
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2011, Article ID 430808, 25 pages
doi:10.1155/2011/430808

Research Article

Sustainable Modular Adaptive Redundancy
Technique Emphasizing Partial Reconfiguration for
Reduced Power Consumption

R. Al-Haddad, R. Oreifej, R. A. Ashraf, and R. F. DeMara

Department of Electrical Engineering and Computer Science, University of Central Florida, P.O. Box 2362, Orlando,
FL 32816-2362, USA

Correspondence should be addressed to R. Al-Haddad, rawadh@cs.ucf.edu

Received 16 January 2011; Revised 10 May 2011; Accepted 7 June 2011

Academic Editor: Scott Hauck

Copyright © 2011 R. Al-Haddad et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As reconfigurable devices’ capacities and the complexity of applications that use them increase, the need for self-reliance of deployed
systems becomes increasingly prominent. Organic computing paradigms have been proposed for fault-tolerant systems because
they promote behaviors that allow complex digital systems to adapt and survive in demanding environments. In this paper, we
develop a sustainable modular adaptive redundancy technique (SMART) composed of a two-layered organic system. The hardware
layer is implemented on a Xilinx Virtex-4 Field Programmable Gate Array (FPGA) to provide self-repair using a novel approach
called reconfigurable adaptive redundancy system (RARS). The software layer supervises the organic activities on the FPGA and
extends the self-healing capabilities through application-independent, intrinsic, and evolutionary repair techniques that leverage
the benefits of dynamic partial reconfiguration (PR). SMART was evaluated using a Sobel edge-detection application and was
shown to tolerate stressful sequences of injected transient and permanent faults while reducing dynamic power consumption
by 30% compared to conventional triple modular redundancy (TMR) techniques, with nominal impact on the fault-tolerance
capabilities. Moreover, PR is employed to keep the system on line while under repair and also to reduce repair time. Experiments
have shown a 27.48% decrease in repair time when PR is employed compared to the full bitstream configuration case.

1. Introduction

Current high-performance processing systems frequently
consist of heterogeneous subsystems that depend on one
another in nontrivial ways. Each subsystem is itself a mul-
ticomponent system with diverse capabilities. The organiza-
tion of these subsystems is typically static; it is determined
with great care at design time and optimized for a particular
mode of operation. This design strategy is appropriate for
systems that are accessible for repair when their components
fail. However, systems that are unreachable once deployed
present a different set of challenges. In these systems, the fail-
ure of a single component may result in large-scale ineffi-
ciency or even complete mission failure.

Therefore, electronic systems operating in demanding
environments require increased capability for autonomous
fault tolerance and self-adaptation, especially as system com-
plexities and interdependencies increase. Hence, the goal of

Organic Computing (OC) techniques [1, 2] is to create sys-
tems capable of adaptive and fault-tolerant behaviors. The
OC paradigm is compatible with biologically-inspired com-
puting concepts that emphasize the so-called “self-x proper-
ties” which emerge at the system level and represent life-like
properties such as self-configuration, self-organization, and
self-healing [2, 3]. These properties must be autonomous yet
also must be sufficiently constrained to avoid the emergence
of undesirable behaviors.

The OC paradigm is seldom tied to a particular platform
or implementation, which makes it relatively broad in its
impact and not restricted to any specific research or in-
dustrial context. Nonetheless, the immense flexibility of re-
configurable hardware devices makes them especially suited
to hosting OC applications [4]. In particular, the fact that
SRAM-based field programmable gate array (FPGA devices)
can be dynamically reconfigured has made them a popular
hardware platform for numerous OC systems [4, 5].



2 International Journal of Reconfigurable Computing

External environmental demands or internally driven
performance demands may require a change in the configu-
ration of a multicomponent system to maintain functionality
and throughput throughout an extended mission [6]. For
instance, a fault may occur in an individual component,
which must then be replaced, refurbished to some degree,
or otherwise bypassed. Although one could hypothesize that
routine hardware failures would be a likely trigger for a con-
figuration change, other mission-level considerations, such
as a storage device reaching its capacity or the environment
deviating from expectation, could be handled similarly. In
either case, existing modules must be reconfigured; SRAM-
based FPGA devices facilitate this flexibility by enabling dy-
namic device reconfiguration.

