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Suspensions of prolate spheroids in Stokes flow. 
Part 1. Dynamics of a finite number of particles in 
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A new simulation method is presented for low-Reynolds-number flow problems 
involving elongated particles in an unbounded fluid. The technique extends the 
principles of Stokesian dynamics, a multipole moment expansion method, to ellipsoidal 
particle shapes. The methodology is applied to prolate spheroids in particular, and 
shown to be efficient and accurate by comparison with other numerical methods for 
Stokes flow. The importance of hydrodynamic interactions is illustrated by examples 
on sedimenting spheroids and particles in a simple shear flow. 

1. Introduction 

The motion of small particles in viscous fluids is relevant to fields as disparate as 
chemical engineering, biology, soil mechanics, geophysics, materials science and the 
microelectronics industry (Happel & Brenner 1973; Kim & Lawrence 1988). It pertains 
to the locomotion of micro-organisms, the transport of blood cells in arteries, and the 
diffusional approach of substrates to enzymes. More traditionally, low-Reynolds- 
number hydrodynamics have been used to analyse the processing of slurries, colloids 
and composites. If some of the particles are fixed, the results apply to petroleum 
recovery in porous rocks, or to the monitoring and control of particulate contaminants 
in cleanroom environments. Suspension rheology is also at the core of active efforts in 
constitutive equation modelling for polymeric and liquid crystalline solutions. 

Much is known at present about the motion of single, rigid particles in creeping flow. 
This knowledge is directly applicable to the analysis of dilute suspensions, in which 
each particle is effectively isolated. Unfortunately, this approach breaks down at 
extremely low concentrations for dispersions of slender bodies, because anisometric 
solid inclusions interact hydrodynamically much more strongly than spheres do at the 
same volume fraction. Semi-dilute fibre suspensions for example display extremely 
high extensional viscosities (Batchelor 1971 ; Shaqfeh & Fredrickson 1990; Mewis & 
Metzner 1974). This tremendous increase in the resistance of fluids to stretch by the 
addition of a minuscule amount of fibrous material is of great technological 
importance, and is one of the factors that prompted us to study ovary particle shapes 
rather than planetary. 

The behaviour of concentrated dispersions remains a challenge for rheologists. For 
spherical particles, dynamic microstructural simulations have provided valuable 
insight into the flow behaviour of suspensions up to very high particle densities (Brady 
& Bossis 1988; Phung & Brady 1992). Similar attempts for dispersions of elongated 
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particles, however, have thus far neglected hydrodynamic interactions, despite their 
importance, and modelled the suspension as a gas of impenetrable needles, 
incorporating solvent effects in an ad hoc manner (Bitsanis, Davis & Tirell 1988, 1990). 
The numerical difficulties experienced with continuum descriptions of fibre suspensions 
in the semi-dilute concentration regime and near solid boundaries also reflect the 
importance of viscous interactions and the difficulty in treating them adequately 
(Rosenberg, Denn & Keunings 1990). The need exists, clearly, for a hydrodynamically 
rigorous simulation method for dispersions of elongated particles. In addition, few 
numerical or theoretical investigations are available to date in the literature on the 
rheology of suspensions of thick rods, with moderate aspect ratios. Theories for fibre 
dispersions usually employ a slowly converging expansion in inverse powers of the 
logarithm of the aspect ratio, and their predictive value is thus limited to extremely 
slender bodies. This is unfortunate since most particles and macromolecules of 
practical importance have eccentricities intermediate between spheres and very slender 
rods (which tend to either break or bend (Salinas & Pittman 1981)). 

We present herein a new simulation method for suspensions of prolate spheroids of 
arbitrary aspect ratio, which accurately accounts for hydrodynamic interactions, 
including many-body effects. It is similar in concept to the successful simulation 
technique for dispersions of spheres known as Stokesian dynamics (Brady & Bossis 
1988). Only systems consisting of a finite number of particles are considered here first 
in order to demonstrate the essence of the new approach and its advantages. These 
simple systems also serve to highlight the effect of viscous interactions, which are hard 
to distill from simulations of infinite suspensions. Two-body dynamics are also 
interesting in their own right. For instance, they determine the tendency of freely 
suspended rods flowing through highly porous fixed beds to line up in the streamwise 
direction (Shaqfeh & Koch 1988). Companion papers discuss the extension of our 
method to unbounded suspensions and illustrate its effectiveness with selected results 
on the transport properties of uniformly aligned and equilibrium hard-ellipsoid 
structures (Claeys & Brady 1993a, b). The model suspension consists of rigid non- 
Brownian prolate spheroids interacting hydrodynamically in a Newtonian, incom- 
pressible fluid at zero Reynolds number (based on the largest particle dimension). Since 
the body is axisymmetric, this is the simplest geometry retaining the essential novel 
feature of interest : orientability. It encompasses the sphere at one end of the spectrum 
and slender round-ended rods at the other. 

As the inertia of particles up to several tenths of a millimetre in size can often be 
neglected relative to viscous retardation in common liquids, the equations governing 
fluid motion in suspension rheology are usually taken to be the Stokes equations: 

w p  = pV' u, (1.la) 

w*u = 0. (1.16) 

(p represents the viscosity of the suspending fluid; u is the velocity field, and p the 
associated pressure.) Even though the creeping flow equations (1.1 a, b) are linear, very 
few analytical solutions are known which satisfy the no-slip boundary condition on 
two or more immersed particle surfaces. Many numerical techniques for Stokes flow 
problems have therefore been developed (Weinbaum, Ganatos & Yan 1990). We shall 
focus on the most efficient approaches for suspension rheology, which solve the 
governing equations (1.1 a, b) for the particulate dynamics without determining the 
entire flow field. 

The first class of methods is based on a discretization of the boundary integral 
equation (Ladyzhenskaya 1963, chap. 3), which writes the velocity at any point x of the 
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(bounded) flow domain in terms of the force density and fluid motion at the boundary 
a v: 

with d = -pd+p(Vu+TVu) .  (1.3.) 

The stress tensor cr is evaluated at y on the boundary. dA, is an elementary surface 
element of aV, pointing into the control volume V ;  the subscript y indicates that the 
integration is carried out with respect to the vector y .  The first integral therefore 
represents the disturbance produced by a surface distribution of point forces with 
strength cr . dA,. Their effect propagates with the Oseen tensor 

6 rr 
J(r) = -+? 

Irl Irl 

A straightforward application of the divergence theorem shows that the second term 
on the right-hand side of (1.2) vanishes for rigid particles for any x in the flow domain. 

In essence, boundary element methods evaluate (1.2) at a V,  apply the appropriate 
boundary conditions and solve the resulting Fredholm integral equation by discretizing 
the surface. Coincidentally, the first article exposing a numerical application of this 
technique considered Stokes flow past spheroids (Youngren & Acrivos 1975). As many 
as 64 surface patches were needed to determine the torque exerted by simple shear flow 
on the particles to an accuracy of 1 % or better. Although the programming aspects 
have become more refined since, this work illustrates the high computational cost of 
the technique. More effective numerical approaches, collectively known as multipole 
techniques, are now available for a wide class of creeping flow problems, restricting the 
use of the boundary element method to systems with deformable interfaces or 
complicated geometries. Its newest variant, the completed double-layer solution (Kim, 
Fuentes & Karilla 1991), promises much greater efficiency for this type of problems, 
but will probably not compete with multipole techniques for the simulation of 
dispersions of particles of relatively simple shape. Incidentally, the multipole expansion 
solution presented in this work may guide the selection of the appropriate range 
completer for the completed double-layer method, and thereby increase the 
performance of the technique for many-body problems involving spheroidal particles. 

The multipole collocation method has mostly been applied to the motion of two or 
three spheres (Hassonjee, Ganatos & Pfeffer 1988) and to axisymmetric flows past 
chains of ellipsoids (Gluckman, Pfeffer & Weinbaum 1971 ; Liao & Krueger 1980). It 
is best suited for problems involving a finite number of identical particles positioned 
in a very symmetric arrangement. Basically, the strengths of stress singularities located 
at the centres of the particles are determined by simultaneously satisfying the no-slip 
condition on all spheroids on a number of judiciously chosen rings on their surface. 
Since all unknown coefficients are found collectively as the solution of one matrix 
equation, many-body effects are incorporated. Surface-averaged properties such as the 
drag can be calculated quite accurately using this technique. However, as the particle 
separation decreases, many terms must be retained in Lamb's fundamental solution 
(Lamb 1932), on which the method is based. Also, as recognized by Hassonjee et al. 
(1988), the computer memory and computation time requirements are rather large, and 
compare unfavourably with the needs of Stokesian dynamics (see 52). Although 
the ' multipoles ' were described merely as ' multilobular disturbances ' originally 
(Gluckman et al. 1971), Weinbaum et al. (1990) have shown for spheres that they 
correspond to moments of the stress density on the particle surface, i.e. to the Stokeslet, 
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rotlet, stresslet, quadrupole and octupole of the multipole moment method (vide infra). 
This suggests an inherent deficiency in the multipole collocation technique for non- 
spherical particles, since even an isolated ellipsoid creates a disturbance which can be 
correctly reproduced only by an infinite series of Stokes singularities at its geometric 
centre (Brenner 19643). 

