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Abstract: Increasing the fuel efficiency of industrial machines through digitalization can enable the

transport and logistics sector to overcome challenges such as low productivity growth and increasing

CO2 emissions. Modern digitalized machines with embedded sensors that collect and transmit

operational data have opened up new avenues for the identification of more efficient machine use.

While existing studies of industrial machines have mostly focused on one or a few conditioning

factors at a time, this study took a complementary approach, using a large set of known factors that

simultaneously conditioned both the fuel consumption and productivity of medium-range forklifts (n

= 285) that operated in a natural industrial setting for one full year. The results confirm the importance

of a set of factors, including aspects related to the vehicles’ travels, drivers, operations, workload

spectra, and contextual factors, such as industry and country. As a novel contribution, this study

shows that the key conditioning factors interact with each other in a non-linear and non-additive

manner. This means that addressing one factor at a time might not provide optimal fuel consumption,

and instead all factors need to be addressed simultaneously as a system.

Keywords: digitalization; complementarities; sustainability; fuel consumption; heavy-duty

equipment; productivity; sensor data

1. Introduction

In line with the ongoing focus on environmental sustainability in the global economy, the transport

and logistics sector is also concerned with the negative environmental impact of using heavy-duty

industrial equipment. The depletion of the ozone layer has been a worldwide concern for the

last few decades [1], and hazardous materials that affect the ozone layer are emitted through the

fuel consumption of various equipment in different industrial sectors. Most heavy-duty industrial

equipment, such as forklifts, terminal tractors, cranes, straddle carriers, and reach stackers, are

diesel-fueled and have been shown to be a key source for hydrocarbon, NOx, and particulate matter

emissions that contribute significantly to the formation of haze/smog [2,3]. Although the number of

electric vehicles is increasing [4], reducing fuel consumption from diesel-fueled industrial machines

remains one of the key challenges for environmental sustainability [5].

The development of more advanced vehicles has contributed to humans’ enhanced capabilities

to perform difficult industrial tasks, but this has in turn led to an even stronger response from the

environment [6,7]. The growing fuel consumption and carbon emissions from such heavy-duty
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equipment add to the already existing emissions in the transport and logistics sector [2,8]. For example,

without the intervention of governments and clear energy efficiency measures it is predicted that in

the European Union greenhouse gas emissions produced by trucks will be around 35% higher in 2030

than the 1990 levels [9]. In comparison to other vehicles, diesel vehicles consume the most fuel [2,10].

At the same time, heavy-duty vehicles are being overloaded in order to reduce operating costs, and

this has had significant negative environmental impacts [3]. Thus, because fuel efficiency is directly

linked to CO2 emission [9], vehicle fuel consumption and vehicle productivity [1] should be explicitly

considered together in order to reduce these vehicles’ environmental impact.

Digitalization and the Internet of Things (IoT) enable us to measure fuel consumption in heavy-duty

industrial equipment and to identify factors that influence fuel consumption in a manner that has

not previously been possible. The very low transaction costs for operational data collection enabled

by digitalization make it possible to collect continuous detailed operational data from a large set of

vehicles operating in their actual work contexts. However, in general, the transport and logistics sector

is lagging in digitalization, particularly in the European Union [11,12]. Recent concerns include how

to transform the massive amounts of data collected from vehicles into useful knowledge [13], and

answering this requires more empirical knowledge from longitudinal studies of vehicle use in real-life

situations. Given all this, the aim of this study is to identify factors that condition fuel consumption in

relation to the productivity of medium-range forklifts that use sensor data.

Studies on road freight transportation and logistics that have analyzed the effect of sensor data on

fuel consumption show the importance of factors related to (i) vehicles, (ii) their environments, (iii)

their travels, (iii) their drivers, and (iv) their operations [13–16]. However, these studies have focused

their attention on only one or a few conditioning factors at a time, while ignoring the complementarity

perspective. Previous studies that have summarized fuel consumption factors [17,18] have not

demonstrated how these factors interact with each other in an empirical setting, so as to condition the

fuel consumption and productivity of forklifts, and this is the first knowledge gap targeted here. While

recent studies have focused on truck freight transportation in general, there is a limited number of

studies [19–23] that have investigated the factors that condition the fuel consumption and productivity

of forklifts, which have different operations from ground transportation, with more starts and stops

and shorter travel distances [24]. This is the second knowledge gap addressed in this work. Finally,

most studies have focused either on fuel consumption factors or on productivity factors separately,

while the present study addresses this knowledge gap by targeting both simultaneously. The work

in the present study used empirical data from the actual use of a large set of medium-range forklifts

equipped with data sensors and operating in a natural setting over the course of one full year, and this

contrasts with other studies looking at small samples of a few machines operating in artificial settings.