However, using FPGA devices rather than their appli-
cation-specific integrated circuit (ASIC) counterparts in mis-
sion-critical applications is a double-edged sword. On the
one hand, they allow the support of self-x capabilities
through reconfiguration, but, on the other hand, such capa-
bilities can introduce new fault vulnerabilities to the hard-
ware. Transient faults, which commonly occur as single event
upsets (SEUs) [7], are a primary source of concern when
deploying SRAM-based devices in mission-critical applica-
tions, such as space applications [8]. SEUs can occur when
a charged particle impacts the silicon substrate with enough
energy to incur either a transient pulse in a combinational
logic component or a state flip in a sequential component.
The former is only articulated if a state component, such
as a flip-flop, is affected by the transient signal. Hence, the
effect of an SEU on combinational logic in ASICs can vanish
without any repairs. However, SEUs hitting memory cells are
more likely to cause damage because they flip the state of a
stored bit, which affects the system until the relevant flip-flop
is loaded with a new valid value. In SRAM-based FPGAs, in
which even combinational logic is implemented using SRAM
lookup tables (LUTs), SEUs gain amplified importance
because every SEU is a state-flip that can affect both the
sequential and the combinational logic. To this end, space-
qualified versions of SRAM-based FPGAs, such as Xilinx’s
QPro [6], are commercially available for mitigating SEUs at
the circuit level. Indeed, a new field of research that targets
fault tolerance in reconfigurable platforms has emerged to
take advantage of the inherent reconfigurability of FPGA
devices. In conjunction with the use of high-reliability
components, mission-critical applications can escalate the
benefits of reconfigurability by employing fault-tolerance
schemes to survive the various sources of failures that might
affect reconfigurable resources.

In this paper, we present the design and implementation
of SMART, which is a two-layered sustainable autonomic
architecture for fault handling. The autonomous hardware
layer is implemented on a Virtex-4 Xilinx FPGA device, while
the software layer is intended to be on a PowerPC embedded
core with internal configuration access port (ICAP) interface
to the FPGA device to download configuration bitstreams
(CBSs) for repair purposes. In this paper, in order to facilitate
testing and verification, the software layer resides on a host
PC that is connected to the FPGA via a Xilinx parallel
cable IV. SMART is inspired by the OC paradigm, and thus

the emergence of self-x properties is observed at the system
level after assembling the individual parts into a single,
integrated, fault-tolerant system.

The hardware layer implements a decentralized observer/
controller processing loop to adjust the configuration of the
system based on real-time mission information. It accom-
plishes this task using RARS [9], which is a general-purpose
redundancy scheme that does not have a predetermined
number of redundant modules like other fixed redundancy
techniques commonly found in the literature (e.g., Duplex,
TMR, and pair-and-spare) [10]. Instead, RARS can reorga-
nize its components at run-time to provide the appropriate
level of redundancy to match the mission status and require-
ments. The distributed controller function in RARS, which is
called the autonomic element (AE), monitors the status of the
redundant parts that implement the user application, called
the functional elements (FEs), and collects the reports from
various sensors to decide which configuration to select.

RARS is a power-conservative adaptive redundancy ar-
chitecture that is only reconfigured to a high-power consum-
ing design when multiple instances of the user application are
needed to identify, mask, or repair faults. Other approaches,
such as TMR, run in triplex mode even when faults are
not present, consuming three times the dynamic power of
the simplex configuration only to provide fault tolerance
during brief intervals of the mission lifetime during which
the system is subject to faults. RARS power benefits will be
shown analytically and experimentally in the results section.

The fault tolerance of RARS is still restricted by the
limited capacity of the available hardware to support alterna-
tive routing and logic for faulty parts. Therefore, a software
monitoring and refurbishment layer that resides above the
hardware layer is developed to provide active repair in the
event of faults, either via scrubbing [11, 12], which involves
rewriting the configuration memory with a fault-free CBS to
correct any SEU occurrences in the configuration logic, or via
a dynamic refurbishment of permanent faults using evolv-
able hardware (EHW) approaches [13]. The evolutionary
approach employed in this work is a novel genetic algorithm
(GA) that implements design practices for the organic nature
of the system and thus is referred to as an organic GA
(OGA). The software layer reads the performance and status
of RARS and triggers the refurbishment procedure whenever
the redundancy degree of RARS is not adequate to mask the
faults.

Dynamic PR is adopted to improve the organic repair and
the availability of the system. It significantly reduces the con-
figuration time compared to the full bitstream configuration
approach due to the small size of the bitstream. In addition,
it allows the system to remain online while its faulty parts are
being reconfigured; this helps increase the availability of the
system by enabling it to maintain functionality even during
repair. Dynamic PR is exploited during the scrubbing phase
of the repair cycle in addition to the OGA fitness evaluation
stage to reconfigure candidate solutions on the FPGA for
intrinsic fitness assessment.

To illustrate the organic capabilities of SMART, the well-
known Sobel edge-detection [14] application was im-
plemented on the FPGA as a real-life case study. After



International Journal of Reconfigurable Computing 3

combining all hardware and software modules into one inte-
grated platform, the system’s behavior was scrutinized while
processing a real-time video stream under various fault
scenarios. The hardware layer demonstrated the emergence
of self-monitoring and self-organization properties that
allowed the system to sustain performance even in the
presence of successive faults. When the number of faults
exceeded the capabilities of the hardware layer, the higher-
level software layer augmented the response through self-
configuration and self-healing.

