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Abstract: Agricultural systems in the EU have become more vulnerable and less sustainable due
to an overreliance on herbicides and the tremendous increase in herbicide-resistant weeds. The
EU Green Deal aims to reduce the use and risk of chemical pesticides by 50% by 2030, although
it is still undefined whether a reduction in herbicide use could be feasible in different farming
systems and situations. This review aims to provide a holistic framework for sustainable crop
and weed management to reduce the herbicide input and ensure crop protection. Current and
future dilemmas and policies that need to be handled to ensure the agroecological transition of
the EU’s agricultural systems are also discussed. The integration of non-chemical alternatives for
integrated weed management is feasible and includes novel cultivation techniques (e.g., intercropping,
false seedbed, reduced tillage, crop rotation and diversification, adjustments on sowing densities
and dates), non-chemical tools (e.g., flaming, seed coating, beneficial microorganisms, mechanical
weeding, biocontrol agents and natural herbicides), competitive plant material (hybrids and cultivars,
cover crops, service crops), and new technologies and precision agriculture tools (e.g., Decision
Support Systems, robots, remote sensing, UAVs, omics and nanotechnology). A special focus should
be appointed to agroecology and biodiversity conservation.

Keywords: EU Green Deal; integrated weed management; precision agriculture; agroecosystem
services; herbicide reduction; sustainability

1. Introduction

Human health, biodiversity and farm sustainability are severely affected by the toxic
substances of many chemical pesticides, which have been blamed for soil and water
degradation. The European Union’s (EU) recent legislative frameworks set citizens’ needs
and demands as the major task for the organization of the agricultural sector in the member
countries [1]. The formerly typical and conventional crop and food production systems
have now been modernized with the introduction of novel cultivation techniques, the
digitalization of agriculture, new food chains, optimized labeling, monitoring for carbon
emissions and the sustainable use of chemicals and water [2]. The “greening” across
the Union is followed by ecologically friendly practices that promote safe products and
ensure human health, the results of which, though, remain under debate. However,
agricultural systems remain extremely vulnerable as they heavily depend on external
inputs. This is more evident in the era of climate change, while the COVID-19 pandemic
could be a paradigm that highlights how agricultural systems are severely affected and
need transformation [3,4]. Weeds are considered a major threat for the sustainability of
different agricultural systems. New integrated weed-management techniques, strategies
and tools are being exploited to combat weeds in the era of the EU Green Deal, in parallel
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with the “agricultural greening” and the “Agriculture 4.0” movements which could be
characterized as the main stimuli that will shape the food and agricultural sectors.

The European Commission has set a concrete strategic plan to reduce the use of chem-
icals, enhance biodiversity and assist farmers in decision-making processes to increase
farm sustainability within the borders of the Union. These goals are in line with and are
supported by the directives of the United Nations for sustainable production. Sustain-
ability is a multifactorial term that could receive multifarious definitions. An excellent
analytic definition diagram is provided by Angevin et al. [5]. Several axes of the targeted
future profile of agriculture in the EU are presented in Table 1. The ambitions of EU
countries for safer and more resilient agriculture will be addressed through the futuristic
legislative frameworks of the new Common Agricultural Policy (CAP) that will need to be
implemented at a country level. The eco-schemes and agroecological schemes that will be
adopted in the context of the CAP Strategic Plans will have a key role in ensuring the goals
of the Union are met by 2030. Recently, the released calls of Horizon Europe and the EU
Green Deal showed the intention of the Commission to find solutions for a more resilient
and sustainable agricultural production. This review aims to shed light on all currently
available herbicide alternatives for weed management by highlighting case studies for a
successful reduction in herbicide input. Additional studies are discussed across the text to
present examples of successful herbicide reduction and provide insights for non-chemical
weed management in various agricultural systems.

Table 1. The most important strategies/directives for chemical pesticide reduction both in the
European Union and globally.

Strategic Plan In the Context of Target Core Aim

From Farm to Fork EU Green Deal
Reduce by 50% the use and risk of chemical
pesticides and the use of more hazardous

pesticides by 2030

Human health
Sustainability

EU 2030 Biodiversity Strategy EU Green Deal Reduce by 50% the use and risk of chemical
pesticides by 2030 Biodiversity

Zero Pollution EU Green Deal

Protect citizens against dangerous chemicals
with a new chemicals strategy for sustainability

for a toxic-free environment
Develop more sustainable alternatives

Human health
Environment

Strategic Plan 2020–2024
Directorate General for
Agriculture and Rural

Development (EU Commission)

SO5: In line with the Farm to Fork Strategy,
improve the response of EU agriculture to

societal demands on food and health, including
safe, nutritious and sustainable food, food waste,

as well as animal welfare through the CAP
SO6: Contribute to addressing climate change,

protecting natural resources and preserving
biodiversity through the CAP

Human health
Environment
Biodiversity

2030 Agenda for Sustainable
Development United Nations

Sustainable Development Goals
#SDG2–Zero Hunger

#SDG12–Responsible Consumption
and Production

#SDG13–Climate Action

Human health
Environment
Biodiversity

Sustainability

Directive 2009/128/EC
Sustainable Use of Pesticides European Commission

Reduction in risks and impacts of pesticide use
on human health and the environment and

promotion of Integrated Pest Management (IPM)
and alternative approaches or techniques, such

as non-chemical alternatives to pesticides.

Sustainability

Mission Soil European Commission
By 2030, at least 75% of all soils in each EU
country are healthy and are able to provide

essential services that we depend on.

