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ABSTRACT Intelligent visual surveillance systems are attracting much attention from research and industry. 
The invention of smart surveillance cameras with greater processing power has now been the leading 
stakeholder, making it conceivable to design intelligent visual surveillance systems. It is possible to assure 
the safety of people in both homes and public places. This work aims to distinguish the suspicious activities 
for surveillance environments. For this, a 63 layers deep CNN model is suggested and named "L4-Branched-
ActionNet". The suggested CNN structure is centered on the alteration of AlexNet with added four blanched 
sub-structures. The developed framework is first transformed into a pre-trained framework by conducting its 
training on an object detection dataset called CIFAR-100 with the SoftMax function. The dataset for 
suspicious activity recognition is then forwarded to this pretrained model for feature acquisition. The acquired 
deep features are subjected to feature subset optimization. These extracted features are first coded by applying 
entropy and then an ant colony system (ACS) is utilized on the entropy-based coded features for optimization. 
The configured features are then fed into numerous SVM and KNN based classification models. The cubic 
SVM has the highest efficiency scores, with a performance of 0.9924 in terms of accuracy. The proposed 
model is also validated on the Weizmann action dataset and attained an accuracy of 0.9796. The successful 
findings indicate the suggested work's soundness. 

INDEX TERMS Threats, Classification, Machine Learning, Surveillance, Computer Vision. 

I. INTRODUCTION 

Human activity recognition (HAR) is a capacity to translate 
human body signals or movement utilizing sensors and 
decide human action or activity[1]. Many human day-by-day 
errands can be rearranged or computerized on the off chance 
that they can be perceived through the HAR framework. 
HAR is considered as a significant segment in different 
logical research settings for example healthcare [2], Human-
robot interaction [3], and surveillance [4]. Such systems are 
in high demand in a country like Saudi Arabia, wherein 
pilgrims' security is necessary for law and enforcement 
agencies. Terrorist attacks, especially explosive or suicide 
attacks, have become a major and critical threat to public 
protection. Suspicious activities like carrying a weapon, 
long-standing of a person at a public place, sudden running, 

snatching a mobile phone, fighting, suspicious behavior of 
people or threat for potential suicide bombing require urgent 
attention. These activities require a clever reconnaissance 
framework that can create a caution or alarm consequently.  
Presently a-days, many assaults are considered risky actions 
do by terrorists. A good timely prediction can prevent 
terrorist attacks and loss of human lives or may significantly 
limit the loss. HAR can have a large impact on various areas 
of human lives [5]. In particular, human activities represent 
the accompanying problems. Some machine learning 
approaches can automatically recognize these activities. 
Some challenging HAR scenarios include (a) Simultaneous 
activities where individuals can complete a few activities 
simultaneously. For example, while exercising, people talk 
with other people also via mobile phone, (b) Interleaved 
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activities where people perform one task and then perform 
another task, (c) Ambiguity of prediction where some 
activities cause ambiguous predictions, for example, 
throwing a stone can be related to throwing the stone to 
people or throwing stone away from the road, (d) Multiple 
people where some environments have single person. In 
contrast, other scenarios contain multiple people or crowds, 
which is difficult to handle. The automated video 
surveillance system is especially needed in important public 
places like airports, railway stations, bus stands, commercial 
markets, banks, institutions, etc. It tries to detect or predict 
suspicious activities at public places with the help of an 
intelligent network of smart commercial of the shelf (COTS) 
video cameras. The intelligent CCTV surveillance reduces 
the workforce cost by automated observing the events and 
provides the second option to the management. Apart from 
its importance, the performance of the completely automatic 
human action and suspicious object prediction framework 
may be deteriorated because of numerous technical 
challenges.  Some of the prominent challenges include: (a) 
occlusion, (b) illumination, (c) variations in objects size, (d) 
variations in appearances because of varying clothing, (e) the 
computational time is another major challenge, and (f) the 
people play out an action relies upon their body postures, 
which makes the issue of distinguishing the hidden 
movement very hard to decide. Additionally, developing a 
model for breaking down human developments 
progressively with insufficient benchmark datasets for 
assessment is a tricky job. In this work, a deep feature 
extraction methodology is presented for suspicious activity 
recognition to tackle the above-mentioned challenges. For 
this purpose, 63 layers of CNN-centered deep architecture is 
intended for feature acquisition. The acquired deep features 
are optimized through a feature selection algorithm. The 
foremost contributions are mentioned as under: 
1) A dataset of 5 suspicious activities is prepared from 

HMDB51 [6] and AIDER [7] datasets. 
2) A 63 layers CNN network, named as L4-Branched-

ActionNet, is proposed. The network is initially trained 
with a third-party dataset and the features of a suspicious 
activity recognition dataset are extracted on this pre-
trained network. 

3) Entropy-coded ACS is applied for feature subset 
selection. 

4) Various classifiers are utilized to monitor the top 
classifier's functioning. 

5) The outcomes depict the acceptable accomplishment of 
the intended work.  

The organization of this work is as follows: After the 
abstract, the introduction is presented in section 1. A brief 
overview of some existing literature is depicted in section 2. 
The proposed framework, along with the description of the 
proposed L4-Branched-ActionNet is expounded in section 3. 
The results and discussion are depicted in section 4. Finally, 
the conclusion is written in section 6. 
 