Figure 1 depicts the high-level view of SMART repair
methods and the various events that trigger their execution.
The central state of SMART operation is the fault-free
operation (1) that requires only RARS’s self-monitoring
techniques to detect the occurrence of faults. An SEU
can impact the FPGA resources and cause a single bit flip
in one of the LUTs. This LUT may fall either on the data
path of the application, that is, a user register that stores an
intermediate calculation value, or on the logic path, that
is, an LUT that is programmed to implement the intended
circuit functionality. SEUs that affect flip-flops in the user
logic can be overwritten by subsequent operations without
any repair intervention. This type of fault is classified as
transient and normally fades away in the regular execution
cycle. The transient effect can be masked with redundancy
techniques (2) until the fault is corrected. In fact, it is
disadvantageous for the system to trigger repair based on
transient data path fault indications, which can be avoided
by using a watchdog timer to determine the persistence of
faults.

However, if the soft fault affects an LUT in the recon-
figurable logic, then the bit flip will remain intact until the
unlikely event of another SEU impacting the exact same
location. A bit flip in the logic path can be more harmful to
the application because it changes the truth-table content of
the affected LUT and thus alters the behavior of the circuit.
This type of SEU cannot be ameliorated in subsequent
operations because the affected element is not written by
the user application; thus, it must be explicitly rewritten by
reloading the correct bitstream via scrubbing (3).

Next, consider if radiation leads to pathways for electro-
migration and accelerated aging effects [11]. This type of
local permanent damage (LPD) can be modeled as a stuck-
at fault at one of the LUT inputs. Unfortunately, scrubbing
techniques that rewrite the CBS contents will at best give
up after a number of retries or at worst may usurp the
mission, taking the device off line to repeatedly attempt to
overwrite a permanent fault. In that case, a permanent fault
handling technique is required to circumvent the stuck-at
faulty resource and thus repair the user application.

The self-configuration of spares (4) tries to avoid the
faulty resource by consecutively reconfiguring the faulty FE
with design-time preseeded bitfiles, each of which exclusively
avoids a set of LUTs in the physical FE area. By doing so,
SMART searches the set of spares for one spare that can hide
the fault by simply not using the damaged LUT. Carrying
spares is a common technique for fault tolerance due to
its simplicity and quickness; it is limited, however, to the
number of carried spares and cannot really adapt at run-time

to handle fault scenarios that were not considered at design
time when the spares were designed.

As a remedy, SMART added one last-resort repair mech-
anism that is invoked when all other techniques fail to repair
faults. This technique is the evolutionary OGA (5) repair that
is not restricted by the number of spares or any other design-
time consideration. Instead, it can heuristically search for
alternative circuits that can bypass the faulty resource and
yet produce the expected output. Such technique can be slow
and unpredictable, but the fact that it is delayed to the very
end of the repair cycle makes it an acceptable alternative to
accepting degraded level of operation of the application.

2. Related Work

SMART aims to achieve autonomous fault tolerance by em-
ploying OC concepts. Therefore, this section explores fault-
tolerance OC efforts in the literature. In addition, we present
literature survey for some of the most prominent fault-toler-
ance techniques in the literature and compare them against
SMART. More details about fault-recovery techniques in
FPGA-based applications can be found in [6].

Related works have explored techniques useful for the
development of OC systems from various theoretical and
practical perspectives. A frequent focus shared across re-
searchers has been the design of OC architectures and devel-
opment methodologies for systems with the potential to
exhibit increased reliability and sustainability.

For example, the objective in [18] is to introduce an OC-
inspired design of a reliable system-on-a-chip (SoC) to pro-
vide broader coverage of faults than classical design methods
can offer. The platform is demonstrated on five-stage RISC
pipeline architecture with global error counters to detect
transient errors. A customized microrollback technique is
used to correct errors with a delay of two cycles in the
example RISC pipeline. This OC system is shown to possess
self-calibration and self-healing properties when affected
by transient errors, with specific fault-tolerance techniques
tailored for CPU pipelines. SMART expands on this by
presenting a generic cross-platform fault-tolerance technique
that can handle both transient and permanent faults.

In [19], an observer/controller architecture was devel-
oped to provide a generic template to design control archi-
tectures for OC systems without extension to a hardware
prototype implementation. This organic framework mainly
targeted self-organization in a simulated environment and
recommended thorough empirical studies of OC systems in
different domains due to their flexibility and autonomous
nature. SMART employs similar observer/controller archi-
tecture and demonstrates the architectures in a real edge-
detection use case running in error-prone environments.

In [20], digital on-demand computing organism
(DoDOrg) targeting real-time systems is presented. The
system model is based on biological principles to achieve the
desired self-x properties; it is divided into processing cells
representing human cell analogs, middleware control repre-
senting organ analogs, and high-level control representing
a brain analog. The work presents an approach to organic



4 International Journal of Reconfigurable Computing

(1)

Fault-free operation

(RARS)

(3)

Scrubbing

(SMART)

Soft fault in user logic

(transient fault)

(2)

Redundancy

(RARS)

Voting

Soft fault in
configuration logic

Flipped CBS

bit is
corrected

(4)

Self-configuration

of spares

(SMART)

Hard fault in
configuration logic

Available

spares can

hide the fault

(5)
OGA

(SMART)

No available
spares to

hide the fault

Refurbishment through
evolutionary repair

Figure 1: High-level View of SMART’s Repair Methods.

computing that shows many of its desired self-x properties
along with power management. While the viability of this
system is shown in a simulated environment, the transfer to
a real robot system is sought in a later phase.

