

This is a repository copy of Sustainable food-grade Pickering emulsions stabilized by plant-based particles.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/160404/

Version: Accepted Version

Article:

Sarkar, A orcid.org/0000-0003-1742-2122 and Dickinson, E (2020) Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Current Opinion in Colloid and Interface Science, 49. pp. 69-81. ISSN 1359-0294

https://doi.org/10.1016/j.cocis.2020.04.004

(c) 2020, Elsevier Ltd. This manuscript version is made available under the CC BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Highlights

- Review of plant-based Pickering emulsion research over the last 5 years
- Pickering particles composed of polysaccharides, proteins or polyphenols
- Particle shape anisotropy offers the benefit of a higher desorption energy
- Biopolymer complex formation with particles enhances emulsion stability
- Particles often act as structuring agents within the bulk continuous phase