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Abstract—There is a growing interest in the use of renewable
energy sources to power wireless networks in order to mitigate
the detrimental effects of conventional energy production or
to enable deployment in off-grid locations. However, renewable
energy sources, such as solar and wind, are by nature unstable
in their availability and capacity. The dynamics of energy supply
hence impose new challenges for network planning and resource
management. In this paper, the sustainable performance of a
wireless mesh network powered by renewable energy sources
is studied. To address the intermittently available capacity of
the energy supply, adaptive resource management and admission
control schemes are proposed. Specifically, the goal is to maximize
the energy sustainability of the network, or equivalently, to
minimize the failure probability that the mesh access points
(APs) deplete their energy and go out of service due to the
unreliable energy supply. To this end, the energy buffer of a mesh
AP is modeled as a G/G/1(/N) queue with arbitrary patterns
of energy charging and discharging. Diffusion approximation is
applied to analyze the transient evolution of the queue length
and the energy depletion duration. Based on the analysis, an
adaptive resource management scheme is proposed to balance
traffic loads across the mesh network according to the energy
adequacy at different mesh APs. A distributed admission control
strategy to guarantee high resource utilization and to improve
energy sustainability is presented. By considering the first and
second order statistics of the energy charging and discharging
processes at each mesh AP, it is demonstrated that the proposed
schemes outperform some existing state-of-the-art solutions.

Index Terms—Energy sustainability, resource management,
wireless mesh networks, renewable energy supply.

I. INTRODUCTION

THE EXPLOSIVELY growing demand for ubiquitous

broadband wireless access has led to a significant in-

crease in energy consumption by wireless communication

networks. To counter this increase, future generations of

wireless networks are expected to make use of renewable

energy sources, e.g., wind, solar, tides, etc., to fulfill the ever-

increasing user demand, while reducing the detrimental effects
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of conventional energy production. However, unlike traditional

energy supplied from the electricity grid, renewable energy

sources are intrinsically dynamic with unstable availability and

time varying capacity. For example, a wind turbine usually

provides intermittent power which depends on how windy

the weather is. Although solar panels can provide relatively

continuous power supply, the energy supply varies across the

time of a day and the season of the year, and is influenced by

atmospheric conditions and geography. As a result, when re-

newable energy is deployed to power wireless communication

networks, its dynamic and unreliable nature will affect the

availability and efficiency of communications, and therefore

will make energy-sustainable network design a necessity.

Improving energy efficiency has long been a fundamental

research issue in wireless communications, mainly because

of the limited battery power of mobile terminals and/or the

increasing cost of the energy from the electricity grid. In

traditional systems powered by batteries, the energy is a

limited resource but it is stable during the battery lifetime.

The electricity grid generally provides continuous power on

demand with no stringent usage limit; however, this power is

primary generated from limited and non-sustainable resources,

such as coal, natural gas, and petroleum. In contrast, renewable

energy sources are sustainable in the long term but are unstable

and intermittently available in the short term. As a result, the

fundamental design criterion and the main performance metric

have shifted from energy efficiency to energy sustainability in

a network powered by renewable energy [1]. While many ex-

isting works focus on energy efficiency, energy sustainability

has not been well explored and deserves further investigation.

Thus motivated, we first develop a mathematical model to

study the “energy sustainability” performance of wireless

devices theoretically and, based on this analysis, we further

dimension the resource management and admission control

strategies to improve the sustainable network performance

under an energy sustainability constraint.

The possibility and advantages of deploying a sustainable

energy powered wireless system are reported in [2]. In par-

ticular, it is shown that solar or wind powered access points

(APs) provide a cost-effective solution in wireless local area

networks (WLANs), especially for APs installed in off-grid

locations. Since the publication of that study, resource man-

agement for sustainable wireless networks has been studied in

multiple contexts. In [1] and [3], the AP placement problem
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has been re-visited in the context of sustainable WLAN mesh

networks, in which a minimal number of APs with renewable

energy sources are deployed in an area such that the quality

of service (QoS) requirements of users can be fulfilled. In [4],

by comparing sustainability performance of various routing

algorithms, it is shown that traditional routing strategies

without considering energy charging capability achieve poor

performance; it is crucial to adapt routing decisions to the

time varying energy supplies. However, without an accurate

analytical model for energy supply dynamics, how to effec-

tively make routing decisions in an energy sustainable wireless

network remains an open issue. Moreover, most existing works

use residual energy or the mean energy charging rate for

resource allocation, by either assuming the energy charging

rate is known a priori or using an oversimplified model, e.g.,

that the charging rate is uniformly distributed. In reality energy

charging is known to be a complicated and dynamic process

due to the restricted energy charging capabilities of hardware

and diverse charging environments which are usually location

dependent. Coupled with the dynamic end host demands on

multimedia services, e.g., bursty media streaming and data

applications, it is thus crucial to fully understand the impact

of dynamic energy availability on resource management and

traffic routing at distributed nodes to provision satisfactory,

robust, and sustainable performance of a renewable energy

powered mesh network.

