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ABSTRACT

This study presents the first attempt to link the multi-algorithm genetically adaptive search method

(AMALGAM) with a groundwater model to define pumping rates within a well distributed set of

Pareto solutions. The pumping rates along with three minimization objectives, i.e. minimizing

shortage affected by the failure to supply, modified shortage index and minimization of extent of

drawdown within prespecified regions, were chosen to define an optimal solution for groundwater

drawdown and subsidence. Hydraulic conductivity, specific yield parameters of a modular three-

dimensional finite-difference (MODFLOW) groundwater model were first optimized using Cuckoo

optimization algorithm (COA) by minimizing the sum of absolute deviation between the observed and

simulated water table depths. These parameters were then applied in AMALGAM to optimize the

pumping rate variables for an arid groundwater system in Iran. The Pareto parameter sets yielded

satisfactory results when maximum and minimum drawdowns of the aquifer were defined in a range

of �40 to þ40 cm/year. Overall, ‘Modelling – Optimization – Simulation’ procedure was capable to

compute a set of optimal solutions displayed on a Pareto front. The proposed optimal solution

provides sustainable groundwater management alternatives to decision makers in arid region.
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INTRODUCTION

Modeling groundwater behavior is among the important

processes hydrogeologists have been trying to quantify for

a long time in order to address emerging groundwater pro-

blems. Simulation of groundwater system, especially in

arid region, is difficult due to the complex and multi-objec-

tive nature of the groundwater system. In an era of

increasing demand for groundwater, new paradigms are

thus urgently required to devise innovative decision-

making tools and optimize the drawdown of aquifer system.

Groundwater simulations have been typically performed

using simulation-optimization algorithms (e.g. McKinney &

Lin ; Wang & Zheng ; Giustolisi & Simeone ;

Wu & Zhu ; Zhu et al. ; Giustolisi et al. ;

Hamraz et al. ). These models have been used to solve

design and operation problems associated with groundwater

hydraulic control, water supply, and remediation (e.g.

McKinney & Lin ). Practical experience with the cali-

bration of groundwater processes suggests that single-

objective function, no matter how carefully chosen, is

often inadequate to properly measure all aspects and charac-

teristics of groundwater system. Because sustainable

management is necessarily a multi-objective problem, no

optimal solution in the traditional sense can be found, and

decision makers should express their preferences within a

set of non-dominated solutions (e.g. McPhee & Yeh ).

One strategy to explicitly recognize the multi-objective

nature of groundwater system is to define several optimiz-

ation criteria (objective functions) that measure different
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(complementary) aspects of the system behavior and to use a

multi-objective optimization method to identify a set of non-

dominated, efficient, or Pareto optimal solutions (e.g. Gupta

et al. ; Yapo et al. ; Boyle et al. ; Giustolisi et al.

). The multi-objective approach is based on the Pareto

dominance criterion and an evolutionary strategy employs

to solve the combinatorial optimization problem (Giustolisi

& Simeone ). The Pareto solutions represent tradeoffs

among different incommensurable and often conflicting

objectives, having the property that moving from one sol-

ution to another results in the improvement of one

objective while causing deterioration in one or more

others (Vrugt et al. ).

A large body of literature related to the application of

either deterministic or stochastic optimization methods

exists in groundwater studies. Deterministic optimization

methods include linear programming, nonlinear program-

ming, and dynamic programming. These methods were

adopted by several scholars (e.g. Aquado & Remson ;

Gorelick et al. , ; Willis ; Wanakule et al.

; Jones et al. ; Andricevic ; Lee & Kitanidis

; McKinney & Lin ; Giustolisi & Simeone ;

Giustolisi et al. ). The second type of optimization

methods were often referred to as heuristic algorithms

includes genetic algorithm (GA), particle swarm optimiz-

ation (PSO), shuffled complex evolution, simulating

annealing, etc. These methods were used in highly nonlinear

and multimodal problems, under various complex con-

straints (e.g. McKinney & Lin ; Wang & Zheng ;

Wu et al. ; Giustolisi & Simeone ; Wu & Zhu

; Zhu et al. ; Giustolisi et al. ; Ayvas ;

Gaur et al. a, b; Mategaonkar & Eldho ;

El-Ghandour & Elsaid ) to optimize groundwater

characteristics in different regions.

In the literature, many efforts have dealt with the multi-

objective optimization of groundwater management pro-

blems. For instance, Wang & Zheng () coupled a GA

and simulated annealing with the modular three-dimen-

sional finite-difference (MODFLOW) groundwater model,

to optimize groundwater remediation design. They applied

various simulation periods and included both fixed and

operating costs. Park & Aral () presented a multi-objec-

tive optimization approach to determine well locations in

the coastal regions, which maximized pumping rates and

minimized the distance between critical stagnation point

and the reference coastline location. Reed et al. () intro-

duced a multi-objective approach to cost effective long-term

groundwater monitoring using an Elitist non-dominated

sorted GA. Giustolisi et al. () proposed a methodology

to determine a dynamic relationship between rainfall and

water-table depth for a shallow unconfined aquifer system

located in southeast Italy. Siegfried et al. () presented

a multi-objective evolutionary algorithm to optimize the pla-

cement and the operation of pumping facilities over time.

Saafan et al. () coupled a multi-objective GA optimiz-

ation model with MODFLOW and maximized the

pumping rates in El-Farafra oasis, Egypt. They predicted

the maximum pumping rates and minimum operation cost

as well as the prediction of the future changes in both

variables.