By allowing the singularities to be distributed within the particle however (rather 
than restricting their location to the middle), Chwang & Wu (1975) constructed exact 
solutions for isolated spheroids in linear ambient flows using only low-order 
singularities such as Stokeslets and doublets, rotlets, and stresslets and octupoles. Their 
singularity representation, reminiscent of the slender-body theory pioneered by 
Batchelor (1970), is much more convenient for numerical purposes than the grantedly 
more compact symbolic operator formalism of Brenner & Haber (1983) (see also 
Brenner 1966), which, in effect, places an infinite series of disturbances at the centre of 
the particle, just as in the multipole collocation technique. Kim (19853) furnished a 
very elegant proof of the functional equivalence between Faxen laws and the 
singularity representation of disturbance velocities for rigid particles in Stokes flow. 
(Kim & Lu 1987 extended their theorem to include fluid-fluid boundaries.) He then 
used Chwang & Wu’s non-local formulation for spheroids (1974, 1975) in conjunction 
with the method of reflections to examine the sedimentation of two identical spheroids 
in an unbounded fluid (Kim 1985~). Since the formulation is exact in the absence of 
interactions (unlike the multipole collocation approach for non-spherical bodies), 
better accuracy is expected for the same number of unknown multipoles, even though 
many iterations may be necessary. Kim carried the calculations out to the second 
reflection, but lost convergence at small separations. 

The multipole collocation and the multipole moment methods are similar in many 
ways and have been blended in a few hybrid approaches. Indeed, for spheres, as 
pointed out, there exists a one-to-one correspondence between the disturbances of the 
collocation technique and the stress moment propagators of the moment expansion. 
Yet this second scheme is substantially more efficient and typically introduces fewer 
unknowns. It also very readily accommodates periodic boundary conditions to 
simulate suspensions of infinite extent. The multipole-moment technique expands the 
contribution of the surface stresses on each particle in the boundary integral equation 
(1.2) into moments about the particle centre. The zeroth moment singles out the effect 
of the total force. The first moment has antisymmetric and symmetric components. The 
former corresponds to the net torque experienced by the particle; the latter is identified 
as the stresslet. Higher moments yield the quadrupole, octupole, hexadecupole, etc. 
This series is truncated at the level appropriate for the accuracy desired. The motion 
of each submerged object is then determined from Faxen formulae, with the velocity 
field given by the moments expansion of (1.2). This method lies at the core of Stokesian 
dynamics (Brady & Bossis 1988; Brady et al. 1988) and of the technique presented 
herein, and will therefore be explained in greater detail in $2. The only application to 
non-spherical particles of a variant of the multipole moment method of which we are 
aware, is the work by Yoon & Kim (1990), in which up to four moments are retained 
to describe the dynamics of pairs of spheroids. Instead of relying of Faxen relations, 
a least-squares collocation technique is used to calculate the strength of the unknown 
multipoles from the no-slip boundary conditions. 

Stokesian dynamics, by introducing at most 1 1  unknowns per particle, is a very cost- 
efficient numerical simulation technique for suspensions of spheres. It combines the 
multipole moment method with lubrication formulae to remedy the inadequacy of the 
moments expansion when particles are nearly touching. It is therefore accurate over 
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the full concentration range, from very dilute to maximum packing. In addition, the 
method consistently preserves any symmetry inherent to the system by making explicit 
use of Lorentz' reciprocal theorem (Brenner 1963; Brenner 19643; Hinch 1972; Claeys 
& Brady 1989) in order to improve both its numerical efficiency and its robustness. 
Since our approach for prolate spheroids essentially adopts the same strategy, we 
discuss Stokesian dynamics in the next section. Section 3 then details how far-field 
interactions are calculated (i.e. the multipole moment method for our system), and 
near-field aspects are tackled in $4. The accuracy and efficiency of the method is 
illustrated by means of several examples in $ 5 .  We summarize our main findings in the 
concluding section. 

2. Stokesian dynamics for a finite number of particles 

Two basic problem formulations exist in suspension mechanics. In the mobility 
version, the velocities (both translational and rotational) of the particles are sought, 
given the ambient flow field and the forces and torques acting on each body. The 
converse, finding the forces and torques required to impose a desired particulate 
motion in an external flow, is referred to as the resistance problem. The governing 
equations (1.1) are solved subject to no-slip boundary conditions 

on the surface A, of each particle (labelled by integers p from 1 to N). 51, denotes the 
body's angular velocity, and Up is the translational velocity of its locator point x p  
(usually its centre of hydrodynamic stress (Brenner 1963)). Far away from the cluster, 
the imposed linear flow urn with uniform velocity U,, vorticity a,, and rate of strain 
€, must be recovered: 

Owing to the linearity of the boundary conditions and of the Stokes equations, the 
forces and torques exerted by the particles on the fluid are related through tensors to 
their velocities and angular velocities relative to the undisturbed flow and to the 
imposed rate of strain. For instance, the force Fp on particle p may be found as 

(2.3) 

The resistance tensor R$$ gives the force experienced by particle p due to a translation 
of q, holding all objects other than q fixed. (Its evaluation therefore requires the 
solution of an N-body problem.) The meaning of all other quantities in (2.3) should be 
clear. Relations such as these may be written down for the torques, the stresslets, the 
octupoles, and all higher moments of the force density on the surface of the particles. 
Grouping the forces and torques of all bodies into a vector 9 of length 6N,  their 
translational and angular velocities into a, and the undisturbed fluid velocity and 
vorticity at their locator points into a,, we may write the resistance problem as: 

Similarly, if the stresslets of all N particles are stringed in 9, 

U(X) = ~ , + ( X - X p )  A a,, X € A p  (2.1) 

U(X)+U, (X)  = & + X  A a,+E,*X, (X(+oO. (2.2) 

N N N 

Fp = C R $ $ . ( ~ - U , ( X ~ ) ) +  C R$;*(aq-Qm)- 2 R$S:€,. 
Q-1 q-1 Q-1 

9 = &*,.(Q-a,)-@*E: Em. (2.4) 

9 = @s,.(a-@m)-&?sE:Em, 
or, in matrix notation, 

(The operator @ signifies the appropriate contraction.) 
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Dynamic simulations require one to solve (2.6) for the velocities 9 and integrate the 
trajectories over a small time-step to find the evolution of the particle configuration. 
The resistance tensor is then constructed anew with the updated particle locations. The 
dynamics associated with Brownian motion are well understood (Ermak & 
McCammon 1978) and can be incorporated rigorously. (This is explained for spherical 
particles in Brady & Bossis 1988. The thermal motions of prolate spheroids can be 
treated in a similar fashion.) 

Pairwise additive schemes construct the resistance tensors, or their inverse, by 
considering all pairs of particles successively and calculating their interactions as if all 
other bodies were absent. In effect, in the resistance formulation, the Rpg (see (2.3)) are 
evaluated as two-body characteristics rather than properties depending on the 
configuration of all N particles. Since the first many-body effects enter the mobility 
formulae at O(r-4), with r the centre-to-centre distance between particles (Mazur & van 
Saarloos 1982), while third-body reflections contribute terms of O(r-') to the resistance 
problem, the pairwise mobility formulation is more accurate than the resistance version 
(additivity of forces). In essence, any pair of particles senses the presence of other 
objects less when these are freely suspended than when they are fixed in space. 
Moreover, the series expansion in r-' for the mobility functions converges more rapidly 
than the series for the resistance or friction tensors (Felderhof 1977). Thus pairwise 
additivity of velocities is preferable to additivity of forces. Lubrication forces, however, 
are only preserved in the resistance approach. (The tensor R$$ for two touching 
particles p and q is singular and therefore dominates the behaviour. In contrast, its 
inverse vanishes, and its effect will be swamped by that of all other particles, leading 
to particle overlap in any scheme using pairwise additivity of velocities (Bossis & Brady 
1984).) These observations lie at the heart of the method called Stokesian dynamics 
(Durlofsky, Brady & Bossis 1987). The N-body mobility tensor is first approximated 
using the more accurate pairwise additivity of velocities. It is then inverted to yield a 
' far-field ' estimate of the resistance tensor, to which lubrication stresses are added 
using the two-body resistance functions. Some multipole reflections between nearly 
touching objects may be included in both the mobility inverse and the lubrication 
tensor, and must be subtracted in a corrective step. In summary, 

(2.7) 

As shown by Durlofsky et al. (1987) and by Mazur (1982), the inversion of the N-body 
mobility tensor M sums all the reflected interactions between all moments retained 
during its construction. The inverse M-' therefore contains many-body effects, and R 
is a better estimate of W than what would have been obtained by pairwise additivity 
of forces. Furthermore, by adding the very strong and localized interactions Rlub 
between nearly touching particles, the algorithm of Stokesian dynamics also preserves 
lubrication interactions. 

The mobility tensor M is constructed by generalizing the procedure originally 
applied to dispersions of spheres by Durlofsky et al. (1987) (Claeys 1991). The velocity 
disturbance due to each particle is first decomposed into the contributions of the 
irreducible moments of the stress density on its surface: at the zeroth order, the effect 
of the force exerted by the particle on the fluid is quantified; at the next level, the 
perturbation due to the first moment is evaluated. This comprises an antisymmetric 
part related to the torque, and a symmetric component which is the stresslet: 

9# z R = M-l+ Rlub - R,,,,. 

S 9 = - lA, a[n. a{ y - xg} + ( y  - xq) a. n] -tarn. a. ( y  - x,)] dA,, (2.8) 
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with n the unit outward normal to the surface A,,. This is continued to any order for 
the accuracy desired. In most applications of Stokesian dynamics (Brady & Bossis 
1988; Phillips, Brady & Bossis 1988a, b ;  Bossis & Brady 1989), the multipole 
expansion of the velocity disturbance has been truncated after the first two terms, 
retaining the effects of the force, the torque and the stresslet. A mean-field estimate of 
the quadrupolar contribution has sometimes been included also. Those simulations 
produce results in excellent agreement with experimental data. 