In this paper, we develop an analytical model to evaluate

the instantaneous volume of buffered energy at mesh APs

with dynamic energy charging and discharging. By exploring

the transient behavior of the energy buffer, adaptive and

optimal energy resource management schemes are proposed

to maximize the network-wide energy sustainability such that

the probability of mesh APs depleting their energy and going

out of service is minimized. Our main contributions are three-

fold:

• Analytical Model: A generic analytical framework to

study the transient evolution of the energy buffer is

presented. Specifically, we model the energy buffer as

a G/G/1/∞ and G/G/1/N queue with the general

energy charging and discharging processes in infinite

and finite energy buffer cases, respectively. Based on the

first two statistical moments, i.e., the mean and variance,

of the energy charging and discharging intervals, we

apply the diffusion approximation to obtain closed-form

distributions of the transient (energy) queue length and

the energy depletion duration.

• Adaptive Resource Management: Based on the developed

analytical framework, we propose an adaptive resource

management scheme to assure the energy sustainability

of the network. In the proposal, traffic flows are distribu-

tively scheduled on multi-hop paths towards the minimal

energy depletion probability of mesh APs. The proposed

scheme is adaptive to the residual energy level at mesh

APs and the dynamic traffic demands of flows.

• Distributed Admission Control: A distributed admission

control strategy is deployed at mesh APs to strike a

balance between high resource utilization and energy

sustainability.

The remainder of the paper is organized as follows. Related

works are discussed in Section II. The system model is pre-

sented in Section III and an analytical framework is developed

to study the transient buffer evolution in Section IV. Based on

the buffer analysis, an adaptive resource management scheme

is proposed in Section V. Simulation results are given in

Section VI, followed by concluding remarks in Section VII.

II. RELATED WORK

Energy efficiency is a fundamental research issue in wire-

less communication networks [5], [6], [7], [8]. An extensive

body of research has been devoted to resource management

for energy efficient communication and networking, ranging

from network capacity planning and topology control [9],

[10], traffic scheduling and routing [11], [12], and adaptive

sleep control of mobile devices [13], [14], to energy efficient

communication and cooperation [15], [16], and optimal power

management [17], [18], etc. In these works, the energy supply

is typically considered to be a fixed yet limited resource.
With recent advances in energy technologies, sustainable

wireless networks with renewable energy sources have been

emerging. The development of prototypes of sustainable sen-

sors with solar energy harvesting capability was the first issue

to be studied in this context. In [19] and [20], experimental

results show that such prototypes can enable near-perpetual

operation of a sensor node. The solar/wind powered AP

has been recognized as a cost-effective alternative to the

traditional AP in WLAN mesh networks, especially when a

fixed power supply is not available. Resource allocation and

energy management in sustainable mesh networks have also

been studied in multiple contexts. Sayegh et al. in [2] consider

a hybrid solar/wind powered WLAN mesh network and argue

that a hybrid solution provides the optimal cost configuration.

Farbod and Todd in [21] describe a solar battery configuration

methodology based on the mean offered capacity profile, and

propose an outage control algorithm to improve the node

outage performance. Cai et al. in [1] study the dynamic char-

acteristics of sustainable energy sources and elaborate on the

fundamental design criterion for a sustainable mesh network.

Under the green network paradigm incorporating renewable

energy, network deployment and resource management issues

have been re-visited. Different routing schemes have been ex-

amined and compared in the context of sustainable networks,

aiming to distribute the traffic loads evenly over the network

to improve the network sustainability. For example, it is shown

in [4] that traditional routing strategies that do not consider

the variable nature of renewable energy supplies achieve poor

performance, and it is crucial to adapt the routing decisions

to the time varying power supply conditions in a sustainable

network environment. However, how to accurately capture

and model the power conditions remains an open research

issue. Most existing works on sustainable communications

use the residual energy, a fixed energy charging rate, or an

oversimplified energy charging model, e.g., that the charging

rate is uniformly distributed, for resource allocation. As the

available energy is inherently dynamic due to variations in

both energy charging and discharging processes, it is essential

to characterize the variations in the analytical model of energy

conditions. In addition, previous routing algorithms mainly
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focus on routing metric design and/or route discovery issues.

To provide satisfactory sustainable network performance, both

load balancing over various paths and effective admission

control should be incorporated into one resource management

framework.