II. LITERATURE REVIEW 

Human recognition is exceptionally valuable in activity 
recognition [8, 9] since we must recognize the human (doing 
the activities) in the observation framework. Large numbers of 
papers are composed for Human activity recognition. One sort 
of research pursues face profile [10], gait [11], and silhouette 
[12]. Gait Image is utilized to depict human strolling 
properties. Item acknowledgment utilizing optical flow is 
additionally an imperative field for potential research [13-15]. 
The assistance of valuable features achieves computerized 
action acknowledgment, for example, HOG [16, 17], SIFT 
[18], LBP [19], and profound deep learning highlights. These 
features are utilized in a mix of Famous cutting-edge 
classifiers. It is increasingly worried by perceiving occasions 
initially (a precedent is a man getting a firearm [20]). There 
are two main strategies adopted for human activity prediction 
i.e. (a) The traditional approaches [21] employ handcrafted 
feature extraction methods,  (b) The automatic features (Deep 
learning) [22]  employ automatic feature extraction methods. 
Some major existing works performed in human activity 
recognition are discussed: Navel et. al [23] present an activity 
prediction approach based on streaming data. The proposed 
technique efficiently detects the activity having any significant 
change. Urbano et. al [24] present a framework for daily 
human actions recognition. The technique employs feature 
extraction. Two key poses enclose each activity frame, and 
static with max-min features are mined. Vadim Kantorov et. 
al [25] use an algorithm in which they discover feature 
encoding by Fisher vectors and determine accurate action 
recognition utilizing linear classifiers. Qicong Wang et. al [26] 
propose an algorithm that is useful to mine deep features from 
small video fragments. Baochang Zhang et. al [27] introduce 
a less complex descriptor termed 3D histogram texture to pull 
out discriminant features using a series of depth maps. Allah 
Bux Sargano et al [28] propose an innovative approach for 
human activity identification using the pre-trained structure of 
deep CNN for mining of features and depiction pursued by a 
fused SVM KNN categorizer for activity recognition. 
Additionally, there exists plenty of tasks in human 
acknowledgment with an essential job in motion recognition 
[29, 30]. A strategy for recognizing complex human exercises 
is proposed, including different people with intellectual insight 
into the computer. It is required to distinguish the human 
(understudy) conduct of irregular activities [31]. Albeit 
numerous analysts give high consideration to HAR to 
guarantee human wellbeing and perceive the observation 
framework's human suspicious movement. In PC vision, HAR 
is a profoundly engaged subject for specialists. Human strange 
action location or conduct identification is likewise pulling in 
more consideration of specialists. A few frameworks present 
for the human security reason. A. B. Mabrouk et al. [32] 
propose the strategy depends on two degrees of video 
handling, which speaks to a wise reconnaissance framework 
dependent on recordings; the target of this examination is to 
find a fascinating occasion from the huge number of 
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recordings to counteract hazardous circumstances all the more 
effectively. M. M. Hassan et al. [33]consider the use of e-
wellbeing persistent recovery also. An open dataset of human 
action acknowledgment is utilized to investigate the 
presentation of action acknowledgment with their proposed 
calculation. Deep learning is an emerging field, but machine 
learning can work better than deep learning in some 
workspace. Machine learning methods with bags of visual 
words help develop human action recognition applications 
[34]. Besides these popular techniques, Human action 
recognition uses other techniques like the LSTM network, 
Epileptic seizure classification, deep transfer learning 
approach, and hybrid transfer learning model [35-38]. Some 
researchers use the hybrid approach by merging the old 
techniques with the proposed ones. For example, in work, 
researchers use the CNN model with SVM and KNN on UCF 
sports and KTH dataset [39]. In transfer learning, the 
previously labeled data and knowledge is utilized to 
understand the upcoming situations. Single RGB is a 

technique that uses transfer learning techniques with the 
invariants of human actions. Deep ensemble learning is also 
used for recognizing human actions [40]. Key frame-based 
saliency detection and real-time action with 3D deep learning 
are also part of HAR [41, 42].  
The arrangement of HAR is created as structures to enable the 
constant checking and examination of human practices in 
various zones, for example, clever human action and conduct 
investigation intelligent human activity and behavior analysis 
[33, 43-46], sports injury detection [47], patient rehabilitation 
[33], monitor activity shifts amid elderly citizens that might be 
helpful to detect and diagnose serious illness [48, 49], 
monitoring children’s surveillance, hospital/patient 
monitoring [50, 51], recognition and classification of the 
human usual and unusual activities[26, 52-56], human 
behavior recognition and human activity detection [53, 57, 
58], criminal tracking system [59, 60], automatic attendance 
system [61, 62], etc.

 

 

FIGURE 1. The intuition of the proposed L4-Branched-ActionNet based framework for suspicious activity recognition 
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III. MATERIAL AND METHODS 

This segment depicts the complete sketch of the proposed 
framework. Also, the explanation of the suggested 63 layers 
CNN model is written. The framework's major steps include 
pre-training the proposed CNN architecture with the CIFAR-
100 dataset, feature extraction of the action recognition 
dataset on the proposed CNN architecture, feature subset 
selection using (ACS) algorithm, and classification using 
various classifiers. Figure 1 offers a fleeting intuition of the 
suggested model. The different phases of the suggested 
framework are depicted in the text as follows: 

A. L4-BRANCHED-ACTIONNET 

A new CNN-based model is proposed consisting of 63 layers 
in an automatic features extraction and classification pipeline. 
The complete pipeline is termed as L4-Branched-ActionNet. 
The graphical arrangement of the proposed L4-Branched-
ActionNet is exhibited in Figure 2. The layers' configuration 
and complete detail are represented in Table I. The backbone 
of the projected architecture pipeline is based on AlexNet [63]. 
AlexNet is composed of 25 layers having three different types 
of repeating blocks named here as T1, T2, and T3. 

