esti- 
mates of •bcr and •beq are proportional to r 2 and can increase 
by a factor of about 3 if the largest particles were used. The 

TABLE 1. Predicted Critical and Equilibrium Solid Fraction for the Experiments by 
Martin and Nokes [1988, 1989] (Cooling From Above and Heating From Below) 

Ra Pr Nu S Wrms, cm/s Re •bcr •beq •beq] 
1.4 x 10 • 7 78 2.6 x 10 -• 3.6 x 10 -• 729 9.9 x 10 -• 5.2 x 10 -'• 0.017 
5.0 x 10 $ 7 56 2.6 x 10 -1 2.3 x 10 -2 470 5.5 x 10 -2 3.2 x 10 -5 0.011 
1.7 x 109 7 84 2.4 x 10 -1 4.0 x 10 -• 810 1.1 x 10 -• 6.3 x 10 -5 0.021 
1.9 x 109 7 87 1.4 x 10 -2 4.1 x 10 -• 830 2.2 X 10 --1 2.0 • 10 --4 0.067 
8.6 x 107 199 26 4.8 x 10 -2 1.8 x 10 -2 13 6.2 x 10 -2 1.1 x 10 -4 0.037 
3.9 x 107 199 18 4.6 x 10 -2 1.9 x 10 -• 14 2.9 x 10 -2 3.7 x 10 -5 0.012 
2.1 x 107 851 20 1.5 x 10 -2 1.4 x 10 -1 2.3 6.8 x 10 -2 4.1 x 10 -4 0.14 
1.1 x 107 1890 22 1.9 x 10 -2 4.7 x 10 -2 0.35 8.2 x 10 -2 1.2 • 10 --3 0.4 
5.1 x 106 4070 11 5.4 • 10 -2 8.0 x 10 -3 0.028 7.8 • 10 -2 1.2 x 10 -3 0.4 
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thickness of the convective layer is d - 20 cm. The initial 

volume fraction of particles •b0 (and approximately the ini- 
tial mass fraction) is 0.003. In the case of Pr = 7, the data 
on Nu and Wrms were not published, and we used Table A1 

and Figure A1 of Martin and Nokes [1989] together with 
equations (A6) and (AS) to calculate Nu and 

The efficiency factor e has been calculated using the re- 

sults of the experiment with reentraJnment, where the equi- 
librium solid fraction was found to be about 0.4 of the initial 

fraction. Assuming that in this experiment the smallest par- 
ticles were used, we calculated e as follows: 

2Ap• gr2 CpqSeq 
•- -- 0.86%. (29) 

9c•q0F 

It is interesting to note that this coefficient is close to the 
0.6 % value, which we have estimated earlier for the erosion 

of chemical layers using data by Olson [1984]. However, 
could be not constant as in the experiments by Olson [1984] 
and thus the estimated equilibrium solid fraction is very 
approximate. 

The calculated theoretical parameters in Table 1 are the 

critical solid fraction •b• for an unimpeded sedimentation 

[Koyaguchi et aL, 1990], the equilibrium solid fraction 
estimated from our theory, and the ratio •b•q/•b0, where 
is the initial solid fraction. 

First of all, the initial solid fraction is well below the crit- 

ical value b•r required for unimpeded sedimentation. Thus, 
the convection could not be suppressed by the suspended 
particles. 

The equilibrium solid fraction is quite far below the ini- 

tial solid fraction except for the last two experiments. The 
reentrainment was observed in the last experiment. Proba- 

bly longer experiments are required to reach equilibrium in 

some other cases. However, it is more likely that in other ex- 
periments, reentrainment could not occur because the local 

mechanisms were not able to teentrain the particles, inde- 
pendently of our energetic criterion. 

MECIIANISM OF SEDIMENTATION SUGGESTED BY 

KOYAGUCHI ET AL. [1990] 

Koyaguchi et al. [1990] found a regime of suspension 
where the system becomes unstable and an interface sep- 
arating a lower sedimenting layer and almost particle free 
upper layer forms. A cyclic sedimentation was observed. 

This regime has been shown to occur already at a very small 
solid fraction, less than 1%. Because these results could lead 

to a conclusion that sedimentation in magma oceans occurs 
already at very low degrees of crystallization, we consider 
here two questions: ho•v does the criterion for sedimenta- 

tion found by Koyaguchi et al. [1990] relate to our energetic 
criterion, and can it be applied to partially molten systems? 

The criterion suggested by Koyaguchi et al. [1990] can be 
written for the solid fraction •b as follows: 

zxp ß (30) 
This means that the thermMly induced density perturba- 

tions aAT becomes smMler than the density contrast •Ap/p 
across the interface, where Ap is the density difference 

tween particles and the fluid. 

The ratio of the equilibrium solid fraction •q predicted 
from our theory to •c• is 

•q enNu 
= 

•cr dup ' 

where u r is the settling velocity. Thus, with increase of the 
intensity of convection (Nu), •beq exceeds •bcr and the sus- 
pension could be controlled by the criterion (30). For ex- 
ample, in the experiments by Martin and Nokes [1988, 1989] 
dur/• ~ 10. For e ~ 1% the criterion might be changed 
near Nu ~ 103. This implies that at very high Nu the cri- 
terion of Koyaguchi et al. [1990] might separate not only 
the regimes of a gradual settling and the above unimpeded 
kind of settling but also separate the absolute suspension 
and this unimpeded settling. 

To estimate the critical crystal fraction for a terres- 

trial magma ocean, we use the low-pressure values c• • 

5 x 10 -s K -• Ap/p • 0.15 AT m 500- 1000 K, and 
find 

qS•r ~ paAT ~ 0.25 -- 0.50. (32) 
Ap 

However, we suggest that the mechanism of settling can- 

not take place if the energetic conditions allow suspension. If 
the interface is formed, it can be eroded by the convection in 

the same way as in the compositionally layered systems [Ol- 
son, 1984] considered above. We have shown that both the 
suspension and erosion are controlled by similar energetic 

conditions and even the efficiency factors are similar. If the 

energetic criterion for the suspension is satisfied, then the 
interface must be eroded with the rate of settling or faster. 