To tackle this challenging issue, we model the energy buffer

as a G/G/1/∞ and G/G/1/N queue in infinite and finite battery

capacity cases, respectively. Based on the first and second

order statistics of the charging and discharging processes, we

apply diffusion approximation to analyze the distributions of

the queue length and the first passage time at which a node’s

energy depletes. As an efficient and accurate approach for

studying transient behavior of queueing systems [22], [23],

[24], diffusion approximations have been widely applied in

adaptive buffer management [25]. To the best of our knowl-

edge, this is the first work to apply a diffusion approximation

to analyze the energy sustainability performance of network

devices, and to use the derived closed-form distributions for

adaptive resource management in a sustainable wireless mesh

network.

III. SYSTEM MODEL

A. Energy Model

We consider a sustainable wireless mesh network as shown

in Fig. 1. Each mesh AP is equipped with a battery that

can be charged repeatedly via a renewable energy supply. Let

Ri(0) denote the initial battery energy of node i and Ai(t)
denote the amount of energy charged over the time interval

[t − 1, t] at node i. Note that due to differing environments,

e.g., different solar radiation intensities or wind speeds at

different geographical locations, the energy charging capacity

of each mesh AP varies uniquely over time. Hence, we model

the energy charging process at a node as a continuous-time

stochastic process with an arbitrary but stable distribution, and

count the charged energy units as the arrival events of the

queue. The mean and variance of the inter-charging intervals

are denoted by µa and va, respectively. µa and va can be

estimated to be an exponentially weighted moving average

or other estimation approaches. The charged energy can be

stored in the batteries. Denote by Ri(t) the residual energy

of node i at time t, by Rmax
i the maximum energy storage

or the battery capacity of node i, and by Rmin
i ≥ 0 the

minimal residual energy level based on battery life and safety

considerations. In other words, the energy level of node i is

within the range [Rmin
i , Rmax

i ]. Without loss of generality,

we simplify the model by considering 0 ≤ Ri(t) ≤ Ni, where

Ni = Rmax
i − Rmin

i which reflects the maximum number of

energy units that a node can use. In the following, we study

the two scenarios of an infinite energy buffer capacity, i.e.,

Ni → ∞ and a limited energy buffer capacity, i.e., Ni is

finite.

The energy consumption includes the energy used for

receiving a packet, processing it, and forwarding it en route

to the destination. Receiving and processing energy can be

considered to be a constant, er, while the transmission energy

should be adjusted to ensure a desired bit error rate at the

receiver. As the signal energy attenuates over a wireless

channel [26], [27], the energy path loss is usually characterized

by dni,j , where di,j is the distance between nodes i and j,

and n is the path loss exponent. For a given signal to noise

ratio (SNR) requirement, the minimal energy required for

transmitting one bit over link i ⇀ j should be proportional to

path loss, i.e.,

eti,j ∝ dni,j . (1)

The total energy consumption of node i during the time

interval [t− 1, t] is given by

Si(t) =
∑

j

∑

k

pi,j,k(t)(er + eti,j ), (2)

where pi,j,k(t) is the traffic demand of flow k over link i ⇀ j
during [t − 1, t]. The residual energy of node i at time t can

thus be given as

Ri(t) = min
{

max{Ri(t− 1)+Ai(t)−Si(t), 0}, Ni

}

. (3)

We model the traffic arrivals at each AP as a Poisson process.

The mean and variance of the energy inter-discharge interval

are denoted as µs and vs, respectively. The values of µs and

vs can be estimated via standard estimation approaches.

B. Network Model

We consider a distributed wireless mesh network consisting

of multiple stationary mesh APs with sustainable energy

supplies, as shown in Fig. 1. Each mesh AP manages a

local WLAN with multiple wireless users, while serving as

a mesh router that forwards traffic from other mesh APs

or WLANs. One typical application scenario is a home or

office WLAN in which an AP with sustainable energy supply

can be installed on the roof to harvest energy from the

environment, e.g., sun, wind, etc. Users of the WLAN may

communicate with local or remote users. Therefore, each

mesh AP not only bridges traffic inside its coverage, e.g.,

within the house or an office, but also routes traffic from

other APs toward the destination over the mesh backbone.

Both intra- and inter-WLAN traffic demands are considered

in the system model. Using orthogonal frequency division

multiplexing, mesh APs can select orthogonal channels for

data transmissions and receptions, and therefore there is no

interference among intra- and inter-WLAN communications.

As the first step, we assume that the bandwidth is sufficient

and that the sustainable energy supply is the performance

bottleneck. This is acceptable because bandwidth is typically

an ample resource with advanced wireless technologies while

energy is more limited in the current setting. Future research

on joint bandwidth and energy management is required to

study the impact of limited bandwidth on the network per-

formance.

We construct a directed graph G = (V,E) for the mesh

backbone network such that mesh APs are represented by

vertices (v ∈ V ) and wireless links between APs are rep-

resented by edges (e ∈ E). Each vertex is associated with a

weight wv which represents the energy sustainability level of

the node, i.e., how likely the node is to drop out by depleting

all its energy to serve the traffic flows traversing it. Each

edge, e.g., edge i ⇀ j from node i to node j, is associated

with a transmission energy, eti⇀j
, which is a function of the
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Mesh Backbone ConnectionLocal Area NetworkMobile User Green AP

Fig. 1. WLAN Mesh Network

link distance. Notice that the energy consumed for relaying

traffic is not only determined by the transmission energy of

the forwarding links, but also the traffic demands for the relay.