The aforementioned algorithms have focused on using a

single GA approach to compute groundwater characteristics

that may not be applicable for large-scale groundwater

system. When dealing with large scale and complex

system, numerous conflicting objectives can arise so that

the number of decision and state variables may increase

rapidly with the scale of the problem (e.g. McPhee & Yeh

). In such circumstances, single objective techniques

may provide unsatisfactory results to decision makers, and

therefore multiple optimization solutions should be sought.

In many optimization domains the solution of the problem

can be multi-dimensional and can be only computed simul-

taneously by assembling a hierarchy of multiple

optimization algorithms.

This study presents the first attempt that has linked a

multi-algorithm, genetically adaptive multi-objective

(AMALGAM) model, proposed by Vrugt & Robinson

(), with MODFLOW to optimize pumping rates within

a well distributed set of Pareto solutions. The purpose of

this research was to find optimal solution to cover maximum

demand for arid groundwater management and optimized

the pumping rates using three minimization objectives, i.e.

minimizing shortage affected by the failure to supply, Modi-

fied Shortage Index (MSI) and minimization of extent of

drawdown within pre-specified Pareto regions. Focusing

on these objectives, AMALGAM simultaneously merges

the strengths of the covariance matrix adaptation evolution

strategy, GA, differential evolution and particle swarm
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optimization (PSO) to ensure a reliable and computationally

efficient solution is achieved for multi-objective optimiz-

ation problems.

This research first coupled MODFLOW to an advanced

swarm-intelligence-based algorithm (i.e. Cuckoo optimiz-

ation algorithm (COA); Rajabioun ) to compute aquifer

hydrodynamic parameters using automatic search method.

The ability of the COA approach led to more accurate esti-

mates of error variance and helped us characterize

groundwater mechanisms at each subscale (zone). We opti-

mized aquifer properties by formulating an optimization

method within the groundwater numerical model and ana-

lyzed predictive error in a highly parameterized model. At

the second step, this study used a hierarchy of multi-algor-

ithm designed in the AMALGAM model to define optimal

Pareto solutions for groundwater drawdown in order to

ensure sustainable groundwater management over an arid

region in east Iran.

METHODOLOGY

Geographical location of the study area

The Birjand River Basin (BRB) is located in the arid region

of South Khorasan province with a drainage area of

3,408 km2. An arid aquifer system namely Birjand aquifer

is located in BRB in latitude and longitude of 32
W

340 to

33
W

80 north and 58
W

410 to 59
W

440 east, respectively

(Figure 1). It underlies an area of approximately 265 km2.

According to Domarton continental classification, Birjand

plain is classified as arid region with mean annual precipi-

tation and temperature of 170 mm and 17
W

C, respectively.

Maximum and minimum elevations are, correspondingly,

2,736 and 1,167 m higher than mean sea level. The slope

is deep in the east part of the plain whereas it is gentle

toward west.

The bedrock of the aquifer is mostly hard rock, such as

sandstone, conglomerate and tuff formations, most of the

area in the east is young gravel fans and also there is clay

flat extends from the east to the center. The area in the

west consists of young gravel fans, gravel plains and there

is a saline flat as well. Most of the area has low-density

rangeland or poor pasture land use land cover (see

Hamraz et al. ).

Water demands of the study area are divided into four

categories: drinking, agricultural, industrial and services;

their amounts are listed in Figure 2. It appears agriculture

has the highest demand of water during March to July

while this demand declines afterward. In addition, drinking

demand increases slightly during summer while industrial

demand is almost constant during the entire year.

Groundwater model

Mathematical solution of the groundwater model solves the

math form of the mass balance equation in one region and

generally produces by continuum an approach to the sur-

roundings. Every component of the mass balance equation

indicates a specific value of parameter in unit of surface,

volume or time. Briefly, a mathematical model that is

applied for the groundwater simulation is a combination

of numerical values of different parameters in the balance

equation. In other words, the balance equation is written

for a limited area of the aquifer while it is generalized for

the entire zone. Accordingly, the result of groundwater mod-

eling can be affected by different errors, e.g. the errors arise

from the groundwater conceptual model, the approximate

solution of groundwater parameters and unknown inter-

action mechanism between various components and

properties.

In practice, the establishment of a groundwater numeri-

cal model requires different parameter sets such as the

hydraulic conductivity (k), transmissivity, storage coefficient

(or specific yield (Sy)) and dispersity. More importantly,

because of hydrogeology data scarcity (especially in an

arid region), the variability of parameters in space and

time, incorrect setting of aquifer properties (location, type,

number of layers, distribution, etc.), and the scaling effect

of parameters, groundwater modeling can yield different

errors and misfit. A conceptual model is the basis of the

numerical model, and actual hydrogeological conditions

are often simplified incorrectly by groundwater conceptual

model (Rojas et al. ). In particular, physical consistency

in the mass and energy fluxes of groundwater process, which

is a continuity mechanism, is usually formulated to make

predictions at discrete moments of time. Together, all
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those variabilities and complexities increase the bias and

error in simulation and challenge groundwater modeling

particularly in arid regions.

The governing flow equations in groundwater modeling

The general form of the governing equation in groundwater

modeling is:

@
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where, kx, ky and kz denote the hydraulic conductivity ten-

sors, h, Ss and R represent pressure head, specific storage

and recharge or discharge (positive and negative) com-

ponents of the aquifer, respectively. In unconfined aquifer,

the thickness of saturated layer varies by groundwater-

table depth. Some assumptions proposed by Dupuit ()

are: (a) the flow is horizontal; and (b) the hydraulic gradient

is equal to the slope of the free surface.

