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Abstract

Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural
landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting
natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity
spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports
dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a
total of <23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent
and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil
palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm
plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp
forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as
well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant
positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service
benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments
that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that
benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop
monocultures to better understand their role in sustainable agriculture.
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Introduction

More than 50% of the global land area that is purportedly

suitable for agriculture has already been converted to farmland

[1]. Moreover, by 2050, projections suggest that an increase of one

billion hectares in agricultural land is required to feed a growing

population and to meet increasing consumption per capita [2],

much of which will come at the expense of natural habitat in the

tropics [3]. Following agricultural development, the landscape is

often left with highly fragmented patches of natural habitat that

create sharp habitat boundaries with agriculture, and with

remaining patches of natural habitat showing varying degrees of

degradation and isolation [4,5]. The simplification of vegetation

structure and altered environmental conditions within the

agricultural matrix often prove too extreme for much native

biodiversity to persist, and valuable ecosystem services may also be

threatened by the loss of natural habitats [4,6–8]. Consequently,

agricultural expansion is one of the key threats to biodiversity

[1,2], and there is an increasing strain between conserving

biodiversity and maximising agricultural production [8–10].

Many crops are highly dependent on functional interactions

provided by biodiversity, such as soil nutrient supply, pollination,

and biological pest control [11–14]. Integration of remnant

natural habitat features such as forest fragments, riparian strips,

and hedgerows within agricultural landscapes is advocated as a

means to enhance ecosystem services and thus yield, in addition to

providing conservation benefits to native biodiversity, within

sustainable landscapes [15–21]. While there is a large literature on

how the retention of natural habitat can encourage biodiversity

and ecosystem services, there is a lack of knowledge of the degree

to which remnant habitat might negatively affect yield. The spill-

over of biodiversity from natural habitats to agricultural land can

negatively alter species diversity and food web interactions [22,23],

with ecosystem dis-services potentially arising as a consequence of

providing reservoir populations of insect or fungal pests, crop

raiders, invasive weeds, or predators and parasites of beneficial

species [12,23].

Retaining natural habitat remnants within agricultural land-

scapes also reduces the land available for growing crops, and so

may constitute an opportunity cost to local production as well as

potentially increasing the demand for converting land elsewhere to

agriculture [1]. Landscape-scale planning for agricultural sustain-

ability and conservation therefore hinges on whether or not

remnant habitat features provide a net benefit for agricultural

PLOS ONE | www.plosone.org 1 March 2014 | Volume 9 | Issue 3 | e91695

http://creativecommons.org/licenses/by/4.0/


production, for conservation, or for both. This is a particularly

important issue in the tropics, where conversion to agriculture

consumed 1.4% of the tropical forest biome between 2000 and

2005 [24]. To date, research on the relationship between natural

vegetation cover and crop yield in the tropics had focused on two

agro-forestry crops: coffee [8,17,18,25,26] and cocao [27,28,29].

Both coffee and cocao plantations consist of a mix of crop plants

and (non)-native shade trees, which results in an agro-forestry

matrix that is comparatively hospitable to forest species (e.g., [30]),

and can enhance spill-over from forest and resulting ecosystem

services. Consequently, these studies found that close proximity to

forest improved pollinator bee numbers [31] and thus coffee yields

by up to 20% [18] compared to locations 1,400–1,600 m from

forest, and that distance to forest had a marginal positive effect on

yield in cacao plantations [27], which have increasing numbers of

predatory ant and spider species with higher densities of native

shade trees [28]. Furthermore, exclusion experiments showed that

bird and bat predation, and the extent of forest cover were

important in controlling pest populations and thus positively

impacting yield [8,29].

To our knowledge, the impact of forest on yield has not been

assessed in the context of tropical crop monocultures, in which a

single crop species is planted in stands that do not contain non-

crop trees or other crop species, yet the majority of crop expansion

within the tropics now creates monocultures of sugar cane, soya,

oil palm, and even cocao. Oil palm Elaeis guineensis is one of the

world’s highest yielding and most financially lucrative monocul-

ture crops [32]. As such, it is expanding very rapidly, with

production increasing by .5.5 million ha between 2001 and 2011

[33] and with the majority of this expansion occurring at the

expense of hyperdiverse tropical rainforest in Southeast Asia [34].