In an attempt to practically realize DoDOrg on FPGAs,
a framework to achieve a decentralized configuration and
power management scheme is shown in [4]. This work
considers FPGAs as the most viable computing platform for
OC systems due to the enormous benefits of reconfigura-
bility. However, the work identifies the centralized nature
of the FPGA ICAP as the main contradiction to the crucial
decentralized requirement of OC systems. Therefore, a plat-
form in which each computing node can autonomously and
independently request its reconfiguration through the ICAP
is presented. Similarly, power consumption is managed by
individual nodes at run-time to attain the desired virtual
decentralization of the ICAP.

As for the generic FPGA fault-tolerance methods, one
of the most common techniques for mitigating unwanted
configuration memory changes is scrubbing [12]. Scrubbing
involves overwriting of the configuration memory at periodic
intervals with a configuration that is known to be fault-free.
Moreover, this process can be augmented by reading back
the configuration memory and comparing it with a config-
uration that is known to be good to isolate the erroneous
frame(s) so that they can be rewritten using PR. Scrubbing
techniques fail when the stored configuration is damaged or
when the fault is caused by permanent hardware resource
failures, in which case more elaborate repair techniques tar-
geting permanent faults should be employed, such as the evo-
lutionary repair algorithm presented in [21] and in this work.

Table 1 presents a comparison between SMART and other
techniques. All surveyed techniques, except conventional

TMR, employ some form of fault recovery mechanism to
restore the original fault-free system status. TMR is a passive
technique which employs spatial voting to mask the faults.
The area and power overhead for the TMR approach is three
times the area associated with a single module (OFE) plus the
overhead associated with the voting logic (OV).

In [13], an offline genetic algorithm refurbishment tech-
nique to handle hard faults is presented. All the modules are
simulated with faults representing a worst-case scenario, and
the evolution-based refurbishment is performed on all three
modules for recovery. The overhead associated with the GA-
based repair is represented as OGA. This cost can be used
to include all GA-based control mechanisms and the spare
resource allocated for GA-based refurbishment.

Reference [15] on the other hand presents a technique
based on design-time allocation of fine-grain spares at the
CLB level. One CLB is allocated as spare for a design-
time defined group of CLBs, and multiple configurations
are generated such that one fault can be tolerated in such a
group. Area overhead on average for the chosen benchmarks
is reported as 5.4%, which is considerably less than the TMR.
This scheme, however, does not include any fault detection
mechanism.

STARS [16] employs run-time built-in self testing (BIST)
by roving across the FPGA fabric. This technique covers fault
detection, isolation, and repair with minimal application
area overhead. But the time to detect a fault can be quiet high
and as much as 8.5 M erroneous outputs may be produced
before being able to detect the fault [22]. Further, the fault
detection process employs continuous reconfiguration and
thus incurs huge power overhead.

The Jiggling approach [11] employs spatial TMR for
masking the fault and a (1+1) evolutionary strategy to



International Journal of Reconfigurable Computing 5

Table 1: Comparison between SMART and other prominent fault-tolerance approaches.

Approach Fault handling method
Fault detection Resource coverage Fault isolation

granularity
Power overhead
area costLatency Hard faults Logic Comparator

TMR Spatial voting Negligible No Yes No Voting element 3 ∗ OFE + OV

Vigander [13]
Spatial voting and offline
evolutionary
refurbishment

Negligible No Yes No Voting element
3 ∗ OFE + OV +
OGA

Lach [15]
Design-time fine grain
redundancy-based
reconfiguration

Not
addressed

No Yes
Not

addressed
Group of
predefined CLBs

Fault detection
mechanism is not
addressed

STARS [16] Online BIST

Depends
on
geometry
of device

Yes Yes Yes Single LUT
OFE +
reconfiguration
controller

Garvie [11]
Spatial voting and online
(1+1) ES

Negligible Yes Yes No Voting element
3 ∗ OFE + OV +
OGA

Keymeulen [17]
Design-time
population-based fault
insensitive designs

Not
addressed

No Yes
Not

addressed
Not addressed

Fault detection
mechanism is not
addressed

SMART
Adaptive redundancy,
diversity-based
configurations, OGA

Negligible Yes Yes No Voting element
Analyzed in
Section 6.4 Power
Savings

refurbish the identified faulty module. The power and area
overhead of this technique can be essentially considered same
as that of TMR. The work concludes that hard-fault tolerance
is essential for fault tolerance of FPGA devices in harsh-
environment deployments.

