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Abstract In the life-cycle management of systems under continuous deteriora-
tion, studying the sensitivity analysis of the optimised preventive maintenance de-
cisions with respect to the changes in the model parameters is of a great impor-
tance. Since the calculations of the mean cost rates considered in the preventive
maintenance policies are not sufficiently robust, the corresponding maintenance
model can generate outcomes that are not robust and this would subsequently re-
quire interventions that are costly. This chapter presents a computationally efficient
decision-theoretic sensitivity analysis for a maintenance optimisation problem for
systems/structures/assets subject to measurable deterioration using the Partial Ex-
pected Value of Perfect Information (PEVPI) concept. Furthermore, this sensitivity
analysis approach provides a framework to quantify the benefits of the proposed
maintenance/replacement strategies or inspection schedules in terms of their ex-
pected costs and in light of accumulated information about the model parameters
and aspects of the system, such as the ageing process. In this paper, we consider
random variable model and stochastic Gamma process model as two well-known
probabilistic models to present the uncertainty associated with the asset deteriora-
tion. We illustrate the use of PEVPI to perform sensitivity analysis on a mainte-
nance optimisation problem by using two standard preventive maintenance policies,
namely age-based and condition-based maintenance policies. The optimal strategy
of the former policy is the time of replacement or repair and the optimal strate-
gies of the later policy are the inspection time and the preventive maintenance ratio.
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These optimal strategies are determined by minimising the corresponding expected
cost rates for the given deterioration models’ parameters, total cost and replacement
or repair cost. The robust optimised strategies to the changes of the models’ pa-
rameters can be determined by evaluating PEVPI’s which involves the computation
of multi-dimensional integrals and is often computationally demanding, and con-
ventional numerical integration or Monte Carlo simulation techniques would not
be helpful. To overcome this computational difficulty, we approximate the PEVPI
using Gaussian process emulators.

Keywords: Deterioration models, Partial Expected Value of Perfect Information,
Gaussian process, optimised maintenance, cost-benefit

1 Introduction

The resilience of an asset/machinery component or networked infrastructure sys-
tem is greatly dependent on an efficient cost effective life-cycle management. This
can be achieved by determining optimal maintenance and rehabilitation schedul-
ing schemes. Maintenance costs for an asset or a networked infrastructure systems
including rail, water, energy, bridge etc. are swiftly rising, but current estimates sug-
gest that ontime optimized maintenance schedules could save one trillion dollars per
year on infrastructure costs [15].

The maintenance strategies have generally been divided into two categories: Cor-
rective Maintenance (CM); and Preventative Maintenance (PM). The former in-
cludes repairing failed components and systems, while the latter involves systematic
inspection and correction of initiative failures, before they progress into major faults
or defects. In the recent years, an increasing dominance of PM has been clearly ob-
served with overall costs illustrated to be lower than CM strategy. The preventive
maintenance is extensively applied to lessen asset deterioration and mitigate the
risk of unforeseen failure. This maintenance strategy can be further classified into
two methods: Time-Based Maintenance (TBM), and Condition-Based Maintenance
(CBM). In the TBM, maintenance activities take place at predetermined time in-
tervals, but in the CBM, interventions are immediately carried out based on the
information collected through condition sensing and monitoring processes (either
manual or automated). Both TBM and CBM are widely used for asset/infrastructure
life-cycle management decision making, and extensively studied in [1, 14, 23, 34].

The main difficulty to make informed PM decisions is that predicting the time to
first inspection, maintenance intervention, or replacement is confounded by model
parameters’ uncertainties associated with the failure, deterioration, repair, or main-
tenance distributions. As a result, studying sensitivity of the model output with re-
spect to the changes in the model parameters/inputs is very essential to determine
an optimal maintenance strategy under these uncertainties. One of the main aims of
this paper is to investigate sensitivity analysis of the optimised maintenance with
respect to the changes in the model’s inputs when the aforementioned preventive
maintenance strategies are considered for the asset/infrastructure which is under
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continuous deterioration. The optimal maintenance decision under this maintenance
policies is normally considered as the inspection interval and the preventive mainte-
nance ratio that would minimize the expected total cost of the maintenance strategy.
This type of maintenance strategy is known to practically be more useful, particu-
larly for larger and more complex systems [1, 35]. This is mainly because it elimi-
nates the need to record component ages. It should be noted that finding the optimal
decision under a CBM policy for a deteriorating component involves solving a two-
dimensional optimisation problem, while for the TBM case the aim is to determine
the critical age as a single strategy variable.

As mentioned above, the PM policy cost function is dominated by the deterio-
ration and repair distribution’s parameters. Therefore, the computation of a mean
cost rates for a specific PM policy is not sufficiently robust, and the correspond-
ing maintenance model can generate results that are not robust. In other words,
the determination of an optimal maintenance intervention will be sensitive to the
parameters creating uncertainty as to the optimal strategy. The uncertainty around
the optimal PM maintenance can be mitigated by gathering further information on
some (or all) of the model parameters/inputs. In particular, Partial Expected Value
of Perfect Information (PEVPI) computations provide an upper bound for the value
(in terms of cost-benefit) that can be expected to be yielded from removing uncer-
tainty in a subset of the parameters to the cost computation. The PEVPI provides a
decision-informed sensitivity analysis framework which enables researchers to de-
termine the key parameters of the problem and quantify the value of learning about
certain aspects of the system [27, 35]. In maintenance studies ([16, 12]), this in-
formation can play a crucial role, where we are interested in not only determining
an optimal PM strategy, but also in collecting further information about the system
features, including the deterioration process to make more robust decisions.