IV. TRANSIENT QUEUEING ANALYSIS OF ENERGY

BUFFER

In this section, we develop a general framework for energy

buffer analysis. Specifically, we apply a diffusion approxima-

tion to study the transient evolution of an energy buffer in

both infinite and finite battery storage cases of a mesh AP.

Initially, a mesh AP has energy R(0) = x0.1 Energy harvested

from the environment is stored in the energy buffer until the

battery capacity N is reached, and energy is discharged from

the buffer while serving traffic demands. The evolution of

the energy buffer is shown in Fig. 2. Due to the dynamics

in the charging and discharging process, a mesh AP may

deplete its energy buffer when R(t) reaches 0. In this case, the

AP is considered temporarily unreachable and all associated

links are broken. Therefore, a fundamental problem arising

is how to properly distribute the traffic demands across the

network according to the energy levels of APs such that the

probability that a link is broken or an AP becomes unavailable

is minimized.

A. Queue Model of Infinite Energy Buffer

We first consider the situation in which the battery capacity

is sufficiently large such that all charged energy can be stored

in the battery. Therefore, the energy buffer can be modeled as

a G/G/1/∞ queue, with means and variances of inter-arrivals

(inter-departures) denoted as µa (µs) and va (vs), respectively.
We use the diffusion approximation or Brownian motion

approximation approach to analyze the G/G/1/∞ queue [22].

1For notational simplicity, we neglect the node index in the notation in
Section III, e.g., the subscript i in Ri(t).

Time t

Energy

Buffer

N

D

X0

Fig. 2. Evolution of an energy buffer

The discrete buffer size R(t) can be approximated by a

continuous process X(t) such that its incremental change over

a small interval dt is normally distributed with mean βdt and

variance αdt,

dX(t) = X(t+ dt)−X(t) = βdt+G(t)
√
αdt, (4)

where G(t) is a white Gaussian process with zero mean and

unit variance. β and α are the mean and variance of the change

in X(t), respectively, which are also referred to as drift and

diffusion coefficients defined by

β = 1/µa − 1/µs (5)

and

α = va/µ
3
a + vs/µ

3
s. (6)

Given the initial energy level at X(t = 0) = x0, the

conditional probability density function (p.d.f.) of X(t), i.e.,
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the energy buffer size at time t (t > 0),

f(x, t;x0)dx = Pr(x ≤ X(t) < x+ dx|X(0) = x0), (7)

satisfies the forward diffusion equation

∂f(x, t;x0)

∂t
=

α

2

∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)

∂x
, (8)

under the boundary condition

X(t) ≥ 0, t > 0. (9)

By applying the method of images [24], we can use (8) and

(9) to obtain

f(x, t;x0) =
∂

∂x

{

Φ

(

x− x0 − βt√
αt

)

(10)

− exp

{

2βx

α

}

Φ

(

−x+ x0 + βt√
αt

)

}

,

where Φ(x) is the standard normal integral defined as

Φ(x) =

∫ x

−∞

1√
2π

exp(−1

2
z2)dz. (11)

Denote by D(x0) the energy depletion duration given the

initial condition x0, i.e., the duration from X(0) = x0 until

the moment when the AP depletes its energy,

D(x0) = inf(t ≥ 0|X(t) = 0, X(0) = x0). (12)

D(x0) is also referred to as the first passage time of X(t)
from x0 > 0 to 0.

The density function of D can be obtained from the diffu-

sion equation with the absorbing barrier at the origin, which

is equal to

fD(t;x0) = lim
x→0

{

α

2

∂f(x, t;x0)

∂x
− βf(x, t;x0)

}

. (13)

Solving the partial differential equation (13), we obtain the

conditional p.d.f. of D as

fD(t;x0) =
x0√
2παt3

exp

{

− (x0 + βt)2

2αt

}

. (14)

The moment generation function of D is given by

f∗
D(s;x0) =

∫ ∞

0

e−stfD(t;x0)dt (15)

= exp
{

−x0

α
(β +

√

β2 + 2αs)
}

.

Note that when s → 0, (15) gives the probability P(0;x0)
of reaching the absorbing barrier starting from x0 [22],

P(0;x0) = lim
s→0

f∗
D(s;x0)

=

{

1, for β < 0

exp
(

− 2x0β
α

)

, otherwise.
(16)

Eq. (16) indicates that the energy buffer depletes with proba-

bility 1 when the energy replenish rate is lower than or equal to

the energy discharging rate, i.e., 1/µa ≤ 1/µs. On the other

hand, even if the mean energy charging rate is larger than

the mean energy discharging rate, it is still possible that the

AP depletes it energy due to the variance of energy charging

and discharging processes. In the case 1/µa > 1/µs, the

energy depletion probability is dependent on the initial energy

level x0, and the mean and variance of energy charging and

discharging processes.