Sustainability
Environment

2. Challenges for Sustainable Crop and Weed Management
2.1. Impact of Climate Change on Crops and Weeds

Climate change is anticipated to provoke an increase in temperatures of at least 2 ◦C
in the 21st century and negatively affect crop production through an increase in biotic and
abiotic stresses [6]. The increase in the occurrence of extreme environmental events, such
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as heavy precipitation, is another factor that is thoroughly examined to predict yield losses
in the era of a variable climate [7]. As stated by Maes et al. [8], the EU will suffer more
drought events and the temperatures will cause steering pressure to the agroecosystems.
However, the uncertainty remains high as climate change is an ongoing phenomenon [9].
Sustainable crop production is a complex nexus of decisions and resources which need to
be properly managed to alleviate the impacts of climate change in the long term. This task
is even more challenging in terms of organic farming systems, where chemical pesticides
are not used. The situation is even worse in organic farmland where reduced tillage is
applied and there is occurrence of perennial noxious weeds, which are normally managed
with effective synthetic herbicides, such as glyphosate, in conventional systems, but these
are absent in organic cropping systems [10]. A future scenario implies that crops which are
susceptible to multiple pests and diseases, such as wheat, will probably face higher yield
gaps under organic cultivation compared to conventional production [11].

The rise of temperatures and the increase in CO2 levels have been long recognized as
causal factors for shifts in weed flora and alterations in weed dynamics [12,13]. Why is
the elevation of CO2 levels important? Weeds following the C3 photosynthetic pathway
will be favored by the elevation of CO2 levels, while noxious C4 weeds may be easily
acclimatized in northern latitudes [13]. For instance, Cirsium arvense (L.) Scop. is a C3
perennial weed that is favored by CO2 elevation and causes higher yield losses in soybeans
under this climate scenario [14]. Invasive Plant Species (IPS) are also expected to be favored
by the changes in temperatures and CO2 levels in shifting climate zones [15,16], increasing
the costs associated with their management [17]. In this context, the current and future
weed-management strategies should be also oriented to manage plant invasions.

Herbicides’ efficacy will be also negatively affected by the changes in temperatures,
humidity and CO2 levels. An analytical review of the response of different herbicide
mode of actions to these factors is provided by Varanasi et al. [18]. A recent paper reviews
the effects of climate change on ecological weed-management strategies and concludes
that cultivation techniques (e.g., tillage) will be reduced in environments with variable
climates, while non-chemical tools such as mulching and weed seedbank management will
be increased [19].

2.2. The Reality behind the Use of Herbicides in EU: What Is the Trend?

Herbicides have been long applied in agricultural systems and are the major commod-
ity in agricultural markets, posing an important tool for crop protection, especially in the
next years when weeds are expected to cause more problems in farming systems [20,21].
The total use of herbicides in the EU27 from 1990 indicates that the target of a 50% reduction
in chemical pesticides by 2030 remains a big challenge (Figure 1). However, consecutive
herbicide use is not only observed in the EU, but it is also a major component for crop
protection in developed and developing countries [22,23]. In the USA, the herbicide input
in conventional crops has been raised by 34% from to 2012 to 2019 [24]. The release of
the Sustainable Use of pesticides Directive (SUD) in 2009, the agreements in the Paris
Agreement for Climate Change and the 2030 Agenda for Sustainable Development of UN
in 2015 and lastly the initiation of the EU Green Deal and Farm to Fork Strategy (F2F) in
2019 created a fertile ground for the transition of agricultural systems for the achievement
of resilience and sustainability.

According to the simulations of Rasche [11], herbicide use is expected to remain
constant in the EU during the next decades. This phenomenon is reinforced by several
important factors that are described by Dayan [25]. The discovery of new active ingre-
dients is still slow, herbicide resistance cases are steadily increasing and effective active
ingredients are banned or are expected to withdraw from the markets. Nonetheless, as
described by González et al. [26] referring to pesticide policies in Spain, a trend in toxic
pesticide withdrawal is not also observed in a pesticide use reduction, indicating that
more complicated strategies should be considered in the long term. Hence, policy-makers
and researchers need to answer how the agricultural sector could be structured without
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herbicides. A study in Switzerland revealed that herbicide-free wheat production could be
a promising alternative and result in sufficient net returns to farmers if specific payment
schemes which target herbicide reduction and soil preservation through reduced tillage are
in force [27]. This alternative, though, requires incentive actions on a European scale that
would promote the development of agricultural machinery, the industry of non-chemical
tools and investment in agricultural advisory services.
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2.3. Policy-Making: Time to Make Drastic Horizontal Decisions

The EU stands in front of dilemmas and critical decisions regarding pesticide policies
and agroecosystems preservation.

• What is the fate of glyphosate and are there any alternatives? Glyphosate is not consis-
tent with several sustainable development goals [28] and its appearance in markets
beyond 2022 is still unknown, while several generic products of efficient herbicides
have overwhelmed the markets after patents expired [23]. Nonetheless, there are
efficient alternatives to glyphosate that need to be integrated into a complex system of
decision making for crop protection to retain the low costs and maintain the ecosystem
services [29,30]. A concern regarding the future of herbicides is extended beyond the
fate of glyphosate and is fittingly stated by Beckie et al. [31] who wonder what the
future of other successful herbicides will be.

• Will land use be changed? Land use is scheduled to change towards organic production
systems. The EU’s Green Deal ambition to cover 25% of the Union’s acreage with
organic land will be indisputably affected by a reduction in chemical input and
disruptions of labor intensity.