 

 

FIGURE 2. Structure of proposed L4-Branched-ActionNet  
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TABLE I  
LAYERS CONFIGURATIONS OF L4-BRANCHED-ACTIONNET 

Layer # Layer name Feature maps  Filter depth Stride Padding 
Pooling window 
size/other values 

1 Input 227 × 227 × 3     
2 Conv_1 55 × 55 × 96 11 × 11 × 3 × 96 [4 4] [0 0 0 0]  
3 ReLU_1 55 × 55 × 96     
4 Batch_Norm_3 55 × 55 × 96     
5 Conv _4 55 × 55 × 96 5 × 5 × 96 × 96 [1 1] Same  
6 Batch-Norm_2 55 × 55 × 96     
7 Conv_2 55 × 55 × 48 1 × 1 × 96 × 48 [1 1] Same  
8 Leaky_ReLU_2 55 × 55 × 96    Scale 0.01 
9 Batch_Norm_1 55 × 55 × 48     

10 Conv_3 55 × 55 × 96 11 × 11 × 48 × 96 [1 1] Same  
11 Leaky_ReLU_1 55 × 55 × 96    Scale 0.01 
12 Addition_1 55 × 55 × 96     
13 Batch_Norm_6 55 × 55 × 96     
14 Conv_7 55 × 55 × 96 5 × 5 × 96 × 96 [1 1] Same  
15 Batch_Norm_5 55 × 55 × 96     
16 Leaky_ReLU_4 55 × 55 × 96    Scale 0.01 
17 Conv_5 55 × 55 × 48 1 × 1 × 96 × 48 [1 1] Same  
18 Batch_Norm_4 55 × 55 × 48     
19 Conv_6 55 × 55 × 96 11 × 11 × 48 × 96 [1 1] Same  
20 Leaky_ReLU_3 55 × 55 × 96    Scale 0.01 
21 Addition_2 55 × 55 × 96     
22 CC_Norm_1 55 × 55 × 96     
23 Pool_1 27 × 27 × 96  [2 2] [0 0 0 0] Max pooling  3 × 3 
24 Batch_Norm_7 27 × 27 × 96     

25 G_Conv_8 27 × 27 × 256 
Two groups of     5 × 5 × 48 × 128 

[1 1] [2 2 2 2]  

26 ReLU_2 27 × 27 × 256     
27 CC_Norm_2 27 × 27 × 256     
28 Pool_2 13 × 13 × 256  [2 2] [0 0 0 0] Max pooling  3 × 3 
29 Batch_Norm_8 13 × 13 × 256     
30 G_Conv_9 13 × 13 × 384 3 × 3 × 256 × 384 [1 1] [1 1 1 1]  
31 ReLU_3 13 × 13 × 384     
32 Batch_Norm_11 13 × 13 × 384     
33 Conv_10 13 × 13 × 192 1 × 1 × 384 × 192 [1 1] Same  
34 Batch_Norm_9 13 × 13 × 192     
35 Conv_11 13 × 13 × 384 5 × 5 × 192 × 384 [1 1] Same  
36 Leaky_ReLU_5 13 × 13 × 384    Scale 0.01 
37 Conv_12 13 × 13 × 384 3 × 3 × 384 × 384 [1 1] Same  
38 Batch_Norm_10 13 × 13 × 384     
39 Leaky_ReLU_6 13 × 13 × 384    Scale 0.01 
40 Addition_3 13 × 13 × 384     
41 Conv_15 13 × 13 × 384 3 × 3 × 384 × 384 [1 1] Same  
42 Batch_Norm_13 13 × 13 × 384     
43 Leaky_ReLU_8 13 × 13 × 384    Scale 0.01 
44 Conv_13 13 × 13 × 192 1 × 1 × 384 × 192 [1 1] Same  
45 Batch_Norm_12 13 × 13 × 192     
46 Conv_14 13 × 13 × 384 5 × 5 × 192 × 384 [1 1] Same  
47 Leaky_ReLU_7 13 × 13 × 384    Scale 0.01 
48 Addition_4 13 × 13 × 384     

49 G_Conv_16 13 × 13 × 384 
Two groups of      3 × 3 × 192 × 192 

[1 1] [1 1 1 1]  

50 ReLU_4 13 × 13 × 384     

51 G_Conv_17 13 × 13 × 256 
Two groups of      3 × 3 × 192 × 128 

[1 1] [1 1 1 1]  

52 ReLU_5 13 × 13 × 256     
53 Pool_3 6 × 6 × 256  [2 2] [0 0 0 0] Max pooling  3 × 3 
54 Batch_Norm_14 6 × 6 × 256     
55 FC_18 1 × 1 × 4096  [1 1] Same  
56 ReLU_6 1 × 1 × 4096     
57 Drop_1 1 × 1 × 4096    50% Dropout 
58 FC_19 1 × 1 × 4096  [1 1] Same  
59 ReLU_7 1 × 1 × 4096    50% Dropout 
60 Drop_2 1 × 1 × 4096     
61 FC_20 1 × 1 × 100  [1 1] Same  
62 Prob 1 × 1 × 100     
63 Class_Output      
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After the data layer, there are two blocks of type T1 
containing convolution (Conv) or grouped convolution 
(G_Conv), Rectified linear unit (ReLU), cross-channel 
normalization (CC_Norm), and maximum pooling (Pool) 
layers. After then, three blocks of type T2 are introduced that 
contain G_Conv and ReLU layers. Afterward, the pooling 
layer is inserted, which is proceeded by two T3 type blocks 
with fully connected (FC), ReLU, and dropout (Drop) layers. 
At last, FC, SoftMax classifier (Prob), and output 
(Class_Output) layers are added. In the proposed L4-
Branched-ActionNet model, AlexNet is modified first by 
adding batch normalization (Batch_Norm) layers at the end of 
both type T1 blocks and the end of the third type T2 block. In 
addition to type T blocks, two types of branched subnetworks 
are introduced. The first type of branched subnetwork (BN_1) 
contains three branches. The primary branch entails only the 
Batch_Norm tier. The next branch covers Conv, Batch_Norm, 
Conv, and Leaky_ReLU tiers. The last branch contains Conv, 
Batch_Norm, and Leaky_ReLU layers. These three branches 
are fused with the help of an addition (Addition) Layer. In 
contrast, the second type of branched subnetwork (BN_2) is 
comprised of two branches. BN_2 is the same as BN_1, except 
it does not contain the branch having only the Batch_Norm 
layer. Two BN_1s are inserted after the ReLU layer in the first 
type T1 block. One BN_1 and one BN_2 subnetwork are 
inserted after the first type T2 block. The accompanying 
section contains a brief overview of the numerous types of 
layers used in the proposed L4-Branched-ActionNet.  