Differentiation of (15) w.r.t. s gives the mean and variance

of D for β 	= 0,

E[D;x0] = x0/|β|, (17)

V [D;x0] = x0α/|β|3. (18)

B. Queue Model of Finite Energy Buffer

In practice, a mesh AP will have a limited battery capacity.

In this case, the energy buffer can be modeled as a G/G/1/N
queue.

Similar to the infinite buffer case, given the initial condition

and the buffer size N , the conditional p.d.f. of the buffer size

satisfies the forward diffusion equation,

∂f(x, t;x0, N)

∂t
(19)

=
α

2

∂2f(x, t;x0, N)

∂x2
− β

∂f(x, t;x0, N)

∂x
+µaP0(t;x0, N)δ(x− 1)

+µsPN (t;x0, N)δ(x−N + 1),

where P0(t) and PN (t) are the probability mass functions at

the boundaries x = 0 and x = N at time t, given the initial

value x0, respectively:

P0(t;x0, N) = Pr[X(t) = 0|X(0) = x0] (20)

PN (t;x0, N) = Pr[X(t) = N |X(0) = x0]. (21)

When X(t) reaches one of the boundaries x = 0 or x = N ,

it stays there for a random interval, referred to as a holding

time, with mean 1/µa and 1/µs, respectively. The probability

mass functions P0(t;x0, N) and PN (t;x0, N) should also

satisfy the following equations:

dP0(t;x0, N)

dt
= −µaP0(t;x0, N) (22)

+ lim
x→0

[

α

2

∂f(x, t;x0, N)

∂x
− βf(x, t;x0, N)

]

and

dPN (t;x0, N)

dt
= −µNPN (t;x0, N) (23)

+ lim
x→N

[

−α

2

∂f(x, t;x0, N)

∂x
+ βf(x, t;x0, N)

]

,

subject to the initial condition

f(x, t;x0, N) = δ(x− x0) 0 < x < ∞, (24)

and boundary conditions

lim
x→0

f(x, t;x0, N) = 0 t > 0 (25)

lim
x→N

f(x, t;x0, N) = 0 t > 0. (26)

By applying a doubly infinite system of images [22], we

can obtain the transient solution of the probability function

f(x, t;x0, N) =
1√
2παt

∞
∑

n=−∞

(A−B) , t > 0, (27)
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where
⎧

⎨

⎩

A = exp
(

β2nN
α − (x−x0−2nN−βt)2

2αt

)

,

B = exp
(

β(−2x0−2nN)
α − (x+x0+2nN−βt)2

2αt

)

.

Since
∑

i Pi = 1, we have

∫ N

0

f(x, t;x0, N)dx+ P0(t;x0, N) + PN (t;x0, N) = 1.

(28)

Similar to (13), the density function of the first passage time

in the finite buffer case satisfies

fD(t;x0, N) = lim
x→0

[

α

2

∂f(x, t;x0, N)

∂x
− βf(x, t;x0, N)

]

.

(29)

We derive the Laplace transform of the density function

fD(t;x0, N) with a finite energy capacity N as

f∗
D(s;x0, N) = exp

{

−β

α
x0

}

sinh[C(N − x0)]−D

sinh(CN)−D
(30)

where
{

C =

√
2αs+β2

α ,
D = µa

µa+s exp{β/α} sinh[C(N − 1)].

The inversion of f∗
D(s;x0, N) can be approximated by

fD(t;x0, N) (31)

=
1

2t
exp

{

E

2

}

ℜ
(

f∗
D

(

E

2t
;x0, N

))

+
1

t
exp

{

E

2

} ∞
∑

k=1

(−1)kℜ
(

f∗
D

(

E + 2kπi

2t
;x0, N

))

,

where E is the approximation error function such that the error

is bounded by
exp{−E}

1−exp{−E} [28]. For instance, by setting E =

5 ln(10), the approximation error is smaller than 0.99 · 10−5.

Differentiation of (30) w.r.t. s gives the first moment of D
as

E[D;x0, N ] (32)

=

{

−x0

β + (µa +
1
β )

exp{− 2β
α

(N−x0)}−exp{− 2β
α

N}

1−exp{− 2β
α

}
, β 	= 0,

x0(µa +
2N−x0−1

α ), β = 0.