The identification of PEVPI requires the computation of high-dimensional in-
tegrals that are regularly expensive to evaluate, and typical numerical integration
or Monte Carlo simulation techniques are not practical. This computational burden
can be overcome, by applying the sensitivity analysis through the use of Gaussian
process (GP) emulators [27, 35]. In this paper, we adopt and execute this sensitiv-
ity analysis approach for determining robust optimised PM strategies for a compo-
nent/system which is under continuous deterioration.

We use the random variable model (RV) to probabilistically model the deterio-
ration of a component/system of interest. Under the RV model [28], the probability
density and distribution functions of the lifetime are respectively given by

Ry — (B/P) P \ni1,-p/er
fT(t)_ F(n) (5t)n e P ) (1)
and
Ff(t)=1-9(p/t:n,8) =1-9(p:n, 1), (2)

where 1 and 0 are respectively the shape and scale parameters, 4 (p /t;71,6) denote
the gamma cumulative distribution function with the same shape and scale param-
eters for X = p /T, and p = (ro —s) > 0 is called the available design margin or a
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failure threshold. In the last expression, ry is the initial resistance of the component
against the load effect, s. Thus, a failure is defined as the event at which the cumula-
tive amount of deterioration exceeds the deterioration threshold (p). The threshold
p, s and ry are assumed to be deterministic constants for simplicity of discussion
(see [28] for further details).

The rest of the chapter is organised as follows. In Section 2, we discuss how this
probabilistic deterioration model links to TBM and CBM maintenance optimisation
problems. We formulate uncertainty quantification of the optimised PM policies
using the decision-informed sensitivity analysis in Section 3. The GP emulator re-
quired to compute PEVPI’s as within the context of decision-theoretic sensitivity
analysis is also briefly discussed in Section 3. Section 4 is dedicated to derive the
robust optimised maintenance decisions for TBM and CBM policies using several
illustrative settings of different complexity. We conclude by discussing the implica-
tions of our approach and identify opportunities for future work.

2 Optimal Preventive Maintenance Policy

The central objective of a preventive maintenance (TBM or CBM) optimisation
model is to determine the value of the decision variable 7' (replacement time or
inspection time) that optimizes a given objective function amongst the available
alternative maintenance decisions. For instance in a TBM policy, the optimisation
problem is usually defined over a finite time horizon [0,¢], and the objective func-
tion, denoted by C(¢), is the long-term average cost. There are various ways to define
these costs [3, 13]. The long-term mean cost per unit of time is normally defined in
terms of the length of two consecutive replacements (or life cycle) as follows:

Cc(T

€(T) = Gl 3)

~—

The following formula is an example of the expected cost per unit of a component
under a general TBM policy

ClF(T) + CzR(T)

“r)= T-R(T)+ f) tf(t)de+ T

“)

where F(T) is the failure distribution function of a system at time T (or probability
of unplanned replacement due to an unexpected failure), R(T) = 1 — F(T) is the
probability of planned replacement at time 7, ¢ is the cost of a corrective main-
tenance, c¢; is the cost of planned replacement and 7 is the expected duration of
replacement.

The objective is then to identify the optimal strategy T* that corresponds to the
minimum cost rate (cost per unit of time), that is;

T = arngn>ir01{<€(T)}. 5)
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A similar methods is used to determine the optimised CBM strategy. The cost func-
tion in this policy is the mean cost rate which is defined as:

E[C(1,v)]

AY) = )

(6)

where E[C(7,v)] is the renewal cycle cost, E[L(#;,0)] is the renewal cycle length,
t7 is the inspection time interval and v is the PM ratio. The details of numerator and
denominator of the mean cost rate will be given in Section 4.

The objective is then to find #; and v* so that J¢ (¢/,v*) becomes the minimal
cost solution.

2.1 Uncertainty quantification using via decision-theoretic
sensitivity analysis

The optimal maintenance strategies derived by minimizing the expected cost rate
is influenced by characteristics such as the deterioration process or failure be-
haviour of the system and the characteristics of maintenance tasks (including re-
pair/replacement policy, maintenance crew and spare part availability etc.). These
characteristics are subject to uncertainty, prompting study of the sensitivity of an
optimal maintenance strategy with respect to changes in the model parameters and
other inflecting uncertain inputs. Such an analysis improves understanding of the
‘robustness’ of the derived inferences or predictions of the model, and, offers a
tool for determining the critical influences on model predictions [33, 11]. Zitrou et
al. [35] summarise the main sensitivity measures and discuss their values and appli-
cations in an extensive sensitivity analysis. They conclude that a simple yet effective
method of implementing sensitivity analysis is to vary one or more parameter in-
puts over some plausible range, whilst keeping the other parameters fixed, and then
examine the effects of these changes on the model output. Although this method is
straightforward to implement and interpret, it becomes inconvenient where there are
large numbers of model parameters or when the model is computationally intensive.