 

In the Conv layer the input 𝕀 𝑗−1 is convolved with the filter 

bank. The convolution operation ∗ is mathematically 
represented as:   
 𝕀 𝑝′,𝑗 = 𝔑𝑗(∑ 𝔉𝑗,𝑝′𝑝 ∗ 𝕀𝑝,𝑗−1 + 𝔚𝑝′,𝑗𝑝 )  (1) 

 
where 𝑝𝑗 embody several channels of the input and 𝑝′𝑗  

portrays the number of channels that will be formed for 
output. The value j depicts the layer number [64]. 𝔉 
illustrates a filter having depth 𝑝′𝑗 and 𝔚 and 𝔑 signify 

nonlinear functions. In addition to conv layers, G_Conv 
layers are also embodied in the proposed model. A G Conv 
layer combines many convolutions into one. It was 
introduced mainly to enable the training process across 
clustered GPUs with low memory capacity. The filters are 
split into multiple divisions in a G Conv. All groups oversees 
a collection of 2D convolutions with a specific range. The 
Pool layers used are depicted mathematically as: 
 𝕀 𝑝,𝑗,𝑢,𝑣 = max𝑙=1…𝑠,𝑚=1…𝑡𝕀𝑝,𝑗−1,(u+l)(v+m)     (2) 

 
where 𝑢, 𝑣 are matrix index of image 𝕀𝑝,𝑗−1and 𝑙, 𝑚 matrix 
index of the selected pooling window.  
Both CC_Norm and Batch_Norm are deployed in the 
proposed scheme. Batch Norm [65] is a method for adjusting 

channel neurons over a small batch's defined amount. It 
calculates the mean and variance in fragments. The mean is 
derived, and the features are separated using the standard 
deviation. The mean of the batch 𝔹 =  𝕀1, … , 𝕀𝑤 is measured 
as follows:  

 𝑀𝑒𝑎𝑛𝔹 = 1𝑤 ∑ 𝕀𝑧𝑤𝑧=1   (3) 

 
here 𝑤 represents the number of feature maps in a batch. 

The variance expression over the small batch is portrayed as:  
 𝑉𝑎𝑟𝔹 = 1𝑤 ∑ (𝕀𝑧 − 𝑀𝑒𝑎𝑛𝔹)2𝑤𝑧=1      (4) 

 
Following expression is further used to normalize the 

features 
 𝕀𝑍̂ = 𝕀𝑧−𝑀𝑒𝑎𝑛𝔹√𝑉𝑎𝑟𝔹+𝔒    (5) 

 
here 𝔒 is the constant value used for consistency. 
CC_Norm is embodied for generalization. The intention 

CC-Norm is to increase spatial-visual quality by using the 
maximal scaling factor of pixels for the previous layers 
locally.  CC-Norm is interpreted as: 

 𝕀𝑧̿ = 𝕀𝑧(ℴ+ℶ∗ℑℵ )℘   (6) 

 
where 𝕀𝑧̿ is feature map acquired after CC-Norm. ℑ is the 

“sum of square” and ℵ represents the channel size. ℴ, ℶ 𝑎𝑛𝑑 ℘ illustrate the standards applied for normalization.  
 
The proposed CNN model employs both ReLU and 

Leaky_ReLU operations. The standard ReLU transforms all 
numbers that are lower than 0 to 0, which is expressed as [66]: 

 𝕀 𝑢,𝑣 = max(0, 𝕀 𝑢,𝑣)     (7) 
 
For values less than zero, Leaky ReLU has a small slope 

rather than being zero. A leaky ReLU will have v = 0.01u 
when u is negative. 

CNN can further be learned in-depth from several works 
[67-69]. 

B. EXTRACTION OF DEEP FEATURES 

The proposed approach is intended to feature extraction from 
the deep-trained CNN pipeline. Therefore, for pre-training, 
an existing third-party dataset such as CIFAR100 [70] is 
employed. CIFAR-100 is a repository of images with 100 
classes. There are 500 learning and 100 validation images for 
each class.  All the learning and validation images are mixed 
for pre-training, making 600 images in every class. The 
mixed dataset is supplied to the proposed CNN model for 
training. The trained network is then used for feature 
extraction on action recognition datasets and the FC_18 layer 
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is chosen for features extraction. Total 4096 features are 
attained per image from the FC_18 layer. The prepared 
dataset contains a total of 13250 images. This makes the 

feature set dimension of all datasets 13250 × 4096. Figure 
3 illustrates the visualizations of the strongest feature maps 
at various convolution layers on L4-Branched-ActionNet. 

 

 

FIGURE 3. Image visualizations of strongest feature maps at various convolution layers (a) Conv_1, (b) Conv_2, (c) Conv_3, (d) Conv_5, (e) 

G_Conv_8, (f) Conv_10, (g) Conv_12, (h) Conv_15, (i) G_Conv_17 

 

C. ENTROPY CODED ACS OPTIMIZATION 

The extracted features are coded by applying entropy 
operation [71]. Entropy ℮ is famous for scoring the features. 
It is expressed mathematically as:  

 ℮(𝕀′1, … , 𝕀′𝑛) = − ∑ … ∑ ϸ(𝔣1, … , 𝔣𝑛) 𝐿𝑂𝐺 ϸ(𝔣1, … , 𝔣𝑛)𝔣𝑛𝔣1  
             (8) 

  
where (𝕀′1, … , 𝕀′𝑛) illustrate the features, (ℜ1, … , ℜ𝑛) are 
embodied as the related random variable value. ϸ(ℜ1, … , ℜ𝑛) is the probability of (ℜ1, … , ℜ𝑛).  

 
ACS is a learning-based feature selection approach. It 

becomes an embedded approach when combined with a filter-
based strategy i.e. entropy-based feature scoring. The entropy-
coded scores attained in the previous step are supplied to ACS 
(which is based on probability theory) for feature 
optimization.    