• How will eco-schemes perform? The ambitious eco-schemes and the actions for biodi-
versity conservation are anticipated to be major components of the new fairer and
greener CAP. However, they must be consecutively monitored for proper implementa-
tion [32,33].

• How will fossil fuel CO2 emissions and greenhouse gas emissions be further reduced? A recent
report by Crippa et al. [34] reveals that the emissions of the EU27 have been reduced

https://www.fao.org/faostat/en/#data/RP
https://www.fao.org/faostat/en/#data/RP


Agronomy 2022, 12, 589 5 of 23

significantly in 2020 compared to 1990 levels. There are also tools available to predict
greenhouse gas emissions and assist future decision-making [35].

• Are all EU countries able to conform to the green transition? An agroecological transforma-
tion of European agriculture should comply with the actual needs of the participant
countries and their operational capacity. The EU consists of countries with different
national legislations, organization levels and orientations of the agricultural sector [36].
For instance, the agricultural advisory services in Greece are way behind the structured
systems of Denmark and Germany. A horizontal reduction in pesticides by 50% in
the next decade across all EU countries is a real challenge. Moreover, the available
herbicides per country vary depending on the crop scenario and the pesticide regula-
tions [37]. Therefore, analytical frameworks with tailor-made approaches should be
composed for each country separately.

• Are we in a shortfall of available herbicides? The costs for the development and the ap-
proval of a new synthetic herbicide are extremely high and time-consuming, implying
that there is a lack of discoveries on new technologies and substances [38,39]. Many
herbicides have been also banned, accused of causing environmental degradation and
being toxic for humans and biodiversity. However, it could always be applicable to
shift to less hazardous active ingredients [40]. The EU supports the utilization of fewer
chemical herbicides, in line with its regulations and directives [41]. Under this context,
the increasing trend of biopesticide application is obvious, though these should also
undergo extensive assessments for their toxic profile [42].

• How will the countries battle noxious weeds, herbicide-resistant weeds and invasive plant
species? An over-reliance on herbicides is considered to be the major factor that stimu-
lated the evolution of herbicide resistance in multiple weeds [43]. In the EU27, more
than 185 unique herbicide-resistance cases have been reported by 2021 [44]. Among
the others, these refer to resistance to acetyl CoA carboxylase (ACCase), acetolactate
synthase (ALS) and enolpyruvyl shikimate phosphate synthase (EPSPS) inhibitors.
All these cases constitute to the adoption of specific herbicide-resistance-management
strategies, which have been reviewed by Peterson et al. [45], Beckie et al. [46] and Per-
otti et al. [47]. The introduction of invasive plant species is another problem that needs
to be addressed in terms of Integrated Weed Management (IWM) as plant invaders can
rapidly alter the traits of farming systems and lead to herbicide application failures.
For instance, Amaranthus palmeri S. Wats. populations have been recently detected in
Greece, already showing tolerance to nicosulfuron [48]. As a result, drastic measures
should be taken proactively and reactively to manage plant invasions in all stages of
invasion [49].

A pressing topic that bothers policy-makers and scientists is the approval of genet-
ically modified organisms (GMOs) for cultivation in the EU. A central directive of the
EU is directed toward the non-cultivation of GMO plants, receiving high pressure from
participant countries and non-governmental organizations. A fact that comes from a re-
cent report, and that could be used in further discussions on the fate of GMOs in the EU,
describes a reduction in the herbicide overload in developed countries such as the USA
and Canada in GM herbicide-tolerant crops, such as soybeans and maize, indicating that
millions of kilos of toxic active ingredients could be avoided [50]. Should this herbicide use
reduction be combined with reduced tillage, then this model might be beneficial for the
environment, with less carbon released, fewer gas emissions and diminished herbicide use.
Weed resistance to herbicides still remains a major constraint. Stepping back to the existing
conditions realized in the EU, non-chemical alternatives should be identified and adopted
in the short and long term. These should be efficient, not harmful for the user and should
not pollute or degrade the environment, the soil and the resources.

2.4. Biases of Farmers on Adoption of Sustainable Solutions

Future activities on the conversion of agricultural systems should be anthropocentric,
among other things [51]. The sustainable intensification of agriculture should not exclude
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the participation of farmers in the decision-making process, as they are those who will
implement the actions to satisfy the demands of the EU Green Deal. The EU aims to per-
suade citizens to choose sustainable bio-based solutions, in the context of EU Bioeconomy
Strategy [52]. This will be a fussy task in the case of pesticide use and policies, since there
are not clear communication channels with stakeholders, as revealed by a paper from
Spain [26]. For this reason, case studies in specific weed-management strategies and under
specific crop scenarios should be conducted in real field conditions to convince farmers that
pesticide reduction is feasible. This has been proved in a survey on viticulture in France,
where farmers showed that the herbicide input reduced by half when they adopted specific
agri-environmental schemes [53].

The barriers on the adoption of sustainable tactics for crop and weed management are
mainly stirred by: (i) economic factors, (ii) behavioral factors, (iii) lack of knowledge and
trust, (iv) shortage of available technologies, (v) inefficient agricultural advisory, (vi) het-
erogeneity of farming systems, (vii) policies and regulations and (viii) risk factors [54–58].
Indicatively, farmers and policy-makers need to account for multiple factors that affect
sustainable crop and weed management, which are presented by Reidsma et al. [59].