In order to resolve this difficulty, we use a variance-based method for sensitivity
analysis [33]. This approach can capture the fractions of the model output variance
which are explained by the model inputs. In addition, it can also provide the total
contribution to the output variance of a given input - i.e. its marginal contribution
and its cooperative contribution. The contribution of each model’s input to the model
output variance serves as an indicator of how strong an influence a certain input or
parameter has on model output variability. However, within a decision-making con-
text like the maintenance optimisation problem, we are primarily interested in the
effect of parameter uncertainty on corresponding utility or loss. To achieve this ob-
jective, we use the concept of the Expected Value of Perfect Information (EVPI) as
a measure of parameter importance [27, 35]. The EVPI approach allows the appli-
cation of sensitivity analysis to the maintenance optimisation model and identifies
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the model parameters for which collecting additional information (learning) prior to
the maintenance decision would have a significant impact on total cost.

3 Decision-theoretic sensitivity analysis

3.1 Expected Value of Perfect Information

As discussed in the previous sections, the objective function of interest to us is the
expected cost function (e.g., the cost rate function given in Equation (4) for TBM
or the mean cost rate given in (6) for CBM). These cost functions take reliability
and maintenance parameters as uncertain inputs (denoted by 6) and a decision pa-
rameter, 7 (which could be critical age or periodic inspection interval). A strategy
parameter (which is fixed) needs to be selected in the presence of unknown reliabil-
ity and maintenance parameters. These unknown parameters can be modelled by a
joint density function, (6). In the maintenance optimisation setting, the decision
maker can choose the strategy parameter 7 (from a range or set of positive num-
bers) where each value of 7' corresponds to a maintenance decision. The decision T
is selected so that the following utility function is maximised

U(T,0) =—¢(T:6), (7

where € (T; 0) is a generic cost function per unit of time given the unknown param-
eters 6.

Suppose that we need to make a decision now, on the basis of the information in
7(0) only. The optimal maintenance decision (known as baseline decision), given
no additional information, has expected utility

Uy = argmax Ey [U(T, 0)], 8)
T>0
where
EalU(T.0)] =~ [ #(T:0)m(0)db. ©)

Now suppose that we wish to learn the precise value of a parameter 6; in 6 be-
fore making a decision (e.g., through exhaustive testing; new evidence elicited from
the domain expert). Given 6;, we are still uncertain about the remaining input pa-
rameters, 6; = (0y,...,6;_1,6i11,...,6,), and so we would choose the maintenance
strategy to maximise

Eoj6,[U(T,8)] = —/9. % (T:0)7(0 | 6;)d6,. (10)

The expected utility of learning 6; is then given by:
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U, = Ej, aI'gI;li%(Eg‘ei {U(T,0)}]. (11)

Therefore, learning about parameter 6; before any maintenance decision being taken
will benefit the decision-maker by:

EVPlg, = Eg,[Us,| — Uo. (12)

Therefore, the quantity EVPIg,, known as the partial Expected Value of Perfect In-
formation (partial EVPI or PEVPI), is a measure of the importance of parameter 6;
in terms of the cost savings that further learning (data collection) will achieve.

EVPI’s allow for sensitivity analysis to be performed in a decision-theoretic con-
text. However, the computation of partial EVPIs as in (12) requires the evaluation
of expectations of utilities over many dimensions. Whereas the one-dimensional in-
tegral Eg,[Ug,| can be evaluated efficiently using Simpson’s rule, averaging over the
values of multiple parameters is computationally intensive. One way to approximate
these expectations is to use a Monte Carlo numerical method. However, the Monte
Carlo based integration methods require a large number of simulations which make
the computation of the PEVPI’s impractical. Zitrou et al. [35] propose an alternative
method for resolving this problem by utilizing a GP emulator based sensitivity anal-
ysis to the objective function of interest. This method enables computation of the
multi-dimensional expectations at a limited number of model evaluations with rela-
tive computational ease. We develop this method further for the purposes mentioned
above.

3.2 Gaussian Process Emulators

An emulator is an approximation of a computationally demanding model, referred
to as the code. An emulator is typically used in place of the code, to speed up
calculations. Let €(-) be a code that takes as input a vector of parameters 6 € 2 C
RY, for some g € Z, and has output y = €(6), where y € R. As we will see later
on, this is not a restrictive assumption, and we will let y € R?, for some s € Z.. For
the time being, let €(-) be a deterministic code, that is for fixed inputs, the code
produces the same output each time it ‘runs’.

An emulator is constructed on the basis of a sample of code runs, called the
training set. In a GP emulation context, we regard €(-) as an unknown function,
and use a g— dimensional GP to represent prior knowledge on '(+), i.e.

G () ~ Ny(m(-),v(-,-))- (13)

We subsequently update our knowledge about ’(+) in the light of the training set,
to arrive at a posterior distribution of the same form.