ACS is centered on the activities and movements of ants 
[72]. The ants disperse an ant deposit material called 
"pheromone" as they move from one place to another. As time 
passes, the strength of this material decreases. The ants pursue 
the track with a strong probability of pheromone. This 
encourages ants to take the cheaper path. Thus, Ants move 
from one place to another in the same way as to move from 
vertex to vertex in a graph. A vertex represents a feature, while 
the edges between vertices indicate the choice to choose the 
next feature. The approach iterates to looks for the best 
features. When the smallest number of vertices are accessed 
and a freezing criterion is fulfilled, the approach comes to a 
halt. The vertices are linked in a mesh-like arrangement. An 
ant's choice of features is based on the likelihood at a given 
point at a certain time, which can be expressed as: 
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ϸ𝑗𝑚(Ϯ) = { | 𝔥𝑗(𝒯)| ѿ| 𝔖𝑗|Ѡ∑ | 𝔥𝑣(𝒯)| 𝔴⃛| 𝔖𝑣|𝔴𝑣∈℮(𝕀′1,…,𝕀′𝑛)  𝑖𝑓 𝑗 ∈  ℮(𝕀′1, … , 𝕀′𝑛) 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

     (9) 
where  ℮(𝕀′1, … , 𝕀′𝑛) = entropy-coded features 

  𝔥𝑗(Ϯ) = pheromone value 𝔖𝑗 = empirical value  𝔴⃛ = pheromone cost 𝔴 = pragmatic knowledge 𝒯 = time limit 𝔥𝑗(Ϯ) and 𝔖𝑗 are connected to the jth feature. If the features 
have not yet been explored, they are considered as a part of 
the incomplete response. 

D. CLASSIFICATION 

The entropy-coded ACS-based chosen features are at the end 
passed to the predictor for categorization. The various SVM 
versions (support vector machine) and KNN (K nearest 
neighbors) are deployed to observe the system performance. 
Such versions include linear SVM (Lin-SVM), quadratic 
SVM (Quad-SVM), fine Gaussian SVM (Fin-Gaus-SVM), 
medium Gaussian SVM (Med-Gaus-SVM), coarse Gaussian 
SVM (Cor-Gaus-SVM), cubic SVM (Cub-SVM), cosine 
KNN (Cos-KNN), coarse KNN (Cor-KNN), and fine KNN 
(Fin-KNN). The detailed study of SVM versions can be 
retrieved from [73-80] while the detailed study of KNN 
versions can be regained from [81-85]. Observing the 
performance outcomes, Cub-SVM becomes the best-
performed classifier for the selected action datasets. The 
comprehensive discussion on the tests conducted is illustrated 
in the subsequent section. 

IV. RESULTS AND DISCUSSION 

The main goal of our research is to create a CNN structure 
that can tackle the supplied dataset. The Deep L4-Branched-
ActionNet CNN Network suggested here is solely utilized to 
extract powerful features following feature selection. The 
pretraining is performed on a third-party dataset i.e., CIFAR-
100 because this research is aimed to acquire the features on 
given datasets using the proposed CNN. Also, the proposed 
63 layers Deep L4-Branched-ActionNet CNN Network is 
created after extensive experimentation. Different 
approaches are followed to finalize this architecture. The 
foremost approaches include fine-tuning, adding, and 
removing different layers. In its final form, the 63 layers 
architecture is found good with the best outcomes in terms 
of performance. The discussion and interpretation of the 
outcomes of the proposed framework are described in this 
portion. The dataset is defined first in this section. The 
procedure for evaluating performance is then portrayed. 
Finally, the tests are well discussed. All the mentioned 
experiments in this manuscript are conducted on a Pentium 
core i-5 system containing 8 GB of memory. The training is 
aided with NVIDIA GTX 1070 GPU comprising 8GB RAM. 
The coding is performed by using MATLAB2020a. 

A. DATASET  

The training and performance evaluation in this work is 
performed on two different datasets. One data set is prepared 
and focused on suspicious activities. The other dataset is the 
Weizmann action dataset [86].  

 

 

FIGURE 4. Some sample images of the prepared suspicious activity recognition dataset illustrating five classes: (a) Falling on the floor, (b) Persons 
fighting, (c) Fire or smoke, (d) Person firing, (e) Person running. 
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The suspicious activity dataset (see Figure 4 for sample 
images) is prepared from HMDB51 [6] and AIDER [7] 
datasets. HMDB51 is a huge action dataset comprised of 51 
various human actions. The dataset is based on 7000 videos 
acquired from YouTube and numerous movie shows. Four 
suspicious activities, such as a person falling on the floor, 
persons fighting, Person firing, and person running, are 
selected from the HMDB51 dataset.  
The videos of these activities are selected, and the images are 
extracted and annotated to form action classes. One class of 
fire or smoke is collected and annotated from the AIDER 
dataset. The formed dataset is then augmented by applying the 
mirroring of the images. Figure 5 illustrates the sample image 
with mirror augmentation.  
 

 
FIGURE 5. A sample image showing dataset augmentation: (a) original 

image, (b) flipped image 

 The detailed makeup of the dataset with augmentation is 
displayed in Table II. The Weizmann dataset is composed of 
90 videos of nine people depicting ten action classes. The 
image composition is illustrated in Figure 6 and the sample 
images of the Weizmann dataset are shown in Figure 7.  