The layers are remixed and the interface is not formed. Note 
that in this case the reentrainment mechanism is not con- 

nected with the reentrainment of particles but is essentially 

similar to the remixing in chemically layered systems studied 

by Olson [1984]. 
Consider now the case where the energetic criterion does 

not allow suspension and both mechanisms of settling can 
take place. In this case, realization of the mechanism of 

settling suggested by Koyaguchi et al. [1990] in partially 
molten systems could be difficult in the conditions of ther- 

modynamical equilibrium. In a complete thermodynamical 

equilibrium, the crystal fraction varies with temperature ac- 

cording to the phase diagram and the effective thermal ex- 

pansion (see detailed •nalysis by Solomatov and Stevenson 
[this issue (a)])is due to not only the temperature changes 
but also due to the phase changes upon the melting. In 
a nonunivariant system, the effective thermal expansion is 
approximately equal to 

a•f• =a+ Apd• Ap 1 Ap 1 P •-• • o• -{ • , (33) p AT,• p 

where we assume a linear variation of the crystal fraction in 

the melting temperature range AT,• -- •/]iq - Tsol (between 
liquidus and solidus). We also used the fact that a•f[ >> a, 
meaning that in the melting range the density change due 
to the phase changes is larger than that due to the pure 
thermal expansion. 

The criterion (30) is now written as 

AT T- T•o• -- 

(•cr • /kTm < ATm = •(T), (34) 
where T is an averaged temperature of the well-mixed con- 

vective layer and •b(T) is the corresponding crystal fraction. 
Thus, in this linear approximation, the critical crystal frac- 

tion for the unimpeded sedimentation is always larger than 
the current value of the crystal fraction •b determined by 

the phase diagram. In other words, stronger buoyancy per- 

turbations due to the increased crystal fraction in the cold 

boundary layers and the reduced crystal fraction in the hot 
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boundary layers are comparable with the density contrast 

which would exist in the presence of an interface and prevent 

formation of such an interface. A completely disequilibrium 

partially molten system is similar to a simple suspension be- 

cause the phase changes do not occur on the convective time 
SCales. 

We can estimate the equilibrium conditions from the re- 

quirement that the characteristic time scale spent by fluid 

elements in thermal boundary layers tco,v is larger than the 

time scale trh for the phase transitions. The time scale tco,v 
both for the laminar and turbulent convection is well-known 

[e.g., Kraichnan, 1962; Turcottc and Schubert, 1982]: 

tconv • --, (35) 

where • is the thetraM boundary l•yer thickness. 

In the simplest c•se, the r•te-controlling f•ctor for phase 

changes is diffusion (which could be the c•se in melting). In 
this c•se, 

where r is the crystal r•dius •nd D is the diffusion coefficient 

for the melt. The equilibrium t•kes place if tcon• )) tvh or 
if 

<< 

where we used • two-phase equilibrium vMue for • • 

10 -• cm • s -• •nd • typicM wlue for D • 10 -• cm 2 s -•. 
The thetraM boundary l•yer thickness is estimated •s 

5 m • • 10 •agpF • 0.1 - 10 cm, (38) 
if F = 10 s - 10 ø ergs cm -•s -• and • I 100 P. And thus 
the equilibrium takes place if r • 10 -2 - 1 cm. 

Thus, the first suggestion is that in the case when the 
energetic criterion for the suspension does work, the regime 
found by Koyaguchi et al. [1990] cannot take place. The 
second conclusion is that in partially molten systems, the 

mechanism of sedimentation could be strongly controlled by 
the degree of thermodynamic• equilibrium and in a com- 

plete equilibrium, the sedimentation mechanism found by 

Koyaguchi et al. [1990] might be impossible. 

COMPARISON WITH RUDMAN [1992] 

Rudman [1992] studied numerically two-dimensional, 
time-dependent, infinite Prandtl number two-phase convec- 

tion, treating it with the help of averaged equations. At 

a given initial crystal fraction, three basic regimes are ob- 

served, depending on the ratio of crystal settling velocity 
to the maximum vertical convective velocity S, the crystal 

fraction •b, and • = paAT/Ap: complete settling, partial 
settling, and almost complete retention. The first regime 
occurs at high • and is similar to the regime found by Koy- 

aguchi et al. [1990]. The second regime is an intermediate 
one. The third regime corresponds to the regime described 

by Marsh and Maxey [1985] and Weinstein et al. [1988], 
where a retention region is formed near the upward flow of 

the convective cell. This regime can be called "kinematic": 

the settling does not take place because the particle tra- 

jectories are closed. The flow is steady and no mechanism 

of reentrainment of settled particles is involved. In a time- 

dependent convection (at high Rayleigh numbers) the par- 
ticles scarcely can avoid escape from the retention regions 

(attractors in physical space are impossible, for example, in 
turbulent convection). In the absence of some reentrainment 
mechanism, all the particles would eventually settle down. 

Thus, we argue that suspension effects found in these ex- 
periments cannot be extrapolated to high Rayleigh number 

convection. We note that from the energetic point of view, 

the suspension cases studied by Rudman [1992] correspond 
to less than 0.01% of the maximum available power of the 

convection and that is about 2 orders of magnitude below 

the estimated efficiency factor in the experiments by Martin 

and Nokes [1988]. 

HEAT FLUX FROM THE MAGMA OCEAN 

The heat flux is an essential parameter for suspension. 

The heat flux from the magma ocean is determined by con- 
vection in the magma ocean and by the radiative properties 

of the surface. We use the simplest assumption that the 

atmosphere chemistry depends only on the surface temper- 

ature but not on the potential temperature, that is, the tem- 

perature just beneath the surface thermal boundary layer. 

(As in meteorology, the "potential temperature" is a con- 
venient way of labeling adiabats in a system that is mostly 
adiabatic. We choose to define it as the actual temperature 

just below the thermal boundary layer.) In this case the 
heat flux at a given surface temperature can be calculated 

with the help of a blackbody model or a greenhouse model 

[Zahnle et al., 1988]. The heat flux in the blackbody model 
is 

where a = 5.67 x 10-Sergscm-•K-• is the Stefan- 
Boltzmann constant. In the case of a steam atmosphere 

the results of calculations by Zahnle et al. [1988] are pa- 
rameterized with the help of a simple function: 

œ ---- 1.5 x s +1.02 x 10 -2 exp(0.011T,), ergscm-2s -x. (40) 

This parameterization is accurate for 500 < T, < 1600 K. 