In order to handle the interactions of the large number of factors (independent variables) studied here,

the partial least square regression method was employed for the first time in this context.

Our results demonstrate the importance of a number of conditioning factors, including travel,

driver, and operations-related factors related to fuel consumption, such as distance, average speed,

and time-related parameters such as production hours, engine hours, hydraulic hours, driving hours,

and idling hours. This study shows that operating in certain workload spectra significantly increases

fuel consumption. The results also demonstrate the importance of contextual factors and show that

specific customer segments and countries realize more efficient fuel consumption than others. One

important practical implication of the results provided here is that there is an opportunity to change

the behavior of vehicle drivers in order to reduce fuel consumption, which will both increase economic

productivity and reduce CO2 emissions, and thus reduce the negative environmental impact of such

vehicles. The results can further be used to monitor driver behavior and to formulate feedback

mechanisms and training packages, and can be used to further develop fuel and productivity-related

factors. With regards to theory, unlike the partiality of previous studies, this study demonstrates

that several factors must be addressed simultaneously and in a complementary manner in order to
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reduce fuel consumption and thereby increase the productivity and reduce the CO2 emissions of

medium-range forklifts.

The remainder of this paper is organized as follows. The next section presents work related to key

drivers affecting fuel consumption. We then present the research methodology, which is followed by a

description of the results. Following that, a discussion and conclusion are presented.

2. Related Work

Digitalization has profoundly affected modern nations, organizations, and individuals [12].

The Industrial IoT and new digital environments, such as big data, mobile and service platforms,

cloud computing, and social media, enable new combinations of resources, communication channels,

products, services, and digital business models [8,25–28]. Numerous sensors, camera images, and

barcode scans produce a vast amount of data, and this creates a great opportunity to uncover hidden

patterns that might affect fuel consumption and thus CO2 emissions without reducing equipment

productivity in unexpected ways [14,20]. However, making sense of these services and data is a

challenge for both manufacturers and customers [11,12], and these advancements in technology, smart

services, and large, complex datasets raise many questions regarding the use of digital technologies for

environmental sustainability. One such question is how to use and analyze large sets of sensor data in

order to reduce the fuel consumption of heavy equipment without reducing productivity.

Over the past few years there has been an increasing number of studies on the factors affecting fuel

consumption and CO2 emissions in the field of road freight transportation and logistics. For example, it

was previously found that engine load conditions [29], vehicle speed [30,31], payload [32,33], fleet size

and mix [33], driver behavior [34–36], and surface roughness [37] are key factors that affect vehicle fuel

consumption. All of these factors were later summarized in the following five key groups of factors

(Table 1) that significantly affect the fuel consumption of road freight transport [17,18]: (i) vehicle-related

(vehicle weight, shape, engine and transmission models, and fuel and oil type); (ii) environment-related

(surface and temperature conditions); (iii) travel-related (speed and acceleration/deceleration); (iv)

driver-related (driver behavior, gear selection, and idling); and (v) operations-related (fleet size, mix,

payload, and empty kilometers).

Factors affecting fuel consumption have been widely studied in the road freight transportation

and logistics fields, but factors affecting the fuel consumption of forklifts have received little attention.

Forklift operations differ from ground transportation in that in the former there is a need for more

starting and stopping and the distances traveled are much shorter [24]. Most of the studies that have

addressed forklift efficiency and fuel consumption have focused on operational features and have

developed a number of models that indirectly affect the fuel consumption of forklifts through order

sequencing, storage allocation, and path minimization [19–23]. However, these models are criticized

for having low flexibility, restricted applicability to the particular operating conditions, and difficulty

being adapted to different warehouse layouts. Thus, these models are difficult to apply in more

complex real-life settings. Moreover, while driver behavior has a direct influence on fuel consumption

and efficiency, it is often neglected in these models. For example, in a recent study [24], it was observed

that drivers with similar tasks had different driving behaviors and that average speed was the most

significant variable affecting the fuel consumption of forklifts.

A number of studies have also investigated the impact of information and communication

technologies (ICT) on fuel consumption and thus on CO2 emissions. For ICT-based scheduling systems

with telematics applications for data communication, it has been shown that positioning and navigation

have a rate of return of 40–75% due to savings in fuel consumption [38,39], and the introduction of

semi-automated computerized route optimization and scheduling systems and onboard monitoring

computers has positively affected fuel efficiency [40]. ICT use at different levels—including vehicle,

company, supply chain, and network levels—has also been shown to have a positive effect on reducing

mileage, fuel consumption, and CO2 emissions [41]. Internet-based freight applications that match

the consignor’s demand and the carrier’s supply provide an efficient way to find the right truck and
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to organize the delivery process in a way that decreases empty travel distances, and thus improves

average vehicle load and fuel efficiency while reducing CO2 emissions [18].