In the algorithm of Stokesian dynamics, the impact of the velocity disturbance on 
the motion of all other particles is determined by applying generalized FaxCn laws. 
These relations express the motion of a freely suspended object as a function of the 
unperturbed fluid velocity field in which it is immersed. Each element of the mobility 
tensor thus isolates the effect of one irreducible stress moment of a particle 'p'  (the 
force it exerts on the liquid for instance) on one component of the motion of a particle 
' q '  (its angular velocity for example). This procedure, sketched in general terms above, 
is applied to prolate spheroids in the next section. 

3. Far-field estimate of the resistance tensor for prolate spheroids 

The far-field estimate of the resistance tensor is the many-body approximation to W 
obtained by inverting the grand mobility tensor M. The previous section briefly 
outlines how to construct M by combining the FaxCn relations for the particles with 
the irreducible multipole expansion of the fluid velocity disturbance due to their 
presence in the flow. Although our work primarily concerns prolate spheroids, some 
of the results reported in this section are presented for arbitrary ellipsoids. It is not 
difficult to take the limit for ovary ellipsoids of revolution if so desired. 

For a generic ellipsoid p centred at x, and with surface A, such that 

XE A ,  0 A;': (X-x,) (X-x,) = 1, (3.1) 

with A, a positive-definite symmetric tensor of rank two, we show in Appendix A that 
the disturbance velocity field can be decomposed into contributions from irreducible 
multipoles 1:") as follows : 

x m  
1 "  1 d "sinhD 

u(x)-u,(x) = - c I;m) O"+1(2rn+ l)!! -- - 
8~ m-0 [(D,dD,) D, p ] w x p J ( x - x p ) *  

(3.2) 

The velocity field u, is the undisturbed flow as it would be in the absence of the particle. 
The scalar operator D, = (DZ,)! with 

(3 * 3) 
3 a 2  

(-1 L=l ax; 

3 

D; = A,: WW = Z a:eie,:VW = C a:-, 

where we have defined an orthogonal coordinate system (x,, x4, x,) using the 
eigenvectors e, of A,. These lie along the principal axes of the ellipsoid, and we shall 
assume that they have been labelled such that a, >.a2 2 a3. As usual, (sinh Dp)/Dp 
must be interpreted as its infinite series representatlon (with D: = D;D2p, etc.) and 
(2m+ l)!! = (2rn+ l)!/(2mrn!). The irreducible stress moments Ihm) are defined for 
ellipsoids so that contractions of any two of their last rn indices with the dyadic A;' 

yield zero (cf. Appendix A). We have also introduced the notations t for the direct 

product of m tensors t (or tensorial operators t), and O m  for the rn-fold contraction 
operator (for which we adopt the 'nesting' convention ; see, for example, Chapman & 
Cowling 1970). 

x m  
rcI 
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the two lowest orders, their results can be cast in the form: 
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Faxen laws for the stress moments were derived by Kim & Arunachalam (1987). At 

(3 .44 

where E represents the alternating triadic. The polyadics KFp, and Zp can be expressed 
in terms of elliptic integrals depending only on the body's dimensions and the 
orientation of its principal axes (Brenner 1966; Rallison 1978; Brenner & Haber 1983). 
It is now easy, at least conceptually, to build the grand mobility tensor for a system of 
arbitrary ellipsoids by combining the irreducible expansion for the velocity disturbance 
(3.2) with the resistance functions (3.4). The tensor ME$ for example, which links the 
translational velocity of particle p to the force exerted on the fluid by ellipsoids q, can 
be written as (for p 9 q ) :  

An alternative, non-local description of the particle's interactions with the flow field 
exists. Kim (19856) showed that the Faxen relations for a prolate spheroid can be 
expressed as integrals of the velocity field I(, and of its gradients over a line segment 
along the spheroidal symmetry axis connecting the foci at x p  f c p  dp. His results (for 
the force, torque and stresslet only) read :t 

F = 16~p~{a,dd+01,(S-dd)}. U 

1 -e2 
- S ~ ~ { a i d d + a , ( S - d d ) } . ~  --c { 1 + ( C Z - ~ ) ~ V 2 } . o ( { ) d ~ ,  ( 3 . 6 ~ )  

(3.66) 

- 2xpal(di ' jk ld1  + dj ' f k l d 1 )  (c2 - 6') {v A u O ( { )  -256}k d6* ( 3 . 6 ~ )  

t Kim & Arunachalam (1987) later generalized these formulae to any multipole moment for 

-C 

arbitrary ellipsoids. 
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(All variables, except p, relate to particle p .  We suppressed the subscript p on F, T, S, 
U, a, d, a, y ,  c and e for clarity. The implicit summation convention for repeated 
indices is adopted in (3.6c).) The unit vector d, (for director) lies along the spheroidal 
axis; Up and 0, are the translational and angular velocities of the particle at its locator 
point x,. The notation eo is shorthand for gVu, and 5 stands for x, + cd,. All 
the remaining parameters depend only on the geometry of the body: c is the distance 
between the geometric centre and the foci of the generating ellipse; e = c / a  is called the 
eccentricity, with a the length of the major semi-axis; a and y are functions of e, defined 
in Kim (1985b) (see also Chwang & Wu 1974, 1975, and Appendix B). In essence, a5 
dominates during axisymmetric extension about the spheroidal axis, a* characterizes 
the stress response to simple shear flows for which the velocity gradient lies along d,, 
and aq gives the particle's stress contribution when the plane of shear is perpendicular 
to the director. 

The two formulations (3.4) and (3.6) are of course compatible, since one can show 
for any tensor X(x) that (Kim & Arunachalam 1987) 

x') 1 + L V 2  X(x')dA,.. (3.7a) 
/ / E q 2 m - 1 (  { 4m+2 a 2 2  I 1 1 

2nc, c; (2m - l)!! 
- -- 

The domain of integration E is the elliptical disk confocal to the particle surface A,: 

(3.7b) 

with c i  = a: -at and c;r' = ai-ai .  For a prolate spheroid, with a2 = a3 and el = d, the 
fundamental ellipse degenerates into a line with length 2c, = 2c, and (3.7a) takes the 
form : 

= L[ -( 1 E2 { 1 +&( 1 -$)V2]X(x,+Sd,)d& ( 3 . 7 ~ )  
2c -,2"m! 

Note that a:/c2 = (1 -e2) /e2 and compare ( 3 . 7 ~ )  with (3.6). 

to write the disturbance velocity as 
The identity (3.7a) can be used in conjunction with the irreducible expansion (3.2) 

This is consistent with the singularity representation of Chwang & Wu (1974, 1975), 
who constructed exact solutions of the Stokes equations for isolated prolate spheroids 
suspended in linear flows using uniform, parabolic and biquadratic distributions of 
singularities along the particle's major axis. 

We now have all the elements necessary to build the grand mobility tensor, but need 
to invert the FaxCn laws (3.6). It is trivial to obtain 

1 (a;ldd+~~l(a-d~}.F+-I 1 "  { 1 +(c2-62)7-V2}u'(<)d& 1 -e2 

4e 
U-u,(x,) = - 

16npc 2c -" 
( 3 . 9 4  
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where we have extracted the contribution from the impressed flow u, (see (2.2)), and 
introduced u' = u,- u,. (In Stokesian dynamics, u' typically represents the disturbance 
velocity due to all particles other thanp.) The relations (3.6b, c) for Q-Q, and -€m, 
however, are coupled. This reflects the fact that a spheroid tumbles in an extensional 
flow (unless its axis is aligned with a principal direction of the rate of strain). The 
expressions (3.66, c) must therefore be inverted together. After a bit of algebra (Claeys 
1988), one arrives at the following mobility functions for prolate spheroids (see also 
Kim 1986): 

(d A S - d - d - S  A d )  
3 1 +- 

32np.2 ((2 - e2)/e2) a* +a, 

and 

(3.9 b) 

(di 8jk dl + di a,, dk + ail d, dk + a,, dj dl - 4di dj dk 4 )  
1 

a*+(e2/(2-e2))a, 
+ 

1 -e2  + 3 (c2 - E2)  { 1 + (c2 - t2) ~ V'} e;,({) dE 
4c3 --c 8e2 

(dd A T- T A dd),. 
3 1 -- 

32npc3 ((2 - e2)/e2) a* + a, 
(3 .94 

As before, e' = # 7 ~ ' + ~ V u ' ) .  It may be useful to point out that 

e2/(2 - e2) = ( r i  - l)/(ri + l), 

with r p  the aspect ratio of the particle (r ,  > 1 for prolate bodies). 
From the linearity of the creeping flow equations, u' may be constructed by 

superposing the contributions (3.8) of each particle separately. Truncating the 
expansion after the first moment (experience with Stokesian dynamics for spheres 
indicates that retaining the effects of the force, torque and stresslet is sufficient for most 
purposes), we rewrite (3.8) explicitly for prolate spheroids : 

U ~ X )  = -5.r 1 { 1 +(c2-,g2)-V2}J(x-<)dE 1 -e2 
16npc --c 4e2 

-- 3 T . ~ c ( c 2 - E 2 ) V x  A J(x-<)d( 

-- S,: 1, (c2 - E2) { 1 + (c2 - <') 8e2 V2} gVX + ' V,)J(x -<) dE. 