Expression (13) implies that for every {64,...,60,} output {€(0,),...€(0,)}
has a prior multivariate normal distribution with mean function m(-) and covari-
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ance function v(+,-). There are many alternative models for the mean and covariate
functions m(-). Here, we use the formulation in line with [25], and assume

m(0)=h(6)"B (14)
for the mean function, and
v(0,60") = c%c(0,0) (15)

for the covariance function. In 14, &(-) is a vector of ¢ known regression functions
of 6 and B is a vector of coefficients. In (15), ¢(+,-) is a monotone correlation func-
tion on RY with ¢(0,0) = 1 that decreases as |6 — 0’| increases. Furthermore, the
function c(-,-) must ensure that the covariance matrix of any set of outputs is posi-
tive semi-definite. Throughout this paper, we use the following correlation function
which satisfies the aforementioned conditions and is widely used in the Bayesian
Analysis of Computer Code Outputs (BACCO) emulator ([24, 27]) for its computa-
tional convenience:

c(0,0") =exp{—(6—6')TB(6 — 0')}, (16)

where B is a diagonal matrix of positive smoothness parameters. B determines
how close two inputs 6 and 6’ need to be such that the correlation between k(0)
and €'(0’) takes a particular value. For further discussion on such modelling is-
sues [19]. To estimate parameters 3 and o, we use a Bayesian approach as in [26]:
a normal inverse gamma prior for (8,62) is updated in the light of an observation
vector y = (€ (61),...,%(6,))7, to give a GP posterior (see [35] for the details of
how the posterior distribution of the function of interest can be derived). Note that
y is obtained by running the initial code %(-) n times on a set of design points
(61,62,...,6,)7.

In many cases, input parameters are subject to uncertainty and are modelled as
random variables. The input of the code is now a random vector 6 with probability
distribution F', implying that the code output Y = % (0) is also a random variable.
The uncertainty in the output is epistemic, arising from the uncertainty of the input
parameters. But there is also uncertainty due to the incomplete knowledge of the
model output, called code uncertainty (we are not running the actual code, but just
an approximation). We can quantify code uncertainty on the basis of the covariance
function (15) and control its effect by modifying the number of design points.

Emulators are useful tools for uncertainty and sensitivity analysis [24, 21]. For
GP emulators in particular, this is due to the fact that Bayesian quadrature as de-
scribed in [25] allows one to take advantage of the emulator’s analytical properties
to evaluate the expected value E[Y] and the variance Var[Y] relatively quickly. In
particular, since Y is a GP, the integral

EY] = /%(e)n(e)de (17)
0
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has a normal distribution. In this particular context, we are interested in comput-
ing partial EVPIs as in (12). By using an emulator to approximate utility U(T, 6),
expectations of the utility can be computed rapidly, considerably reducing the com-
putational burden of sensitivity analysis. Emulators perform better than standard
Monte-Carlo methods in terms of both accuracy of model output and computational
effort [19, 24].

The objective of the maintenance optimisation problem described here is to iden-
tify decision T (time where PM is performed) that maximises the Utility given in
(7). Essentially, there are two approaches to the problem:

A assume that T belongs to a finite set .’ comprising s options 77, 75,..., Ty, or
B assume that T can take any value in (Tiin, Timax)-

Under Approach A, to identify the optimal decision we need to determine the
vector of outputs ¥ = (¥i,...,Y), where Y; = U(T},0) (j = 1,...s) is described in
(7). As discussed in [9], there are essentially two procedures for emulating a code
with a multi-dimensional output like this one: the Multi-Output emulator (MO) and
the Many Single Outputs (MS) emulator. Alternatively, under Approach B, we need
to determine output Y (7') = U(T, 0) as a function of decision variable 7. To do so,
one can use a Time Input (TI) emulator [9].

The MO emulator is a multivariate version of the single output emulator, where
the dimension of the output space is s. This process allows for the representation of
any correlations existing among the multiple outputs. The MS emulator procedure
treats {Y1,...,Y;} as independent random variables, and emulates each output Y;
separately. This means that s separate GP emulators are built, each describing the
utility for each decision 7' € .. Finally, the TI emulator is a single-output emulator
that considers decision variable T as an additional input parameter. The advantage
of this approach is that S does not have to be a finite space, and utility U(7, 0) can
be determined for any value of T over some interval (Tiin, Tmax ). For the mainte-
nance optimisation problem examined here, the TI emulator has a very important
advantage over the other two: it allows for decision 7 to be a continuous variable.
Expectations E[Y] are continuous functions of 7', and the utilities of the optimal
strategies are calculated without restricting the decision-maker to choose amongst
a pre-determined, finite number of options. We believe that this feature outweighs
the more general correlation structure provided by the MO emulator. We note, how-
ever, that this may not be the case in dynamic codes, where the representation of the
temporal structure of some physical process is key.

3.3 The TI Emulator

Suppose that the optimal decision 7 in a maintenance optimisation problem (critical
age or periodic interval) belongs to an infinite set S = (Tin, Tmax)- We consider
T as a code input and we are interested in building a single-output emulator to
approximate code
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k(T,0)=U(T,0) =—%(T:0), (18)

where €(T;0) is the cost rate function. This will allow us to calculate expected
utilities E¢[U(T,0)] and Eg|,[U(t,0)] for T € . - see Relationships (8) and (10) -
fast and efficiently. We note that this setting is an extension of the decision problem
considered in [27], where the decision-maker must choose among a small set of
options i.e. where the optimal decision T belongs to a finite set S.

To estimate the hyper-parameters of the TI emulator, we generate training set .7
consisting of code outputs

Y1 :k()ﬂ),...,y[v :k(XN),
where (x1,x2,...,xy)T are design points. We have

x=(T;,0;), 1=12,....N=sxn,

where 7; is a maintenance decision (i =1,...,s) and 0; are (reliability, maintainabil-
ity) parameter values (j = 1,...,n).