An evolutionary-based method [17] is introduced to
generate a population of individuals at design time that are
resilient to a set of predetermined type of faults according
to the planned mission. This design-time process is tested by
employing the design-time generated configurations to over-
come the expected fault pattern at run-time. This scheme
is classified as static, due to its inability to accommodate all
possible faults at design-time.

Finally, software control in autonomous applications is
an essential part of the overall fault-tolerance package. In
[23], a multilayer runtime reconfiguration architecture
(MRRA) framework capable of communicating with the
FPGA through high-level API calls is introduced. This
modular architecture has a hierarchical framework that
supports different functionalities at an abstract level because
each functional layer can do its job independently of other
working layers. In an extension of MRRA, an intrinsic
evolution platform is implemented [21] by introducing
genetic algorithm operators at the logic layer to achieve
successful design and repair of digital circuits on Virtex II
Pro FPGA. In this paper, we use the same intrinsic evolution
platform and extend the direct bitstream manipulation to
Xilinx Virtex 4 FPGA devices.

3. Organic System Architecture

Figure 2 depicts the detailed architecture of the lab proto-
type of SMART. The software-based repair layer is imple-
mented on a host PC to aid in experiments and validation.

The deployment system is intended to have the software
components implemented in an embedded PowerPC pro-
cessor that comes with many commercially available Xilinx
FPGA boards.

The lower half of the figure shows the organic hardware
layer where the system can accommodate one or more FPGA
boards, each of which has one or more RARS modules.

In the experimental setup, the two layers are connected
via a Xilinx Parallel Cable that connects between a standard
Joint Test Action Group (JTAG) [21] port on the FPGA and
the parallel port on the host PC. On the FPGA, the JTAG
communicates with RARS via the General-Purpose Native
JTAG Tester (GNAT) [21] platform. The messages themselves
are communicated using a communication protocol that was
designed specifically for this system. This communication
link carries messages between the two layers as part of the
fault-tolerance algorithm and also transmits the CBS to
reconfigure parts of the system as needed. The intended
deployment platform should implement the software layer
on an embedded PowerPC and utilize the ICAP interface for
device configurations.

The software layer communicates with the hardware
through a multithreaded communication manager, which
is responsible for abstracting all hardware complexities and
providing messages to the various software components.
These components include the human interface module
(HIM), which converts the binary message into human-
readable text files and vice versa; this extension was crucial to
validate and debug thousands of binary messages that were
transmitted between the two layers during the prototyping
phase. The software layer also includes the scrubber and
the OGA repair modules. The hardware and software lay-
ers depicted in Figure 2 will be described in the next two
sections.



6 International Journal of Reconfigurable Computing

controller

stub

cable

Board-1
JTAG JTAG

· · ·

· · ·
· · ·

Parallel

Board-n

Virtex-4 FPGAVirtex-4 FPGA

AE AE
AE AE

FE-1

FE-2

FE-3

FE-1

FE-2

FE-3

FE-1

FE-2

FE-3

FE-1

FE-2

FE-3

Software

Hardware

Status/control

In
b

o
x

O
u

tb
o

x

RARS # nRARS # n RARS # 1
RARS # 1

Dispatcher

(GNAT)
Dispatcher

(GNAT)

Control

ControlStatus

Status Control

ControlStatus

Status

Parallel port

Communication manager

Communication

Human module interface (HIM)

M
es

sa
ge

en
co

d
er

M
es

sa
ge

d
ec

o
d

er

File
system

Java applet

GUI (monitor

and control)

To other applications

From other applications

Scrubber

Xilinx

IMPACT

List of bit files

Config

OGA
engine

Chromosome
manipulator

OGA repair

OGA

controller

based on

MRRA API

Monitor

Figure 2: SMART prototype top-level hardware and software architecture.

3.1. Hardware Layer. The hardware layer consists of one or
more RARSs and dispatchers configured on one or more
FPGA boards. The RARS module comprises the smallest
integrated unit in the hardware platform; it consists of one
AE and three identical FEs. The AE is application indepen-
dent; it contains the logic that drives the organic behavior
by actively reorganizing the available FEs. However, the FEs
represent the application dependent user implementation of
the desired functionality. Therefore, the FEs are the only
modules that need to be modified for the system to support
new applications.

Having three FEs in each RARS module illustrates the
common practice of employing a TMR configuration in
redundancy-based fault-tolerant systems. There is no loss of
generality that prevents RARS from accommodating 2n + 1
FEs for any n > 0.

One straightforward approach for RARS is to initially
enable two FEs while the third is kept off line as a cold
spare. Upon finding a discrepancy between the two outputs
in the duplex mode, the AE switches to the TMR mode
of operation by placing the stand by third FE on line and
activating a voting scheme among the three FEs to mask any
single fault. While the duplex mode has the shortcoming
of expending clock cycles from the instant it detects a fault
until the correct functional output is regained, it reduces the
required dynamic power compared to a conventional TMR
in the no-fault scenario. Moreover, the fact that the stand by
FE is normally off line makes its resources available for use
for any other purposes.