64npc3 

3 1 -e2 

32npc3 

(3.10) 
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The grand mobility tensor for a system of N prolate spheroids can be constructed at 
the level of forces, torques and stresslets by summing the disturbances (3.10) over all 
particles q + p ,  inserting the result into the mobility functions (3.9), and repeating this 
for all spheroids p .  (The inclusion of higher moments is straightforward provided their 
FaxCn laws are first determined.) The contribution of a force 4 exerted by particle '2' 
to the translational velocity Vl of spheroid ' 1 ', for example, is given by 

In contrast to (3.5), this non-local description of the interactions between spheroids 
only involves the Oseen tensor and its second derivative (recall that V4 J = 0). 
Equation (3.1 1) shows that the rods behave hydrodynamically as if they were line 
distributions of point forces and potential doublets - no higher multipoles are needed 
for the MEQ,-coupling. This is a definite advantage over the symbolic representation 
(3.5) since multipoles of higher order generate more complex flow disturbances and 
have stronger singularities at their origin. Indeed, we have found the formulation (3.5) 
to be totally unsatisfactory for numerical purposes in cases where the centre-to-centre 
separation of the particles is comparable to the sum of their major semi-axes (i.e. when 
the spheres circumscribing the spheroids penetrate). In ( 3 . 9 ,  mobility elements are 
calculated as infinite alternating series with very poor convergence properties at small 
distances. The non-local description (3.1 1) is far more robust, although the kernel can 
be sharply peaked or rapidly varying for nearly touching particles. Adaptive integration 
techniques (Piessens et al. 1983) handle these numerical difficulties very nicely. The 
mobility tensor M obtained in this way can be inverted using a Cholesky decomposition 
algorithm (see for example Perry & Green 1984, $2) since M is positive definite, a 
consequence of viscous dissipation, and also symmetric from Lorentz' reciprocal 
theorem (Happel & Brenner 1973). 

The computation of each element of the mobility tensor (except the self-terms M p p )  
requires a double integration over the particle axes. Using cylindrical coordinates 
centred at the origin of spheroid 2 with the azimuthal axis along d,, the first integration 
in (3.1 1) can be carried out analytically. The result is most conveniently expressed in 
terms of the coefficients BmJx) ,  which Chwang & Wu (1975) introduced as: 

(3.12) 

For instance, defining a right-handed orthonormal frame of reference (d,, e,, e,) such 
that x - x, = x, dz + re,, we find 

[*J(x-<Z)dtZ = (2Bl,0-r2B3~O)d2dZ+(x~B~,~-B3,1)r(d~er+erd~) 

Note that x = tl in (3.1 1). Therefore, e, and e, are functions of El, whose variation 
must be taken into account during the subsequent integration along the axis of 
spheroid 1. 
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Closed-form expressions for Bm, Jx) in terms of elementary functions are known for 
arbitrary integer values of m and n, and recurrence formulae for n > 1 (Chwang & Wu 
1975; Claeys 1988) make their use especially suited for computer programming. Taking 
advantage of identities relating derivatives of Bm&) (Claeys 1988), and after some 
tedious but straightforward algebra, all the mobility coefficients for particles 1 and 2 
can be written as integrals along the symmetry axis of either ellipsoid in the form 
p-' J?c, fM({Bm,  &)}) d&, where fM({B, ,  n}) is a linear function of the set of Bm, Jx) 
involving cl, c2, el and e2 as parameters. This integral is then evaluated numerically 
(Claeys 1988, 1991). 

4. Addition of lubrication effects 

As explained in $2, lubrication stresses arising from the relative motion of nearly 
touching particles in the fluid are added in a pairwise manner to the mobility invert. 
Unlike the far-field hydrodynamic interactions, lubrication is essentially a two-body 
problem dominated by the flow in the small and narrow gap region separating the close 
surfaces. Hence pairwise additive schemes should be successful. The construction of the 
resistance tensor for two objects near contact involves two steps. At first, the points of 
closest approach must be determined. This then specifies the local geometry in the thin 
gap, from which the friction functions can be calculated. Claeys & Brady (1989) 
derived formulae for all stress moments which diverge as the surface separation E 

vanishes; i.e. the resistance tensor is known to O(EO) for arbitrary objects (with 
mathematically smooth boundaries which would touch at a single point when brought 
into contact along their common normal without altering their orientation - all convex 
particles satisfy these conditions). The O( 1) = O(eo) corrections to these expressions 
require the solution of the 'outer' flow, which is quite complex and depends on the 
exact relative position of the particles (characterized by four independent parameters 
for axisymmetric bodies). Although they can be found using collocation techniques or 
a finite elements method for example, even the task of tabulating them is forbidding. 

Since the points of minimum separation z ,  and z, on particles p and q must be 
determined over and over during dynamic simulations, it is imperative to develop an 
efficient and accurate algorithm devoted to this goal. Precision is important since even 
rather good approximations to the points of closest approach can give poor estimates 
of the gap width E, with which the resistance functions scale (figure l a ) .  In addition, 
in the acicular limit, the principal radii of curvature, which also largely determine the 
magnitude of the stress response, change very rapidly near the tip of the rod (figure 1 b). 
Thus the algorithm must converge very quickly to the exact location of z ,  and z,. The 
method we have devised is based on the observation that the normal to the surface A, 
at z, coincides with the normal to A, at z, (but is antiparallel to it). We also exploit 
the following property of ellipses: the sum of the distances from any point x of the 
ellipse to the foci is constant. The surface A, of a prolate spheroid centred at the origin 
is thus correctly represented by 

(4- 1) 

Its foci are at kc,, and a,  is the length of the major semi-axis. The normal to the 
surface at x can thus be written as 

x ~ A , - f , ( x )  = ~x-c,~+Ix+c,I = 2a,. 

x-c, x+c, 

Ix - cpl Ix + cpl * 
Vf ,  = + 

That is, the normal bisects the lines joining x to c,. As a consequence, all the normals 
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FIGURE 1. Sensitivity of the geometric features determining the magnitude of lubrication interactions 
to the location of the points of closest approach. (a) Although the points of closest approach are well 
approximated (on the scale of the particles), the estimate of the minimum separation e is poor. (b) e 

is estimated accurately, but the principal radii of curvature on the slender rod are incorrect. 

to A, intersect the spheroidal axis between the foci. The normal common to A, and A, 
must therefore cross the symmetry axes of both particles, and z, and z, are the points 
where it penetrates their surfaces. The outline of our algorithm is thus as follows (figure 

(i) Find the intersection x:) of the normal to A, at z:) with the spheroidal axis. 
Repeat for particle q. 

(ii) Find the intersections zak+') and zb"C+') of the line joining 2;) to xr) with the 
surfaces A, and A,. 

(iii) Convergence check. (For instance, are the normals at z:+') and at zb"C+l) nearly 
antiparallel?) Iterate (iHiii) if necessary. 
The first guesses z(P0) and zr) must belong to the surfaces, but no other restrictions are 
placed on their accuracy, and one always finds lim,,,~:) = z,. This method has 
several advantages over alternatives. In the spherical limit, it corresponds to joining the 
centres of the particles, the simplest way to find z ,  and z, in that case. In general, we 
have reduced the dimensionality of the search domain from four (two curved 
boundaries) to two (two line segments). This obviously speeds up the convergence. 
Also, all schemes scanning the surfaces of the particles slow down dramatically 
as they near the points of closest approach, since the step size usually scales with 
(zcn - z ( ~ ) (  in some fashion. In our method, on the other hand, the step size is set by 
I&) -&I > I z ~ ~ ) - z ~ ? I .  Finally, this algorithm is guaranteed to have a real solution at 

2) : 
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--.-.--- 

FIGURE 2. Illustration of the algorithm to find the points of closest approach on 
two prolate spheroids. 

each iteration. By contrast, many other methods which 'shoot' from one surface to the 
other, may occasionally 'miss ' ,  especially if the first estimates were poor, or if one of 
the points of closest approach is very near the tip of a slender ellipsoid. We note that 
this method also detects the points of maximum penetration in the case of overlapping 
spheroids (as long as the line segment [ x p -  cp, x p  + cp] is exterior to A*), and that its 
concept can be extended to arbitrary ellipsoids (in which case xr) belongs to the elliptic 
disk confocal with A p ) .  

The local geometry near the points of closest approach may readily be found by 
expanding fp (see (4.1)) in a Taylor series about z,. We then apply the lubrication 
formulae (Claeys & Brady 1989) to build the resistance tensor to O( 1) for each pair of 
particles near contact (i.e. for each set of spheroids for which the surface-to-surface 
separation, normalized by the harmonic mean of the local radii of curvature, is smaller 
than a prescribed threshold). This information is then added to M-' to obtain R (see 
(2.7)). At this level of accuracy, the correction term R,,,, is irrelevant, since it would 
only contribute to the unknown O(e") part of the lubrication stresses. 