Table 1. Factors affecting fuel consumption.

Categories Factors

Vehicle-related

Vehicle curb weight
Vehicle shape

Engine size/type
Engine temperature

Transmission
Fuel type/composition

Oil viscosity
Other characteristics (maintenance, age, accessories, etc.)

Environment-related

Roadway gradient
Wind conditions

Ambient temperature
Altitude

Pavement type
Other

characteristics
(humidity, surfaceconditions, etc.)

Travel-related

Speed
Acceleration/deceleration

Congestion

Driver-related

Driver aggressiveness
Gear selection

Idling time

Operations-related

Fleet size and mix
Payload

Empty kilometers
Number of stops

Source: [17,18].

With the advancement of ICT and the proliferation of sensors, companies are now able to capture

multivariate time series datasets related to vehicle use. Over the last decade, a number of studies

have analyzed large amounts of road freight transportation data in order to identify key parameters

and their effects on fuel consumption. For example, data from a global positioning system have been

shown to be effective in predicting the driving and idling fuel consumption rates of heavy vehicle

fleets [13,15,42]. Among the key parameters collected from the sensor data of heavy-duty vehicles,

the most important for fuel consumption are vehicle configuration, speed, payload factors, traffic

congestion, and regenerative braking [43]. Differences in the operating environment of long-haul trucks

and customer usage also play an important role in fuel efficiency [44], and the analysis of logging data

revealed real-world driving behaviors that have a major influence on fuel economy [16]. In addition,

big data analysis obtained from digital tachographs demonstrated the importance of driving patterns

such as acceleration/deceleration, speed, and revolutions per minute [14] on fuel efficiency. Overall,

these studies confirmed previously established factors for efficient fuel consumption.

While recent studies, including sensor-based studies, have already discovered a number of factors

that affect vehicle fuel consumption, the majority of them have studied these factors separately, and

thus only provide a partial understanding of existing fuel consumption factors. To overcome this, a

specific theory of complementarities has been advanced to show that changing only one factor might

not come close to achieving the benefits that are available using a system of specific complementarities

that are addressed in a purposeful and synchronized manner [45]. In the present study, we apply a
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methodology that can potentially demonstrate which complementary factors can be studied together in

order to improve fuel efficiency. We also focus on fuel consumption as a dependent variable but do not

disregard the relationship between fuel consumption and the productivity of a vehicle. Moreover, in the

present study we focus on one specific and homogeneous type of heavy-duty vehicle—medium-range

forklifts—and thus present a unique and detailed analysis of factors that affect fuel consumption.

3. Method

This study’s empirical basis was a particular company that is a leading global provider of heavy

industrial vehicles with lifting capabilities, such as forklifts, reach stackers, and terminal tractors. The

company’s key customer segments include industrial ports, saw mills, and steel mills. The choice of

company can be explained by the crucial importance of the transport and logistics sector for economic

growth and employment [11,46,47], and current studies demonstrate that this industry has undergone

significant development in terms of activities and employment [48]. The demand for road freight

transport and logistics services is continuously growing [49], and thus the productivity of this industry

has a significant impact on environmental sustainability with regard to CO2 emission reductions [41].

Although the road freight transport industry is important for the social and economic development

of a country, this industry is characterized by environmental, social, and competitive pressures, as

well as by demanding customers [50]. Under these conditions, digital technologies are seen as the

main enabling tool for effective and efficient operations [18,41], and transport and logistics companies

increasingly depend on their ability to use these technologies in analyzing fuel consumption in order

to move freight on time with reduced damage to the environment.

The study of the company’s vehicles was motivated by several factors. Connectivity of vehicles is

a part of the company’s strategy, and the number of connected vehicles is constantly increasing. The

company is in the transition process with the introduction of sensor data technologies and has a large

enough set of vehicles with data sensors sending daily operational data from various countries and

customer segments. The sensors on the vehicles send a vast amount of data to the company cloud

regarding the usage and performance of the vehicles, e.g., accumulated distance, forward and reverse

directions, speed, time, load, temperature, and fuel. The data indicate that diesel fuel consumption

varies quite significantly between different customers, and this was the impetus for this study to

attempt to identify key determinants of fuel consumption in relation to productivity. Below, the data

collection procedures and analytical method are presented in detail.

3.1. Sample and Data Collection

For the purpose of analyzing what factors affect fuel consumption, a homogeneous group of

vehicles, i.e., medium-range (9–18 tons) forklifts, which are primarily designed to lift and move

materials over short distances, were chosen, and the data were collected daily from 1 January 2017 to 31

December 2017. The main concern from the company under investigation was that the available data

indicate that diesel fuel consumption varies quite significantly between different industry segments.