Unlike coffee and cocao plantations, which can retain high levels

of within-plantation biodiversity, whole-sale forest conversion to

oil palm results in dramatic local extinctions of most forest-

dwelling species [35–37]. To reduce the environmental footprint

of oil palm, The Roundtable for Sustainable Palm Oil (RSPO), via

the high conservation value (HCV) forest protocol [38,39], and

conservation scientists (e.g., [40,41]) have both highlighted the

potential benefits of creating oil palm landscapes that retain forest

remnants and riparian strips within plantations, but the net effect

of such management on oil palm yield is not known [42].

In this study, we explore the impacts of the local extent of forest

cover and the proximity to forest on oil palm yields in Sabah,

Malaysian Borneo, where palm oil production covers 19% of the

state land area [43] and where there is increasing pressure for

further expansion. We thus assess whether the retention of forest

within and adjacent to oil palm plantations has a positive, negative

or neutral impact on oil palm yield, with the aim of informing

sustainable land-use planning.

Materials and Methods

Study Area
Our study landscape spans 49.5 km629.8 km (total

area = 1474 km2 or 147,400 ha) in Sabah, Malaysian Borneo

(Figure 1). The landscape comprises .91,000 ha of contiguous oil

palm plantations owned by multiple companies, plus a single .

28,000 ha block of plantation forestry (Eucalyptus spp., Teak, Acacia

spp.; Sabah Softwoods Bhd.) (Figure 1). All of the soils within our

study oil palm plantations are Acrisols, as defined by the World

Reference Base for Soil Resourses [44]. However, these soils also

contain other main soil components (e.g., Luvisols, Cambisols,

etc.) and they have a mixture of alluvium, mudstone, sandstone

and igneous rock as parent material [45]; these are combined into

ten soil groups (Table S1, Figure S1). Study oil palm plantations

also span an elevational range from 10 to 379 m a.s.l. (Figure S2).

Surrounding these plantations are two areas of contiguous

lowland dipterocarp forest .100,000 ha in size, which were not

Figure 1. Different land-use types within the study area. The inset shows Sabah, Northeast Borneo, and the red box denotes the study area.
doi:10.1371/journal.pone.0091695.g001
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bounded by our study area: to the west and north is the Yayasan

Sabah (YS) logging concession and to the east is the Ulu

Kalumpang forest reserve (itself contiguous with Tawau Hills

National Park). Surrounding contiguous forests have both

undergone at least two rotations of selective logging [32,46]. To

the south of our study area is a coastline of tidal mangrove creeks,

.2 km from the nearest oil palm coupe.

We focus on the oil palm of a single company—Sabah

Softwoods Bhd. (we thank Sabah Softwoods Bhd. for providing

data, logistical support and site access), a subsidiary of the state-

owned Yayasan Sabah Group—with <23,000 ha of plantings

(Figure 1, in white). Oil palm plantings are separated into three

separate zones, which are 2.5 to 9.3 km apart, partitioned by other

oil palm plantations between the western and eastern blocks and

by plantation forestry between the two eastern blocks (Figure 1).

Each zone is sub-divided into discrete parcels known as coupes

(ntotal=499), which vary in size from 3 to 89 ha (mean6SE:

4560.7 ha) and which are planted with a density of 100 palms per

ha [36].

The Sabah Softwoods oil palm plantations border both

contiguous areas of forest, plus numerous isolated forest fragments,

increasing in size from tiny patches to large fragments of

dipterocarp forest. Forest fragments are divided into Virgin Jungle

Reserves (VJRs), which are large (n = 4; mean6SE:

813.956197.6 ha), were gazetted prior to industrial-scale logging,

and thus contain mostly primary forest; whereas privately owned

patches (herein ‘private fragments’) tend to be smaller (n = 307,

11.564.2 ha, range= 0.01 to 886 ha), to have been selectively

logged at least once (the precise logging history of each fragment is

unknown) and open to other disturbances (e.g., hunting). Forest

fragments were typically retained within plantations due to their

steepness and/or unfavourable underlying substrate.