Solving Eqs. (19)-(23) at the stationary state when

limt→∞ P0(t;x0, N) = P0, limt→∞ PN (t;x0, N) = PN , and

limt→∞ f(x, t;x0, N) = f(x;x0, N),

α

2

∂2f(x, t;x0, N)

∂x2
− β

∂f(x, t;x0, N)

∂x
(33)

= −µ0P0δ(x− 1)− µNPN δ(x−N + 1),

lim
x→0

[

α

2

∂p(x, t;x0, N)

∂x
− βp(x, t;x0, N)

]

= µ0P0, (34)

lim
x→N

[

α

2

∂p(x, t;x0, N)

∂x
− βp(x, t;x0, N)

]

= −µNPN ,

(35)

we can obtain the steady state probability function of the

energy buffer length [29]

f(x;x0, N) (36)

=

⎧

⎪

⎨

⎪

⎩

−µaP0

β [1− erx], 0 ≤ x ≤ 1

−µaP0

β [e−r − 1]erx, 1 ≤ x ≤ N − 1

−µaP0

β [er(x−N) − 1]er(N−1), N − 1 ≤ x ≤ N,

where r = (2β)/α.

The probability that an AP depletes its energy in the finite

buffer case is given by

P(0;x0, N) (37)

=

{

(1 + µs

µa
er(N−1) + µs

µa−µs
[1− er(N−1)])−1, β 	= 0,

1
2 (1 +

N−1
v2
a/µ

2
a+v2

s/µ
2
s
)−1, β = 0.

Eq. (37) indicates that in the finite energy buffer case, due to

the variance of the charging and discharging processes, the

energy buffer is depleted with a certain probability, which

is jointly determined by the first and second moments of

the sojourn times at the boundary conditions, regardless of

whether β ≥ 0 or β < 0. The depletion probability decreases

with increased battery capacity N or energy charging rate. A

larger variance in either charging or discharging results in a

higher energy depletion probability P(0;x0, N).

V. ADAPTIVE RESOURCE MANAGEMENT

In this section, we present an energy-aware adaptive re-

source management framework based on the transient energy

buffers of mesh APs. To improve network sustainability, we

aim to minimize the probability that mesh APs deplete their

energy in serving traffic demands. Based on the transient

energy level, energy charging capability, and existing traffic

demands at each AP, a path selection metric is designed

to distribute traffic flows over diverse relay paths across

the network. A distributed admission control strategy is also

presented to further guarantee the energy sustainability of the

network.

A. Relay Path Selection

In a WLAN mesh network depicted in Fig. 1, users’

traffic may be relayed over multiple hops until reaching the

destination. To ensure the energy sustainability and network

connectivity, traffic flows should be scheduled over relay

paths such that the APs along the paths have the minimal

probability of being out of service, i.e., depleting their energy

and becoming temporarily unavailable. To track the dynamics

of the traffic demands and charging capability, the scheduling

should be updated periodically and when new events occur

(e.g., a new flow joins in the network or traffic demands of

existing flows change).

Based on the analysis in Section IV, the relay path selection

performs as follows: a source user first broadcasts a request

that includes the destination and the estimated first and second

order statistics of the energy consumption of the traffic flow.

When the destination AP receives the request, it first calcu-

lates the probability of energy depletion, P(0;x0) in (16) or

P(0;x0, N) in (37), based on its current energy level and the
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accumulated traffic demands. The destination AP updates its

weight as

wv = P(0;x0) or P(0;x0, N). (38)

The destination then attaches its weight in the reply message

back to the source user. Upon receiving the reply message,

each mesh AP also updates its weight accordingly. By com-

puting its own P(0;x0) with the accumulated load energy

consumption over each link, the source AP can make a

decision about the data forwarding path. For example, the

source AP may select the path with the minimal sum of

the energy depletion probability (MEDP) along the path, i.e.,

the path with Min
∑

wv , to ensure the overall sustainable

performance of the network; or the AP may prefer to select the

path along which the maximum value of wv is minimized, i.e.,

the path with Min Max wv , to ensure that the least sustainable

AP can sustain the traffic demands longer. The process of

weight updates in these cases is the same as the shortest path

algorithm, with the metric of the number of hops replaced by

the path selection metric, i.e.,
∑

wv or Max wv .

Notice that in the infinite energy capacity case, P(0;x0)
may increase to 1 when β ≤ 0, which implies that the AP will

eventually deplete its energy by relaying this flow. Therefore,

to differentiate their weights for path selection, the AP needs

to further evaluate whether its current energy level can sustain

the flow demand within a finite duration. Denote the survival

time of a traffic flow as T , i.e., the flow is expected to survive

in the network in the following T time slots. The AP then

computes the probability that it depletes its energy before T
expires, which is given by

FD(T ;x0) = Pr(D ≤ T ) =

∫ T

0

fD(t;x0)dt. (39)

In the infinite buffer case, the destination AP updates its

weight according to the flow request as

wv = P(0;x0) + I(β ≤ 0)FD(T ;x0), (40)

where the indicator I(·) equals to 1 if condition (·) is true and

0 otherwise. In a network of queues, the buffer of the relaying

AP may absorb the traffic variance in some degree and the

output traffic characteristics may vary. If the estimated traffic

demand changes during time duration T , APs should update

the traffic parameters in the remaining time of duration T , and

repeat the aforementioned path selection process. A mesh AP

may also need to retransmit a packet after a random period if

its next hop mesh AP is currently out of service, which may

change the energy consumption statistics of the ongoing flow.