TABLE II  
PREPARED SUSPICIOUS ACTION DATASET DESCRIPTION 

Class Original Augmented  

Falling  1263 2526 

Fighting 1398 2796 

Fire 1449 2898 

Firing 1373 2746 

Running 1142 2284 

Total 6625 13250 

 

 
FIGURE 6. Weizmann action dataset description 

 

 

FIGURE 7. Some sample images of the Weizmann activity recognition dataset illustrating ten classes: (a) Bending, (b) Jumping jack, (c) Jumping, (d) 
Jump in place, (e) Running, (f) Galloping sideways, (g) Skipping, (h) Walking, (i) Single handwaving, and (j) Double hand waving 
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B. PERFORMANCE EVALUATION PROTOCOLS 

 
The 5-folds mechanism for the cross-validation is employed 
for booth learning and assessment. To assess the efficacy of 

the proposed research, various evaluation assessment 
procedures were used in this manuscript. The confusion matrix 
created during the classification challenge's testing process is 
used in the majority of these protocols. These protocols are 
depicted as under:

 
 Accuracy (Acy) = TruePositives+TrueNegativesTruePositives+TrueNegatives+FalsePositives+FalseNegatives  (10) 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑛𝑦) = TruePositivesTruePositives+FalseNegatives    (11) 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝𝑒) = TrueNegativesTrueNegatives+FalsePositives    (12) 

  The area under the (AUC)= 
TruePositives+TrueNegativesTruePositives+TrueNegatives+FalsePositives+FalseNegatives   (13) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟𝑐) = TruePositivesTruePositives+FalsePositives  (14) F − measure (FM) = 2 × 𝑃𝑟𝑐×𝑆𝑛𝑦𝑃𝑟𝑐+𝑆𝑛𝑦    (15) 𝐺 − 𝑀𝑒𝑎𝑛 (𝐺𝑀) = √𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 × 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒   (16) 

 
 

5-fold cross-validation is used for ground reality class marks. 
It makes up 80 percent of the data for each fold is chosen at 
random for preparation, while the remaining 20% is chosen 
at random for testing. 

C. EXPERIMENTS BRIEF ON THE SUSPICIOUS 

ACTIVITY DATASET 

Extensive testing of various iterations of selected features is 
carried out to find the best results. A few main reviews are 
listed in this section. Table III provides a succinct summary 
of the accuracy of each test discussed.  
 

TABLE III 
 A SUCCINCT SUMMARY OF TESTS PERFORMED ON THE SUSPICIOUS 

ACTIVITY DATASET 

Experiment 
# 

Selected 
Features  

Best 
Accuracy 

1 100 0.9844 
2 250 0.9886 
3 500 0.9915 
4 750 0.9919 
5 1000 0.9924 

 
At the feature selection stage, several tests are run with 
various numbers of features. Table IV depicts the parameter 
values used for the ACS optimization approach. 
 

TABLE IV  
PARAMETERS VALUES USED FOR ACS OPTIMIZATION 

Parameter name Value 

Total aunts 10 

Maximum iterations 100 

Empirical value 1 

Pheromone 0.2 

Phi 0.5 

 
The outcomes of just five tests are shown. Figure 8 illustrates 
the plot of fitness values for the tests depicted in Table II. 

The finest fitness is found for electing 1000 features. The 
brief on performed tests is presented in the accompanying 
text. Hyperparameters values used for training of proposed 
CNN model is presented in Table V. 

 
TABLE V  

HYPERPARAMETERS USED FOR PROPOSED CNN MODEL 
Hyperparameters Value 

Initial learning rate 0.001 

Optimization Stochastic gradient descent with 
momentum 

Total epochs used 30 

Mini batch 128 

Momentum value 0.9 

 
Table VI provides a detailed overview of the experimental 
tests performed with different selected features.  
 

 

FIGURE 8. Fitness plot various number of selected features using 
entropy coded ACS: (a) 100, (b) 250, (c) 500, (d) 750 and (e) 1000 

 
The very first experiment involves using the entropy-coded 
ACS function to choose 100 features. The combined feature 
vectors, which contain all dataset image features grow to 



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3091081, IEEE Access

 

VOLUME XX, 2017 1 

13250×100. This feature matrix is used for the automated 
marking of prediction models based on chosen classifiers. 
Cub-SVM achieves the overall highest performance in all 
performance measures having Acy, Sny, Spe, Prc, FM, and 
GM as 0.9844, 0.9880, 0.9812, 0.9258, 0.9606, and 0.9896, 
respectively in this test. Fin-KNN performance is found to 
be the second-best in terms of Acy, Sny, and GM only, as 
0.9763, 0.9947, and 0.9833 respectively while Spe, Prc, FM 
are observed as second best for Quad-SVM. The second 
experiment tests on 250 chosen features. The joint feature 

vectors, which contain all dataset image features, now 
become 13250×250. Cub-SVM attains the overall highest 
performance in all performance measures having except Sny 
having Acy, Spe, Prc, FM, and GM as 0.9886, 0.9883, 
0.9224, 0.9707, and 0.9890, respectively. Sny of Fin-KNN is 
found best in this test. The second-best outcomes for Acy, 
Sny, Spe, Prc, FM, and GM achieved are with Med-Gaus-
SVM (0.9873), Cub-SVM (0.9897), Med-Gaus-SVM 
(0.9883), Med-Gaus-SVM (0.9517), Med-Gaus-SVM 
(0.9673), and Fin-KNN (0.9867), respectively. 

 
TABLE VI 

PERFORMANCE EVALUATION FOR DIFFERENT FEATURES ON SUSPICIOUS ACTIVITY DATASET (DARK BLACK AND BOLD VALUES REPRESENT BEST RESULTS, 
WHILE GRAY WITH BOLD VALUES DEPICT SECOND BEST OUTCOMES) 

Features Classifier Acy (%) Sny (%) Spe (%) Prc (%) FM (%) GM (%) 

100 

Lin-SVM    0.8326 0.7926 0.8420 0.5417 0.6435 0.8169 
Quad-SVM    0.9750 0.9747 0.9751 0.9022 0.9370 0.9749 

Fin-Gaus-SVM    0.9406 0.8939 0.9516 0.8131 0.8516 0.9223 
Med-Gaus-SVM    0.9460 0.9553 0.9438 0.8001 0.8708 0.9495 
Cor-Gaus-SVM    0.7637 0.7154 0.7751 0.4283 0.5358 0.7446 

Cub-SVM    0.9844 0.9980 0.9812 0.9258 0.9606 0.9896 

Cos-KNN    0.9656 0.9711 0.9643 0.8650 0.9150 0.9677 
Cor-KNN    0.8226 0.6956 0.8526 0.5264 0.5992 0.7701 
Fin-KNN    0.9763 0.9949 0.9719 0.8930 0.9412 0.9833 