It is generally known that farmers will be more likely to adopt and implement low-cost
solutions for weed management, as recognized by Shaner and Beckie [60]. As a paradigm,
not all available precision agriculture technologies are likely to be adopted by farmers
due to high costs and expenditures [61]. Moreover, the agricultural system may be itself a
limiting factor for the adoption of sustainable solutions. For instance, in organic farming
systems there is lack of available methods for cover crop termination, making intractable
the combination with no-tillage practices [62]. The landscape is another possible limiting
factor for the adoption of non-chemical weed-management methods. A paradigm comes
from the unavailability of mechanical weeding in vineyards which are established in fields
with high slope [63]. It is critical to understand the farmers’ decision-making and their
perceptions of changes in the structure, components and technologies of their farming
systems [59,64–68]. Policy-makers’ endeavors to raise awareness to farmers on sustainable
pesticide use are principally based on the education of farmers and their active involvement
in the transformation of agricultural systems [54,69–71].

3. Examples and Insights of Successful, Less-Chemical-Reliant Weed Management

Effective alternatives to chemical herbicides should comply with the EU actions for
climate and the targets for greenhouse gas emissions reduction by 2030. Briefly, all actions
focus on four major pillars: [I] plant material (including cover crops and techniques for the
improvement of crop competitiveness), [II] non-chemical tools (the release of biological
agents and the utilization of natural-based or organic herbicides are at the core of current
tactics for crop protection), [III] new technologies (the digitalization of agriculture shifts
the conventional agricultural practices toward the use of computers, smartphones, neural
networks and remote sensing) and [IV] cultivation techniques (cultural practices that
originated from the past are coming back to increase biodiversity and provide “smart”
solutions for weed management) (Figure 2). The enhancement of farming systems’ tolerance
to weed pressure is reinforced by the selection of competitive cultivars, adjustment of row
spacing, increasing sowing density and the optimization of fertilization and irrigation
regimes, which, though, are outside of the scope of this review.

3.1. Cover Cropping and Selection of Competitive Crops

Cover crops are a promising alternative delivering multiple positive ecosystem ser-
vices [72], especially for dryland farming systems, to reduce both tillage and herbicide
input [73,74]. It is also a widely adopted technique that has been linked with various
direct payment schemes for greening and receives farmer acceptance as revealed from a
UK survey where one out of four farmers observed significant herbicide reduction with the
introduction of cover crops [75]. As has been accurately stated by Sharma et al. [76], cover
crops are a major part of diversified cropping systems that boost functional biodiversity
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and improve important ecosystem services, which in turn convert crop production systems
into systems more resilient to climate change. However, it should be mentioned that the
proper selection of a cover crop (i.e., an overwintered legume or rye) and the optimum
fertilizer rate (i.e., exceeded nitrogen supply) are crucial decisions to be taken for the deter-
mination of the crop’s competitiveness capacity with weeds and the formation of the yield
components. For instance, rye (Secale cereale L.) is a cover crop presenting high allelopathic
potential. Rye mulch resulted in a 66% reduction in emerged weeds in no-till maize as
compared to conventional tillage (ploughing), indicating that herbicide input could be
reduced if effective cover crops are integrated into novel crop rotations, while reduced
tillage would be of great significance for the sustainability of the farming systems [77]. The
emergence of the noxious weed Amaranthus palmeri S. Wats. was decreased by 67% with the
use of rye as a cover crop with cotton [78]. A successful combination of cover crop mulch
(crimson clover, Trifolium incarnatum L.) with the organic herbicide capric/caprylic acid
has been reported to reduce the weed pressure on organic vegetable crops and prevent
tillage [79]. Crop residues of the winter annual medic (Medicago scutellata L.) left on the soil
surface were effective enough to reduce weed density and ensure sufficient tomato yield
when combined with a 50% reduction in metribuzin, indicating that the cover crops can
act as physical constraint for weed emergence and allow a reduction in herbicide input,
especially in no-tillage systems where the cover crop residues are not incorporated into
the soil and, hence, do not modify the soil N content that might stimulate different weed
responses and establishment [80]. The common practice to terminate cover crops is the
broadcast application of non-selective herbicides, such as glyphosate. The achievement of
a sufficient yield and a reduction in herbicide input in no-tillage winter wheat, where a roll
chopper is used instead of glyphosate, could be achieved only with the application of selec-
tive herbicides in spring [81]. In the same study, the assessment of the weed-suppressive
potential of eleven cover crops in no-tillage winter wheat in Switzerland indicated that all
cover crops significantly reduced the weed biomass in autumn. The sowing of cover crops
after winter cereals and before next year’s maize or sunflower cultivation reduced the dry
matter of weeds by 95–100% in an integrated cultivation system with the use of a non-
selective herbicide, while the weed dry-matter reduction in an organic cultivation system
with disc harrowing and ploughing varied between 19 and 87%, indicating that cover crops
demonstrate high weed-suppressive potential [82]. Despite the significant contribution of
cover crops in crop rotations, their integration in perennial cropping systems has also been
revealed as a highly effective tool for weed suppression. In California, vineyards mulched
with cover crops of oat, vetch and their combination resulted in high weed suppression
and almost EUR 800 ha−1 higher net profits as compared to those with conventional tillage
and herbicide practices [83]. Hairy vetch (Vicia villosa Roth) and rye are two cover crops
that could increase the competitive potential of sweet corn in a no-till system, leading to
sufficient yield and adequate weed suppression [84].