5. Selected examples of simulations for a finite number of prolate 
spheroids interacting hydrodynamically in a viscous fluid 

5.1. Numerical aspects 

Using the method outlined in the preceding sections, we carried out a variety of 
simulations for systems involving a finite number of prolate spheroids in an unbounded 
Newtonian incompressible fluid. Because of numerical rather than conceptual 
limitations, we restricted the range of aspect ratios from 1 + 2 x lo-' to about 50. The 
lower bound is so close to the spherical case that it can hardly be called a limitation. 
It springs from difficulties in computing the coefficients a and y in the expressions for 
the self-terms M P P  (see (3.6) and Appendix B), and could easily be removed. The most 
efficient way of dealing with spheres, however, is to take their shape explicitly into 
account, and replace the line distribution of singularities used here (even though the 
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r p  Ix, - x,1/(24 

2 1.0001 
2 2 
2 3 
2 16 
5 1 .ooo 1 
5 2 
5 3 

Iw(8xaPl Vl) 
0.31483 
0.367 88 
0.392 16 
0.43908 
0.20423 
0.235 12 
0.24546 

lFl/I4,,l 
0.9945 
0.9998 
1 .ooo 
1 .ooo 
0.9938 
1 .om 
1 .ooo 

TABLE 1 .  Drag on two prolate spheroids moving with equal velocity U along their line of centres. The 
first column ( rp )  gives the aspect ratio of the particles. F,,, is the final result given with five significant 
digits in Gluckman et al. (1971). The smallest separation considered is 1.0001 instead of 1 because the 
resistance tensor is singular when the surfaces touch. 

number of unknowns and speed up the computations. This was done in a few cases, 
but most simulations were performed using a general version of the code capable of 
handling fully three-dimensional particle conformations and polydisperse samples. The 
symmetry inherent to the method (mostly through Lorentz’ reciprocal theorem) makes 
it very robust, and we never noticed any violations of the symmetry imposed by the 
initial conditions in any of our simulations. 

Because of the strong coupling between the torque and the rate of strain (M$% is 
non-zero even for p = q), it does not make sense for spheroids to consider an ‘F-T’- 
method as proposed by Durlofsky et al. (1987). They found that useful results could 
be obtained for spheres (in the absence of extensional components in the impressed 
flow) by retaining only the couplings between the force and torque on the particles, and 
their translational and rotational velocities. They recognized, however, that they owed 
this success to the fact that all stresslets are induced in such circumstances. This is no 
longer true for ellipsoidal particles, because a single spheroid in a vorticity flow 
experiences strain. It is therefore necessary to keep the symmetric as well as the 
antisymmetric part of the first moment of the stress density on the particle surface, i.e. 
one must use the full ‘F-T-S’-method of Durlofsky et al. (1987). 

To test the accuracy of our method, we checked our results against those obtained 
by other researchers using various numerical techniques (vide infra). We also verified 
for a large number of multiparticle configurations that the grand resistance tensor that 
we calculate in the limit of zero eccentricity matches the one found using the version 
of Stokesian dynamics dedicated to spheres. All calculations were performed on a 
Sun4/360 workstation and typically required at most a few seconds of CPU time. The 
duration of dynamic simulations such as those presented in B5.4 and 5.5 depends on 
the number of particles and their aspect ratio. Few of the examples given here however, 
were generated in more than 10 minutes. The program is written in FORTRAN, and its 
algorithm could readily be adapted for implementation on parallel computer 
architectures . 

5.2. Axisyrnmetric flow past chains of spheroids 

Gluckman et al. (197 1) introduced the multipole collocation method to calculate the 
drag on equidistant identical spheroids, lined up in a queue, and moving with uniform 
velocity. We list in table 1 the force necessary for this motion in the case of two 
ellipsoids of aspect ratio 2 and 5 for various separations, and note excellent agreement 
with all published results. The accuracy of our results matches that achieved by 
Gluckman et al. using three or more ‘multilobular disturbances’ emanating from the 
centre of each particle, and is always within less than I YO of their converged results. 
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line segment becomes infinitesimally short) by the appropriate combination of point 
forces, doublets and other multipoles at the sphere's centre (as done in Stokesian 
dynamics up till now (Durlofsky et al. 1987)). This is trivial to do. The upper bound 
rp x 50 comes from more subtle numerical aspects. The major difficulty in the acicular 
limit is the smallness of the radii of curvature near the tip of the slender body. Since 
lubrication interactions only set in at surface separations small compared to that 
dimension, extremely close encounters between particles can occur before they 
experience any repulsion. The time step in dynamic simulations is mostly determined 
by the requirement that there would be (virtually) no particle overlap ; when the 
superficial separations are so small, demands on the computer time become 
prohibitively large. This problem is by nature non-existent for static simulations (in 
which the evolution of the configuration is not tracked), so that one can then study 
fibres with much larger aspect ratios. 

Particle paths are integrated using a fourth-order Adams-Bashford formula 
(Abramowitz & Stegun 1970). The time step is chosen suitably small to make errors 
due to the time integration insignificant, its magnitude scaling with a characteristic 
velocity of the system and either the minimal separation between the particles or the 
smallest dimension of the spheroids. The mobility tensor was usually built and inverted 
for each new configuration, since far-field interactions dominate the dynamics of most 
applications involving only a few spheroids. For more concentrated systems, 
considerable savings in computer time may be achieved by updating the mobility 
tensor less frequently than the lubrication interactions. (The gross features of the N- 
body configuration, which determine M, vary slowly on the timescale of the trajectory 
calculation, which is set by the requirement that typical displacements do not exceed 
the smallest gap width between particle surfaces.) Optimal use was made of Lorentz' 
reciprocal theorem for the construction of M.  To minimize the number of required 
operations even further, we exploited the interesting identities (see Appendix C) : 

(5.1 a) 

[M!%lij = - [M%kLj 'kl +If 1 MPQ ESlnkIn 'hd ' m n  6 t j y  (5.1 b) 

ME$ = E -  MZ$ + ( E -  MZ$)T. (5.1 c) 

These hold for ellipsoids regardless of whether p = q. From these relations, it can be 
seen that only the couplings NIUF, Mu, and ME, need to be evaluated for each pair of 
particles in order to build the grand mobility tensor M. Taking maximal advantage of 
the tracelessness of E and S, and of the symmetry of MUF (see (3.1 1)) and of ME, 
(Appendix C), this reduces the number of unknown independent mobility functions to 
36 per pair of particles. (For the self-terms, only 21 are needed since ME$ = 0 for 
spheroids.) The identities (5.1) also imply the following, previously apparently 
undiscovered relations between the coefficients a and y defined by Chwang & Wu 
(1974, 1975) (see also Kim 1985b and Appendix B): 

7 - I  - - p5 - I -  u;', 

L 
a41 - = 

(2 - e2) u* + e2 al' 

(5 .2~)  

(5.2b) 

(5.2 c) 

The symmetry elements in some of the illustrative examples given below (mirror 
symmetry about a plane, planar configuration, etc.) can also be used to reduce the 
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FIGURE 3. Drag on a small sphere placed at the tip of a spheroid of aspect ratio 10 moving with the 
same velocity U. Distance is non-dimensionalized by the half-length a of the spheroid; the drag scales 
with 8xapU. The bottom curve shows the drag for a sphere of radius 0.0464; the radius equals 0.1 
in the other case. The force which would be experienced by the smallest sphere in the absence of the 
large particle is indicated by the dashed line. The asymptote for the sphere of radius 0.1 lies at 0.075. 

Our data for chains of up to 15 particles also are indistinguishable from their results 
(data not shown), except in the case of seven touching spheroids with r p  = 5 ,  where we 
calculated drags approximately 5 % smaller than those deduced from their figure 1 1. 

The efficiency of the multipole collocation technique was later tested by Liao & 
Krueger (1980) for ellipsoids of different size and aspect ratio. They calculated the force 
on a small sphere touching the nose of a large prolate spheroid of aspect ratio 10 as 
a function of the relative volume of the two bodies, which are assumed to move at the 
same speed in the direction of the spheroid's axis. As shown in figure 3, we find that 
the sphere experiences a minimal force when it is slightly ahead of the ellipsoid, rather 
than against it. This peculiar behaviour is reminiscent of the results of Cooley & 
O'Neill (1969), who calculated the resistance of two unequal spheres moving at the 
same velocity along their lines of centres as a function of their separation (using the 
analytical solution for this problem due to Stimson & Jeffery 1926). They found that, 
for sufficiently dissimilar radii, the drag on the large sphere first decreases with 
increasing distance between the particles, goes through a minimum and then 
monotonically ascends to its asymptotic value at large separations. It is possible that 
an analogous phenomenon occurs here. The harmonic mean radius of curvature at the 

15-2 



428 I .  L. Claeys and J .  F. Brady 

v,/< R,/a 141 IEI lEl/l4l r,/a 

1 0.2154 0.1565 0.1255 1.04 0.2 
10 0.1000 0.1766 0.050894 1.10 0.14 

100 0.0464 0.1880 0.020192 1.25 0.09 
1000 0.021 5 0.1937 0.007 779 1.38 0.06 

TABLE 2. Drag on a small sphere preceding a spheroid of aspect ratio 10 moving at the same velocity. 
The spheroid and the sphere move with equal velocity U in the direction of the rod‘s axis. The first 
two columns determine the relative size of the particles, as a ratio of volumes (V,/ <, where the 
subscript ‘ 1 ’ denotes the spheroid), or in terms of the radius of the sphere R, relative to the major 
semi-axis a of the spheroid. The forces 8 and 4 are scaled by 8napU. They are evaluated when the 
clearance between both bodies is rm, chosen such that the drag 4 on the sphere is minimal. 4 is the 
value reported by Liao & Krueger (1980) for the force on the sphere when both particles are touching. 

pole of the spheroid is a / r i .  For a spheroid of unit half-length and aspect ratio 10, this 
equals 0.01, which is considerably smaller than the radius of the spheres considered in 
this analysis (see table 2). For reference, the volume of a sphere of radius R, = 0 . 0 1 ~  
is only times that of the ellipsoid. Thus it can be argued that, in a local sense, the 
spheroid looks like a smaller object than the sphere, strengthening the analogy with the 
work of Cooley & ONeill(l969). In table 2, we compare the calculated minimum drag 
on the sphere to the collocation results for touching particles (Liao & Krueger 1980). 
Our computations systematically predict a higher force, and the agreement gets worse 
as the relative size of the two bodies departs more from unity. Liao & Krueger 
remarked that the drag calculated using the multipole collocation technique 
monotonically approached a plateau value from below as the stick boundary condition 
was satisfied at more points on the large spheroid, but they fixed the number of 
collocation points on the small particle at four, relying on earlier studies for touching 
spheres. In some respects however, as pointed out above, the tip of the ellipsoid 
resembles an object smaller than the sphere presumed small in the analysis. Thus it may 
have been necessary to represent the sphere by more multipoles, and the truncation 
after the fourth term may have caused an underestimation of the true drag force. In the 
same light, it is certain that our method would be more accurate if contributions from 
the quadrupole, octupole and higher moments were retained. 