3.1.1. RARS Motivation as a Hybrid of Approaches. Tradi-
tional reliability techniques often rely on the concept of

redundancy. Redundancy is the addition of resources beyond
what is actually needed for normal system operation to
retain functionality when faults occur. TMR requires three
functionally identical modules that perform the same task
in parallel and a voter that outputs the majority vote of the
three modules [24]. Concurrent error detection (CED) [25]
approaches rely on a duplex configuration and discrepancy
detection among the output bits of the redundant modules.
Both TMR and CED can increase reliability using stand-by
sparing approaches, whereby hot spares are kept in an idle
state and thus are ready to be called into action once required.
Cold spares, in contrast, are kept shut down and thus do not
consume power but incur delay before they are able to replace
faulty modules.

A tradeoff arises between the increased system depend-
ability and the overhead associated with having redundant
parts. For instance, duplex systems maintain one redundant
element but cannot mask faults in real time. Adding one
module to a duplex configuration enables it to mask faults via
TMR techniques at the expense of extra area, power, and cost.
This compromise is usually hard to decide at design time.

In addition, mission-critical applications are impacted
by many parameters, some of which can only be decided at
run-time. For example, an edge-detector circuit is of extreme
importance when it is operating on a critical video stream,
such as a moving object in a surveillance recording. In
such cases, it is usually necessary to quickly mask any faults
that might occur because any loss of detection capabilities
is intolerable and can affect the overall mission objectives.
However, if the same edge detector is operating on a still
scene in a surveillance recording, then it might be possible
for the system to tolerate some degradation in the output



International Journal of Reconfigurable Computing 7

To/from

Reconfigurable adaptive redundancy system (RARS)

Output 1

Output 2

Output 3

Autonomic element (AE)

Functional

Functional

Functional

element (FE-1)

element (FE-2)

element (FE-3)

Output

actuator

Discrepancy

sensor

Voter

Redundancy

controller

Select

dispatcher

Functional
input

Functional
output

Enable

Discrepancy
report

Voter
report

Enable

Enable

Performance

monitor

Voting
resultPerformance

Enable FE-3
Enable FE-2
Enable FE-1

Figure 3: Reconfigurable adaptive redundancy system (RARS).

because the generated image can still be analyzed later or
simply omitted due to the lack of action in the scene. TMR
may be a wise choice in the former case, whereas a duplex
configuration might be a better option in the latter. This
scenario is an example of a system that shows changing
reliability needs at different mission stages.

Whereas many other studies have decided the redun-
dancy levels in their systems at design time [8, 26, 27], we
sought an adaptive solution by deferring the decision regard-
ing which level of redundancy to support until run-time.
Thus, the choice can be enhanced by mission information
and status to make it an efficient compromise between the
desired reliability and the associated overhead in terms of
area and power.

3.1.2. RARS Architecture. The proposed RARS architecture is
shown in Figure 3. The functional input is delivered directly
to the three FEs for evaluation. The outputs of the FEs are
then sent to the AE to be processed by the following five
modules.

(1) Discrepancy Sensor (DS). This component uses the three
FE outputs to detect discrepancies between any pair of
enabled FEs. This module is only activated when RARS is
running in the duplex mode; otherwise, it is disabled to save
power.

(2) Voter. The voter module performs bitwise voting among
the three FE outputs and produces the majority vote. It also
generates a report that conveys any of the condition codes
listed in Table 2. The voter is enabled only in the TMR mode
and otherwise is disabled to save power.

Table 2: Possible values for the voter report.

Voter report Description

000 No discrepancy among the three FEs

001 FE1 is discrepant from the other two FEs

010 FE2 is discrepant from the other two FEs

100 FE3 is discrepant from the other two FEs

111 All FEs are discrepant (m-bit, m > 1)

101 Voter is disabled

(3) Output Actuator (OA). This module performs a 4 × 1
multiplexer function. The inputs come from the outputs
of FE1, FE2, FE3, and the voter. The output drives the
overall system’s functional output. This module signifies the
flexibility of the AE compared to other fixed-redundancy
techniques because the AE can select from all of the simplex
configurations in addition to the majority vote output.

(4) Performance Monitor (PM). This module samples the
DS and the voter report to provide reports that reflect the
aggregate performance of the system. The PM is periodically
polled by the software layer during repairs to acquire system
performance to convey the fitness value of the evaluated
individuals.

(5) Redundancy Controller (RC). This is the core element
in the AE; it is responsible for the unit awareness and for
sending status reports and receiving control signals to or
from the software layer. In SMART, the RC is a finite state
machine (FSM) that encodes all possible system configura-
tions. The inputs to this state machine are the reports from



8 International Journal of Reconfigurable Computing

the various modules, such as the DS, the voter, and the PM.
The output drives the “Enable” signals for all the modules
and the selection lines for the OA. Moreover, this module
contains the communication logic of the dispatcher and
the input and output buffers that store the incoming and
outgoing messages.