The final data sample was represented by 285 forklifts constructed during 2012–2017, including 13

forklift models, 5 engine models, and 3 transmission models. The forklifts operated in 16 countries,

primarily in the US (16.5%), Great Britain (13.9%), and Germany (12.5%), and in 15 industry segments

(Figure 1), including sawmills (34%), material handling and logistics (26%), brick and concrete industry

(9%), and steel mills (6%).

Descriptive statistics are presented in Table A1 (Appendix A). The independent (explanatory)

variables used in this study were chosen based on previous studies that identified them as significant

for fuel consumption. Among these variables are vehicle distance, speed, number of idles, shock

and overload occurrences, engine, driving and idle time, and time spent in different driving modes,

time spent and number of lifts in different workload spectra, and variables related to ambient, engine

coolant, hydraulic, and transmission oil temperature. For the 285 forklifts, the average forklift drove

29.8 km per day with an average speed of 6.6 km per hour, carrying a total weight of 661 ton and lifting
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176 loads. The average time per day that the engine was running while the vehicle was moving or

using load handling function was 9.5 h, and the average number of hours a vehicle was idling was 4.1 h.

The average time during which a vehicle carried a very heavy load was 0.2 h. On average, the majority

of forklifts spent their working time in different workload spectra, but most of them did not spend

significant time in heavy load spectra. The average ambient temperature was 16 ◦C, and the engine

coolant temperature, hydraulic fluid temperature, and transmission oil temperature did not exceed

their limits. The dependent (output) variables were provided by the company and included average

fuel consumption per day, engine hour, load, ton, and ton-meter. On average, one forklift consumed 65

L of diesel fuel per day, 7 L per hour, 1.6 L per load, 0.7 L per ton, and 0.02 L per ton-meter.

 

Ɛ

Figure 1. Distribution of vehicles among industry segments.

3.2. Data Preparation and Analysis

The aim of this study was to explore fuel consumption factors using a number of underlying

explanatory variables. Partial least-squares regression (PLSR) is a regression method that allows for

the identification of latent variables (linear combinations of explanatory variables) and their effects

on response variables [51]. Over the last decade, this method has become widely used in various

fields of business research, including the Information Systems discipline, marketing, and strategic and

operations management [52]. In addition, this method has become popular in the analysis of factors

affecting fuel consumption [53,54]. MATLAB software was used for the PLSR analysis.

PLSR is a method that is used for modeling linear regressions between multiple, possibly correlated,

explanatory variables and multiple dependent variables. This method combines the basic functions

of canonical correlation analysis, principal component analysis, and multiple regressions [55]. The

least-squares solution for multiple linear regression [56]:

Y = XB + ε, (1)

is given by:

B = (XTX) −1XTY. (2)

The problem is that XTX is singular, either because the number of columns (variables) in X exceeds

the number of rows (objects) or because of collinearity. PLSR circumvents this by decomposing X to

orthogonal scores T and loadings P:

X = T P. (3)
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Furthermore, PLSR regresses Y on the first column of the scores, and its aim is to incorporate

information on both X and Y in the definition of the loadings and scores. The loadings and scores are

chosen in such a way as to describe, as much as possible, the covariate between X and Y.

PLSR overcomes two key challenges of classical regression methods, namely a large number of

correlated explanatory variables and a small sample size with a large number of predictors [57]. Another

important advantage of PLSR is that it does not have many specific assumptions for the analyzed data.

The data only need to be relatively normally distributed (Figure A1, Appendix B) and cleansed of

influential outliers prior to analysis [58]. Correlation coefficients between explanatory variables were

strong and significant in most cases, demonstrating potential multicollinearity. Therefore, PLSR was

an appropriate method for analyzing the available data.

4. Results

The PLSR technique was used to analyze the effect of the explanatory variables on fuel-related

dependent variables. First, the prediction ability of key PLSR models with dependent variables, such

as liters per day, liters per hour, liters per load, liters per ton, liter per ton-meter, was established by

the percentage of variation accounted for by the principal components. Second, key drivers of fuel

consumption in relation to productivity were extracted by analyzing the normal probability plots and

bar loads of the most important regression variables.

4.1. Prediction Ability

The choice of PLS factors was made by exploring the percentage of the variance explained in the

response variables (Figure A2, Appendix C) and the root mean of the dependent variables. Table 2

provides the percentage variation accounted for by the PLS factors.

The first nine PLS factors included all of the variance information for X and Y. First, by using

39.063% of the information in potential influencing factors, the first nine PLS factors explained 95.984%

of the variance in fuel consumption per day. Second, for 40.722% of the information in potential

influencing factors for liters per hour, the first nine PLS factors explained 59.729% of the variance.