Oil Palm Yields
Yield data were fresh fruit bunch (FFB) weights (metric tonnes)

per hectare for individual coupes from 2008 to 2010. Sabah

Softwoods employees visit each oil palm tree within a coupe to

harvest ripe fruit bunches and cut decaying fronds twice per

month. Bunches are collected into trailors and weighed at the

depot. We were provided with the total weight of fruit bunches

collected in each coupe on a yearly basis. Oil palm age varied

across coupes, from 3 to 15 years old, and because yield varies with

age of an oil palm [47] we used the deviation from the mean expected

yield by age (i.e., observed yield - mean yield for the age of palm) as

our indication of yield per coupe. A positive value indicates greater

yield than expected, while a negative value indicates a lower yield

than expected, given the age of the oil palm. Observed yield data

were used from all 499 coupes in 2010. Expected yield was

calculated from two yield-by-age curves: firstly, generated from the

subset of coupes for which data were provided in 2008 (n = 240

coupes) and 2009 (n= 400; yldSS), and secondly from Butler et al.

[47] using their average FFB curve (yldB; Figure S3).

Quantifying Extent of Forest Cover and Proximity to
Forest
Forest coverage maps were supplied by Sabah Softwoods, and

supplemented with additional maps obtained from the literature

[43,48] and Google Earth images from 2009. The extent of

dipterocarp forest cover surrounding and within each oil palm

coupe was calculated within circles of radii 100 m, 250 m, 500 m

and 1,000 m from the centroid of each coupe. Radii thus span a

range of spatial scales relevant to different taxonomic groups, as

determined by observations of species’ movements between forest

and oil palm [49]. From these four radii, an inverse distance-

weighted measure of forest-cover area as a proportion of the 1000-

m radius circle areaFIDW was calculated, giving greater weight to

forest area closer to a coupe centroid than forest further away

[50,51], using the formula:

FIDW~
Xi~4

i~1

fi

dz1

where fi is the proportion of forest within a buffer ring (0–100 m,

Table 1. The range and mean (6SE) of oil palm yield, elevation, and nearest distance to different forest classes, forestry
plantations, large rivers and other (not within Sabah Softwoods Bhd.) oil palm plantations within 499 oil palm coupes in Sabah,
Malaysian Borneo.

Measure Maximum Minimum Mean SE

2010 oil palm yield (mt ha21) 33.46 0.12 16.82 0.39

Elevation (m.a.s.l.) 393.53 7.83 127.51 3.11

Forest cover (%) within radii:

100 m 36.00 0.00 0.18 0.08

250 m 70.00 0.00 1.43 0.24

500 m 83.00 0.00 3.74 0.38

1000 m 79.00 0.00 6.43 0.51

Distance (km) to nearest:

Contiguous forest 14.63 0.12 5.03 0.15

Virgin forest reserve (VJR) 20.71 0.05 5.93 0.19

Privately owned fragment 3.89 0.03 0.84 0.03

Plantation forestry 26.95 0.09 13.35 0.41

Large river 16.06 0.20 5.79 0.16

Other oil palm 8.66 0.04 2.96 0.10

doi:10.1371/journal.pone.0091695.t001
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100–250 m, 250–500 m, and 500–1,000 m) and d (m) is the mean

distance of a buffer ring.

Dipterocarp forest included three qualitatively different classes

that differed in size and/or logging history, and thus vegetation

composition and species communities (e.g., [46,52,53], namely (i)

contiguous forest, (ii) Virgin Jungle Reserves, and (iii) private

fragments. To account for this variation, we also assessed

proximity to these dipterocarp forest classes by calculating, from

each coupe centroid, the shortest distance to each class. We also

calculated distance to plantation forestry, which directly borders

some oil palm coupes and which in this study area has more bird

biodiversity than local oil palm [54,55], largely due to the

secondary forest understorey that develops under plantation trees.