In the case that P(0;x0) is large, energy consumption statistics

may vary hop by hop, and mesh APs need to update the energy

consumption statistics and recalculate P(0;x0). However, by

minimizing the energy depletion probability and ensuring a

sufficiently large depletion duration, the probability that an

AP is out of service is reduced and becomes negligible.

B. Admission Control

Due to the limited network resources in a wireless network,

admission control plays a critical role in providing satisfactory

quality of service to the existing users. Generally, admission

control tackles the trade-off between resource utilization and

quality of service provisioning. For instance, more users

admitted to the network can exploit more network resources to

achieve a higher network throughput, but they may also use up

the network resources faster, e.g., the residual energy of mesh

APs depletes quickly, and some APs may be out of service

which causes long service delays and jitter. Therefore, an

effective admission control strategy is necessary to assure high

resource utilization under the energy sustainability constraint

and guaranteed user performance.

We provision guaranteed service to admitted users by en-

suring a sufficiently large energy depletion duration, e.g., that

D is larger than the longest survival time of traffic flows D̂,

in a stochastic manner as

Pr(D ≤ D̂) =

∫ D̂

0

fD(t;x0)dt < ε, (41)

where the parameter 0 < ε ≪ 1 is an adjustable parameter

which reflects the energy sustainability level. A smaller ε
implies a stricter energy sustainability constraint for admitting

a new flow. As such, according to the estimated flow statistics

in the request, each mesh AP verifies its availability to relay,

i.e., a mesh AP responds only when its energy sustainability

condition satisfies (41). If the source AP cannot establish a

valid relay path to the destination from the received response

messages, indicating that one or more APs’ energy supply

cannot sustain the traffic demands of the flow, the source AP

will reject the flow request from the end user. By upper bound-

ing the energy depletion probability, satisfactory sustainable

network performance can be achieved.

VI. SIMULATION RESULTS

In this section, we validate the energy buffer analysis and

evaluate the performance of the proposed resource manage-

ment schemes via extensive simulations, based on a discrete

time event-driven simulator coded in C++.

A. Simulation Setup

In this section, we simulate a WLAN mesh network with

ten APs and multiple mobile users, as depicted in Fig. 1.

The distances between adjacent APs are randomly selected

in [R0, 3R0] where R0 is the communication radius of an

AP. Ten groups of users are randomly distributed in the

coverage of APs. The energy charging intervals of an AP

are randomly selected from 	ta = {1, 2, 3, 4} (in unit of time

slots) with a given probability distribution 	pta . For example,

if 	pta = {0.3, 0.3, 0.2, 0.2}, the mean and variance of the

duration of the charging intervals are µa = 2.3 and va = 1.21,
respectively. The energy discharging of an AP depends on

the traffic load demands of users. In each simulation run, a

number of flows are sequentially generated between any two

users in the mesh network. Unless otherwise specified, the

inter-packet arrivals of a flow are exponentially distributed

with mean µs = 14. The energy consumption per packet at

an AP includes both reception and transmission. For intra-

WLAN traffic, i.e., the transmission between the AP and any

user within its coverage radius R0, the energy consumption

of a packet is set as a constant e0 = 1 energy unit. For
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Fig. 3. P(0; x0) (Infinite buffer, µa = 2.3, va = 1.21, µs = 2.33,
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Fig. 4. P(0; x0, N) (Finite buffer, µa = 2.3, va = 1.21, µs = 2.33,
vs = 5.44)

inter-WLAN traffic, i.e., the transmissions between mesh

APs, the energy consumption of one packet is dependent

on the link distance R between the APs, which is given by

max{1, (R/R0)
n}e0 where n is selected from {1, 2, 3, 4}. We

ignore the energy consumption due to the signaling exchange,

which is relatively negligible compared to the traffic demands

in the mesh backbone. We repeat each experiment 10 times,

and each experiment contains 1000 runs with different random

seeds. The average results are calculated with 95% confidence.