At higher temperatures (possibly up to about 2000 K) it can 
be used as an extrapolation. 

The surface boundary condition requires that the same 

heat flux is transported by the convection in the magma 
ocean. In the case of the turbulent convection the heat flux 

is equal to 

F a(T T•)•/a(c•gpcpk•) •/a = - , (41) 

where T is the potential temperature, k is the thermal con- 

ductivity, •, is the kinematic viscosity, and the coefficient 

a • 0.089 is for the free boundary case [Kraichnan, 1962] 
and not very different for other cases [e.g., Garon and Gold- 
stein, 1973; Busse, 1978]. 

Some problems occur due to strong variations of the pa- 
rameters with temperature and pressure. We assume that 

in the case of any strong variation of the parameters with 

depth, only the surface layer of the order of the Kolmogorov 
length scale (meters) is important for the thermal boundary 
layer calculations. This is an obvious assumption in classi- 
cal thermal turbulence because the scaling of the turbulent 
convection does not involve depth dependence. We note, 
however, that a weak dependence on depth could arise in 
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the hard turbulence regime [Heslot et al., 1987; Castaing et 
al., 1989]. 

In the case of two-phase flow an effective thermal capac- 

ity and thermal expansion should be used; they are about 1 

order of magnitude larger than their one-phase values [Solo- 
rnatov and Stevenson, this issue (a)]. We will use the val- 
ues a = 10 -3K -• and cp = 10 sergsg-•K -•. The large 
viscosity contrasts together with disequilibrium effects pro- 
duce much larger uncertainties. In particular, due to highly 

disequilibrium conditions in the thermal boundary layers, 

even at low surface temperatures (e.g., below the solidus) 
the crystal fraction can still be the same as below the ther- 

mal boundary layer (e.g., zero). This means that the kinet- 
ics is too slow for the crystals to nucleate and grow. The 

problem was discussed earlier in the case of melting (see 
( 36)-(38)). Crystallization could be a much slower process 
because the rate-controlling mechanism is interface kinetics, 

possibly surface nucleation [Solornatov and Stevenson, this 

issue (b)]. Even in the absence of this effect, the influence 
of a thin (centimeters) highly viscous layer on the turbulent 
or laminar convection is poorly understood. 

Thus, two limiting cases will be considered. In the first 

case there is no effect of the high-viscosity surface sublayer, 

and (41) is applied without any changes. In the second 
case we assume that below some critical temperature corre- 

sponding to about 0.6 crystal fraction, the suspension be- 
comes quasi-solid and this surface solidlike region effectively 

does not participate in the convection. The equation for the 
heat flux is then 

F a(T-Trn)4/3(ø•gpcpk2) •/3 -- , (42) 

where Trh is the temperature at the theological boundary. 
The results of the calculations for these cases are shown 

in Figures la and lb. According to simplified calculations 
of the phase diagram and the adiabats (Figure 2), the tem- 
perature range considered (< 2000 K) corresponds to the 
solidification of the upper mantle. Note that the adiabats 

are valid only in the low-viscosity regions and do not repre- 

sent the superadiabatic temperature distribution below the 
critical crystal fraction, where the viscosity rapidly increases 

[Solornatov and Stevenson, this issue (a)]. 
When the potential temperature drops just below the liq- 

uidus, the heat flux is estimated as 107 - 10 s ergscm-2s -• 
because of low viscosity. With the temperature drop, the 

heat flux decreases due to both the surface temperature drop 

and also to the magma viscosity increase. However, the heat 

flux drops significantly only when the potential temperature 
is near the critical temperature where the crystal fraction is 

about 0.6. This means that a large heat flux is maintained 

until the high-viscosity bottom of the magma ocean almost 

reaches the surface, leaving only a global shallow "magma 
chamber . 

During solidification of the lower mantle, the potential 

temperature is certainly higher than 2000 K (Figure 2). 
Thompson and Stevenson [1988] suggest that in this case 
the atmosphere is a silicate one because the silicates par- 

tially vaporize. The heat flux is then estimated to be 

10 s - 10 s ergs cm -• s -• . 

CRITICAL CRYSTAL RADIUS FOR SUSPENSION IN A MAGMA 

OCEAN 

The critical crystal radius is defined by (18) with ½ = 1 
and with D = 1. This corresponds to the condition that the 
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Fig. 1. Calculation of the heat flux from the magma ocean un- 

der different assumptions: (a) convection occurs effectively with- 
out any rheological boundary layer; (b) a surface layer with the 
temperature less than 1600 K has much higher viscosity and ef- 
fectively does not participate in the convection. Solid lines cor- 

respond to the blackbody boundary conditions, and the dotted 
lines to a steam atmosphere. The viscosity of the crystal-melt 
suspension labels the curves. 

heat production due to settling is equal to the heat loss from 

the magma ocean. Thus, this is a maximum crystal radius 
above which sedimentation and fractional differentiation are 

unavoidable. The crystal radius required for suspension is a 
2/2 

fraction (eD) of this criticM radius This fraction is equal 
1/2 to (eD) • 0.1, if ½ • 1% and D •. •. 