If there are two-dimensional and transient flows, the

equation is then based on Dupuits assumption and the

continuity equation is as follows:
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where, Sy denotes the specific yield.

Figure 1 | Geographical location and the geology map of the study area. Groundwater depth reduces sharply toward west. The aquifer is mainly composed of young gravel fans and dasht

gravel plains.
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This study used MODFLOW to simulate steady and

unsteady conditions in the Birjand aquifer under different

drawdown and management scenarios. MODFLOW is a

three-dimensional finite-difference groundwater model

which employs the above relationships to compute the

level of water-table depth in different points of the aquifer.

The model was released in 1984, upgraded and modified

to perform simulations in both steady and unsteady con-

ditions. In this research, a distributed hydrogeology model

was established using all quantitative information that

requires simulating a functional relation between prediction

and observation.

A conceptual illustration of aquifer model

In this study, the procedure used to develop the ground-

water conceptual model was proposed by Izady et al.

(). Based on their method, the groundwater model con-

sists of six steps: (1) collection of all available data and

information; (2) verification and setup of controlling obser-

vations; (3) defining the aquifer geometry; (4) primary

estimation of aquifer hydrodynamic properties; (5) identifi-

cation of aquifer recharge and discharge values; (6)

integration of the results from other steps to deliver the over-

all conceptual model.

To construct the Birjand groundwater model, a one-

layer unconfined aquifer with varying thickness from 5 m

to 225 m was considered as a conceptual groundwater

system. Based on geological analysis, the deepest section

of the bedrock is located in the east, ranging from 150 to

225 m below land surface. The groundwater model was

developed based on available data, including surface

elevation data, well logs, well locations and measurements,

geologic map, hydrography and recharge information. Topo-

graphic and geologic maps were first employed to define the

plain boundary condition. The spatially distributed hydro-

dynamic properties were then estimated using the single

optimization method. In this study, temporal discharge vari-

ation was determined by pumping of 190 wells located

inside the aquifer boundary. Recharge takes place through

nine pathways as inflow paths located in south, east, north

and north-west of the aquifer (Figure 3).

In this study, seven data coverages including aquifer

boundary conditions, piezometers, pumping wells, surface

recharges, drainage information, hydraulic conductivity

and specific yield were incorporated in the MODFLOW

model to establish groundwater numerical model. Boundary

conditions in MODFLOW are established using constant

head boundary, head dependent flux (river, drain and gen-

eral-head boundary packages), and known flux (recharge,

evapotranspiration, wells, and stream). This boundary

encompasses nine inputs and one output front as a drain.

Birjand aquifer acts as a transit aquifer due to its differential

hydraulics gradients through various zones. Moreover, this

aquifer recharges/discharges by surrounding aquifers at

inflow/outflow boundaries which cause conditional and

temporary effects. In this study, recharge and discharge

locations at inflow and outflow boundaries were identified

using a group of cells or grids called water front entrance.

For all those boundaries, a specific-head-boundary condition

was considered to be constant at each cell number in the

model.

From a total of 201 wells, 11 are piezometric wells in

which monthly observed water-table depth data was avail-

able and used for calibration. The rest of the wells are

pumping ones including 139 agricultural, 31 drinking

water and 20 industrial pumping wells. In addition, six

Figure 2 | Amounts of drinking, agricultural, industrial and services demands in the study

area based on million cubic meters (MCM). Agricultural demand is high during

spring and summer while it is low during winter and late fall.
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springs and 11 qanats exist in the aquifer that are mostly

used for irrigation purposes (see Figure 4) and we incorpor-

ated them as several wells in the MODFLOW model.

Qanat is a gently sloping underground channel with a

series of vertical access shafts, used to transport water

from an aquifer under a hill. This technology was devel-

oped by the Persian people sometime in the early 1st

millennium BC.

Since the study area is categorized as an arid region with

small amount of precipitation, only drinking and agricul-

tural backwaters were used as surface recharges for related

fronts in the model. In order to construct the aquifer

model, MODFLOW was first simulated using steady state

and the results were used to define homogeneous zones.

Therefore, the aquifer was divided into 17 homogeneous

zones to derive the hydraulic conductivity and specific

Figure 3 | Inflow and outflow pathways of the Birjand aquifer (Hamraz et al. 2015). Overall, nine fronts were defined in the study aquifer and all fronts were incorporated to the model as

inputs.

Figure 4 | Position of the pumping, piezometeric and drainage wells along with springs and qanats over the Birjand aquifer in the MATLAB programming environment.
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yield values. Next, several setups, including model network

design, choice of stress period and time step, determination

of initial state, boundary condition, type and number of satu-

rated zones were also defined in order to construct and

setup groundwater model. Due to geological heterogeneity,

the aquifer was divided into 1,077 cells or grids to solve par-

tial difference equations. The gridding of the plain was

designed into 34 rows and 94 columns so that each layer

cell is squared to 500 m × 500 m (see Figure 4).

Hereafter, the cells that are positioned outside of the

aquifer boundary were assigned to zero code, meaning

that they have no influences on the modeling procedure.

Though, properties of model cells can be specified individu-

ally, grouping the cells with similar properties into

homogenous zones significantly improved and eased model-

ing procedure.