The percentage of variations accounted for by PLS factors demonstrates that fuel per time unit (day

and hour) are promising dependent variables to explain fuel consumption reductions based on the

available explanatory variables. Third, for 40.451% of the information in potential influencing factors,

the first nine PLS factors explained 38.719% of the variance in liters per load. Fourth, for 40.259% of

the information in potential influencing factors, the first nine PLS factors explained 32.045% of the

variance in liters per ton. Fifth, for 41.377% of the information in potential influencing factors, the first

nine PLS factors explained 28.251% of the variance in liters per ton-meter. The percentage of variation

accounted for by PLS factors demonstrates that the models do not have strong predictive ability from

the explanatory variables in relation to the constructed variables of fuel consumption per load, per ton,

and per ton-meters. Thus, more explanatory variables can improve the predictive ability in relation to

fuel consumption per load, per ton, and per ton-meters. These dependent variables can also be subject

to further examination of whether they account for relevant activities and measures in the physical

world in order to find ways to reduce fuel consumption.

4.2. Key Determinants of Fuel Consumption and Productivity

Normal probability plots and bar loads were used to demonstrate the most important regression

variables. Normal probability plots helped us to find cut-off limits in order to select important variables

for fuel consumption (Figure A1, Appendix B). We began our analysis by focusing on fuel consumption

per day and per hour (Figure 2) and further analyzed what factors affect fuel consumption per load,

per ton, and per ton-meter (Figure 3). On the left-hand side of each figure, bar loads demonstrate the

weight of the most influential factors of fuel consumption decrease and the right-hand side shows the

weight of the most important factors that affect fuel consumption increase.
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Table 2. Variation accounted for by partial least-squares factors.

Latent Factor
Percentage of

Explained
Variance for X

Cumulative
Percentage of

Explained
Variance for X

Percentage of
Explained

Variance for Y

Cumulative
Percentage of

Explained
Variance for Y

Root Mean
Squared Error
of Prediction

Liters per day

1 16.372 16.372 90.645 90.645 12.604
2 5.428 21.800 2.803 93.448 10.548
3 3.245 25.045 1.424 94.872 9.331
4 2.691 27.736 0.542 95.414 8.824
5 2.064 29.800 0.258 95.672 8.573
6 2.168 31.968 0.130 95.802 8.443
7 2.069 34.037 0.091 95.893 8.351
8 2.658 36.695 0.051 95.944 8.299
9 2.368 39.063 0.040 95.984 8.258

Liters per hour

1 15.079 15.079 24.089 24.089 1.485
2 7.374 22.453 21.527 45.616 1.257
3 4.218 26.671 5.083 50.699 1.197
4 3.687 30.358 3.530 54.229 1.153
5 2.481 32.839 2.325 56.554 1.124
6 1.930 34.769 1.598 58.152 1.103
7 1.530 36.299 1.086 59.238 1.088
8 2.706 39.005 0.258 59.496 1.085
9 1.717 40.722 0.233 59.729 1.082

Liters per load

1 14.698 14.698 18.262 18.262 1.126
2 8.888 23.586 13.841 32.103 1.026
3 3.801 27.387 2.870 34.973 1.004
4 1.924 29.311 1.789 36.762 0.990
5 2.312 31.623 0.832 37.594 0.984
6 2.810 34.433 0.419 38.013 0.980
7 2.278 36.711 0.343 38.356 0.978
8 2.167 38.878 0.222 38.578 0.976
9 1.573 40.451 0.141 38.719 0.975

Liters per ton

1 15.628 15.628 14.153 14.153 0.528
2 7.723 23.351 12.18 26.333 0.489
3 3.795 27.146 2.602 28.935 0.481
4 2.159 29.305 1.621 30.556 0.465
5 2.574 31.879 0.654 31.210 0.473
6 2.701 34.580 0.326 31.536 0.472
7 2.179 36.759 0.260 31.796 0.471
8 1.871 38.630 0.151 31.947 0.470
9 1.629 40.259 0.098 32.045 0.470

Liters per ton-meter

1 11.463 11.463 13.663 13.663 0.017
2 11.89 23.353 7.814 21.477 0.016
3 3.963 27.316 2.839 24.316 0.106
4 2.466 29.782 1.888 26.204 0.015
5 3.012 32.794 0.795 26.999 0.015
6 2.520 35.314 0.508 27.507 0.015
7 2.187 37.501 0.386 27.893 0.015
8 2.018 39.519 0.221 28.114 0.015
9 1.858 41.377 0.137 28.251 0.015
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Figure 2. Bar loads of the most relevant variables for fuel consumption per time (liter/day, liter/hour).