The choice of design points affects how well the emulator is estimated. Here,
we choose equally spaced points {71, ..., T} so that interval S is properly covered.

Points (6;,6s,...,6,)T are generated using Latin hypercube sampling (see [22]),
which ensures that the multidimensional parameter space is sufficiently covered.

As mentioned earlier, building a TI emulator requires the inversion of an N x N
matrix. Given the size of the training set, this can be computationally challenging.
Essentially, there are two ways to build the TI emulator: (1) fit a GP directly to the
whole training set .7 obtained as described above; (2) separate 7 and fit two GPs:
one on the set of design points (6,65, ...,0,) and one on the time input data points
{h,...,T;} [31,9].

Zitrou et al. [35] present the methodology to fit these two GPs to a similar
decision-informed optimidation problem, including estimating the roughness (or
smoothness) parameters and other hyper-parameters. They showed that however
the firs approach based on fitting a single GP to to the whole training set .7 takes
longer, but it would produce more accurate results. They showed that the relative
mean squared error of the posterior predictive mean of the first model (based on
fitting a single GP) is much smaller than when fitting two GP. We therefore follow
their suggestion and fit a single GP to the full training set.

The baseline maintenance strategy is then chosen as a value of 7' that maximises
expected utility as

Uo = ITT}anXEk{EO k(T,0)]} (19)

and the utility of the optimal strategy in (10), after learning the value of 6;, becomes

Ue, = ITnaXEk{ET79|@,- [k(T,0)]}. (20)
e

Bayesian quadrature [25] allows us to compute these expectations relatively quickly
based on the fitted GP and calculate PEVPIs for the different parameters as in (12).
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The details of the approximation of this type of integral (expectation) in terms of
the fitted GP can be found in [11].

We use R and GEM-SA packages to fit the GP to the training points and then ap-
proximate the expected utilities and their corresponding uncertainty bounds. To cal-
culate the aforementioned expected utilities, the calculations are carried out based
on the discretisation of the interval . (maintenance decision) and the support of the
joint prior distribution of the parameters 7(0). It is apparent that the computation
of these expectation can become quite expensive by choosing a finer discretisation.
The following section presents two illustrative examples. The focus here is on the
way emulators can be used to perform sensitivity analysis based on EVPI, provid-
ing a resource efficient method for maintenance strategy identification and identi-
fying targets for institutional learning (uncertainty reduction). In the first example
we build an emulator for a TBM optimisation problem and in the second example
finding a robust CBM of a civil structure using emulator-based sensitivity analysis
is presented.

4 Numerical examples

4.1 Sensitivity analysis of Time-based maintenance decisions

Under the TBM policy (also known as age-based replacement), the system or com-
ponent under study is in one out of two operating conditions; working or failed.
System failure is identified immediately and corrective maintenance (CM) actions
are undertaken to restore the system to its original condition. Regardless of the sys-
tem condition, the system is renewed when it reaches a predetermined time (or age)
T*. In the TBM optimisation problem, the main challenge is to identify the opti-
mal time to maintenance to minimise overall maintenance costs. This optimisation
problem is usually defined over a finite horizon [0,¢], and we seek to minimise the
objective cost function €(r) over this time interval.

Using the renewal theory ([3, 13]), the expected cost rate per unit of time can be
mathematically expressed as:

. 7CFFT(I;91)+CP[17FT(I;91)}
rlr:01) = Jol —Fr(e:60))dr @b

where Cr is the total cost associated with all the consequences of system failure
(particularly, structural failure due to deterioration), Cp is the cost associated with a
preventive maintenance action, Fr(z; 0) is the system lifetime distribution function
given in (2), and 0 is the set of the lifetime distribution parameters.

The cost rate function given in (21) can be developed further (see [3, 2]) to

) _C]FT(I;91)+C2[1—FT(I;Gl)]
CgR(I’G) N fé[l —FT(I)]dI+ Tr(ez) ’ (22)
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where 7,(60) is the expected duration of the maintenance action, and is defined by
%.(65) :/O tgr(r;0:)dr, (23)

where gr(t; 02) is the time to repair (or replacement) distribution, 0, is the set of re-
pair distribution parameters, and 0 = (0, 8;). Without loss of generality, g7 (#;02)
is assumed to follow a Gamma distribution with o and f as shape and scale param-
eters respectively.

For numerical illustration, we set Cr = 50 and Cp = 10. As discussed in Sec-
tion 1, the lifetime distribution of a deteriorating component using the RV model
follows an inverted Gamma distribution with the density function given in (1) In
this distribution, 1) and & are respectively the shape and scale parameters of the life-
time distribution. Figure 1 illustrates how the expected cost rates change over the
decision variable T for specific values of parameters, 6 = (1,0, , ).

—e— (13.8,0.54,1.95,2.56) prrt
%= (8.4,0.722522) P

35r| = 4 =(13.4,0.88,1.5,2.37) -
10 (11.6,0.6,1.6,2.4) &

C(T8)

Fig. 1: Total long-run average costs per unit time function for different values of

6=(n,6,a,B)

The decision-maker proposes the following prior distribution on 6
n(6) = m (n)m(8) 7 (a) ma(B), 24)
where each of these parameters individually is uniformly distributed as follows
n~U(3,14), § ~U(0.15,0.95), a ~ U(1,3), B ~U(2,3),

where U (a1,b1) denote a uniform density function defined over (ay,b1).