In this study, modeling of the groundwater flow in the

Birjand plain was performed for a one year period starting

in October 2010 to September 2011 (a hydrologic water

year) as the calibration period, whilst October 2011 to Sep-

tember 2012 was used for the validation period. For

modeling purposes, 12 month stress periods with a 10 day

time step were identified and used for the modeling

approach (i.e. three time steps were considered for each

stress period). For completing the numerical model, absol-

ute values of bed rock depths, topography and initial water

level measurements were interpolated using Kriging

method then assigned for the entire cells in the network.

Single objective optimization algorithm

Cuckoo optimization evolutionary algorithm was developed

by Rajabioun (). This algorithm is inspired from the life

of a bird called a cuckoo. The way of spawning and special

growth of the cuckoo was the main idea of this algorithm.

Some birds release themselves from the trouble of nest-

building and their duties of parenting therefore they resort

to some kind of perspicacity to raise their chicks. These

chicks are known as brood parasites and the cuckoo is

one of the most well known. The cuckoo destroys one of

the host bird’s eggs and puts her egg between them. In this

way she puts the responsibility of egg keeping to the host

bird. In practice, the cuckoo does this job by mimicking

the color and pattern of the available eggs in every nest so

that the new egg is similar to the rest. More similar eggs to

the host eggs have more opportunity to growth and survival.

In general, two types of cuckoo are considered in this

model, i.e. adult Cuckoo and eggs. Pseudo code of the

optimization algorithm is summarized as follows:

(1) Initializing Cuckoo habitats (initial response) with some

random points on the profit function.

(2) Dedicating some eggs to each Cuckoo.

(3) Defining egg-laying radius (ELR) for each Cuckoo.

The amount of ELR is calculated by the number of eggs

and their distance to destination for each cuckoo:

ELR ¼ α ×
Number of current cuckoo’s eggs

Totalnumber of eggs

× (varhi � varlow) (3)

where, Varhi and Varlow denote the maximum and minimum

amounts of variables, respectively, and ‘α’ is an integer digit

that controls maximum ELR.

(4) Letting Cuckoos lay eggs inside their corresponding

ELR.

(5) Eliminating the eggs with lower value of objective

function.

(6) Defining the value of objective function for each adult

Cuckoo.

(7) Limiting the maximum number of Cuckoos in the

network.

(8) Categorizing Cuckoos and define the best habitant.

In this study, K-means clustering method (MacQueen

) is used for categorizing the COA model. A group of

3–5 K is considered and the mean profit of each group is

determined according to the variation range of the Cuckoo

profit function. So each Cuckoo belongs to a group that

has the least distance to the mean of the corresponding

group.

(9) Immigration of new Cuckoo towards the best habitant.

Cuckoo moves toward the aim habitant; it traverses only

the λ % of the path by the deviation of φ radians (see

Figure 5). These two parameters help cuckoos search

much more positions in the whole environment (Rajabioun

). λ is a random number between 0 and 1 while φ is a
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random number between -ω and ω (ω is appropriately within

π/6).

(10) If stop condition is satisfied ‘stop’, if not back to the

second step.

Parameters that are used in this study for the COA are

determined by automatic trial-error approaches (see Raja-

bioun ) that are listed in Table 1.

AMALGAM algorithm

AMALGAM adaptively and simultaneously employs mul-

tiple evolutionary multi-objective algorithms to ensure a

fast, reliable, and computationally efficient solution to

multi-objective optimization problems (Vrugt & Robinson

). The algorithm implements a population-based elitism

search procedure to find a well distributed set of Pareto sol-

utions within a single optimization run. In other words, the

algorithm employs a population of N solutions, whose off-

spring are created in a genetically adaptive manner by

dividing the creation of N offspring among the sub-algor-

ithms proportional to the success achieved by these sub-

algorithms during previous generations (Raad et al. ).

This process is accomplished by means of an offspring parti-

tioning formula, given as

N
j
tþ1 ¼ N S

j
tþ1=N

j
t

�

X

k

h¼1

Shtþ1=N
h
t

 !

(4)

where,N
j
t is the number of offspring that sub-algorithm jmust

generate during generation t, and S
j
tþ1 denotes number of off-

spring that sub-algorithm j contributes to the next generation.

AMALGAM is initiated using a random initial population

size of s, generated by the Latin hypercube sampling method.

Then, each parent from the initial population is assigned a

rank using the fast non-dominated sorting algorithm

(Deb et al. ) as used in the NSGA-II algorithm. The popu-

lation of offspring (with size s) is subsequently created using

the multimethod concept: instead of utilizing a single biologi-

cal or physical model for reproduction, a diverse set of

operators is run simultaneously. The individual operators

are favored adaptively accordingly to their reproductive suc-

cess during the search. The offspring and parent population

is ranked together and members for the next population are

chosen from subsequent non-dominated fronts based on

their rank and crowding distance (Deb et al. ). The new

population is then used to generate offspring and the afore-

mentioned algorithmic steps are repeated until convergence

is achieved. Note that the adaptive search properties of

AMALGAM reduce the need for tuning of the algorithmic

parameters. In fact, the main algorithmic parameter of

AMALGAM is its population size. Various synthetic multi-

objective benchmark studies have demonstrated that the

method works well with a population size of about 50. Read-

ers are referred to Vrugt & Robinson () for further

description and information on the AMALGAM algorithm.