3.2. Reducing Weed Pressure with “Smart” Cultivation Techniques

Farmers tend to convert their farming systems in the last few years to less-chemical-
reliant systems, adopting in many cases the principles and strategies of conservation
agriculture. As for weed management, conservation agriculture (CA) refers to the bare
minimum soil disturbance by applying reduced tillage, choosing diversified crop rotations,
and using cover crops and residues to manage emerged weeds. The conservative agronomic
practices are preferred by farmers due to the reduced costs in time, labor and fuel compared
to the conventional practices [85]. Although CA provides desirable positive traits to
agroecosystems, including reduced greenhouse gas emissions among others, it may lead
to significant alterations in weed flora by promoting either the dominance of annual
or perennial weeds, grasses or broadleaves and small- or large-sized weed seeds [86].
Additionally, CA common practices such as reduced tillage have been linked with increases
in herbicides use, as revealed from a comparative analysis of sustainable agricultural
practices in Arizona, USA, in the period between 2012 and 2017 [87]. Herbicide use faced a
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10% increment as a result of the significant shift of many acreages to reduced-tillage systems.
However, no-tillage is an ever-increasing trend across different crops due to its positive
impact on soil and the net returns to farmers. No-tillage is considered a highly profitable
practice in farms with sizes of over 400 ha of arable land, while the economic performance in
smaller farms is better with chisel ploughing [88]. An extensive review on the advantages
and disadvantages of no-tillage has been given by Soane et al. [89]. Occasional tillage
every 5–10 years could abate any negative impacts of no-tillage and contribute to weed
management, without affecting certain ecosystem services of the agricultural systems [90].
In a combined assessment of the effect of cover crops, tillage and fertilization in weed
management with maize, it was revealed that reduced tillage, i.e., mechanical control of
weeds in the absence of herbicides, could not result in adequate mitigation of the weed
pressure [91]. On the contrary, glyphosate and other post-emergence herbicides were,
in combination with moldboard ploughing or under no-tillage systems, efficient against
weeds. Tillage, though, has a major role in a reduction in seed germination and may be
associated with reduced herbicide rates to achieve a high control of weeds. For instance,
the application of 350 g ae ha−1 of 2,4-D ester in horseweed (Conyza canadensis) provided
equal control in terms of weed biomass and density reduction compared to higher doses
of 2,4-D (600 or 850 g ae ha−1) in spring sprayings after shallow fall tillage [92]. However,
it should be noted that reduced sublethal herbicide rates might cause crop phytotoxicity
and yield reductions, as indicated by research regarding the effects of sublethal rates of
synthetic auxin herbicides in soybean production [93]. Reduced herbicide doses might
also stimulate plant hormesis, a phenomenon that is related to improvements in weed
growth instead of growth inhibition, something that has been observed in glyphosate,
2,4-D and paraquat [94], while it might also be associated with the evolution of herbicide
resistance [95].

Agronomy 2022, 12, 589 7 of 23 
 

 

adjustment of row spacing, increasing sowing density and the optimization of fertilization 

and irrigation regimes, which, though, are outside of the scope of this review. 

 

Figure 2. A holistic framework for the optimization of weed management in the era of the EU Green 

Deal. 

3.1. Cover Cropping and Selection of Competitive Crops 

Cover crops are a promising alternative delivering multiple positive ecosystem ser-

vices [72], especially for dryland farming systems, to reduce both tillage and herbicide 

input [73,74]. It is also a widely adopted technique that has been linked with various direct 

payment schemes for greening and receives farmer acceptance as revealed from a UK sur-

vey where one out of four farmers observed significant herbicide reduction with the in-

troduction of cover crops [75]. As has been accurately stated by Sharma et al. [76], cover 

crops are a major part of diversified cropping systems that boost functional biodiversity 

and improve important ecosystem services, which in turn convert crop production sys-

tems into systems more resilient to climate change. However, it should be mentioned that 

the proper selection of a cover crop (i.e., an overwintered legume or rye) and the optimum 

fertilizer rate (i.e., exceeded nitrogen supply) are crucial decisions to be taken for the de-

termination of the crop’s competitiveness capacity with weeds and the formation of the 

yield components. For instance, rye (Secale cereale L.) is a cover crop presenting high alle-

lopathic potential. Rye mulch resulted in a 66% reduction in emerged weeds in no-till 

maize as compared to conventional tillage (ploughing), indicating that herbicide input 

could be reduced if effective cover crops are integrated into novel crop rotations, while 

reduced tillage would be of great significance for the sustainability of the farming systems 

[77]. The emergence of the noxious weed Amaranthus palmeri S. Wats. was decreased by 

67% with the use of rye as a cover crop with cotton [78]. A successful combination of cover 

crop mulch (crimson clover, Trifolium incarnatum L.) with the organic herbicide cap-

ric/caprylic acid has been reported to reduce the weed pressure on organic vegetable crops 

and prevent tillage [79]. Crop residues of the winter annual medic (Medicago scutellata L.) 

left on the soil surface were effective enough to reduce weed density and ensure sufficient 

tomato yield when combined with a 50% reduction in metribuzin, indicating that the 

cover crops can act as physical constraint for weed emergence and allow a reduction in 

herbicide input, especially in no-tillage systems where the cover crop residues are not in-

corporated into the soil and, hence, do not modify the soil N content that might stimulate 

different weed responses and establishment [80]. The common practice to terminate cover 

crops is the broadcast application of non-selective herbicides, such as glyphosate. The 

achievement of a sufficient yield and a reduction in herbicide input in no-tillage winter 

wheat, where a roll chopper is used instead of glyphosate, could be achieved only with 

Figure 2. A holistic framework for the optimization of weed management in the era of the EU
Green Deal.