5.3 .  Drag on two acicular spheroih 

Instead of adopting the distribution of singularities suggested by the Faxen laws, Barta 
& Liron (1988) determined the optimal density of Stokeslets along the symmetry axis 
of the spheroids as part of the solution procedure, by equating the disturbance velocity 
at the particle’s surface to the imposed rigid-body motion. Since they collapse the 
surface stress density onto a line, yet neglect singularities more complex than point 
forces, they cannot fully capture effects arising from the finite thickness of the rods. In 
particular, it is uncertain that a distribution of Stokeslets confined between the foci of 
the spheroid can correctly represent the flow field in the immediate vicinity of the 
particle’s surface, as they assume. For two parallel ellipsoids in an unbounded fluid, the 
drag was calculated at various separations for synchronous motions along the axes 
( U, = V, 11 d,  (I d2), along the line of centres, and perpendicular to the plane defined by 
the directors of the particles. We repeated the analysis and obtained the results of 
table 3. They agree quite reasonably with the forces calculated by Barta & Liron (1988). 
As was to be expected, the largest deviations occur in situations when hydrodynamic 
interactions are most pronounced, i.e. for motion in the direction of the line of centres, 
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0.25 0.1168 (1.30) 0.1300 (1.12) 0.08009 (1.10) 
I 0.1382 (1.07) 0.1510 (1.021) 0.09413 (1.012) 
2 0.1497 (1.024) 0.1597 (1.006) 0.09885 (1.003) 
4 0.1593 (1.007) 0.1655 (1.002) 0.10151 (1.001) 
6 0.1632 (1.003) 0.1677 (1.001) 0.10240 (1.000) 

TABLE 3. Drag on two spheroids of aspect ratio 100 placed side by side. In all cases the velocities 
= U, = U. All forces have been non-dimensionalized by 8lruplq. The distance d is measured 

between the centres of the particles. 141 is the drag for motion along the line of centres, 141 for 
movement perpendicular to the plane in which the spheroidal axes lie, and 161 is the force for 
Ulld,Ild2. The entries in parentheses give the ratio of the drag calculated by Stokesian dynamics to 
the data found in Barta & Liron (1988). 

and at the smallest separations. In those cases, the optimal Stokeslet distribution 
calculated by Barta & Liron deviated significantly from the uniform density profile 
predicted for isolated particles by Chwang & Wu (1974, 1975), but by about 20% at 
most. It is worth mentioning that Barta & Liron must compute a new singularity 
distribution for each prescribed motion, while Stokesian dynamics solves all resistance 
problems simultaneously for a given geometry. Our method also adequately captures 
the small rotation induced by the motion of the spheroids parallel to their axes (data 
not shown). 

5.4. Sedimentation of spheroids 

The motion of two spheroids sedimenting side by side is intriguing since ‘periodic’ 
orbits appear for certain initial conditions (Kim 1985 a). Hydrodynamic interactions 
then cause the particles’ directors to rotate past in radians, at which point the 
trajectory - projected onto a plane perpendicular to gravity - is reversed (figure 46). At 
larger separations, the viscous interactions are weaker, and the bodies simply drift 
apart (figure 4a). Similar effects had been observed for highly symmetric arrangements 
of spheres (Durlofsky et al. 1987); four spheres placed at the corners of a square in the 
vertical plane, for example, fall in a viscous fluid following a pattern in which the top 
spheres first move inward and faster than the ones on the bottom, eventually 
overtaking these to form a new square which is the mirror image of the original 
configuration. This scenario is repeated ad injinitum in the absence of external 
perturbations. 

One can generate many ‘ repeating ’ configurations of spheroids by positioning the 
particles’ centres at the comers of a regular polygon at right angles with gravity g, with 
their directors all parallel to g (or all at the same angle with gravity, such that the 
spheroidal axes lie on the envelope of a circular cone). The periodic trajectories 
described by the ellipsoids in the ((Rla),  8)-plane are shown for a few collections of 
spheroids of aspect ratio 2 in figure 5.  (R is the centre-to-centre distance between 
nearest neighbours and 8 the azimuthal angle.) The time t, necessary for the original 
configuration to be reproduced decreases at first with the number of spheroids in the 
system, as expected because of the more numerous hydrodynamic interactions (table 
4). However, as the arrangement becomes more circular, the effects of the two nearest 
neighbours balance each other progressively more (the induced torques are nearly 
antiparallel) and the distance between spheroids diametrically opposed grows, 
weakening their interaction. As a result, we observe a minimum in t ,  at N = 5 for 
spheroids released at the corners of regular polygons of side 2a. If we fix the diameter 
of the polygon instead, we still observe a minimum (fk, table 4), now due to the strong 



430 I .  L. Claeys and J .  F. Brady 

0 
0 

0 

0 

0 

0 

0 

0 

0 
0 
0 

0 

Q 
Q 
D 

D 
1 2 3 4 5 6 7 8  9 

0 0  
0 0  
0 0  
0 0  

0 0  

0 0 

0 0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 0 

0 0 

0 0 

0 0  

0 0  

0 0  
0 0  
0 0  

Half centre-to-centre separation 

FIGURE 4. Sedimentation of two prolate spheroids of aspect ratio 2 at an initial centre-to-centre 
separation of (a) 3.5 and (b) 2.5 (non-dimensionalized by the length of the major semi-axis). The 
particles are released side by side and aligned with the direction of gravity. The sketch on the left 
represents snapshots of the ellipsoids taken at equal time intervals. The vertical distance has been 
scaled down in this illustration. 
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2.0 -:::::::::++I:::::: 

0 0. I 0.2 0.3 0.4 0.5 

Angle with gravity, 8/rr 

FIGURE 5. Periodic centre-of-mass trajectories of spheroids with aspect ratio 2 sedimenting at the 
comers of regular polygons of side 2u. The spheroids, with half-length n, are initially aligned with 
gravity (8 = 0). All curves are symmetric about 8 = in. 

N t,  4 t P )  r;, 4 1 6 )  
2 32.4 76.1 33.6 78.7 
3 11.3 33.2 8.48 26.5 
4 9.51 31.4 5.13 20.1 
5 9.24 32.9 3.88 18.5 
6 9.40 35.3 5.95 32.6 
8 10.1 41.1 

10 11.1 47.5 

TABLE 4. Period of similitude of highly symmetric configurations of sedimenting spheroids. This table 
reports some characteristics of the trajectories of N identical sedimenting spheroids released parallel 
to gravity at the corners of regular polygons of side 2a (columns t, and z )  or of diameter 2 .02~ 
(columns tk and z'). The period of similitude t ,  (or 2;) is defined as the minimum time elapsed between 
two instants at which the configuration of the spheroids is the same, except for a uniform translation 
by z(tp) along the direction of gravity. (A spheroid pointing 'up' is considered equivalent to one 
pointing 'down'. If the sense of the director needs to be distinguished, the reported values oft, and 
r; should be doubled, since the configuration first reverses before reassembling.) Time is non- 
dimensionalized by IF1/(8rrpu'), with F the force of gravity. The distance z travelled by the centre of 
mass of the arrangement is scaled by the particle's half-length a. 
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FIGURE 6. Rate of rotation of two spheroids of aspect ratio 10 sedimenting atop one another. The 
distance R / a  is the centre-to-centre separation. The speed of gyration is non-dimensionalized by 
8na2,u/IF,J, with F, the force of gravity. 

mutual hindrance of the tumbling spheroids as they are nearly closed packed. It is 
coincidental that both minima occur for pentagons. Note that, even though the period 
of similitude t ,  is shorter for N = 5 than for N = 4, the particles travel farther in one 
cycle when they are arranged in a pentagon. This is due, of course, to the fact that the 
drag decreases with N, causing them to fall faster. 

Two horizontal spheroids placed directly atop one another, but not perfectly 
aligned, spin while sedimenting because, as a pair, they have a propeller-like geometry. 
Our simulations show that both particles rotate in the same sense and at the same rate 
as they fall; there is no relative motion between the two bodies. (This behaviour is the 
only one consistent with the symmetries which the system must obey upon reversal of 
the direction of gravity.) The rate of rotation of the particles for different centre-to- 
centre separations R is plotted as a function of the angle $ inscribed between the 
spheroidal axes in figure 6. Similar plots for other aspect ratios display the same 
qualitative features, but the magnitude of the speed of gyration is lower for blunter 
spheroids, and the maximum in the curves shifts toward the middle ($ = in). The angle 
$,JR/a)  at which the tumbling is most rapid does not increase monotonically with 
separation R, but is minimal at about {R = 0.3a, $m = 0.28~/2} for rods of aspect ratio 
10. For all aspect ratios considered, we found limR+w $, = an. This limit is always 
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approached from below. The zero rotation rate for $ = ~ T C  can be proven from 
symmetry arguments. 