Figure 3 shows the dependence of the critical crystal ra- 

dius on the heat flux and the crystal fraction for a fixed 

viscosity of the melt (1 P). The calculation of the settling 
velocity of the particles takes into account three different 

dependences on the particle Reynolds number in Stokes, 

Newton, and transition regimes [Bird et al., 1960] and de- 
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Fig. 2. From Soloraatov and Stevenson [this issue (a), Figure 3b). 
The solidus, liquidus, temperature of the second phase appear- 
ance (dashed line), and adiabats are shown for the upper mantle 
region together with the experimental data for peridotires. Liq- 
uid region is marked with triangles, solid region with crosses and 
the partially molten region with squares. The first liquidus phase 
is olivine at p < 13.7 GPa and garnet at p > 13.7 GPa. Potential 
temperature is defined as the surface values of the adiabats. 

pendeuce of the crystal fraction according to equation (13). 
The local criterion requiring that the frictional velocity must 
be larger titan the convective velocity is also shown. The cal- 
culations for the turbulent boundary layer were made as in 

the case of shear turbulence [Kraichnan, 1962; Landau and 
Lifshits, 1989] and correspond to the calculations done by 
Tonks and Melosh [1990]. The crystal fraction is assumed to 
be distributed uniformly. The lowest of the values predicted 
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Fig. 3. The dependence of the critical crystal radius for suspen- 
sion on the crystal fraction for different values of the heat flux: 
109 , 10 ? and 105 ergs cm-2s -1 . The critical radius for the local 
criterion for suspension in a turbulent layer is also shown (dotted 
lines). The viscosity is I P, the density difference between the 
crystals and the melt Ap/p -- 0.1. 

by the energetic and local criteria determines the critical 

crystal radius. The energetic criterion predicts much lower 

values in the most important crystal fraction range. Above 

about 10% crystal fraction the critical radius weakly de- 

pends on the crystal fraction until a sharp transition due to 

the viscosity change near the maximum packing crystal frac- 

tion occurs (we used the Roscoe equation for the viscosity; 
see Solomatov and Stevenson [this issue (a)] for discussion, 
and 0.6 as the maximum crystal fraction). This transition 
changes the dynamical regime (from turbulent to laminar 
convection) but does not influence the energetic conditions 
at a given heat flux. So the greatest risk for the collapse of 
suspension occurs near 10% crystal fraction. 

In the magma ocean, the equilibrium crystal fraction in 

the absence of settling changes continuously from zero at 
the pressure where adiabat intercepts the liquidus to some 

maximum value at the bottom. The characteristic depth for 

the crystal fraction change is comparable or even larger than 

the thickness of the magma ocean [Solomatov and Stevenson, 
this issue (a)] From Figure 3 we find that the change in the 
critical crystal radius with crystal fraction and thus with the 

depth is very small in comparison with the dependence on all 

other factors and with possible uncertainties in the crystal 

radius. To prevent fractional crystallization, it is sufficient 

to require that at about 10% of the total crystal fraction in 

the magma ocean the criterion is satisfied. 

Figure 4 shows the results of calculations of the criti- 

cal crystal radius for suspension as a function of the heat 

flux and the viscosity of the melt at the critical crystal 
fraction 10 %. The calculations take into account different 

regimes of crystal settling depending on the Reynolds num- 

ber for the settling particles [Bird et al., 1960; Soo, 1967] 
Using the calculations of the heat flux, we take F ~ 108 - 
10 ø ergs cm -2s -1 when the adiabat intersects the liquidus at 
high pressures p > 15 GPa and F ~ 10 ø - 108 ergs cm-2s -• 
for p < 15 GPa. The viscosity is also an uncertain parame- 

ter. At the zero-pressure liquidus (about 2000 K), the vis- 
cosity of molten ultramafic silicates (peridotite or chondrite 
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Fig. 4. The dependence of the critical crystal radius for suspen- 
sion on the viscosity of the melt for different values of the heat 

flux at the extremum crystal fraction 10 %. 
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compositions) can be estimated with methods suggested by 
Bottinga and Weill [1972], Shaw [1972], or, recently, Per- 
sikov et al. [1990]. The estimates are about r/ ,,, I P de- 
pending slightly on the composition (mostly on the SiO• 
content). Due to structural changes, the viscosity of most 
silicates tends to decrease with pressures up to a pressure of 

about 25 GPa where all major structural changes are com- 

pleted [Kushiro, 1980; 1986; Persikov et al., 1990]. The vis- 
cosity along the liquidus or at a constant temperature drops 

by several orders of magnitude for high A1 and Si melts be- 
cause they suffer a significant alepolymerization with pres- 
sure. The ultramafic melts are polymerized to a much lower 

degree already at small pressures and thus, their viscosity 
must drop less rapidly [Kushiro, 1986] although quantitative 
data are absent. However, molecular dynamic simulations 

of MgO- SiO2 by E. A. Wasserman et al. (Compositional 
dependences of transport and thermodynamic properties of 
MgO- SiO2 mixture by molecular dynamics, submitted to 
Journal of Geophysical Reseach, 1992) give an estimate for 
the viscosity expected in essentially depolymerized melts 
10 -2 - 10 -• P at 5 GPa. This value is almost indepen- 

dent of temperature and composition and is close to an ab- 
solute minimum value [Persikov et al., 1990]. The viscosity 
of a completely depolymerized melt increases with pressure. 
This increase is not big in comparison with the changes due 
to structural transformations and can be roughly estimated 

with the approach suggested by Andfade [1952] and applied 
to the Earth's core by Gans [1972]. This approach supposes 
that the viscosity is inversely proportional to the distance 
between the molecules and proportional to the solidlike De- 

bay or Einstein characteristic frequency. As a result, the 
viscosity varies with density as p•+•/3, where 3' = 1- 2 
is the Griineisen parameter. An increase within 1 order of 

magnitude can be expected in the entire magma ocean pres- 
sure range. Thus, the viscosity of the magma ocean near 
the liquidus is estimated as 10 -2 - 1 P. 

During crystallization at high pressures, the viscosity of 
a depolymerized melt does not necessarily increase due to 
compositional changes as at lower pressures although, of 
course, it increases due to the temperature drop. Moreover, 

in some pressure ranges the first liquidus phase is a low $iO2 

phase (majorite garnet and possibly magnesiowiistite [Solo- 
rnatov and Stevenson, this issue (a)]) that at (hypothetical) 
low-pressure conditions would result even in a decrease in 
the viscosity of the coexisting melt. 

Summarizing estimates for the heat flux and the viscos- 

ity, we conclude that the critical radius of the crystals is 
10 -2 - I cm for p > 15 GPa where the heat flux is large 

(10 s - 199 ergscm-2s-•), and 10 -3 - 10 -• cm for p < 15 
GPa where it is somewhat less (107 - 10 s ergscm-2s-•). 
Sedimentation must occur for larger crystals. The absolute 

suspension as we discussed is possible for crystal radii about 
one order of magnitude smaller: 10 -3 - 10 -• cm for p > 15 
GPa and 10 -4 - 10 -2 cm for p < 15 GPa. Partial sedimen- 
tation takes place in between. 