In addition, we included the distance to the nearest surrounding

oil palm (i.e. not owned by Sabah Softwoods Bhd.) since a coupe

located within a large expanse of oil palm monoculture could

benefit if dis-services such as pest infestations originate from within

forest or could be disadvantaged if they develop within oil palm.

Finally, we evaluated the proximity of the nearest large river from

each coupe centroid, the mean elevation across the coupe, and the

dominant soil type by area (mean dominant soil coverage was

96.4%60.01 SE of coupe area), because these environmental

variables have the potential to influence oil palm growth and yield.

Elevation (m a.s.l.) was calculated from a digital elevation model at

90 m resolution [56]. Soil types were grouped into ten categories

(see above; Table S1) and were assessed using a regional soil survey

map at 1:250000 scale [45].

Statistical Analysis
We used Generalised Least Square models (GLS) to firstly test

whether the distance-weighted proportional area of forest affected

oil palm yield at the coupe level. The distance-weighted measure

of forest cover was square-root transformed to reduce the influence

of two outliers. Secondly, we used a GLS to test whether proximity

of a coupe centroid to the nearest dipterocarp forest class

(contiguous forest; VJR; private fragment) affected oil palm yield.

Figure 2. The variation in oil palm yield with adjacent land-uses across the study area. Oil palm yield is measured as the mean deviation
from yield-by-age curves (a) generated from the study area data (yldSS), and (b) published by Butler et al. [47] (yldB). Yield is quantified as the fresh
fruit bunch weight per hectare (mt ha21).
doi:10.1371/journal.pone.0091695.g002
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Distance to the nearest forest class was square-root transformed to

account for the likely declining effect of forest and the associated

reduction of biodiversity spill-over at increasing distances [27].

Additionally, the area of the nearest private fragment was also

included as a covariate in proximity models, because different

sized fragments could export different levels of services or dis-

services. In both cases, the minimum adequate model was

achieved by a model selection process comparing nested models

[57]. All models included proximity to tree plantation, proximity

to large river, proximity to other oil palm plantation, mean

elevation and dominant soil type as fixed effects. All models also

included a correlation structure using the latitude and longitude of

the coupe centroids to account for spatial autocorrelation [58].

Lastly, using our model residuals with 1000 repetitions, we

performed a Monte-Carlo permutation test for Moran’s I statistic

(moran.mc within spdep package) to test whether our results were

influenced by spatial autocorrelation (i.e., that the correlation

structure had effectively accounted for impacts of space). All

spatial analyses were run in ArcGIS 10.0 [59] and all statistical

analyses were run in R 2.15.2 [60].

Results

Oil palm coupes within the landscape spanned a range of

distances to forest and degrees of forest cover (Table 1), with the

percentage of forest cover at 1000 m ranging from 0 to 79% and

distances to forest classes from 30 m and 20.7 km (Table 1),

indicating a perfect landscape within which to test the impacts of

forest on oil palm yield. Across the study area, there was also a

large variation in oil palm yield, spanning over an order of

magnitude from 0.12 to 33.46 mt ha21 (Table 1), with a strong

correlation between yield and oil palm age (r2=0.88). However,

having accounted for the increase in yield with palm age (see

Materials and Methods), the spatial distribution of oil palm

yield in relation to forest cover showed no clear visual pattern, with

a mix of high yield oil palm both close and far from major blocks

of forest (Figure 2a, b), and with the same visual pattern for lower

yields.

Yield Response to Forest Cover
The distance-weighted area of forest cover was retained by the

minimum adequate model (MAM), but it was not a significant

predictor when yield was derived from either yield-by-age curves:

i) the yield-by-age curve generated using Sabah Softwoods coupes

(yldSS; GLS: t499=1.52, P=0.13), and ii) Butler et al.’s [47]

average FFB yield-by-age curve (yldB; t499=1.03, P=0.30)

(Table 2). The environmental variables of elevation and distance

to nearest forestry plantation were found to be significant

predictors when yield was derived from Butler et al.’s [47] average

FFB yield-by-age curve (yldB; elevation: t499=23.93, P,0.01,

plantation: t499=23.05, P,0.01) (Table 2). All model residuals

had no spatial autocorrelation (P$0.39).