In this study 5,000 function evaluations with 50 popu-

lation sizes were used for optimization purposes. Twelve

monthly discharge parameters were then used to ensure a

Figure 5 | Immigration of a sample Cuckoo toward goal function (Rajabioun 2011). A

group of 3–5 K is considered in the model and the mean profit of each group is

determined according to the variation range of the Cuckoo profit function.

Table 1 | COA parameters

Parameters Selective value

Initial number of cuckoo 50

Minimum egg of each Cuckoo 2

Maximum egg of each Cuckoo 5

Maximum number of alive Cuckoo 50

Maximum number of iterations 100

Number of groups or clusters 3

Ω π/6

The convergence criterion 1 × 10�10
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reliable and computationally efficient solution to multi-objec-

tive optimization problems. The model reached the

convergence criteria after about 3,000 simulation runs. The

pumping rates along with three minimization objectives, i.e.

minimizing shortage affected by the failure to supply, MSI

and minimization of extent of drawdown within pre-specified

regions, were then chosen to define optimal solution for

groundwater drawdown and subsidence.

Setting the MODFLOW-COA-AMALGAM framework

A combination of simulator optimizer model was illustrated

to simulate and quantify aquifer characteristics in the

MATLAB program. Simulator model (i.e. MODFLOW)

and optimizer algorithms (COA-AMALGAM) should be

coupled in order to calibrate the hydrodynamic parameters

of the aquifer and to determine pumping rates so the simu-

lator model and the optimizer algorithms were connected

by writing the interface program in MATLAB that leads to

the simulator-optimizer model. We used MODFLOW simu-

lator model under MATLAB platform (mfLab program)

which was developed by Theo Olsthoorn () at Delft Uni-

versity of Technology, the Netherlands. It is interesting to

note that for numerical solving purposes the partial differ-

ence equation of flow, MF2005NWT (MODFLOW-2005-

Newton-Raphson formulation) program, that contains the

Newton-Raphson solver to improve the solution of uncon-

fined groundwater-flow problems along with Upstream

Weighting Package (UPW), were also used in this study.

UPW was used to specify aquifer properties controlling

flow movement between cells in the MF 20005-NWT and

MF-OWHM (MODFLOW-2005 – One Water Hydrologic

Flow Model) approaches.

Figure 6 illustrates a schematic framework showing the

implementation of AMALGAM and COA in the MOD-

FLOW model. In short, aquifer parameters were optimized

using COA and used in the AMALGAM model. The

master computer runs the algorithmic part of AMALGAM,

and generates an offspring population from the parent popu-

lation using various genetic solutions (e.g. Vrugt &

Robinson ). This new population is distributed over a

predefined number of computational nodes and these

nodes execute the simulation model and compute the objec-

tive function of the points received. Next, the master

computer collects the results, and follows various algorith-

mic steps to generate the next generation of points. The

aforementioned algorithmic processes are repeated until

convergence is achieved.

Model performance evaluation

Mean error (ME), mean absolute error (MAE), root mean

square error (RMSE) and normalized root mean square

error (NRMSE; non-dimensional forms of the RMSE) were

used as criteria in the calibration period. ME, MAE and

RMSE/NRMSE indicate error in the units (or squared

units) of the constituent of interest (Moriasi et al. ;

Etemadi et al. , ), which aids in analysis of the

results. Error estimation was quantified using the following

equations (Equations (5)–(8)).

ME ¼

Pm
t¼1

Pn
i¼1 (h

t
oi � ht

si)

n�m
(5)

MAE ¼

Pm
t¼1

Pn
i¼1 ht

oi � ht
si

�

�

�

�

n�m
(6)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pm
t¼1
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i¼1 (h

t
oi � ht

si)
2

n�m

s

(7)

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pm
t¼1

Pn
i¼1 (h

t
oi � ht

si)
2

Pm
t¼1

Pn
i¼1 (h

t
oi � ho)

2

v

u

u

t (8)

where, ht
oi, h

t
si and ho denote the observed head, simulated

head and mean value for observed head, respectively, n rep-

resents the number of piezometers and m is the number of

monthly time steps (i ranges from 1 to 11 while t ranges

from 1 to 12 months).

Decision variables and objective functions in multi-

objective optimization model

Decision variables in the optimization model are based on

the sum of the discharge amounts from the aquifer (190

wells) during different months (12 variables). The three

objective functions used in this study are defined below.
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Minimizing the sum of shortage was considered as the

first objective function.

MIN Shortage ¼
X

n

t¼1

(TDt � TWt)

( )

(9)

where, TWt represents the volume of the aquifer discharge

in the period of t (MCM), TDt is the amount of demand in

the period of t (MCM) and n denotes the total number of

time periods (month).

Since this objective function only minimizes the sum of

shortages during the period and ignores distribution of

shortages over time, a MSI (Equation (10)) was used as

the second objective function. This index is important for

making economic and societal solutions (see Hsu &

Cheng ; Chang et al. ; Tu et al. ).

MIN MSI ¼
100

n

X

n

t¼1

TSt
TDt

� �2
( )

(10)

where, TSt denotes the amount of shortage in the period of t,

TDt is the amount of demand in the period of t and n rep-

resents the number of the total periods (month). It should

be noted that drinking demand is determined for all periods

and is taken initially from the discharge values subtracting

the shortage amount of other demands (e.g. agriculture,

industry and services).

Figure 6 | Sequence steps of optimization processes with a linkage among MODFLOW, COA and AMALGAM. We coupled MODFLOW, COA, and AMALGAM using the MATLAB platform.
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Finally minimizing the drawdown of water-table depth

was used as the third objective function.