It can be shown that the cost function in (22) has a unique optimal solution (ac-
cording to Theorem 1 given in [2]). When the uncertainty in input parameters 0 are
included, the optimal maintenance decision will lie in the interval, I = [3,15] [35].
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In order to lower the computational load of computing the value of information
measures (PEVPIs) as the sensitivity analysis index, a T emulator is fitted to the
cost rate function %x(¢; ), given in (22). The total training data-points to build this
emulator is 1500 selected as follows. We first generate 60 design points from the
joint prior distribution, 6, using the Latin hypercube design [32]. We then calculate
the cost rate function (as a computer code) at each design point for 25 values of T
(ie.,T=3,354,...,15).

Using the fitted GP, the baseline optimal decision is derived at T = 8.5 where the
corresponding maximum utility is Uy = 0.896. So, if there is no additional infor-
mation available on individual input parameters, apart from the prior information,
the optimal time to maintenance is at 8.5 time units resulting in an almost 90% cost
saving compare the corrective maintenance. Further saving can be achieved if addi-
tional information about the values of the parameters can be provided before making
any decision. For example, suppose that @ is known before making a decision. Ta-
ble 1 provides the detailed information about the optimal decisions for the different
values of 7. For instance, when the shape parameter of the lifetime distribution of
a component under study takes values in (3,3.825), then the cost rate is minimum
for T = 10.2, but if 1 € (8.255,8.775), then the optimal maintenance decision is
T =17.80. Tables 2 to 4 shows the optimal maintenance decisions for the different
values of §, o and 3, respectively.

The values of the PEVPI’s along with the uncertainty intervals are given in Table
5. From these results, it can be concluded that 17 and & (the shape and scale parame-
ters of the lifetime distribution) are the most important factors. Note that knowning
1N prior to the decision shows the most substantial differentiation between optimal
strategies. Thus, this parameter is ‘important’ in the sense that reducing uncertainty
about its value is likely to result in a different optimal strategy. This conclusion is
further supported in Figure 3 which summaries the sensitivity analysis of the cost
rate function with respect to the changes of the model input parameters. In this fig-
ure, the variance contribution of each parameter to the total variance of the cost
rate at T = 8.5 is shown. The variance contribution of 1 and & are almost 30% and
26% based on only 60 data-points at T=8.5, respectively, while o and 8 covers only
6% and 1% of total variances, respectively. In addition to the individual impacts
of 1 and &, their interaction which covers 37% of total variance is considered as
an important factor influencing the maintenance cost at the chosen optimal replace-
ment time. The analysis also exposes the behaviour of the expected cost at a specific
time for different values of the parameters. Figure 3 illustrates how expected cost
Egjg, [~ %r(t;0)] when T=8.5 changes with different values of the parameters (i.e.,
(n,6,a,p))), along a 95% uncertainty bound (the thickness of the band).
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Range T Range T
(3,3.825) 10.2  (8.225,8.775) 7.80
(3.825,4.375) 11.4 (8.775,9.875) 7.2
(4.375,4.925) 13.8 (9.875,10.975) 7.80

(4.925, 5.475) 10.80 (10.975,11.525) 6.6
(5.475,6.025) 7.20 (11.525,12.075) 7.2
(6.025,7.125) 6.6  (12.075,13.175) 13.2
(7.125,7.675) 7.80 (13.175, 13.725) 10.8

(7.675,8.225) 8.40 (13.725, 14)

9

Table 1: Optimal decisions when pa-
rameter 7] is known prior the mainte-

nance decision.

Range T Range T

(1,1.10) _ 8.52 (2.30,2.34) 8.28
(1.10,1.34) 8.28 (2.34,2.38) 8.52
(1.34,1.50) 8.04 (2.38,2.42) 9
(1.50,1.66) 7.8 (2.42,2.46) 9.48
(1.66,1.82) 7.56 (2.46,2.50) 9.96
(1.82,2.14) 7.32 (2.50,2.54) 10.20
(2.14,2.22) 7.56 (2.54,2.62) 10.44
(2.22,2.26) 7.80 (2.62,2.78) 10.68
(2.26,2.30) 8.04 (2.78,3)  10.92

Table 3: Optimal decisions when
rameter ¢ is known prior the mainte-
nance decision.

pa-

Range T Range T
(0.15,0.29) 7.2 (0.61,0.73) 9
(0.29,0.43) 7.8 (0.73,0.93) 9.6
(0.43,0.61) 8.4 (0.93,0.95) 10.2

Table 2: Optimal decisions when pa-
rameter 6 is known prior the mainte-
nance decision.

Range T Range T

(22.03) 14.76 (2.19,2.21) 9.48
(2.03,2.05) 13.80 (2.21,2.23) 9.24
(2.05,2.07) 13.32 (2.23,2.27) 9

(2.07,2.09) 12.60 (2.27,2.33) 8.76
(2.09,2.11) 11.64 (2.33,2.41) 8.52
(2.11,2.13) 10.68 (2.41,2.55) 8.28
(2.13,2.15) 10.20 (2.55,2.77) 8.04
(2.15,2.17) 9.96 (2.77,2.91) 8.28
(2.17,2.19) 9.72 (291,3)  8.52

Table 4: Optimal decisions when pa-
rameter f is known prior the mainte-
nance decision.