3.1.3. Possible Configurations. To obtain adaptive levels of re-
dundancy, RARS uses real-time performance feedback based
on the mission objectives to dynamically reorganize its mod-
ules into one of the following configurations.

(1) Simplex. The RC disables two FEs, the DS, and the voter.
The OA propagates the enabled FE output. This configura-
tion allows the highest power conservation if that is a prior-
ity. It is also practical during noncritical stages of missions.
The simplex configuration can also be enabled during repair
in a pair-and-spare scheme.

(2) Duplex. The DS is enabled to inform the RC in the event
of output disagreement between the two enabled FEs. The
OA is set to one of the enabled FEs. This configuration is only
used for applications that can tolerate temporary degrada-
tion in output quality until the RC takes further repair action.
The system can run in duplex mode while repairing a faulty
module to detect additional faults in the online modules.

(3) TMR. The voter and all FEs are enabled, and the OA
propagates the voter output. Only the DS can be disabled, as
the voter report is able to convey all needed information. The
system can maintain 100% correct throughput in the TMR
mode even if one module is faulty. Even with the existence of
multiple faults, design diversity and compensating module
faults [10] can still assist in generating a correct vote. The
TMR configuration is utilized in this platform when the
system is repairing a faulty FE because PR will allow the
system to maintain full functionality while the FE is repaired.

(4) Hybrid Mode. Many temporal configurations can be sup-
ported by RARS. For example, an application can run in
simplex mode but switch to duplex periodically to detect
discrepancies. Another usage example might be an applica-
tion that has a duplex reliability requirement except during
certain stages of the mission, during which it can switch to
TMR to meet reliability needs. Downgrading is also possible
based on reliability needs, and the arrangement of FEs can be
dynamically reconfigured back to the original configuration
once the operating behavior has changed accordingly.

3.2. Software Layer. The software layer controls the higher-
level throughput of the system by monitoring performance
and enabling active repair when the performance dips below
an acceptable level, as specified by the mission requirements.
The software layer serves two main purposes that are
described below.

The first purpose is to provide an interface to monitor
and control the hardware, if needed. To that end, a Java
applet GUI has been created to depict the hardware status

schematically and show the status of each component. The
applet user interface [28] shows the following information.

(1) FE status: online, offline, faulty, fault-free, or under
repair.

(2) AE configuration: simplex, duplex, or TMR.

(3) Performance level: the number of reported discrep-
ancies divided by the total number of evaluations.

(4) Log of the transmitted messages: The messages are
recorded as a paper-trail of hardware status changes.

The second purpose of the software layer is to enable
higher-level autonomous recovery techniques. First, the
scrubbing technique maintains functionally equivalent,
physically distinct configurations and repetitively reconfig-
ures the faulty FE until the faulty element is excluded from
the logic path. Second, we have demonstrated in our exper-
imental work that SMART is able to recover simulated hard
faults by means of OGA. The fitness function was set to be
the instantaneous performance level of RARS over a recent
window of inputs.

3.2.1. General Architecture. The top half of Figure 2 shows
the architecture of the software layer. The communication
manager (CM) is a multithreaded C++ module that acts as
the parallel port driver to communicate messages with the
hardware. The HIM converts the binary messages in the CM
queues into human-readable messages that are stored in
a predefined directory on the file system and vice versa.
The message decoder consults the communication protocol
opcode table and generates text files that represent the
messages. For example, this decoded message illustrates the
status of FE #2 in RARS #1 as being on line and fault-free:

��� ����� �� �	�	
� ���
�	

��� �
��� �

�� ��� �

�� ��� �

�	�	
�� � �
����� ��� ��
�	������

This platform provides a bidirectional communication
link between the organic hardware and any user application
that needs to monitor and/or control it. Any application
that complies with the protocol message format can commu-
nicate with the hardware layer by storing textual messages
in a predefined directory on the host PC. The encoder
periodically polls for the message files, encodes them into
binary representation, and stores them in the inbox queue
of the CM to be sent to the organic hardware.

The scrubber and the GA repair modules can be seen to
the right of the CM in Figure 2. These modules are described
in detail in the next two subsections. Both of them can
reconfigure the FPGA by executing batch files that invoke
the Xilinx iMPACT tool [29] to perform partial device
reconfiguration using the parallel Cable IV.

3.2.2. Scrubbing and Design Diversity. The RARS-centric
techniques are sufficient to recover from transient faults in
the user logic. SEUs in the configuration logic and hard faults
cannot be indefinitely masked by redundancy because any



International Journal of Reconfigurable Computing 9

further faults can shift the voting results toward the faulty
FEs. Thus, in such cases, RARS will signal to the software
layer of SMART to intervene and help fixing this type of per-
sistent faults.