These estimates for the critical crystal size are signif- 

icantly smaller (by several orders of magnitude) than all 
previous estimates [Tonics and Melosh, 1990; Miller et al., 
1991a, b]. Thus, the problem of crystal sizes becomes one 
of the central problem of magma oceans. It is discussed by 

Solornatov and Stevenson [this issue (b)]. Other uncertain- 
ties come from the unknown dependence of the viscosity on 

pressure, and the uncertain boundary conditions determin- 

ing the heat flux from the magma ocean. 

LAMINAR- TUP•ULENT TRANSITION 

Even if the energetic conditions allow a suspension, some 
local mechanisms must teentrain the particles from the bot- 

tom. Turbulence (dynamical turbulence) can be considered 
as a possible mechanism of re-entrainment. The criterion 

that the frictional velocity in the turbulent boundary layer 

must be approximately larger than the settling velocity is 

important for the shear turbulence [e.g., Soo, 1967] and pos- 
sibly is applicable to the convective turbulence as was sug- 

gested by Tonks and Melosh [1990]. In this and the following 
sections we discuss a part of this problem, laminar-turbulent 

transition in a magma ocean. 

Developed turbulent convection is usuMly described in 

terms of mi•ng length theory [Priestly, 1959; Kraichnan, 
1962; Clayton, 1968; Golitsyn, 1978] which predicts the fol- 
lowing dependence of the convective velocity fluctuations on 

the mi•ng length 10' 

aglo (43) •0 • -- ß 

The convective velocities for smaller length scales 1 •re found 

from the Kolmogorov c•sc•de l•w u • uo(1/lo) •/•. The 
smallest length scMe is the Kolmogorov length scale for 
which the Reynolds number is •bout the critic• one Rcc•. 
The transition from turbulent to l•min•r convection occurs 

•ppro•m•tely when the I(olmogorov length sc•e becomes 
equ• to the mi•ng length •nd then the inettiM r•nge of 
convection v•nishes. 

The viscosity •t which the turbulence in the m•gm• ocean 
v•nishes is 

-- (44) 

[Kraichnan, 1962]. The second equation shows that •t the 
transition the Reynolds number for the convective flow is 

simply equal to R•. 
Some modification of this criterion is needed due to the 

multiphase medium of the m•gm• ocean. In •ccord•nce 

with Solomatov and St•w,so, [this issue (a)] the equilib- 
rium thermodynamics of the m•gm• ocean c•n be described 
in terms of effective thermodyn•mical p•r•meters. The mix- 

ing length l0 is of the order of the thickness d of the con- 
vective l•yer or of the temperature sc•e height c•/ag if it 
is smaller th•n the thickness of the l•yer. In the c•se of the 

one-phase m•gm• ocean, c•/agd • I- 10 •nd so I • d. 
In the c•se of multiphase system, the r•tio c•/ag c•nnot 
change by more th•n • f•ctor which is equal to the r•tio of 

the melting gradient to the •di•b•tic gradient •nd is •bout 

I- 3, depending on pressure. As • consequence, the ve- 

locities c•nnot increase by more th•n • f•ctor of •bout 1- 

2 due to the equilibrium phase transitions. The estimate 

c•/agd • 0.1 - I is • re•son•ble one for both • one-phase 
•nd multiphase m•gm• ocean. 

Using typical v•ues of the p•r•meters agd/c• • 0.1- 

1, p • 4 gcm -• d • 10 s cm, F • 10 • - 
10 9 ergs cm -• s -• R• • 30, we obtMn 

••10 •-10 •ø P. (45) 

We see that the transition from turbulent to l•min•r con- 

vection occurs when the m•gm• ocean solidifies significantly 
(up to •ppro•m•tely the m•mum p•c•ng cryst• fr•ction 
[Solomatov a,d Stave,son, this issue (a)]. 
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Because the transition from turbulent to laminar con- 

vection can be sensitive to such factors as rotation, non- 

Newtonian theology, and density gradient due to sedimenta- 
tion we estimate these effects in subsequent sections. The ki- 

netic effects (disequilibrium between the crystals and melt) 
are also important, but they are not considered here. 

INFLUENCE OF ROTATION ON THE CONVECTION IN A 

MAGMA OCEAN 

Convection in magma oceans occurs in the presence of 
rotation. This effect is very important, for example, for 

the dynamics of stars and giant planets and could be also 
important for the magma oceans. The main physical effect 
of the rotation is the presence of the Coriolis force. The 

additional nondimensional parameter is the Taylor number, 

Ta = v2 , (46) 
where F2 is the angular velocity, d is the thickness of the 

layer and v is the kinematic viscosity. The Taylor number 
expresses the square of the ratio between the Coriolis force 
and the viscous force. The relative importance of the inertia 

and the Coriolis forces is described by the Rossby number 

uo (47) Ro -- 2•d 
where u0 is a characteristic velocity of the flow. 

The linear regime has been studied by Chandrasekhar 
[1953, 1961], Nakagawa and Frenzen [1955], and in many 
subsequent experiments. Boubnov and Golitsyn [1986, 
1990], and Golitsyn [1990] distinguish several transitions in 
the convective regimes' from linear to nonlinear regime, 
from regular to irregular regime, and from geostrophic to 
non-geostrophic regime. All transitions, especially the first 
two, are poorly measured and identified. In the irregular 

regime the velocity measurements [Boubnov and Golitsyn, 
1986, 1990; Chen et al., 1989; Fernando et al., 1991] jus- 
tify the formula obtained by Golitsyn [1980, 1981] for the 
characteristic velocity of the convective flow: 

uo ~ ~ •.,ta! •a (48) pCp•2 ' 

where 

•gFd4 (49) Ra! = k•y 

is the Rayleigh number based on the heat flux. 
The distance between vortices in the observed turbulent 

flow is a subject of discussion [Dikarev, 1983; Boubnov and 
Golitsyn, 1986; Chen et al., 1989]. Possibly more accurate 
measurements were done in the experiments by Hopfinger et 

al. [1902] and Hopfinger [1909] on turbulence produced by 
an oscillating grid in a rotating contMner. They suggested 
that the largest space scale of the turbulent motion in a ro- 

tating system is determined by the bMance between Coriolis 
and inertia forces. 