Even though the positive results of reduced tillage might appear shortly after the
introduction of this technique, several years of application are required to observe a sig-
nificant impact in weed density and weed flora. Farmers should act in the long term to
receive the beneficial effects of novel cropping systems and cultivation techniques that
alter the soil properties and improve the crop’s competitiveness against the weeds. For
instance, a three-year crop rotation consisting of fallow-winter wheat-spring barley in a low
precipitation region in the USA has been reported to effectively manage weeds, reduce the
pressure from the noxious winter annual weed species downy brome (Bromus tectorum L.)
and, notably, increase wheat grain yield, compared to the consecutive fallow-winter wheat
cropping system [96]. In a four-year soybean–corn rotation, the application of 50% of the
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recommended herbicide rates allowed low weed densities and provided high net returns
per ha, demonstrating a low environmental risk [97]. Successful examples of diversified
crop rotations for weed management and herbicide use reductions have been long reported
in Canada by Nazarko et al. [98].

3.3. Non-Chemical Tools as Promising Alternatives to Herbicides

All the aforementioned examples of reduced chemical inputs suggest that weed man-
agement should focus on interdisciplinary approaches that are available to reduce chemical
use, increase the income of the farmers and prove their benefits for the environment and
human health. Besides the required shift of the EU agricultural sector to a more resilient
nexus of productive systems, it is vital to adopt new legislative frameworks that make more
tools available, such as new techniques of biotechnology, to allow the EU to accomplish
the goals for sustainable agricultural and food production [99]. Equally imperative is
experimentation on a large scale and under different climatic and crop scenarios for the
validation of the efficacy of non-chemical tools that are promising for weed management,
such as bioherbicides [41,100]. Pelargonic acid is a natural substance that has been reported
to be highly effective against the grass weeds Lolium rigidum Gaud. and Avena sterilis L.
when combined with essential oils such as manuka oil, indicating that future applications
with natural herbicides could be applied on a large field scale for weed management in both
organic and sustainable farming systems [101]. The mixture of sorghum and sunflower
extracts with one fourth of the recommended doses of the herbicides mesosulfuron + io-
dosulfuron, metribuzin, fenoxaprop-p-ethyl and isoproturon resulted in high control of
wild oat and canary grass by reducing the biomass by up to 92% and providing high wheat
grain yield [102]. The same authors suggested that the combination of plant extracts with
reduced rates of herbicides is a cost-effective approach for weed management in wheat.
Similarly, the integration of adjuvants into herbicide tank mixtures is a promising method
to reduce herbicide input or increase herbicide efficacy and achieve high levels of weed
control, something quite desirable against herbicide-resistant weeds [103]. The formulation
of some active ingredients, such as glyphosate, should be also considered to avoid spraying
failures [104]. The band application of a pre-emergence herbicide followed by inter-row
hoeing in a silage maize in northern Italy allowed for a 66% reduction in herbicide input
compared to the reference pre-emergence broadcast application without jeopardizing the
yield and saving up to EUR 60 ha−1 [105]. In the same study, the post-emergence band
application and the inter-row hoeing resulted in a sufficient yield and led to a 50% re-
duction in herbicide input. The band application of metolachlor PRE and metribuzin +
2,4-D POST at reduced rates saved half the required herbicide compared to the broadcast
application in maize and resulted in a USD 21.78 ha−1 average saving and USD 4.66 ha−1

if cultivation is conducted, whereas maize yield was acceptable [106]. In Germany, a band
application of reduced rates of topramezone/dicamba and dimethenamid-P in maize with
hoeing followed by a second hoeing decreased herbicide use, and 60% of the field remained
unsprayed, as compared to the conventional spraying with a single herbicide application
with higher doses [107]. In the same study in Italian maize fields, the herbicide saving
was achieved by applying hoeing after the use of the weed emergence predictive model
ALERTINF, which indicates herbicide applications only in the case of high weed densities
and thus assists the decision-making process for less chemical-reliant crop production [108].
In Slovenia, tine harrowing plus reduced herbicide rates of mesotrione and nicosulfuron
at 2–3 maize leaves increased the grain yield in 2012 compared to the full herbicide rates.
In all the aforementioned experiments, Vasileiadis et al. [107] observed that the conven-
tional broadcast application of herbicides at the maximum labeled dose can be sufficiently
replaced by integrated weed-management methods including reduced chemical input and
precise mechanical weed control, almost universally reducing the treatment frequency
index (ratio of applied dose to recommended rate for weed control) without jeopardizing
the yield and uniquely increasing the application costs.
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3.4. Computer- and Machine-Based Assistance for Weed Management