The (small) negative rotation rate for almost touching particles and very acute 
inscribed angles can be explained by the trade-off between two competing effects. 
Those are best brought to light by considering the equivalent resistance problem and 
decomposing the motion of the spheroids: in the first case, the top spheroid is moved 
downward, holding the other particle fixed; in the second, the lower rod is pulled away 
from the stationary upper rod. We then superpose both motions to reproduce the 
original situation. In the first problem, a torque must be exerted on the moving 
spheroid to oppose its tendency to rotate at right angles to the lower rod. This can be 
understood by visualizing the fluid as being squeezed more tightly in the sharp corner 
formed by the rods, than in the obtuse angle complementary to it. In the second case, 
the moving lower rod attempts to drag the upper rod in its wake; thus holding its 
stationary requires a torque in the opposite sense. The first effect is only important at 
very close separations, and for angles relatively far removed from in, and explains the 
negative rotation rate in figure 6. In most situations, the second contribution is the 
largest, and the propeller-like motion is observed.? As one would expect, this 
phenomenon is absent (or not noticeable) for spheroids of aspect ratio 2, and confined 
to a much smaller range of $ when rp  = 50. 

5.5 .  Perturbation of Jefery orbits and migration in shear flow 

A force-free isolated spheroid placed at the origin of an unbounded simple shear flow 
precesses about the vorticity axis with a period of 27c(rp + r;’)/E (with E the magnitude 
of the velocity gradient), but the particle’s centre does not move (Jeffery 1922). The rate 
of rotation is not uniform however, and the particle spends most of the time aligned 
with the flow. This tumbling motion suggests that the stress response of a dilute 
suspension of rods in simple shear is oscillatory. Experimental evidence abounds 
however (Ivanov, van de Ven & Mason 1982), indicating that these fluctuations are 
transient, and that a well-defined, time-independent macroscopic viscosity can 
eventually be assigned to the dispersion. Many randomizing factors have been 
implicated, including polydispersity and other imperfections in the particle shape, 
Brownian motion, and hydrodynamic interactions (including wall effects). It is 
therefore instructive to examine the motion of pairs of non-Brownian, identical 
spheroids in shear flow to isolate the role of viscous forces. 

The geometry considered consists of two ellipsoids of aspect ratio 2 which are mirror 
images of each other with respect to the plane of shear (figure 7).$ They are inclined 
at an angle ~ T C  relative to the vorticity axis, and are initially either perpendicular to the 
velocity gradient (q51t-o = 0), or to the direction of flow (q51t-o = in). Somewhat 
surprisingly, the particles migrate due to hydrodynamic interactions, even though the 
undisturbed fluid velocity at their centres is zero. When the particles start off aligned 
with the flow = 0), they cycle on a closed trajectory, moving atop one another in 
a fashion similar to the jaws of a nutcracker. The composite centre of mass follows an 
8-shaped loop in the plane of shear in the clockwise direction (figure 8); the rods, 
meanwhile, ‘open’ and ‘close’, making the most acute angle with the vorticity axis 
when they reach the top and the bottom of the ‘figure of 8’ shape. This motion can be 

t We are not aware of any experiments confirming the reversal of the sense of rotation predicted 
here. However, the balance between the opposing effects, and hence this phenomenon, is somewhat 
sensitive to the exact shape of the rods. We were unable to reproduce it numerically, for instance, 
using strings of spherical beads instead of spheroids. 

$ This problem was first suggested in a personal communication by B. J. Yoon & S. Kim. 
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FIGURE 7. Geometry considered in 95.5. The vector d indicates the orientation of the particles. z lies 
along the vorticity of the shear field, and x is the direction of the flow. The angle q5 is measured in 
the (x ,  y)-plane. 

rationalized more easily perhaps by picturing dumbbells instead of spheroids. Initially, 
the simple shear exerts a torque on the particles, causing them to spin. It experiences 
less resistance from the ends of the rods which are close together (the hinge of the 
nutcracker) however, than from the poles which are farther apart. (In the same 
manner, the combined drag on two nearly touching spheres is less than twice the force 
felt by an isolated particle.) The effect of this imbalance is a net displacement of the 
rods in the same direction as the ‘hinge’. 

If the spheroids are initially at right angles to the fluid velocity, their interactions 
result in a finite translation in the flow direction during each period of rotation. At the 
inflexion point in the orbit of the centre of mass (figure 8), the particles are 
perpendicular to the velocity gradient (# = 0) and the inscribed angle between their 
axes is minimal. Note that the behaviour is very similar to the former case, g51t-o = 0, 
except that, when g5 = 0 here, the centroid lies on a streamline with non-zero velocity. 
Lubrication interactions are, on average, less important in the second case, and the 
motion perpendicular to the plane of shear is consequently much less pronounced. The 
period of rotation is 15.66 for rods initially at right angles to the flow and 15.53 when 

= 0. (Time is non-dimensionalized by the magnitude of the velocity gradient.) For 
comparison, it is 15.71 for an isolated spheroid of aspect ratio 2. The slight decrease 
can be understood since the pair of ellipsoids effectively acts as a body with a lower 
aspect ratio. 
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FIGURE 8. Shear-induced migration of two spheroids of aspect ratio 2. The abscissa, x /a ,  denotes a 
displacement in the direction of the undisturbed streamlines (figure 7). The ordinate, y /a ,  measures 
distances travelled in the plane of shear, perpendicular to the flow. The closed orbit (dotted line) is 
described if q5 = 0 initially. For 9 = in, the open trajectory (solid line) is followed. 

6. Concluding remarks 

The examples of the preceding section demonstrate the effectiveness and accuracy of 
the moment expansion technique that we have developed for Stokes flow problems 
involving interacting spheroids. Because it is analogous in spirit to the established 
simulation method for spheres (Brady & Bossis 1988), we also use the name ‘Stokesian 
dynamics’ to describe this new technique. In fact, the fundamental concepts of 
Stokesian dynamics can be stated in very general terms (Claeys 1991), and its 
methodology is valuable for a much wider class of body geometries than ellipsoids 
only. We discussed its application to prolate spheroids in particular in # 3  and 4, and 
have shown that our approach compares quite favourably with other numerical 
methods. 

Although many relevant problems can be addressed by considering the interactions 
between only a few particles, the usefulness of this new technique would be much 
increased if it were applicable to systems containing a very large (infinite) number of 
solid bodies. Most importantly, this would make it a valuable tool in suspension 
rheology, and enable one to study the flow properties of slurries of needle-shaped 
particles, the permeability of fibrous media, or the diffusion coefficients within liquid 
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crystalline domains for instance. The extension of the method to unbounded 
dispersions constitutes the topic of our next article (Claeys & Brady 1993a). 

Appendix A. Irreducible expansion for the disturbance velocity of an 
ellipsoid in Stokes flow 

We define the surface A of an arbitrary ellipsoid by specifying that 

x E A o A - ' : x x  = 1, (A 1) 

with A any positive-definite symmetric second-rank tensor. Without loss of generality, 
we have set the origin x = 0 at the geometric centre of the particle. It is apparent from 
(A I )  and the definition of the multipole moments 

that any contraction of Prn) by A-I in any two of its last m indices yields P(m-2) (apart 
from a multiplicative constant). Resorting to index notation (with implicit summation 
over repeated indices), 

with 1 6 k < 1 6 m and V p ~ [ l , m - 2 ] : ( j , - ,  <J  and k + J p  + 1 ) .  

contractions give zero : 
We therefore define the irreducible moment IL) for an ellipsoid such that all similar 

x m  
h 

(A 4 4  p )  = -- ;!IAn-t7 x dAx. 

In (A 4c) ,  the first moment is broken down into its antisymmetric component, namely 
the torque T = E :  Pl), and a traceless symmetric part identified as the stresslet. 

We now prove by induction that 

or, equivalently, for m > 1, 

The notation 1x1 means the largest integer value smaller th?: or equal to x. As can be 

inferred from (A 4) ,  2 stands for the irreducible core of x , which has the property 

that all possible contractions by the dyadic A-' give zero. (Alternatively, (A 5 b)  can be 

x m  
rcI 
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seen as its definition, in which case we must prove its irreducibility with respect to 
contractions by A-I.) The operation p(X) ,  with X a tensor of rank m, sums all 
distinguishable tensors which can be constructed from X by permuting its indices. For 
instance, 

It is an easy combinatorial problem to show that (2j+ k ) ! / ( k !  2 j j ! )  different 

permutations of the indices of x A exist. Of these, 

p(xxyy) = xxyy + xyxy + xyyx + yxxy + yxyx +yyxx. (A 6 )  

x k  x j  
fie 

Xk X U - 1 )  

(2j+k-2)!/(k!2j- ' ( j -  l)!) begin with A. They are contracted to 3 p ( ;  .̂ ) by a 

double-dot multiplication with A-I. 
(2j+ k -  2)! / (k!2 j -2( j -2)! )  begin with two indices belonging to different A, like 

[X],,,, = [A],,[A],,. These permutations yield 2(j- 1) p x A . 
(2(2 j+k-2)! / ( (k-  1)!2 j -*( j - l ) ! )  have the same first C X 7  o ind'ces as either XA or 

AxT, and condense onto 2kp x A . 