B. Energy Buffer

We first examine the energy depletion probability in both

infinite and finite buffer cases. To study the relationship

between the charging capability and traffic load consumption,

we gradually add six flows to transmit over a link of distance

R0, and collect the buffer depletion statistics. For six flows,

the energy arrival rate is larger than the departure rate, and

we have β > 0. To illustrate the buffer evolution, these flows

are not associated with a survival time. To compute P (0;x0)
in the simulation, we collect the number of runs on which

the energy buffer of node A reaches 0 when the simulation

runs 6000 time slots, and divide it by the total number runs

of 1000 and plot the results in Fig. 3. It can be seen from

Fig. 3 that P(0;x0) decreases with the initial energy x0. As

we only conduct the simulation with limited duration (6000
time slots), the simulation results are conservative and thus

slightly lower than the analytical results (which converge as

time goes to infinity). In the finite buffer case, it can be seen

in Fig. 4 that the energy depletion probability decreases when

the energy buffer capacity N increases.
Fig. 5 plots the cumulative distribution function (CDF) of

the energy depletion duration for the infinite energy buffer

cases. To effectively obtain the CDF of D, we add six more

flows to transmit over a link distance R0 and calculate the

first passage time. Notice that for 12 flows, the energy arrival

rate is lower than the departure rate indicating that we have

a stable energy buffer with β < 0 and the energy buffer will

eventually deplete. As shown in Fig. 5, for a smaller x0, an

AP is more likely to deplete its energy in the near future, and

thus the CDF curve shifts to the left. Fig. 6 shows the CDF

of the energy depletion duration for the finite energy buffer

cases. The initial energy buffer is full, i.e., x0 = N . It can

be seen that with a large energy buffer capacity and initial

buffer size, an AP is less likely to deplete its energy soon,

and therefore the CDF shifts to the right.

C. Sustainable Network Performance

In this section, we evaluate the sustainable network perfor-

mance in terms of the network lifetime, which is defined as

the maximal duration that all APs are available until one of the

APs depletes its energy. We consider a heterogeneous network

where green APs deployed at different locations have diverse

charging capabilities by selecting different probability vectors

	pta for different APs.

We compare the proposed MEDP using the path selection

metric of
∑

wv and Max wv with two other schemes, namely,

the minimum energy (ME) scheme [30], and the minimum

path recovery time (MPRT) scheme [4]. In ME, a relay path

is selected such that the total energy consumed along the path

is minimized. Unlike ME, the MPRT algorithm selects the

path with the minimum cumulative recovery time such that

the total consumed energy can be recovered in the shortest

duration. Thus, MPRT is more likely to select a path with a

higher charging rate.

The three path selection schemes are compared in Fig. 7 and

Fig. 8. Without considering the energy charging capability in

the path selection, the sustainable performance of ME is much

lower than those of MPRT and MEDP. The proposed MEDP

outperforms MPRT since MPRT considers only the charging

capability of mesh APs, neglecting the traffic demands and

variations in both charging and discharging processes. For

the proposed MEDP, the use of the metric
∑

wv favors the

overall network sustainability while that of Max wv ensures

the worst case sustainability performance. There is no obvious

difference for the use of the two metrics in the MEDP. It

can also be observed that the network lifetime increases with

the initial energy buffer x0 in Fig. 7 and the energy buffer

capacity N in Fig. 8. By studying the transient queue length

distribution for a given initial buffer x0 or the buffer capacity

N , our proposed MEDP scheme can significantly extend the

network lifetime in both finite buffer and infinite buffer cases.
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Fig. 9 shows the comparison of the network lifetime with

and without CAC schemes applied. We use the metric of
∑

wv

for MEDP path selection. With more flows joining the net-

work, the increased traffic loads degrade the network lifetime

significantly when no CAC is applied. In this simulation, the

first fix flows are always admitted to the network, but some

following requests are rejected due to the fact that the energy

conditions of some APs cannot sustain their traffic demands.

The number of admitted flows under different values of ǫ is

shown in Fig. 10. A smaller ǫ represents a stricter admission

condition and thus limits the number of admitted flows and

the network throughput. It is seen that by increasing ǫ from
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0.1 to 0.2, one more flow can be admitted. However, adding

one more flow is likely to drain the energy of some APs and

reduce the network lifetime significantly, as shown in Fig. 9.

Therefore, with a smaller ǫ, each AP is less likely to deplete

its energy and be out of service, which improves the overall

network connectivity and service provisioning to the existing

flows.

VII. CONCLUSION

In this paper, we have developed a generic analytical model

to study the energy sustainability of mesh APs powered

by renewable energy sources, by characterizing the transient

evolution of an energy buffer of a mesh AP. Based on the

closed-form solutions of energy buffer analysis, i.e., the energy

depletion probability and energy depletion duration, we have

further proposed an adaptive resource management framework

for relay path selection and admission control. By mitigating

the energy depletion probability and ensuring a large energy

depletion duration of mesh APs, the sustainable network

performance can be significantly improved.

For our future work, we plan to consider bandwidth con-

straints in this framework and jointly design the bandwidth

allocation and energy management in a sustainable energy

powered mesh network. We also plan to investigate how one

can deploy a minimal number of mesh APs to ensure that the

charged energy can sustain the traffic demands of users will

also be under investigation.
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