If such a characteristic space scMe does e•st it would be 

re•onable to treat it as the largest inertiM scMe of the tur- 

bulent motion and thus to use it as the scMe for the mi•ng 

length. So, we assume that the largest size of turbulent ed- 
dies l0 is determined by the size for which the Coriolis force 

is equM to the inertia force (the Rossby number determined 
for this scMe is equM to 1): 

uo ~ 1. (50) Ro(lo) ,., •lo 
An anisotropy of the turbulent flow can be important [ Cabot 
et al., 1987], but following the experiments by Fernando et 
al. [1991] we assume that the velocities in all directions are 
of the same order of magnitude despite an anisotropic flow 
structure. 

Consider the consequences of this simple interpretation. 
When the Rossby number calculated for the size of the sys- 
tem exceeds unity, the "geostrophic turbulence" is changed 
by the "normal" turbulence which does not feel the rotation. 
The transition occurs at 

Ra! ~ Pr2Ta a/2. (51) 

This equation coincides with the equation suggested by 
Boubnov and Golitsyn [1990]. 

Equation (48) is also obtained immediately with the help 
of (43) for the turbulent velocity. The size of the largest 
eddies is found as follows 

lo ~ uo ( agF )•1• 
In accordance with the mixing length theory the tempera- 

ture fluctuation scale is equal to 

~ . 5T ~ a p2 gc2pl ø a pgcp 
This dependence was suggested by Boubnov and Golitsyn 

[1990] and was supported by their experiments •nd those of 
Fernando et al. [1991]. 

So the simple scaling based on the mi•ng length the- 

ory results in a good agreement with the experiments. The 

basic scMing laws for the "geostrophic turbulence" are sum- 

marized in the following form: 

.o .o(O) , 

r• 
~ 0(0) , (55) 

~ 
where u0(0),/0(0), and ST(0) are the characteristic velocity, 
size and temperature fluctuation for the largest eddies in the 

absence of rotation, and 

( •gF ) •/• uø (57) Ro.f = pcpd 2 •3 "' d• 
is the Rossby number based on the heat flux (on the velocity 
in the absence of rotation). 

The turbulence ceases when the inertial interval, between 

the largest turbulent scale l0 and the Kolmogorov scale 

l•c ~ pc• (58) 
•gF ' 

disappears, and thus lo ~ lK. We obtain 

Ra! ~ Pr2Ta. (59) 

In Figure 5 we summarize our qualitative results, plot- 

ting the convective diagram for the parameter range corre- 

sponding to the experimental data. Possibly, the boundary 

between the regular and irregular convective regimes deter- 

mined with large uncertainties in the experiments by Boub- 

nov and Golitsyn [1986, 1990] corresponds to the transition 
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Fig. 5. An approxinlate diagram for the convective regimes in the 

presence of rotation in Ta-Ra! parameter space for Pr = 4.5: (I) 
conductive regime; (II) laminar convection without any effect of 
the rotation, (III) turbulent convection without any effect of the 
rotation; (IV) "geostrophic turbulence"; (V) "geostrophic lami- 
nar convection"ß The transitions are separated by the solid lines 
corresponding to asymptotic dependences. Dotted lines are pos- 
sible transitions between the asymptotic curves. The short solid 

line is a transition from regular to irregular convection suggested 
by Boubnov and Golitsyn [1990] which could be identified with 
the suggested transition between the laminar (V) and turbulent 
(IV) geostrophic convection. The regions of experimental studies 
are delineated by dashed lines: (R) Rossby [1969]; (BG) Boub- 
nov and Golitsyn [1986, 1990]; (FGB) Fernando et al. [1991]. 
The stability boundary was calculated by Chandrasekhar [1953], 
the transition (II)-(III) from laminar to turbulent convection was 
estimated from Kraichnan's [1962] work. The boundary between 
the regions (III) and (IV) was suggested by Boubnov and Golits•n 
[1990]. 

between la.mina.r and turbulent geostrophic convection sug- 

gested above. However, we find that this boundary is not 

parallel to the stability curve a.s suggested by Boubnov and 

Golitsyn [1986, 1990] (see also Golitsyn [1991]). It has a 
slope larger than the stability curve but smaller than the 
slope of the transition to non-geostrophic regime. 

In the case of a totally molten magma ocean we as- 

sume • m 10 -4 s -•, d • 10 s cm, v • 1 cm 2 s -•, F • 
109 ergs cm -2 s -•, t• • 10 -2 cm 2 s -• (previous sections), 
and find that 

Ra! ~ 1036 Pr • 102 Ta • 1025 Ro! ,,• 10 -2 (60) 

For the initial stage of the evolution we find 

u0 ~ 10 -• u0(0)"" 10 2 cms -•, (61) 

l0 ~ 10 --3 d ,• l0 s cm, (62) 

5T ~ 10 ST(O)~ 1 K. (63) 

The correction due to rotation is even larger (a. factor of ~ 
1/2 for the velocity and a.n order of ma.gnitude for the mixing 
length) if the rotation of the magma ocean was several times 
faster than today [e.g., Lainbeck, 1980]. 

Figures 6a and 6b show the main transition curves, initial 
position of the magma ocean and its position in the case of a 

continuous increase of the viscosity of a magma ocean at the 

same thickness of the convective layer (Figure 6a) and in the 
case of a continuous decrease of the thickness of the magma 
ocean at the same viscosity (Figure 6b). Because of the 
crystal fraction variation with depth, the magma ocean con- 
sists of a low-viscosity upper layer (its thickness significantly 
drops during crystallization) and a high-viscosity lower layer 
(its viscosity significantly increases during crystallization) 
and roughly corresponds to Figure 6b and Figure 6a. It is, 

of course, a simplified representation of a highly non-uniform 
magma ocean. 