250 

Lin-SVM     0.9089 0.8812 0.9154 0.7105 0.7867 0.8982 
Quad-SVM     0.9750 0.9747 0.9751 0.9022 0.9370 0.9749 

Fin-Gaus-SVM     0.8303 0.7106 0.8585 0.5420 0.6149 0.7811 
Med-Gaus-SVM     0.9873 0.9834 0.9883 0.9517 0.9673 0.9858 
Cor-Gaus-SVM     0.8574 0.8211 0.8660 0.5907 0.6871 0.8432 

Cub-SVM     0.9886 0.9897 0.9883 0.9524 0.9707 0.9890 
Cos-KNN     0.9728 0.9766 0.9718 0.8909 0.9318 0.9742 
Cor-KNN     0.8269 0.6968 0.8575 0.5353 0.6054 0.7730 
Fin-KNN     0.9800 0.9976 0.9758 0.9068 0.9500 0.9867 

500 

Lin-SVM 0.9455 0.9283 0.9496 0.8125 0.8666 0.9389 
Quad-SVM  0.9877 0.9885 0.9875 0.9491 0.9684 0.9880 

Fin-Gaus-SVM  0.7611 0.6180 0.7948 0.4149 0.4965 0.7008 
Med-Gaus-SVM  0.9930 0.9865 0.9945 0.9769 0.9817 0.9905 

Cor-Gaus-SVM  0.9202 0.9145 0.9215 0.7329 0.8137 0.9180 
Cub-SVM  0.9915 0.9933 0.9910 0.9631 0.9780 0.9922 
Cos-KNN  0.9758 0.9830 0.9741 0.8993 0.9393 0.9785 
Cor-KNN 0.8349 0.7403 0.8572 0.5498 0.6310 0.7966 
Fin-KNN 0.9820 0.9980 0.9783 0.9154 0.9549 0.9881 

750 

Lin-SVM 0.9602 0.9485 0.9630 0.8579 0.9009 0.9557 
Quad-SVM 0.9882 0.9897 0.9879 0.9506 0.9697 0.9888 

Fin-Gaus-SVM 0.7195 0.5435 0.7610 0.3488 0.4249 0.6431 
Med-Gaus-SVM 0.9873 0.9755 0.9901 0.9588 0.9670 0.9828 
Cor-Gaus-SVM 0.9504 0.9382 0.9533 0.8255 0.8783 0.9457  

Cub-SVM 0.9919 0.9921 0.9919 0.9664 0.9791 0.9920 
Cos-KNN 0.9765 0.9834 0.9749 0.9023 0.9411 0.9791 
Cor-KNN 0.8232 0.7067 0.8507 0.5272 0.6039 0.7753 
Fin-KNN 0.9843 0.9988 0.9809 0.9249 0.9604 0.9898 

1000 

Lin-SVM 0.9661 0.9592 0.9677 0.8750 0.9152 0.9635 
Quad-SVM 0.9885 0.9861 0.9891 0.9551 0.9704 0.9876 

Fin-Gaus-SVM 0.6943 0.5091 0.7380 0.3140 0.3884 0.6129 
Med-Gaus-SVM 0.9744 0.9470 0.9809 0.9211 0.9338 0.9638 
Cor-Gaus-SVM 0.9676 0.9620 0.9689 0.8795 0.9189 0.9655 

Cub-SVM 0.9924 0.9925 0.9924 0.9683 0.9803 0.9924 
Cos-KNN 0.9780 0.9869 0.9759 0.9062 0.9449 0.9814 
Cor-KNN 0.8308 0.7102 0.8592 0.5430 0.6154 0.7812 
Fin-KNN 0.8308 0.7102 0.8592 0.5430 0.6154 0.7812 

 
A total of 500 features are selected in the third test. The pool 
of feature vectors here contains features of all dataset images 
gets the dimension of 13250×500. Cub-SVM achieves only 
the best results for GM only in this test. However, it attains 
the second-best outcome in remaining all measures. Here, 

Med-Gaus-SVM shows its overall dominance with Acy, Spe, 
Prc, and FM as 0.9930, 0.9945, 0.9769, and 0.9817, 
respectively. The fourth experiment is conducted on 750 
features. The joint feature vector, containing all dataset 
image features now becomes 13250×750.  
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FIGURE 9. Confusion matrix of finest outcome and Cub-Svm classifier 
(1000 features) on suspicious activity dataset 

 
Again, Cub-SVM shows its prominence with Acy, Spe, Prc, 
and FM values as 0.9919, 0.9919, 0.9664, and 0.9791, 
respectively. The second-best outcomes for Acy, Sny, Spe, 
Prc, FM and GM achieved are from Quad-SVM (0.9882), 
Cub-SVM (0.9921), Med-Gaus-SVM (0.9901), Med-Gaus-
SVM (0.9588), Quad-SVM (0.9697), and Cub-SVM 
(0.9920) respectively. 

In conducting the fifth experiment, 1000 features are chosen. 
This test is considered best with 1000 features. The pool 
of feature vectors here contains features of all dataset images 
gets the dimension of 13250×1000. Cub-SVM is found to be 
the best in all performance measures with Acy, Sny, Spe, Prc, 
FM, and GM as 0.9924, 0.9925, 0.9924, 0.9863, 0.9803, and 
0.9924. Here, Quad-SVM shows its overall worth as the 
second-best results. Except for Sny, Quad-SVM achieved the 
highest values in all performance measures. The highest 
accuracy on Cub-SVM using 1000 features is picked as the 
best outcome.  
The confusion matrix of the finest result on 1000 features on 
Cub-SVM is illustrated in Figure 9. The classes Firearms and 
Running attain 100 percent accuracy while Falling, Fighting, 
and Fire classes achieve 99, 99, and 98 percent accuracy. The 
AUCs (as shown in Figure 10) portray 100 percent outcomes 
for all classes under best features (1000) with a Cub-SVM 
classifier. 