6; PEVPI,

n 0.109
5 0.0268 (0.0199, 0.0338)
o 0.0075 (0.0235, 0.0213)
B 0.009

(0.102, 0.116)

(0.00216, 0.0159)

Table 5: The PEVPT’s estimated based on the fitted GP process for the parameters
of the RV model for the TBM policy.
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Fig. 2: The variance contribution of

each input parameter to the cost rate ~ Fig. 3: Expected utilities and 95% uncer-
function of the time-based mainte-  tainty bounds for 7 = 8.5 when the pa-
nance policy at 7 = 8.5 for the RV rameters are completely known before the
deterioration model. maintenance decision.

4.2 The condition-based maintenance policy

Under the RV deterioration model, the following CBM policy is considered, based
on the periodic inspection of a component at a fixed time interval #; with cost, C;
(see also [28])

1. If X(#;) < vp, no maintenance action should be taken until the next inspection
with the cost, C;.

2. If vp < X(#) < p, the maintenance action will be taken at the cost Cp to renew
the system.

3. If the system fails between inspections (X (#;) > p), a corrective maintenance will
restore the system at the cost of Cr

where 0 < v < 1 is called PM ratio, and vp is the threshold for the PM which is a
fraction of the failure threshold.

According to renewal theory ([2, 29]), the mean cost rate for the CBM policy
under the RV deterioration model is given by

E[(gy([], V; 9)]
(Zp(t,0:0)]+ 1.

JHr(t1,0;0) = B (25)

where

E[%U(II,U;G)] = (C[+CP)PF(X(II) < p) +CFPF(X(t]) > p)
= (C1+CP —Cp)g(p/ﬁ;n, 5) +Cr,
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E[%p(t1,0;0)] = /.ll Pr(X(t) < p)dt+ mPr(X(t) < vp)dt

JO JIr

1) o0
= ["9p/n.8)r+ [ g(op/in. St
0 1y

T, is the expected duration of the maintenance action as given in (23), and 6 =
(n.8,0.B).

In [29, 28], it was discussed that the optimal inspection time (#;) is unique and
will lie in an interval with the details given in these works (e.g., #; € [3, 16] in the
following numerical example). The optimal inspection interval and PM ratio, (7, V)
apparently depends on the parameter values, 6. Thus, the robust optimal inspec-
tion interval can be derived through performing a proper decision-based sensitivity
analysis described above.

The PM ratio, v is considered as an extra parameter and included into the uncer-
tain parameters, that is, ¢ = (1,8, o, 8, ). The joint prior distribution given in (24)
will be revised as follows:

n(¢) = m () m(8)m (o) ms(B)7s(v), (26)
where
n~U(3,14), § ~U(0.15,0.95), a ~U(1,3), B ~U(2,3), v ~U(0,1)

To compute the PEVPI'’s associated with these input parameters, the TI emulator is
then fitted to the mean cost rate, #z(f;, ¢ ) based on 2160 training data points. These
data points consists of 80 design points generated from the joint prior distribution
of ¢ (using the Latin hypercube design) and then evaluating the mean cost rate at
each of these design points for 27 selected values for #, that is, r; = 3,3.5, ..., 16.

The maximum benefit of using the information available in 7(¢) is Uy = 0.642
which attains at the optimal inspection time interval 7' = 6.62. Tables 8 to 11 in Ap-
pendix A show the optimal inspection interval decisions when the values of v,&, o
and B are learned prior to making any decision about the inspection time. Table 6
illustrates the optimal #; when the values of PM ration v is learned prior to the deci-
sion making. For instance, when the PM ratio lies in (0.625, 0.925), then the mean
cost rate is minimum at #; = 5.1, but when v takes values closer to its median, that
is, v € (0.475,0.525), then #; = 5.65.

The values of the PEVPI’s along with their 95% confidence bounds over the con-
sidered interval for optimal inspection time (i.e., I, = [3,16]) are presented in Table
7. The parameters with the highest PEVPIs are d and 7 (the scale and shape param-
eters of the RV deterioration model) and the PM ratio parameter, v. Learning about
these parameters prior to making when to inspect the component of interest, will
allow the decision-maker to implement a strategy that will result in the higher cost
saving. That also means these parameters are essential in the sense that, reducing
uncertainty about their values, is likely to change the optimal inspection interval.
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Range T Range T
(0,0.025) 8.95 (0.375, 0.475) 6.20
(0.025,0.075) 8.40 (0.475, 0.525) 5.65
(0.075,0.175) 7.85 (0.525, 0.625) 4
(0.175,0.275) 7.30 (0.625, 0.925) 5.10
(0.275,0.375) 6.75 (0.925, 1) 4

Table 6: Optimal decisions when PM
ratio parameter, U is known prior the
maintenance decision.

17

0; PEVPI; C.l

n 0.0117  (0.005, 0.018)
6 0.0174 (0.01, 0.0243)
o 0.008255 (0.0014, 0.015)
B 0.0085 (0.0017,0.015)
v 0.01184 (0.004, 0.02)

Table 7: The estimated PEVPI’s
based on the fitted GP emulator for
the parameters of the RV model for
the CBM policy.