(2j+k-2)!((k-2)!23j!)  begin with the first two indices of 

FX7 Xk 

and are contracted to 

zero by definition. 
Therefore, 

= ( 2 k + 2 j + l ) p  

We now condense both sides of the relation (A 5 6) with A-', and use A-' : xx = 1 to 

x ( m - 2 )  
r"-r 

X X 

x ( m - 2 J )  X U - 1 )  
lm/2'(2m-4j+ l ) ! !  - c  
1-1 (2m-2j-  I)!! 

which is zero by induction from (A 5a) (QED). Obviously, the proof does not depend 

on which two indices of ; are condensed, and all multiple contractions of ; by 

permutations of A-' (with 0 < j < [rn/21) will also yield zero. Finally, it is trivial to 

show that the premise (A 5a)  holds for m = 0 and m = 1, since x = 1 and x = x,  

whch are both irreducible. This completes the proof of (A 5a). 
We now prove the following proposition for any sufficiently smooth tensorial 

function X(x )  : 

xm xm 

x i  
A 

x o  x 1  
r"-r rl-r 

x m  

X(X) = m-o c ( 2 m + 1 ) ! ! 7 0 m [ (  m !  _- D 1 dD d )""niD]x ~ v X(Y)ly-o. (A 9) 

We begin with the Taylor series expansion for X about x = 0: 

xm 

We then apply (A 5a)  to expand 7, and use 
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(with D2 = A:VV as defined in (3.3)), to get 
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(A 12) 
After changing the running index from m to n = m-2j, we find 

which is equivalent to (A 9). 
Finally, we now derive the irreducible expansion of the disturbance velocity for an 

arbitrary ellipsoid in Stokes flow. The boundary integral equation (1.2) (Lad- 
yzhenskaya 1963, chap. 3), applied to one rigid particle in a flow uo, reduces to 

u(x)  - uo(x) = - - J(x  - y )  * a(y) - My. (A 14) 
8XP I, 

Introduction of the identity (A 9) with X = J into (A 14) yields 

u(x) - uo(x) = 

which is identical to (3.2). 

Appendix B. Coefficients at and y characterizing the hydrodynamic 
behaviour of isolated prolate spheroids 

the coefficients for the self-terms read (Chwang & Wu 1974, 1975; Kim 1985b): 
In terms of the eccentricity e,  which is related to the aspect ratio r p  by e2 = 1 -rp2, 

atl = e2{ - 2e + (1 + e2) log (( 1 + e ) / (  1 - e))}-', 

a2 = 2e'{2e+(3e2- 1) log ((1 +e)/(l -e))}-l, 

y = (1 -e2){2e+(1 -e2) log ((1 +e)/(l -e))}-', 

y' = (2 - e2) { - 2e + (1 + e2) log (( 1 + e)/( 1 - e))}-', 

y; = { - 2e + (1 + 2) log (( 1 + e ) / (  1 -e))}-', 

a* = e2yj{2e(2e2- 1)+(1 -e2) log ((1 +e)/(l -e))}  

a6 = e'(6e- (3 - e') log (( 1 + e ) / (  1 - e))}-', 

a, = 2e2(1 -e2){(2e(3-5e2)-3(1 -e2)' log ((1 +e)/(l -e))}-'.  

The results for spherical particles can be recovered by noting that 

x{2e(2e2-3)+3(1-e2) log ((1 +e)/(l -e))}-', 

lima, = lima, = ie-', 

limy = limy' = fe-3, 

lima, = -iee-3, lima, = -++2-3, lima* = -@-3. 

e+o e+o 

e+o e+o 

e +O e-0 e+o 
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Appendix C. Relations between the mobility tensors of hydrodynamically 
interacting ellipsoids 

It should not be surprising that a relation linking WT to Mus exists: both tensors 
couple the velocity of one particle to the first moment of the force density on another 
body. Equation (5.1) then shows that enough information is contained in the coupling 
to the symmetric part of the stress multipole (i.e. the stresslet S )  to deduce the mobility 
response due to the antisymmetric half (the torque T). We explore the origin of this 
relation here. 

From the definitions of the torque and stresslet, and of the first multipole Pl) exerted 
by a particle q, we get (see (A 4c)) 

= E:C) and S, = [ H 5 + s ’ i i ) - @ d ] : c )  = s:pbl), (C 1) 

where we introduced the notations 

Inversely, 

A n  v 

( W * , k l  = 6 , k d j l  and ( d 4 , k l  = dildj3r. 

p’d’ = S,-i&. q+- [y-x*].u.dA,d. 
1 

3 s,. 
The last term on the right-hand side is inconsequential in incompressible media, and 
will not be considered further. We now introduce the mobility tensor A& which 
couples the 0th gradient of the particle velocity (relative to the ambient flow) to the 1st 
moment of the force density on the particle surface. By definition then, if we ignore the 
contribution to the translational motion of particle p of all objects other than q and of 
all stress multipoles other than Pi), we have 

U,-U, = M,PP:Pb’ = Mf!:S,-iMff:~*Tq. (C 4) 

ME$ = -;M~::E and MgP, = M f f : ~ .  (C 5 )  

We can clearly identify the more familiar tensors Mu, and Mu, as 

Note that Mus is defined as being symmetric and traceless in its last two indices, since 
it is otherwise indeterminate (Kim & Mifflin 1985; Brenner 1964~). To convert M,, 
into Mus, we thus need to multiply it by g (see (C 1)). 

We shall derive the relations (5.1) for ellipsoids in what follows, but conjecture that 
they hold for a wider class of body geometries. Indeed, our proof hinges mostly on the 
existence of singularity solutions to describe the dynamics of the particles in Stokes 
flow, and these certainly are not limited to ellipsoids (Chwang & Wu 1974, 1975). We 
shall sometimes hint how to generalize our reasoning, but leave the details of a formal 
theorem up to the interested reader. 

We explained in $3  how to construct the mobility coefficients by combining the 
disturbance velocity and the FaxCn relations for the particles. In the case of ellipsoids, 
the non-local representation (Kim 1986) clearly shows that each element of the 
mobility tensor can be written as a linear functional of the Oseen tensor and higher 
singularities. For instance, 

q,’(X’) { 1 +;a:, q: V’} J(x - x’) dA, dA, 

= @,,(J), 
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with XE E p  and x‘ E Ep. All other symbols have been introduced in 43, except the 
operator O,, which is defined, for an arbitrary tensorial function X of the separation 
vector x-x’, as 

’{ 1 + qb + a& qi)  V’} X dA, dA,. 

(C 6b) 

1 

O,,(X) = 32rc3 pcE, ‘k,, ‘E,, J J E ,  J J E u  4’ 

In general, it follows from Appendix A (see also Kim & Arunachalam 1987) that the 
mobility interaction between the mth gradient of the velocity at the particle locator 
point and the nth irreducible stress multipole is a linear functional of an appropriate 

transpose of V J. In particular, the coupling between the translational velocity 

Up - uo(xp) and the first moment of the force density 1;) involves TVJ only. (This is not 
necessarily so; counterexamples can be found among the class of bodies with screw- 
symmetry.) Note also that c) = P!) for ellipsoids, so that the equations (C 1 H C  5 )  
still hold in terms of the irreducible multipole. 

One can now write the Oseen tensor J(r) as (V’ 6- VV) r, an identity first used by 
Beenakker (1986) to facilitate the application of the Ewald summation to hydro- 
dynamic interactions in periodic suspensions. This brings out the symmetry which 
we exploit to derive the relations (5.1): 

m+n 
6 

Wl = I~ , , (~vJ)  = 0,,((V2TV6-VVV)r). (C 7) 

Since O,, consists of linear non-tensorial operations only (such as integration and 
differentiation with respect to a coordinate, multiplication by a scalar function of 
position, etc.), the contractions given by (C 5 )  commute with the operator and 

(C 8 4  

(C 8b) 

(C 9) 

(C 10) 

Mu, = 

MUT = -aOo,((TVJ):~) = i 0 , , ( ( V 2 V - ~ ) r ) .  

VJ) : g) = 0,,((iV2 [SVT + 6V] - VVV) r),  

For p += q, relation (5.1 a) now follows as an identity, since 

6: Mus = c~ :O, , ( (~VJ) :~ )  = O,,(S:[(TVJ):~]) = O,,(V’Vr), 

M g  = i&. (S:  ME;). 
so that indeed 

The other two equations in the set (5.1) can be derived in a similar fashion, but concern 
couplings between the first gradient of the particle velocity and the first irreducible 
stress moment. They thus involve a scalar linear functional O,, instead of O,,, but the 
reasoning is the same (Claeys 1991). 

For p = q, the validity of these relations is most easily demonstrated by checking the 
identities (5.2). It is then easy to verify (5.1) from the expressions (3.9b, c) for the 
mobility tensors Mi$, Mi! and Ml,P. The relation between ME$ and ME$ becomes 
trivial since both tensors are zero for p = q. 

The same formalism can also be used to show that ME; is symmetric for all pairs 
of spheroids p and q, and that 

( W Q s h j k l  = (ME”Qs)kl*j. (C 11) 

For p = q, this agrees with Lorentz’ reciprocal theorem (Brenner 1973; Hinch 1972). 
The validity of these relations is also easily recognized from (3.1 1) and the analogous 
mobility expression for M$%. Considered in conjunction with (5.1 b, c), it clearly 
follows that M,P$ is symmetric and that = for all p and q. 
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