Precision agriculture technologies have been extensively reported to reduce the green-
house gas emissions and the external input of agricultural systems [61]. The use of cutting-
edge sensors, the development of Decision Support Systems, and specific improvements in
machinery have contributed to an increase in new technologies adoption for weed manage-
ment in major field crops and a reduction in herbicide input [109,110]. The evolution of
precision agriculture tools, such as the development of autonomous robotic weed-control
machines, requires the proper detection of the weed and the application of precise weed
control either mechanically or with chemicals to prevent possible crop injury, whereas the
herbicide input will be reduced, and the crop yield will not be severely affected [111,112].
Micro-dosing and herbicide patch spraying are the main targets of these technological
systems to ensure that the spraying will be only applied to individual weed species, thus
reducing the herbicide input that follows broadcast applications [113]. The exploitation
of patch-spraying applications and weed-mapping tools, along with appropriate remote
sensing, have been reported to allow site-specific weed management by saving up to 70% of
the necessary herbicide doses for adequate weed control [114]. On the same line, Dammer
and Wartenberg [115] showed that a sensor-based sprayer with variable herbicide rates
resulted in 22.8% and 28.9% herbicide savings in cereals and peas, respectively. Gerhards
and Oebel [116] showed that site-specific weed control resulted in high herbicide savings
(up to 79% for grass herbicides and up to 81% for broadleaf herbicides), especially in winter
wheat and secondarily in winter rapeseed, sugar beet and maize. A field robotic machine
with an end effector which cuts weed stems and injects the active chemical ingredient
directly into the vascular tissue has been reported to use only 22% of the required herbicide
amount for weed control that is applied in broadcast applications with boom spraying [117].
Patch spraying in silage maize in central Italy after unmanned aerial vehicles (UAV) usage
and creation of weed prescription maps saved up to 39.2% of the herbicide amount and
up to EUR 45 ha−1 compared to the broadcast application [118]. Weed prescription maps
which recognize cruciferous weeds along with the application of patch spraying with low
herbicide rates resulted in 4.3–12% herbicide saving in winter crops in southern Spain [119].
Net returns turned low (approx. USD 3 ha−1) but herbicide savings rose to 34.5% after
patch spraying of weeds in maize in Colorado, USA [120]. The number of weed species per
m2 has been characterized as the weed decision threshold which is an important limit that
switches on/off the herbicidal weed-control strategies. Patch spraying has been reported
to be highly effective against weed species that form dense stands such as johnsongrass
(Sorghum halepense L. Pers) and result in high herbicide savings of up to 66%, instead of less
dominant weed species which are regularly distributed in the field [121].

However, farmers are consecutively in front of various dilemmas regarding herbicide
selection, rates and application. Hence, it is crucial that the decision-making process at
this stage is properly implemented, taking into consideration the crop yield, the weed
flora, the weed population dynamics, the economic benefits, the environmental impact
of herbicide use and the spatial parameters of the soil. Models have occasionally been
developed to design weed-control strategies based on herbicides. Reduced-rate strategies
have been reported to save more than 50% of herbicide input as compared to the weed-
control economic threshold in wheat, which might result in herbicide efficacy failures
and increase the costs for farmers [122]. The best possible decision-making assistance is
carried out through Decision Support Systems (DSS) for weed management. These are
computer-based platforms which receive data/observations/input from the user and/or
remote sensors, analyze the data through statistical models and algorithms and provide
suggestions/recommendations for weed control. DSSs can be distinguished into those
which aim at weed management in the short term, i.e., during one or two cultivation seasons,
and those that assist decision-making in the long term. Frequently, the latter is related to
other herbicide alternative methods, such as diversified crop rotations and cover crops use.
Crop Protection Online (CPO) is a Danish DSS that has been used for decades by farmers
for optimized weed control. Experimentation in spring barley proved that half of the
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recommended herbicide dose decreased the treatment frequency index without increasing
the weed coverage or negatively affecting the yield [123]. A reduction in herbicide doses
has been reported to be feasible in wheat [124]. Field trials in Germany and Poland with
recommendations for weed control in winter wheat based on the DSS “DSSHerbicide”, an
adjusted DSS based on CPO, resulted in a 20–40% reduction in the treatment frequency
index and, hence, a reduction in herbicide use in autumn sprayings as compared to standard
recommendations, without adverse effects on the yield [125]. AVENA-PC, a DSS for the
control of Avena sterilis ssp. ludoviciana (Durieu) Nyman in Spanish cereals, has been
reported to reduce the herbicide input by 65% as compared to the full recommended
herbicide rate, providing similar efficacy and wheat yield [126]. However, it should be
noted that weed management based on recommendations from Decision Support Systems
or models for weed emergence does not always provide sufficient yield or efficiently
control the weeds in the long term, despite initial herbicide use reductions [127,128]. Thus,
integrated weed-management methods and tools should be exploited to both achieve
herbicide savings, sufficient yield and reduce the weed pressure in the long run. An
overview of different integrated weed-management methods, techniques and strategies was
carried out by searching on Scopus for the terms: “review” AND “weeds”. The obtained
results (2887) were filtered for the period from 2000 to 2022 and the most representative ones
were checked for suitability. Firstly, the titles were screened, and the most representative
articles were used further for the process. After reading the abstract and the text, these
reviews were listed in Table 2. An additional screening was conducted in the Scopus
database by using the terms “review” AND “weeds” AND “alternative”, which provided
301 initial results, which were also screened for suitability.

Table 2. Overview of reviews on integrated weed-management strategies.

Pillar IWM Strategy References

Plant material
Competitive cultivars/hybrids/crops [129–141]

Cover and service crops [74–76,131,139,141–148]

Cultivation techniques

Intercropping [131,149–151]
Weed seedbank management (e.g., stale seedbed) [136,149,152–157]

Crop rotation and diversification [78,136,149,154,158–160]
Seeding rates, row configuration and sowing dates adjustments [132–134,137,138,140,149,152]

Tillage (conservation, no-till, reduced, occasional) [89,90,136,149,153,154,161]

Non-chemical tools

Natural and bio-herbicides [100,136,139,161–174]
Seed coating [175–177]

Surfactants, adjuvants, formulations and encapsulations [104,178,179]
Beneficial microorganisms (including AMF, bacteria and viruses) [180–188]

Biocontrol agents [183,189–193]
Allelopathy [131,139,145,161,183,194–200]