MIN Drawdown ¼ H0 �Hend

� �

(11)

where, H0 and Hend are the average value for the aquifer

water depths (meter) at the beginning and ending of the

simulation period, respectively.

RESULTS AND DISCUSSION

Parameter optimization using COA algorithm

COA optimization was performed using 5,000 simulation

runs and the model met the convergence criteria after

about 2,000 iterations. Two groundwater parameters, i.e.

specific yield and hydraulic conductivity, were then

optimized for each zone. Optimized values of the hydraulic

conductivity (k) and specific yield for the geological units

(Sy) are presented in Figures 7 and 8, respectively. Hydraulic

conductivity and specific yield vary significantly through the

aquifer system indicating a geological heterogeneous and

non-homogenous groundwater system.

The resulting hydraulic conductivity field is highest at

zone 13 whereas it is low at zone 2 (close to outflow). The

specific yield field, on the other hand, maximized at zone

7 whilst minimized at zone 6. The resulting RMSE and

NRMSE are, respectively, in a range 0.73–0.89 m and

0.02–0.025 obtained by COA optimization algorithm (see

Table 2). High hydraulic conductivity at zone 13 may be

temporarily confined to the groundwater regime to change

aquifer characteristics. Since both parameters showed a

high range of variability through the entire aquifer, it

appears the hydraulic response of the aquifer to recharge

and pumping processes is highly variable. In other words,

Figure 8 | The variability of specific yield through different zones. Maximum Sy was obtained for zones 2, 5, 7 and 10 whereas the lowest value was driven for zones 3 and 6. Specific yield

exhibits the same trend as hydraulic conductivity with a range of 0.01 to 0.45.

Figure 7 | The variability of hydraulic conductivity through the entire aquifer. Estimated hydraulic conductivity values range from 1 to 150 m/day from west towards the east part of the

aquifer. k is very high in zones 4, 13, 12 and 9 while it is lowest in zone 2. Arguably, zones 4, 13, 12 and 9 are mostly saturated compared with other zones (e.g. 2, 11, and 1) with

low values for hydraulic conductivity.
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groundwater regime may not track a steady-state condition.

Variability in the hydraulic conductivity may further destabi-

lize transmissivity (the hydraulic conductivity multiplied by

the saturated thickness of the aquifer) at the vertical range of

the aquifer. In groundwater studies, what is of the greater

interest, however, is the significant positive and negative

contributions to groundwater modeling made by hydraulic

properties or any other parameters.

The specific yield varies in a range of 0.01 to 0.45. Gener-

ally, zoneswith higher specific yieldmost likely present lower

hydraulics conductivity (see Figures 7 and 8) indicating a

reverse relationship between these two parameters. More-

over, variability in specific yields may lead to fluctuation of

hydraulic response to transient stress in this aquifer.

Together, this variability reflects the highly non-linear charac-

teristics for the groundwater regime under study.

In this study, mfLab program was modified slightly to

print the volumetric specific yield after simulating each

period. The specific yield values were converted to equival-

ent water thicknesses divided by the study area (sqkm). A

number of MATLAB (Mathworks, Inc.) scripts were devel-

oped in this study to facilitate algorithmic runs and to

generate MODFLOW input files. All runs were carried out

on a PC with an Intel Core i5 3210M 2.5 GHz up to

3.1 GHz CPU. The average running time took about 42

hours, depending on the algorithm configuration.

Calibration and validation results using COA algorithm

According to Figures 7 and 8, aquifer water-table depth was

simulated through 17 zones during the calibration period.

The model was verified using 12 month stress data from

October 2010 to September 2011 (each period contains

three 10 day time scales) to predict observed water-table

depth. These outcomes allowed us to calculate aquifer prop-

erties through model validation. For a particular

groundwater parameter, the estimated values in different

zones reflect the contribution made by different areas

within the model domain to the estimated value of that par-

ticular parameter being assessed.

The error indices for simulated and observed head values

were demonstrated and presented in Table 2. The error esti-

mation suggests well calibration results for the model. At

the validation period, the estimated error is also low, indicat-

ing a successful calibration. The results of the model

calibration and validation ultimately confirm the validity of

the MODFLOW simulation and the efficiency of the COA

to compute groundwater properties. It should be noted that

any type of uncertainty, such as error in the measured data,

the specified initial and boundary conditions, or the overall

conceptual model, have a significant effect on modeling.

The focus of this study is on optimization procedures (by

reducing the error and misfit) not on uncertainty assessment,

though, the parameter uncertainty associated with defining

the nine pathways and outflow and ground water parameters

were addressed for this aquifer by Hamraz et al. ().

Based on error indices, the COA significantly reduced

the error and misfit by presenting the lowest error during

the calibration and validation periods. COA optimization

method described herein can provide modelers with a tool

that is efficient to implement and can be used in difficult

modeling efforts. Groundwater water-table depths in the

beginning and ending of the simulation period were also

computed and the results for the entire aquifer are presented

in Figures 9 and 10.

Comparing groundwater water-table depths indicate an

increasing trend in the head values. This phenomenon may

be explained by the influences of local pumping activities

(drinking or agricultural wells) at the beginning of the simu-

lation period (begins in the October) and replenishment of

flow afterward (mostly by neighboring aquifers). These inten-

sive pumping activities might have smooth influences on the

shape of the simulated head curve at themiddle of the aquifer

where the second and third wells are located. In saying that,

the simulated groundwater water-table depth represents the

values at the center of the cell or grid and occasionally the

boreholes are located at those places.