Figure 4 also illustrates the sensitivity analysis of J#z(#;,¢) with respect to the
changes of ¢ at r; = 6.6. Based on the variance contribution fractions, it can be
similarly concluded that v,  and 1 (23%) are the most influencing factors affecting

the mean cost rate at t; = 6.6.

50 1%

[ s o s

Fig. 4: The variance contribution of each input parameters to the cost rate function
of the CBM policy at t; = 6.6 for the RV deterioration model.

5 Conclusions and Discussion

Strategic planning for information systems implementation requires a thorough as-
sessment of the to-be system’s lifecycle, resilience and overall sustainability. This
is of no exception for cloud services and big data analytic systems. The overall
aim is to reduce the energy concumption of the system, enhance system’s environ-
mental friendliness, align the system with social aspects of sustainability, reduce
the cost, prolong system’s endurance or a combination of all of the above. There
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are numerous facets to information systems strategic engineering. Hosseinian-Far
& Chang [18] assessed the information system’s sustainability e.g. Strategic Infor-
mation Systems (SIS)’s endurance by quantifying seven factors, two of which were
contextualised for the specific SIS’s under study. However, the research presented
in this paper, surpasses that by focusing on the preventive maintenance strategies
by which the system’s lifecycle can be prolonged. This is in line with the econ-
omy domain of the three pillar generic sustainability model(i.e. People, Planet and
Profit [17], as it entails less costs as opposed to post issue maintenance strategies
i.e. Corrective Maintenance (CM) strategies.

In this chapter, we have demonstrated how the life-cycle management of an asset
(system) under continuous deterioration can be efficiently and effectively improved
by studying the sensitivity of optimised PM decisions with respect to changes in the
model parameters. The novelty of this research is the development of a computa-
tionally efficient decision-theoretic sensitivity analysis for a PM optimisation prob-
lem for infrastructure assets subject to measurable deterioration using the PEVPI
concept. This approach would enable the decision-maker to select a PM strategy
amongst an infinite set of decisions in terms of expected costs and in terms of accu-
mulated information of the model parameters and aspects of the system, including
deterioration process and maintenance models. We use an RV deterioration model
to present the uncertainty associated with asset deterioration across both age-based
and condition-based PM policies. The computation of PEVPI’s is very demanding,
and conventional numerical integration or Monte Carlo simulation techniques would
not be as helpful. To overcome this computational challenge, we introduced a new
approach which approximates the PEVPI using GP emulators; a computationally
efficient method for highly complex models which require fewer model runs than
other approaches (including MCMC based methods). The method is illustrated on
worked numerical examples and discussed in the context of analytical efficiency
and, importantly, organisational learning.

The EVPI-based sensitivity analysis presented here can be used for other mainte-
nance optimisation problems including problems with imperfect maintenance [30],
or delay-time maintenance [10]. In this case, it is considered as one of the more
effective preventive maintenance policies for optimising inspection planning. An
efficient condition-based maintenance strategy which allows us to prevent sys-
tem/component failure by detecting the defects via an optimised inspection might
be identified using the sensitivity analysis proposed in this paper to determine a ro-
bust optimal solution for delay-time maintenance problems and the expected related
costs, when the cost function parameters are either unknown or partially known.
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Appendix A: Optimal CBM maintenance decisions’ Tables

Range t Range 1 Range 174 Range 1
L 1

(33335) 1097 (1.585,7.95)  9.13 (0.15,0.1758) 11.33 (0.457,0.483) 9.87
(3.3353.7)  12.07 (7.95,8.315)  8.77 (0.1758,0.19) 15 (0.483,0.51) 9.5
(3.70,4.385) 12.80 (8.315,8.585) 8.4 (0.19,0217) 14.63 (0.51,0.537) 8.77
(4385.5.015) 12.43 (8.5855,8.95) 8.03 (0.217,0.243) 13.17 (0.537, 0.563) 8.40
(5.015.5.385) 11.70 (8.95,9.415)  7.67 (0.243,0.297) 12.80 (0.563,0.59)  8.03
(5.385.5.75) 113 (9.415.9.785) 173 (0.297,0.323) 12.43 (0.59,0.617) 7.77
(5.75.6.115) 10.97 (9.785, 10.15) 6.93 (0.323,0.35) 12.07 (0.617,0.643) 7.30
(6.115,6.485) 10.6 (10.15,10.885) 6.57 28?70'034713)3) H;g 28.247&3,00.7627?3) 223
(6.485,6.85) 12.23 (10.885, 11.615) 6.20 377.0. 33 (0.67,0. :

(64857215 99 (11615, 14) 583 (0.403,0.43) 10.97 ( 0.723, 0.803) 6.20
(7.215.7.585) 9.5 o ' (0.43,0457) 10.23 (0.803,0937) 5.83
— . (0.937,0.95) 547

Table 8: Optimal decisions
when parameter 7] is known
prior the maintenance deci-
sion.

Table 9: Optimal decisions
when parameter 6 is known
prior the maintenance deci-
sion.
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Range #;
(1,3) 6.64

Table 10: Optimal decisions
when parameter o is known
prior the maintenance deci-
sion.
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Range t

(2,2.15)U(2.83,2.95) 6.42
(2.15,2.41)U(2.59,2.83) 6.64
(2.41,2.59) 6.86
(2.95, 3) 6.20

Table 11: Optimal decisions
when parameter 8 is known
prior the maintenance deci-
sion.