The results demonstrated that high fuel consumption per day was mainly caused by distance driven

and time-related parameters, such as production, engine, hydraulic driving, and idling hours. Low

fuel consumption per day was strongly associated with minimum ambient temperature, and among

the different countries, Norway demonstrated the most efficient fuel usage. High fuel consumption

per hour depended strongly on distance driven, average speed, and weight lifted. In comparison to

other customer segments, the material handling and logistics segment was shown to be the most fuel

efficient. Overall, the results demonstrate the importance of travel-related, operations-related, and

driver-related factors on fuel consumption per unit of time. Interestingly, the results demonstrated

that leaving machines idling for a shorter time period might lead to fuel savings per hour, but in the

long run this led to high fuel consumption per day. The results also demonstrated that high hydraulic

fluid temperatures can waste fuel, and thus this has to be addressed through maintenance in order to

maintain a stable hydraulic system.
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Figure 3. Bar loads of the most relevant variables for fuel consumption and productivity (liter/load,

liter/ton, liter/ton-meter).
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The results further demonstrated that high fuel consumption per load, per ton, and per ton-meter

was associated with time spent in a specific load spectrum. For example, time spent in the load

spectrum of 20–30 tons was associated with high fuel consumption per load, per ton, and per ton-meter.

Interestingly, a number of lifts in specific load spectra and time spent in these lead spectra in some

cases have different effects on fuel consumption. While these factors and their effect as such are

interesting, the present study’s aim was not to consider one or two factors and their effect on fuel

consumption but the whole system of factors together. Overload hours were also associated with high

fuel consumption per load and ton. For other segments, the wood products industry was shown to be

efficient in terms of fuel consumption and productivity. Although somewhat counterintuitive, total

loads lifted and total weight were associated with fuel-saving per load, per ton, and per ton-meter. On

the one hand, this can be explained by short distances driven by forklifts, on the other hand, while the

less loaded a forklift the less efficient it is, a heavier loaded forklift is more efficient until a certain level

and a non-linear behaviour occurs because of the scale effects. This can also be explained by all three

dependent variables not having a fixed ratio of driving/lifting/weight for vehicles, and thus to establish

how fuel consumption can decrease without losing productivity these variables must be reconsidered.

5. Discussion

While fuel costs are increasing and governments are taking actions towards reducing greenhouse

gas emissions, manufacturers and users of heavy-duty equipment are struggling to reduce fuel

consumption while improving the productivity of vehicles. Although factors related to fuel

consumption are a heavily researched area in road freight transportation and logistics field, the current

state of knowledge demonstrates a gap with respect to complementary factors and their interactions,

which can reduce fuel consumption and improve the productivity of heavy-duty equipment [1] and,

therefore, align with both ecological sustainability and economic productivity. Moreover, making sense

of newly collected data via sensors over an extended time period presents another challenge in relation

to fuel consumption and productivity. This study attempted to respond to the need for companies to

move towards cleaner productivity by finding patterns in a large dataset that are indicative of fuel

efficiency and cleaner productivity of heavy-duty equipment, which, in our case, was medium-range

forklifts. The present study advances the current literature in the following important ways.

First, our results contribute to the literature that investigates factors of fuel consumption and

productivity in the field of road freight transportation and logistics [13,14,16]. In contrast to previous

studies, which approached fuel consumption factors in a monolithic manner, studying one or a few

factors per study, the present study shows that when several factors are considered at the same time and

for a larger set of forklifts that operate in natural settings for a longer time, a more complex situation

emerges regarding the factors that affect fuel consumption and thus CO2 emission. For the first time,

this study shows that various factors that have been established as drivers of fuel consumption, when

considered jointly, may manifest conflicting contradictors and non-linear behaviour.

Second, our results also contribute to the limited literature that focuses on models that

indirectly affect fuel consumption of forklifts through order sequencing, storage allocation, and

path minimization [19–23]. These studies are mostly criticized for restricted applicability to the

particular operating conditions and difficult application in complex real-life settings. In the present

study, we collected and analyzed longitudinal data of forklifts in real-life use. The results from this study

reveal that mostly travel-, driver-, and operations-related factors complement each other to increase

fuel consumption per unit time, including distance, average speed, and time-related parameters, such

as production, engine, hydraulic, driving, and idle hours. The results also demonstrate the importance

of the environment- and vehicle-related variables. Additionally, particular industry segments and

countries are shown to be more effective in terms of fuel consumption.