Thermal technologies/Flaming/Prescribed burning [139,155,191,201–204]
Mechanical weeding (e.g., mowing, hoeing) [136,139,152,153,155,190,202,205,206]

Harvest weed seed control [139,207]
Crop residues, mulches and solarization [137,148,149,208,209]

New technologies

Drones (UAV) [210–216]
Remote sensing and weed detection [206,210,211,215–223]

Decision Support Systems, artificial intelligence, big data, machine
learning and site-specific weed management [109,224–228]

Omics [165,229,230]
Bio- and nanotechnology [139,168,177,231,232]

Robotics-automated weed control [112,139,155,218,222,233,234]
Ecological weed management Based on weed ecology, agroecosystem traits and using biodiversity [141,184,191,235–239]

4. What Future Lies Ahead?

This review provided knowledge on the current and future perspectives on sustainable
crop and weed management by presenting frameworks that will be useful in the future to
decision makers to design more resilient and sustainable agricultural systems. It is deduced
that only acting upon the principles of sustainability and agroecology in the era of the
EU Green Deal will ensure: (i) the enhancement of biodiversity, (ii) the protection of the
environment, (iii) the economic viability of farming systems, (iv) the avoidance of soil
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degradation and (v) the protection of human health. Approaching the time landmarks of
2030 and 2050 for the achievement of the EU Green Deal goals, there is a need to utilize
all the available single tactics and compound efficient strategies to battle global warming,
food insecurity and environmental degradation.

IWM is a complex nexus of proactive and reactive measures that have been extensively
reviewed by Scavo and Mauromicale [240] for field crops and by Mia et al., 2020 [241], for
orchards. The integrated agricultural systems of medium intensity have been reported
as the most productive compared to the conventional and conservation ones, performing
almost equally with the conservation system in terms of agroecology [242]. The decision-
making behind the herbicide selection and use is also another complicated process that
links herbicides with crops and weeds. This has been successfully presented as a conceptual
model by Colbach et al. [243]. Besides the applied measures for weed management, agroe-
cology is an integral part of successful IWM. Taking care of agroecosystem services ensures
the functionality and the sustainability of all relevant chains in diversified agricultural
systems [244], which have the potential to provide economic and ecological benefits in the
short and long term [238,245]. For instance, the use of legumes [246] and service crops [143]
are promising options to deliver beneficial ecosystem services. The increase in on-farm
crop diversity is meant to be a facilitator of favorable ecosystem services [247–250]. Special
attention should be given in future research to ecological weed-management tools and
strategies to be oriented to smallholder farmers, as most of the agricultural land is small
in size [19]. The intensification of smallholder agricultural systems could be realized in
harmony with sustainable agricultural production [251]. Focus should be also given to site-
specific weed management, since it has been reported that it saves more than 97% energy
compared to broadcast applications of tillage, herbicides and thermal technologies [252].
Weed detection in agricultural systems and the creation of distribution models are two
important actions to be conducted in order to predict future shifts in weed communities
and efficiently design IWM strategies [12]. Expert-based national reports on herbicide-
resistant weeds, commonly used herbicides and feasible IWM solutions at a country level
could contribute to sustainable crop and weed management, following the paradigm of
China [253].

Future implications for sustainable crop and weed management should also include
advances in:

• plant breeding and biotechnology [99,254],
• herbicide resistance mapping and screening [255–258],
• weed seedbank surveys [259],
• plant invasions [260],
• weed mapping and dynamics [261,262],
• the impact of applied measures in flora and biodiversity [36,263],
• the factors shaping weed communities [264],
• new herbicides and essential oils [30,265].

The prioritization of actions could come into force according to the future weed research
priorities outlined by Shaner and Beckie [60], Neve et al. [21] and Westwood et al. [266]. It
is imperative, though, to extend collaborations between all relevant parties that act for
sustainable crop and weed management by creating smart innovation networks [267] and
to apply pressure to governmental bodies and policy-makers to monitor the ecosystem
services towards the transition of the agricultural sector [268]. The achievement of the EU
Green Deal aims is a complicated process that includes multiple actors and depends on the
compliance of farmers to the existing legislation and regulations. Even if CAP guarantees
the implementation of “green” agricultural practices through the various payment systems
to beneficiaries, it is crucial to increase the adoption rates of more sustainable practices and
convince farmers that they will benefit from the recovery of certain ecosystem services and
will see their income increased in the long term. For this reason, efficient farm advisory
systems need to be developed to design more resilient farming systems across Europe.
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5. Conclusions

Crop and weed management in the European Union face critical challenges and
barriers which need to be overcome in due course to avoid the detrimental effects which
are caused by: (1) climate change, (2) herbicide resistance, (3) withdrawal of effective active
ingredients, (4) plant invasions and (5) chemical input restrictions. The improvement of
the competitive ability of crops against weeds, the use of cover crops and crop rotation,
the adoption of novel cultivation techniques (such as reduced tillage) and the selection
of natural herbicides and adjuvants in combination with the application of site-specific
and digital weed-management tools (such as robotics, DSS, UAV) have been proven as
efficient alternative options for less chemically reliant weed management. Herbicide use
is expected to be significantly reduced by 2030 in EU27 countries and the adoption of the
proposed holistic framework for the optimization of weed management in the era of the EU
Green Deal will ensure mid- and long-term reductions in herbicide input. The integration
and optimization of non-chemical alternatives for weed management and the provision of
desirable agroecosystem services are among the most promising tools to reduce herbicide
input and ensure crop protection by enhancing biodiversity and securing farmer income in
the era of the EU Green Deal.
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