Summarizing the results, we see that the velocity of the 

convective flow is reduced by one order of magnitude due to 
rotation and that the transition from turbulent to laminar 

flow requires still a large increase in the viscosity and occurs 

near the maximum packing crystal fraction [Solomatov and 
Stevenson, this issue (a)]. 
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Fig. 6. Approximate calculations of the position of a magma 
ocean in the parameter space y - Ray for the heat fluxes 105, 10 • 
and 109 ergscm -2 s-l: (a) the viscosity changes at a fixed depth 
of the layer 1000 km; (b) the depth of the layer changes at a fixed 
viscosity I cm 2 s- 1. 
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INFLUENCE OF NON-NEWTONIAN RIlEOLOGY ON THE 

TRANSITION FROM TURBULENT TO LAM1NAR CONVECTION 

IN A MAGMA OCEAN 

A non-Newtonian behavior of magmas was observed in 
various experiments [Robson, 1967; Shaw et al., 1968; Shaw, 
1969; Pinkerton and Sparks, 1978; McBirney and Murase, 

1984; Ryerson et al., 1988]. Some physicM interpretation 
was suggested by Solomatov and Stevenson [1991]. In this 
section we estimate the influence of this factor on the tran- 

sition from turbulent to laminar convection in the magma 
ocean. 

Basic Assumptions 

We assume that the transition from turbulent to laminar 

convection is determined by the condition 

pug • 
., ~ n•.. (a4) 
r0 

where the subscript zero refers to the largest turbulent scale. 
This condition has the same physical meaning as in the con- 
stant viscosity case: a balance between the inertia (pug) 
and the viscous (r0) forces on the largest convective scale 
(see also Ryan and Johnson [1959]). The inertia range of 
turbulent convection and thus the turbulent velocity scale 
(43) does not depend on the theology. 

The effective shear stress r0 is estimated from the theo- 

logical law' 

where 

ro ~ r(•o), (65) 

•o ~ u_.•.o (66) 
1o 

is the characteristic strain rate at the transition. 

Power Law Viscosity 

We consider the theological law in the form 
ß 

rij -- b eij •1-•, (67) 

where • is the second invariant of the strain rate tensor, b, 
and/3 < I are constants. The case/3 = 1 corresponds to the 
constant viscosity case. 

The characteristic shear stress at the transition can be 

written as 

r0 ~ r• ~ n , (68) 

where rs, •s, and •s are some vMues at a reference point 

(in laboratory conditions). 
Using condition (64) and (43), we find that the transition 

from laminar to turbulent convection occurs at 

l•a ( agF ) (2-•)/3 Ys,tr • • pcpl• • • ' (69) 
For fl = I we get the criterion for the constant viscosity 
convection. 

Bingham Rheology 

In this case the theological law is approximated by the 

equation 

vii ---- ry + •oo•ij, (70) 

10 lo 

7• 10" 

• 0 4 

• 0 2 

• 0 0 

I I I I 1 

1..0..•.-:: 

,8--1 

10 -2 

10 • 10 • 10" 10 s 10 • 10 7 10 s 

MIXING LENGTH (cm) 

Fig. 7. Transition from turbulent to laminar convection for con- 

stant and power law viscosity with/3 = 0.5 (•' ~ &P) in terms of 
a critical viscosity measured in laboratory conditions, at a refer- 
ence shear rate 10 2 s -• . The dependence on the mixing length is 
shown. 

where ry is the yield stress and •oo is a constant, or in a 
more general case, it can be a function of the shear rate. 

Consider only the case ry >> •oo•ij, when the theology is 

essentially different from the NewtonJan one (in the opposite 
case the theology is effectively a NewtonJan one with the 

viscosity •oo). The transition is determined by the criterion 

pug • 
~ Reef, (71) 

or 

p lcrgloFI 2/3 ~ o (72) ry,tr R-•cr pcp 

I I I I I 

i 

1 0 -• 

10 2 10 • 10 • 10 5 10 s 10 7 1 0 8 
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Fig. 8. Transition from turbulent to laminar convection for a 
Bingham rheology in terms of the critical yield stress. 



SOLOMATOV AND STEVENSON: SUSPENSION IN A MAGMA OCEAN 5387 

Estimates for a Magma Ocean 

Figures 7 and 8 show the boundaries for the transition 
from laminar to turbulent convection depending on the mix- 

ing length for the theologies considered above. The mixing 
length can be limited by rotation at 10 5 cm. If the the- 
ology is assumed to be NewtonJan, then the critical values 

of the viscosity (which in this case is independent of shear 
rate) follow the curves with /3 = 1 (Figure 7). This is a 
reference value of the viscosity which is measured in labo- 

ratory conditions (at a reference strain rate of 102 s -a) and 
extrapolated to' high pressures. In the case of power law 
viscosity with some typical value /3 = 0.5, the critical vis- 

cosity at dR = 102 s -a is by 2 - 5 orders of magnitude less 
than the reference viscosity (Figure 7). This is the result of 
an increase of the effective (shear-rate dependent) viscosity 
when we scale from the relatively high shear rates of labora- 

tory conditions to the much lower shear rates of the magma 
ocean. If l0 ,• 105 cm then turbulence does not occur if the 

reference viscosity is larger than ,• 102 P. This is a possible 
situation. 

If a yield stress does exist (for this problem it means 
that the viscosity beyond the yield stress is so high that the 

convection is certainly laminar) it is estimated to be about 
10 3-- 10 4 dyncm -2 [Robson, 1967; Shaw et al., 1968; Shaw, 
1969; Pinkerton and Sparks, 1978; Ryerson et al., 1988]. 
This value can be more than the critical one for the possi- 

ble values of the mixing length (Figure 8) and the turbu- 
lence ceases already at 20 - 30 % of the crystal fraction, i.e., 
the minimum crystal fraction at which the non-Newtonian 

behavior is observed. The consequence for the suspension 
problem is that suspension above this crystal fraction could 

be impossible. Future results on the theology of partial 
melts at very slow deformation rates would help to clarify 

this problem. 