Third, besides complementary fuel consumption drivers, the present study supports currently

limited evidence on the importance of driver behaviour of forklifts [24]. In contrast to current studies

that focus on driver behaviour in freight transportation and logistics in general, there is a limited
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number of studies that investigate driver behaviour of forklifts in relation to fuel consumption and

productivity. The results of the present study demonstrate that driver behavior such as compliance to

speed limits and idling can significantly affect the fuel consumption per time unit of a forklift. The

impact on fuel efficiency and productivity by this behavior is often highlighted as a promising research

direction to identify fuel-saving practices, and the results from this study confirm the importance of

driver behaviour as a complementary factor.

The results of the present paper are important for practitioners who focus on drivers of fuel

consumption and productivity. In general, the present study demonstrates that several factors available

through sensors, of various kinds, should be elaborated in a deliberately synchronized manner in order

to improve the fuel consumption and productivity of a vehicle. This study guides practitioners by

informing that when considered jointly, various factors that have been established as drivers of fuel

consumption may manifest conflicting contradictors.

This study has the following limitations. First, we used only one homogeneous group of

vehicles—medium-range forklifts. The analysis can further be applied to a different range of forklifts

and adjusted to different types of heavy-duty vehicles, such as reach stackers and tractors. Second, the

daily dataset was analyzed for one year and is expandable to include more vehicles and to uncover

new patterns in fuel consumption over a longer time. The data from the sensors were sent every

second; thus, a more detailed analysis of fine-grained data might also bring new insights into patterns

of fuel consumption. Third, the analysis was done on the vehicle level and might further be extended

by focusing on the individual driver level. Therefore, future studies over a longer time span and on

a larger scale might help to discover new patterns that can be used to adjust fuel consumption and

productivity. Finally, while we applied the systems approach of the complementarity theory [59],

future experimental studies can explore the nature of the interactions of the various factors identified.

6. Conclusions

In the present paper, an analysis of sensor data aimed at discovering drivers of fuel consumption

and productivity was carried out. Most previous studies have focused only on one or a few factors

that affect fuel consumption in terms of liters of fuel consumed, and little attention has been paid

to complementary relationships among them and their effect on fuel consumption and productivity,

which was the target in the present study. An evaluation of the effect of several explanatory variables

on fuel consumption revealed the considerable effect of distance, average speed, and time-related

variables on overall fuel consumption per unit time. The analysis also demonstrated the importance of

activities in different workload spectra and overload hours in relation to fuel consumption per load,

per ton, and per ton-meter. In addition, for activity-based parameters, particular industry segments

and countries were shown to be more efficient in terms of fuel consumption. In contrast to previous

studies, this study demonstrated which combinations of fuel consumption factors can be used to

further establish complementary relationships between factors. The results of the study can further be

used to conduct controllable experiments to explore the nature of the interactions among particular

factors, among which complementary relationships emerge. The results of the study can also be used in

a more detailed analysis of forklift activities in different workload spectra and for different dependent

variables. The results can also be used to further explore practices in fuel consumption in different

countries and industry segments to formulate a list of the best practices. Thus, further analysis can

bring new insights into how to reduce fuel consumption and become more cost effective without losing

vehicle productivity.
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Appendix A

Table A1. Descriptive statistics of variables used in the analysis.

Variables
Unit of

Measurement
Description Mean

Standard
Deviation

Counters

Distance forward km
Total distance forward covered by a
vehicle during a specific time period

24.463 20.707

Distance in reverse km
Total distance in reverse covered by a
vehicle during a specific time period

5.333 6.412

Total distance km
Total distance covered by a vehicle

during a specific time period
29.796 24.230

Idle occurrences number
Number of times when a vehicle has been

idling without performing/producing
8.310 8.867

Shock occurrences number

Number of shocks (hard braking,
crashing into the bumper, crossing a
railway, and any other jarring events)

experienced by a vehicle

58.240 102.521

Number of
overloads

number
Number of times a vehicle lifted more

than its rated capacity
15.250 49.380

Total weight ton
Total number of tons being lifted by a
vehicle during a specific time period

660.731 727.788

Total loads lifted number
Number of loads lifted by a vehicle

during a specific time period
175.850 172.781

Speed average km/h
The average speed a vehicle achieves

during a given time period
6.623 3.161

Speed maximum km/h
The maximum speed of a vehicle within a

set time period
20.320 6.763

Diesel level
maximum

% The filling levels of diesel fuel 84.910 22.906

Battery voltage V The voltage of the battery 17.188 12.718

Time

Driving time hour
Total number of hours a vehicle is driven

(speed greater than 0)
5.273 3.778

Hydraulic time hour Total hours of hydraulic function use 2.540 2.004

Idling time hour
Time the engine is running but the vehicle

is not moving or using load handling
functions

4.102 3.519

Engine time hour
Time the engine is running when vehicle

is moving or using load handling
functions

9.509 6.660

Time in ECO mode hour
Time the vehicle has been driving in Eco

driving mode
0.919 0.925

Time in Normal
mode

hour
Time the vehicle has been driving in

Normal driving mode
1.814 1.298

Time in Power
mode

hour
Time the vehicle has been driving in

Power driving mode
2.239 1.560

Production time hour Engine time minus idle time 5.408 3.936
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Table A1. Cont.