According to Figure 10, groundwater-table depth

declined from east to west and southwest parts of the aquifer

so the general direction of the groundwater flow is in the

same direction. By comparing Figures 9 and 10, we realized

Table 2 | Performance criteria for calibration and validation periods

Period MAE RMSE ME NRMSE

Calibration 0.48 0.73 0.17 0.02

Validation 0.63 0.89 0.32 0.025
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that by continuing the current withdrawals, groundwater

level drops down most likely in the west zone. This might

be related to over-drawdown, lack of groundwater recharge

and natural drainage activities as well.

Pumping rates optimization

Optimized parameters obtained using COA optimization

algorithm were applied in AMALGAM (5,000 evaluations)

Figure 9 | Groundwater level at the beginning of the simulation period in unsteady state where flow characteristics change over time (unsteady state).

Figure 10 | Groundwater level at the end of simulation period in unsteady state. There is a significant increasing in the groundwater level (compare to the beginning of the simulation) at

the middle and the bottom of the aquifer that we assume it is related to recharging activities by neighboring aquifers and drainage activities.
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to optimize predefined objective functions. The main goal

was to visualize the tradeoffs between sustainability of

groundwater use and drawdown considerations. For con-

ciseness and clarity, our results include aggregated results

as opposed to individual efficient pumping or recharge

rates for each well. In order to evaluate the influence of

different basic assumptions on the results, three policy-

analysis options are tested: optimal solution A (or scenario

A) in which maximum pumping rates are assumed with

minimizing the sum of shortages while having maximum

decline in the aquifer water table; optimal solution B (or

scenario B) in which pumping rates are allowed to meet

the demand with no decline in the aquifer water-table

depth and there should be no variability in the aquifer

water table at the beginning and end of a water year (Octo-

ber to September); and optimal solution C (or scenario C) in

which pumping rates are assumed to be lowest rates (mini-

mizing the drawdown) thus increasing the aquifer water-

table depth during the beginning and end of a water year.

Twelve month discharge values were selected as decision

parameters to optimize the AMALGAM algorithm based on

predefined objective functions (scenario A, B and C). Specifi-

cally, we considered three different optimal solutions located

in different parts of the Pareto solution. Hereby, optimal sol-

utions are simulated and communicated with the MODFLOW

framework. The Pareto-optimal solution is showed in Figure 11.

Arguably, when the shortage amounts decrease, MSI also

decreases and the amount of drawdown increases accordingly

(negative values of drawdown represents increasing in the aqui-

fer water level). Obviously, if drawdown rises, the shortage

amount will decrease so that when drawdown is equal to 0.4

meter (or 40 cm), all demands are met with no shortage.

Next, in order to better illustrate and interpret the opti-

mal solutions, 2D Pareto fronts (two objective functions)

were compared mutually (see Figure 12). According to

Figure 12(a), drawdown and shortage have an inverse

relationship because a declining trend in the aquifer dis-

charge causes reduction in drawdown. The relationship

between shortage and drawdown is approximately linear

and could result from the same value for aquifer hydrodyn-

amic parameters in various flow depths.

According to Equation (4), MSI (caused distribution of

shortages in different months) has a direct relationship with

shortage. So it is expected that MSI has an inverse

relationship with drawdown values (see Figure 12(b)). The

sum of optimum discharge amounts (decision variables) in

the simulation period is showed for the three samples of opti-

mal solutions from different parts of the Pareto front

(solutions A indicated by black dot, solution B indicated by

green dot, and solution C indicated by blue dot in Figures 11

and 12). According to Figure 12, solutions A andC (black and

blue points), which address zero and 27.24 MCM deficits,

respectively, are selected in order to meet the first (minimiz-

ing the sum of shortages) and the third (minimizing the

drawdown) objective functions. The ideal solution would be

a scenario in which all three objectives equally likely contrib-

ute to the optimization model. Green point (solution B)

represents the optimal solution (ideal scenario)where storage

and MSI are almost equal to zero. In practice, when draw-

down is close to 0.4 m all demands are met in the aquifer.

In solution B, pumping rates at existing wells are allowed to

vary over time (however with no variability in the water-

table depth at the beginning and ending of a water year),

thus creating a more flexible policy that can react to future

changes in forcing conditions such as water demands or natu-

ral recharges. Each point of the non-dominated sets

computed for all solutions represents a specific policy

Figure 11 | Non-dominated Pareto front in a three objective function values. Please refer

to the online version of this paper to see this figure in colour: http://dx.doi.

org/10.2166/hydro.2016.006.
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alternative that is to be compared with the others in order to

decide management actions. These alternatives have in

common the fact that they are different from groundwater

management perspectives, that no improvement can be

achieved for a particular objective without diminishing the

satisfaction associated with the other objectives.

The amount of water-table depth fluctuations also showed

for the three selected solutions during simulation period in

Figure 13. These three optimal solutions are very close

during March while they are far in September. March is an

ideal time when drawdown and demands are approximately

equal or have minor differences. Although, when a steady

decline in the aquifer water level occurs during spring and

summerdue tovarious pumping activities, the aquifer recovers

substantially from October to March. During March water-

table depth in the aquifer is approximately 1,336 to

1,336.25 m while during September (maximum discharge

time) this value diminished to 1,335.08 m. Analysis of all opti-

mal solutions indicated that the lower and upper limits of

groundwater water-table depths are 1,335.1 m and 1,336.1 m

during different alternatives (see Figure 14).