DENSITY STRATIFICATION IN A MAGMA OCEAN DUE TO 

THE CRYSTAL SETTLING AND THE SUSPENSION PROBLEM 

A density stratification of a magma ocean unavoidably 
occurs when the crystals are present. This is due to a ten- 

dency for the crystals to sedi,nent (up or down) even in the 
case of well-developed turbulence. An important feature of 

the density stratification due to sedimentation of the parti- 

cles is that the layer cannot be rehomogenized as in the case 

of a layer stratified with the help of a chemical component. 
The effect can be estimated from the balance between the 

sedimentation mass flux and the mass flux due to the turbu- 

lent diffusion. If the net particle flux from the system is zero, 

then there is a stationary regime described approximately as 

[e.g., Marsh and Maxey, 1985] 

ON 

upN • D, 0--•-' (73) 

where up is the relative velocity between the crystals and the 
melt, N is the concentration of the particles, Dt: uolo is a 
characteristic turbulent diffusion for the convective flow with 

the mixing length l0 [e.g., Landau and Lifshitz, 1989] and the 
corresponding velocity u0, and z is the vertical coordinate in 

the direction opposite to the sedimentation flux. Consider 

the case Up << u0, •b << 1, where •b is the mass crystal 
fraction, and Ap/p << 1, where Ap is the density difference 
between the liquid and the solid and assume for simplicity 

that the crystal distribution is a nearly constant one in an 

equilibrium. The particle concentration and mean density 

gradients are 

ON urn 
• (74) 

Oz uolo ' 

I Op Ap up I (75) p Oz • -&7 •-• l-•' 
In the presence of a density gradient, l0 must be deter- 

mined by the characteristic distance at which the positive 

buoyancy of a fluid element crST due to the temperature 

fluctuations is equal to the negative buoyancy due to the 
composition (the net buoyancy is zero): 

lo Op 
(76) 

Substituting (43) and (53) (for arbitrary /0), we find 
that the criterion for these two buoyancies to be equal to 

each other is independent of/0: 

aF 
• 1. (77) 

This means that the collapse of all turbulent scales down to 

the smallest (Kolmogorov) scale occurs at the same time. 
The above criterion coincides with the definition of the 

Froude number and it can be written as 

~ (78) Fr= dw 
where 

gOp 

= 
is the Brunt-V'•sili kequency. It is a well-known criterion 

for the turbulence collapse in stratified fluids (see review by 
Hopfinger [1987]). Thus we arrive at the following conclu- 
sion: the turbulence is essentiMly the same as without any 
stratification when Fr >> 1 and there is no turbulence when 

Fr<<l. 

An important result is that (77) coincides with the ener- 
getic criterion for suspension (10) (ignoring numerical fac- 
tors): the turbulence ceases due to the crystM settling at 
the same time as the suspension does. The conclusion is 

independent of the mi•ng length and thus it is possibly not 

influenced by the effects considered in previous sections. 

CONCLUSION 

1. If there is an effective mechanism of reentrainment 

from the bottom of a convective layer, the suspension is 

controlled by energetics of convection. Depending on the 
ratio Ep/E between the energy dissipation due to the crys- 

tal settling and the total power supply to the layer (e.g., the 
total power produced by cooling of a magma ocean), three 
regimes can be distinguished: 

Absolute sedimentation, 

Ep/E > 1, 

Partial sedimentation, 

eD < Ep/E < 1, 

Absolute suspension, 

Ep/E < eD, 
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where D - crgd/cp is the dissipation parameter of the con- 
vective layer and e < 1 is an efficiency factor which is proba- 

bly about 1%. This value is uncertain and is estimated from 
an experiment by Martin and Nokes [1988] and from the ex- 
periments on chemical erosion in convective layers [Olson, 
1984]. In the absence of local mechanisms of re-entrainment, 
the third regime can not exist and it is identical with the 
second one. It can be formally treated as e = 0. 

2. The basic features of these regimes are the following. 
In the case of a steady heating of simple suspensions (no 
phase changes), the rates of settling in the first two regimes 
are similar. Variations can be in the mode of settling, de- 

pending on some other criteria (e.g., criterion of Koyaguchi 
et al. [1990]). However, in the case of cooling of partially 
molten systems, the first regime implies a complete differen- 
tiation because the dissipationM heating due to the settling 
would exceed the heat loss from the system and increase of 

the crystal fraction must necessarily be compensated by set- 
tling. The total crystal fraction in the magma ocean is then 
small and is controlled mostly by the balance between the 
dissipation and the heat loss. The cooling can proceed only 
together with a continuous differentiation and a drop in the 
liquidus curve. The second regime in the case of cooling of 
partially molten systems is characterized by competition be- 
tween the rate of crystallization, the rate of sedimentation, 
and the rate of turbulent diffusion, which determines the 

degree of differentiation. This is the regime studied by Abe 
[1991, 1992]. The third regime implies an indefinitely long- 
lived suspension. In the case of partially molten systems, 
the differentiation begins only near the maximum packing 
crystal fraction. 

3. The dependence of the criteria separating regimes on 
the crystal fraction has a minimum near •b ~ 10% crys- 
tal fraction and is weak in comparison with uncertainties in 

the crystal radius, viscosity, and the heat flux. This mini- 
mum is due to decrease of dissipation at low •b and due to 

decrease of the settling velocity at high •b. Together with 
the fact that the crystal fraction varies slowly with depth, 

this allows us to ignore these variations and to suggest some 
estimates in terms of crystal radius. The absolute sedimen- 

tation takes place at r > 10 -• - 1 cm for the crystallization 
of deep layers and at 10 -3 - 10 -• cm for the crystallization 
of shallow layers (when the heat flux becomes smaller). The 
absolute suspension can take place at r < 10 -3 - 10 -• cm 
and at r • 10 -4 - 10 -• cm correspondingly if e ~ 1%. The 
region between these ranges is occupied by partial sedimen- 
tation and differentiation. Note that for deep magma oceans 

D ~ 1, which reduces the range occupied by partial differ- 
entiation relative to laboratory situations where D << 1. 

4. The remaining problem is which local mechanism is 

5. In addition, it is found that the criterion for an absolute 

suspension coincides with the criterion requiring that the 
density stratification due to the crystal settling does not 
stop the turbulent convection. 
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