Variables
Unit of

Measurement
Description Mean

Standard
Deviation

Time in overload hour
Time during which a vehicle carried a

very heavy load
0.187 0.750

Load spectra (time)

Load spectrum
0–10percentage

time
hour

Time during which a vehicle operated in
load spectrum 0–10

2.517 2.418

Load spectrum
11–20percentage

time
hour

Time during which a vehicle operated in
load spectrum 11–20

0.488 0.582

Load spectrum
21–30percentage

time
hour

Time during which a vehicle operated in
load spectrum 21–30

0.571 0.814

Load spectrum
31–40percentage

time
hour

Time during which a vehicle operated in
load spectrum 31–40

0.444 0.687

Load spectrum
41–50percentage

time
hour

Time during which a vehicle operated in
load spectrum 41–50

0.288 0.383

Load spectrum
51–60percentage

time
hour

Time during which a vehicle operated in
load spectrum 51–60

0.238 0.369

Load spectrum
71–80percentage

time
hour

Time during which a vehicle operated in
load spectrum 71–80

0.132 0.264

Load spectrum
81–90percetage

time
hour

Time during which a vehicle operated in
load spectrum 81–90

0.094 0.271

Load spectrum
91–100percentage

time
hour

Time during which a vehicle operated in
load spectrum 91–100

0.063 0.193

Load spectrum
above

101percentage time
hour

Time during which a vehicle operated in
load spectrum above 100

0.255 0.524

Load Spectra (Number of Lifts)

Load spectrum
0–10percentage

counter
number Number of lifts in load spectrum 0–10 36.670 48.323

Load spectrum
11–20 percentage

counter
number Number of lifts in load spectrum 11–20 31.755 41.679

Load spectrum
21–30percentage

counter
number Number of lifts in load spectrum 21–30 27.693 37.146

Load spectrum
31–40percentage

counter
number Number of lifts in load spectrum 31–40 18.240 25.740
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Table A1. Cont.

Variables
Unit of

Measurement
Description Mean

Standard
Deviation

Load spectrum
41–50percentage

counter
number Number of lifts in load spectrum 41–50 13.190 24.116

Load spectrum
51–60percentage

counter
number Number of lifts in load spectrum 51–60 9.833 17.099

Load spectrum
61–70percentage

counter
number Number of lifts in load spectrum 61–70 7.676 15.649

Load spectrum
71–80percentage

counter
number Number of lifts in load spectrum 71–80 4.699 10.615

Load spectrum
81–90percentage

counter
number Number of lifts in load spectrum 81–90 2.34 7.699

Temperature

Ambient
temperature

minimum

◦C
Minimum ambient temperature during a

given time period
10.940 8.045

Ambient
temperature
maximum

◦C
Maximum ambient temperature during a

given time period
20.770 9.290

Ambient
temperature

average

◦C
Average ambient temperature during a

given time period
16.190 8.371

Engine coolant
temperature

average

◦C
Average engine coolant temperature

during a given time period
78.312 11.117

Hydraulic
temperature

average

◦C
Average hydraulic temperature average

during a given time period
44.889 13.079

Transmission oil
temperature

average

◦C
Average transmission oil temperature

during a given time period
63.907 12.515

Fuel-related Variables Per Time Unit

Fuel used Liter/day
The amount of fuel consumed by a

vehicle during a specific time period (per
day)

65.409 47.196

Fuel used per hour Liter/hour
Average fuel consumption per engine

hour
7.031 2.391

Fuel used per load Liter/load Average fuel consumption per load 1.604 7.398

Fuel used per ton Liter/ton Average fuel consumption per ton 0.691 4.925

Fuel used per
ton-meter

Liter/ton-meter Average fuel consumption per ton-meter 0.0216 0.264
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Appendix B
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Figure A1. Normal probability plots of the most relevant variables for fuel consumption (liter/day,

liter/hour, liter/load, liter/ton, liter/ton-meter). The data that did not follow the straight line were used

to find cut-off limits in order to select important variables for fuel consumption.
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Figure A2. The choice of partial least-squares factors based on explained variance, preserving the

essence of the original data (liter/day, liter/hour, liter/load, liter/ton, liter/ton-meter). Those factors that

accounted for little variation were excluded from the analysis.
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