 

FIGURE 10. ROCs and AUCs of all classes having best results using Cub-Svm classifier (1000 features) on suspicious activity dataset 

 
 

(a) (b) (c) 

(d) (e) 
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Figure 11 reveals the observations on training times on all 
classifiers with different feature counts.  

 

 

FIGURE 11. Training times (sec) on different selected features and 
different classifiers 

 
It is noticed that the training time rises with the growth in the 
number of features. Overall, KNN versions of classifiers take 
more time as compared to SVM classifiers. Only Fin-Gaus-
SVM takes a lot of time that is 2285 sec for 1000 features. 
Cub-SVM on the other hand takes a reasonable training time 
i.e., 488.5 sec. Prediction speeds can be observed in Figure 
12. The prediction speed reduces with the surge in the 

features count. Except for Lin-SVM, Cub-SVM prediction 
speed is found better than the prediction speed of other 
classifiers. 
 

 

FIGURE 12. Prediction speed (obs/sec) on different selected features 
and different classifiers 

D. EXPERIMENTS BRIEF ON THE SUSPICIOUS 

ACTIVITY DATASET 

The experiment tests are repeated with the best-considered 
configuration (1000 features using entropy-coded ACS 
feature selection) on the Weizmann action dataset to observe 
the proposed framework’s performance. Table VII portrays 
the performance results attained on the Weizmann dataset.  

 
TABLE VII 

PERFORMANCE EVALUATION FOR 10000 FEATURES ON WEIZMANN DATASET 

Classifier Acy (%) Sny (%) Spe (%) Prc (%) FM (%) GM (%) 

Lin-SVM 0.9004 1.0000 0.8878 0.5307 0.6935 0.9422 
Quad-SVM 0.9668 1.0000 0.9625 0.7721 0.8714 0.9811 

Fin-Gaus-SVM 0.5400 0.6952 0.5203 0.1554 0.2540 0.6015 
Med-Gaus-SVM 0.9578 1.0000 0.9525 0.7275 0.8422 0.9759 
Cor-Gaus-SVM 0.8400 1.0000 0.8197 0.4131 0.5847 0.9054 

Cub-SVM 0.9800 1.0000 0.9770 0.8468 0.9170 0.9885 

Cos-KNN 0.8311 1.0000 0.8096 0.4000 0.5714 0.8998 
Cor-KNN 0.5930 0.7032 0.5790 0.1749 0.2801 0.6381 
Fin-KNN 0.9732 1.0000 0.9698 0.8077 0.8936 0.9848 

 
Again, the Cub-SVM attains best results with Acy, Sny, Spe, 
Prc, FM, and GM as 0.9800, 1.0, 0.9770, 0.8468, 0.9170, and 
0.9885, respectively. Fin-KNN is found as the second-best in 
all performance measures. 
Figure 13 shows the confusion matrix by using 1000 features 
and Cub-SVM on the Weizmann dataset. The true positives 
of individual classes depict that except running class, all 
classes have accuracy greater or equal to 0.9600.  

E. ACCURACY COMPARISON WITH EXISTING 

WORKS ON WEIZMANN DATASET   

The proposed work is contrasted with some recent existing 
methodologies, as depicted in Table VIII.  
 
 

TABLE VIII 
PERFORMANCE EVALUATION FOR 10000 FEATURES ON WEIZMANN 

DATASET 

Method reference Year Accuracy 

DWT+KNN [87] 2020 0.9666 
CNN+ELM [88] 2020 0.9870 

Gabor-Ridgelet Transform  [87] 2020 0.9666 
LCF  + MSVM [89] 2021 0.9730 

ANN [90] 2020 0.8600 
PCANet-XY-YT [91] 2021 0.9333 

Ours (L4-Branched-ActionNet + EntACS + 

Cub-SVM) 
- 0.9800 

 
The result illustrates the better outcome as compared to some 
recent works.  
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FIGURE 13. Confusion matrix of the best outcome and cub-SVM classifier (1000 features) on Weizmann dataset 

 
 

The proposed framework is tested for the scalability issues 
in terms of the number of features. It is observed that 
increasing the number of features raises the accuracy a little 
bit. Also, increasing the number of features increases the 
computation time as well. To tackle this, feature selection is 
utilized. In addition, the model is also tested with two 
different datasets: one with four classes and the other one 
with ten classes. The acceptable outcomes prove the strength 
of the proposed framework 

V. Conclusion 

Suspicious activity recognition has been an important area of 
research in recent years. By recognizing suspicious activities 
automatically in a well-timed manner will help to reduce 
financial and human losses. This work is encompassed to 
classify the suspicious activities using a proposed 63 layers 
CNN network named L4-Branched-ActionNet. The network 
is pre-trained first on the CIFAR-100 object detection 
dataset. The dataset of five suspicious activities is then 
prepared and passed to the proposed pre-trained L4-
Branched-ActionNet to extract features. The features are 
then fed to an entropy-coded ACS scheme to reduce the 
features. The training and testing of all datasets' selected 
features are performed with different variation versions of 
SVM and KNN categorizers. The findings are repeated on 
these classifiers by altering the number of features (5 
experiments are mentioned in this manuscript with 100, 250, 
750, and 1000 features) at the feature choice phase.  The 
lower performance is attained on 100 features with an 
accuracy of 0.9844 with the Cub-SVM classifier. The best 
classification results are considered with 1000 features using 
a Cub-SVM classifier having an accuracy of 0.9924. The 
Cub-SVM is found to be the overall best, having better 

performance in all experiments. The results are also 
validated on the Weizmann dataset and compare with recent 
works. The acceptable and comparable results demonstrate 
the legitimacy of the suggested approach. 
Feature fusion can be implemented by taking features from 
another CNN-based pretrained network. Existing works 
show superior outcomes in this regard. However, we suggest 
this task be explored in the upcoming future. Moreover, new 
deep learning building blocks and feature selection methods 
can be checked in this domain for a dominant performance 
as to future work. 
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