Yield Response to Forest Proximity
Proximity to any of the three classes of dipterocarp forest

(contiguous, VJR, or private fragment) did not have a significant

effect on oil palm yield when considering yield derived from either

yield-by-age curves (Table 2). Instead environmental variables

were more important predictors when oil palm yield was derived

from Butler et al.’s [47] average FFB yield-by-age curve. Increasing

elevation (Figure 3a; t499=23.46, P,0.01) and increasing

distance from tree plantation (Figure 3b; t499=22.24, P=0.03)

both had a significant negative effect on yield (Table 2). Proximity

to large river or other oil palm plantation, size of private fragment,

and soil type were not significant predictors of yield when using

either yield-by-age curve. All model residuals had no spatial

autocorrelation (P$0.06).

Table 2. The estimates and parameter coefficients from the minimum adequate generalised least square models testing the
effects of forest cover and forest proximity on oil palm yield across the study landscape in Sabah, Malaysian Borneo.

Model Parameter Estimate SE T P

Forest cover (yldSS*)

(Intercept) 23.1284 0.6915 24.5240 0.0000

forest cover 20.2703 13.3163 1.5222 0.1286

Forest cover (yldB1)

(Intercept) 20.6051 1.0429 20.5802 0.5620

forest cover 13.1835 12.7962 1.0303 0.3034

elevation 20.0162 0.0041 23.9334 0.0001

tree plantation 20.0002 0.0001 23.0541 0.0024

Forest proximity (yldSS)

(Intercept) 21.2576 5.7548 20.2185 0.8271

contiguous forest 20.0042 0.0423 20.0985 0.9216

Forest proximity (yldB)

(Intercept) 20.9506 1.2752 20.7455 0.4563

elevation 20.0143 0.0041 23.4587 0.0006

tree plantation 20.0002 0.0001 22.2356 0.0258

* yldSS – yield estimate derived from the yield-by-age curve generated from Sabah Softwoods coupes.
1yldB - yield estimate derived from the Butler et al.’s [43] average FFB yield-by-age curve.
Bold indicates significance at P,0.001.
doi:10.1371/journal.pone.0091695.t002
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Discussion

Agricultural expansion in the tropics is a key driver of the global

biodiversity crisis. Pressure to mitigate threats from agriculture and

improve sustainability has encouraged suggestions that the

retention of natural habitat patches within and adjacent to

tropical agriculture would result in the export of ecosystem services

[14,42,61–63], including to oil palm [40,41]. Yet the potential for

spill-over of biodiversity from these features into the agricultural

landscape [31,49], and in turn, whether this impacts upon crop

yields positively or negatively has only received attention in the

context of coffee and cocao agro-forestry plantations [17,18,25–

28]. Our study is thus the first to focus on the link between forest

and crop yield in a tropical monoculture crop, focusing specifically

on oil palm, which is rapidly expanding at the expense of forest

and highly lucrative. Spill-over from forest is difficult to quantify

[64], especially across large scales and when there are various taxa

that may spill-over to different degrees and have contrasting

impacts. In this study, we instead assess the impacts of the extent of

local forest cover and of forest proximity on oil palm yield directly;

we therefore did not focus on biodiversity per se, and a precise link

between biodiversity and yield is absent.

Using both forest cover and proximity metrics, we found that

the retention of dipterocarp forest had no significant effect on yield

in oil palm monocultures, whereas the environmental variables of

elevation and proximity to tree plantations did. These results

provide a cautionary note for arguments that forest retention

within monoculture landscapes can enhance ecosystem service

provisioning and thus improve crop yields [14,42,61–63]. They

also do not support concerns that ecosystem dis-services, such as

increased pest populations or mammal crop raiders, are a major

issue resulting from the protection of HCV forests under the

RSPO. Because we did not directly measure either ecosystem

benefits or dis-services, we do not rule out that these are occurring.

Rather, our results suggest that either there is an equal balance

between ecosystem service benefits and dis-services, resulting in a

net neutral impact on yield, or that there is no spill-over occurring.