Based on this result decision makers have three optimal

solutions for the Birjand aquifer. Specifically, decision

makers can select any (drawdown) solution in an optimal

Figure 12 | Mutual comparisons of Pareto fronts in a two-dimensional model. Value of 14.4 MCM exhibited deficit with the amount of MSI of 3.95 in order to maintain the algebraic sum of

pumping and recharging rates equal to zero: (a) drawdown (m) vs shortage (MCM); (b) drawdown (m) vs MSI; and (c) MSI vs shortage (MCM). Please refer to the online version of

this paper to see this figure in colour: http://dx.doi.org/10.2166/hydro.2016.006.

111 S. Sadeghi-Tabas et al. | Application of genetically adaptive multi-objective method in groundwater modelling Journal of Hydroinformatics | 19.1 | 2017

Downloaded from http://iwaponline.com/jh/article-pdf/19/1/97/391314/jh0190097.pdf
by guest
on 04 August 2022

http://dx.doi.org/10.2166/hydro.2016.006


range of �40 to þ40 cm/year. There are significant differ-

ences between water-table depths during maximum (black

dot) and minimum (blue dot) drawdowns over the aquifer.

If one of the optimal solutions, A, B or C, is used for the

groundwater management, it should be ensured that maxi-

mum demands of the area are met. Though, the problem

of selecting which alternative remains open depending on

management policy and may change over time.

It is important to emphasize that optimal solutions B as

an intermediate scenario, presented good performances in

reducing the objective functions considered in this study.

This confirms that for arid case study, intermediate solution

was easy for the developed tool to converge. Specifically,

optimal solution B was able to fairly satisfy demands, and

minimized the drawdown over the aquifer system.

The performances of optimal solutions among the Pareto

front indicate that the contributions of the eleven wells could

satisfy the demands and the quality requirements. The optimal

contributions ensured maximum (þ40 cm) and minimum

(�40 cm) drawdowns in the eleven wells at the end of the

optimization period. It is obvious from Figures 2 and 14 that

agriculture demand is the main reason for water level fluctu-

ation in the Birjand aquifer. Therefore, integrated water

resourcesmanagement such aswater saving irrigation, rainfed

crops, reducing irrigation area can be proposed as effective

alternatives for the Birjand ground water management.

CONCLUSION AND FUTURE WORK

This study first employed a COA algorithm to optimize

MODFLOWhydrodynamic parameters then used optimized

parameters in the AMALGAM multi-objective algorithm to

define Pareto optimal solutions and developed groundwater

management scenarios. The proposed multi-objective pro-

blem formulation integrated minimizing shortage affected

by the failure to supply, MSI and minimization of extent of

drawdown within pre-specified regions. Coupling two differ-

ent algorithms to the MODFLOW model revealed that the

developed algorithm was capable of computing a set of opti-

mal solutions displayed on a Pareto front for an arid

groundwater system. This study computed optimal solutions

for the entire arid aquifer, but examining those solutions at

each groundwater zone may provide useful information for

arid groundwater management, although it requires a high

computational and scripting demand.

Figure 13 | Water-table depth fluctuations for each optimal solution in the simulation

period. Solutions A and B have the same fluctuations during October to

March. X-axis is based on a water year (October to September). Please refer

to the online version of this paper to see this figure in colour: http://dx.doi.

org/10.2166/hydro.2016.006.
Figure 14 | Optimum aquifer discharges in the simulation period for the three examples

of solutions. Optimal solution A, B, and C include 0, 14.5, and 27.24 MCM

deficits, respectively. X-axis is based on a water year (October to September).

Please refer to the online version of this paper to see this figure in colour:

http://dx.doi.org/10.2166/hydro.2016.006.

112 S. Sadeghi-Tabas et al. | Application of genetically adaptive multi-objective method in groundwater modelling Journal of Hydroinformatics | 19.1 | 2017

Downloaded from http://iwaponline.com/jh/article-pdf/19/1/97/391314/jh0190097.pdf
by guest
on 04 August 2022

http://dx.doi.org/10.2166/hydro.2016.006
http://dx.doi.org/10.2166/hydro.2016.006
http://dx.doi.org/10.2166/hydro.2016.006


Although both COA and AMALGAM algorithms effi-

ciently quantify groundwater characteristics, this proposed

methodology has several limitations. For instance, the pro-

posed modeling approach had a long computation time

when trying to optimize predefined solutions, which

requires running the MODFLOW model at each solution

evaluation. For a larger aquifer system than our case study,

the computation time may increase dramatically with the

number of cells and stress periods. To overcome this limit-

ation, parallel computing can be used by taking advantage

of multi-processor machines. Alternatively, artificial neural

network (e.g. Giustolisi & Simeone ) can be employed

to accurately simulate groundwater shortage and reduce

the computation time and runs. The concept of fuzzy set

theory (Zadeh ) can be further used to assess qualitat-

ively each one of the available efficient solutions for the

optimized objectives based on additional criteria.

The COA-AMALGAM algorithm developed in this

study can be considered as optimal solutions generator

and its linkage to the MODFLOW framework makes it poss-

ible to simulate optimal groundwater scenarios that can be

easily coupled with other environmental models (e.g.

hydrology and water quality models). The enrichment of

the MODFLOW environment by the optimization capability

of COA and AMALGAM formed a looped ‘Modelling –

Optimization – Simulation’ procedure useful for decision

makers facing groundwater management problems in arid

regions.
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