Across our monoculture landscape, it is likely to be a combination

of these possibilities, with the former more likely close to forest

where species are known to spill-over into oil palm, and the latter

more likely far from forest.

Our results suggest that there is no economic rationale for

greater forest protection within and adjacent to oil palm

monocultures. However, we acknowledge that riparian forest

strips and larger fragments may have other important roles. They

could provide hydrological and erosion prevention benefits, which

might have longer-term benefits that cannot be quantified by

focusing only on a single year of oil palm yield. These features

could also provide biological benefits, harbouring some biodiver-

sity [36,52,53] or by acting as stepping-stones and corridors for

dispersal of species through the oil palm matrix [19,49], which

could be vital for retaining meta-population dynamics.

The optimum growing conditions of oil palm (Elaeis sp.) are in

lowland wet tropics of ,1000 m elevation [65]: the negative effect

of increasing elevation on yield is thus not surprising. This result

highlights the limitation for future expansion of oil palm, especially

in regions such as Southeast Asia where many of the prime

locations have already been developed, and less optimum areas are

already being considered and converted for oil palm development

[66]. Proximity to tree plantations may provide some positive

spillover, for example pest predation by birds, which are supported

in greater numbers in tree plantations than oil palm [54,55]. In

other agricultural systems multi-cropping has been found to be

beneficial ([14] and references there in, [67]), and this is an

important future direction for optimal agricultural landscape

design. However, these results should be interpreted with caution,

because elevation and proximity to tree plantation are positively

correlated (Pearson’s correlation: r = 0.12, p= 0.02), with lower

lying areas of higher oil palm yield also closer on average to tree

plantations.

In this study, we did not consider the potential impacts of

different management activities, such as the use of pesticides or

permitting the growth of understory vegetation, or of palm

condition (e.g. pest abundance, disease, or structural damage) on

yield, which represent important next steps to disentangle drivers

of yield change [42]. With the exception of VJRs, which have only

been lightly logged in patches, all of the forests in the study area

have been selectively logged on an intensive, industrial scale. It is

plausible that proximity to primary, unlogged forest could impact

differently upon yield. However, this seems unlikely because

previous work in the region has shown the retention of high levels

of biodiversity, including most primary forest species [46,68,69],

and high functional diversity [70,71] within contiguous blocks of

logged forests. It is also possible that ecological services or dis-

services from forest could affect palm oil quality, and hence price.

Finally, we only focused on Southeast Asia and on one

monoculture crop, and there could be different relationships

between forest and yield in other tropical biomes, where oil palm is

Figure 3. The relationship between oil palm yield and (a)
elevation (m a.s.l.), and (b) distance to nearest non-native tree
plantation. Oil palm yield was measured as the mean deviation from
the yield-by-age curve generated from Butler et al. [47] (yldB), and is
quantified as the fresh fruit bunch weight per hectare (mt ha21).
doi:10.1371/journal.pone.0091695.g003
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now expanding rapidly [72], or with other crops such as soya and

sugar cane.

Conclusion
Our results show a neutral effect of forest on oil palm yield.

Consequently, dipterocarp forests appear neither to export

sufficient ecosystem service benefits to result in a net increase in

yield nor to export sufficient ecosystem dis-services to result in a

net reduction of yield within oil palm plantations. We thus observe

no evidence to support arguments for the retention of forest for the

provision of ecosystem services explicitly for yield benefits within

oil palm monocultures [42,62]. Many arguments have been made

for implementing an integrated framework of agricultural design,

which considers biodiversity conservation, ecosystem services and

agricultural output [42,73,74]. These are to be warmly welcomed,

but in light of our study the proposed benefits of such designer

landscapes within monocultures should avoid couching arguments

for forest retention in the context of yield benefits. We finish by

urging for more empirical assessments of the impacts of forest and

biodiversity on crop monoculture yields to better understand their

potential role in sustainable agriculture: we fear that by resting

arguments for the retention of forest on improved oil palm yield,

there could be unintended consequences such as the clearance of

retained forest patches and thus the removal of refugia for

biodiversity if no such empirical support were to emerge.
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