SMART begins by assuming that the persistent fault is
caused by an SEU in the configuration logic (soft fault) that
caused the flipping of one or more LUT bits. SMART handles
this via scrubbing the bitfile with another CBS to correct the
impact of the SEU and thus restore the correct functional
operation of the circuit. Scrubbing entails fetching the CBS
from an off-chip ROM via PowerPC APIs, reconfiguring the
faulty FE via the ICAP, reading back the freshly downloaded
bitfile to compare it to the ROM-based golden image, and
finally monitoring the discrepancy for a sufficient number
of evaluations to ensure that the fault is indeed corrected by
scrubbing.

If the fault is not corrected by simple CBS scrubbing,
SMART concludes that it is caused by a hard fault that
requires extra repair effort. It starts by dynamically reconfig-
uring a set of design-time generated spares that have different
area constraints to guarantee the avoidance of each and every
LUT in at least one of the spares. This will ensure that each
faulty LUT can be avoided by, at least, one available spare.

The design-time spare generation is accomplished via the
Xilinx PROHIBIT constraint in the Xilinx User Constraint
File (UCF) [29]. The PROHIBIT constraint allows the de-
signer to specify a set of LUTs that should be avoided during
the placement stage of the bitfile creation process. For exam-
ple, the following constraint will exclude all slices in the range
between locations (0, 33) and (13, 33):

CONFIG PROHIBIT = SLICE X0Y33:SLICE X13Y33
(1)

The same HDL entry is used to generate multiple config-
uration bitfiles, each with different UCF settings that exclu-
sively prohibit the use of a set of slices. When a fault occurs,
the scrubber successively downloads the bitfiles to the FPGA
and searches for a configuration that prohibits the use of
the stuck-at slice, in which case the fault will be corrected
throughout a window of readings. If none of the preseeded
bitfiles was able to hide the erroneous output, perhaps
because there is more than one faulty LUT in the FE that
cannot be excluded by any spare, the scrubber ceases to be
efficient and will consequently request the intervention of the
OGA repair.

The scrubber is the first line of recovery from faults that
cannot be handled by RARS reorganization techniques.
SMART relies on lazy scrubbing [11] such that only the dis-
crepant FE in a TMR configuration is partially reconfigured
while the system remains on line; the other two fault-free FEs,
along with the voter, guarantee that the system can maintain
correct overall output while the faulty FE is being scrubbed.
A tile-based reconfiguration approach for fault tolerance is
covered in detail in [15].

3.2.3. Organic GA (OGA). Our autonomous fault-tolerance
method incorporates GA-based repair as an integral part of
the repair cycle because it offers hard-faults active repair

that is independent of the carried spares. However, the GA
is a nondeterministic process that can affect the flexibility
of SMART if not designed efficiently. Thus, three properties
that can enhance the efficiency of the GA for an organic sys-
tem were addressed.

(1) Direct Bitstream Evolution. Genetic representation is the
process of mapping from the visible traits of the application
(i.e., phenotypes) to the genetic coding of the chromosomes
(i.e., genotypes) and vice versa. The mapping from pheno-
type to genotype (PTG) is performed only once during the
design stage of the GA, and it requires special care to capture
the building blocks that the GA needs to evolve to realize
the desired solutions [30]. The mapping from genotype to
phenotype (GTP), however, is applied every time the indi-
vidual fitness is evaluated to transform chromosomes into
physical individuals that can be evaluated on the application
platform.

This two-way mapping can be a source of errors and
complications if the distance between the genetic encoding
and the phenotypic realization is large. For instance, if the
GA evolves the HDL code of the FE to repair its circuit
realization on the FPGA, then every time the chromosome
is evaluated, it must undergo synthesis, mapping, placement
and routing (PAR), bitfile generation, and FPGA recon-
figuration, which is a huge overhead to endure for every
evaluation. For that reason, we designed OGA to use direct
bitstream evolution, whereby the chromosome is selected to
be the FPGA raw bitfile. This selection puts the burden of
PTG on the FPGA vendors (Xilinx in this case) and abridges
GTP to a mere Xilinx iMPACT invocation to download the
CBS onto the FPGA.

Direct evolution of a bitstream depends on details about
the LUT mapping between the CBS and the actual device.
The encoding of the bitfile must be manipulated to be able
to apply genetic operators such as crossover and mutation
to the relevant sections of the long bit array. This overhead
is still considered feasible given the vast advantages of
direct CBS evolution in terms of increased performance and
reduced mapping effort. To directly manipulate the CBS, it
is necessary to decode its bits to understand how to locate
and modify specific LUTs and thus change the behavior of
the resulting circuit. To that end, we extended the Virtex-2
approach that we previously developed in [21] to perform
direct bitstream evolution on Virtex-4 devices.

The CBS contains the LUT contents evolved by the GA in
addition to other information such as routing, checksums,
and header information including the device signature and
the time of bitfile creation. As shown in Figure 4, we
implemented an LUT mapping module to map the location
of LUT X Y, where X and Y are valid coordinates inside
the evolved FE, to the correct offset in the CBS file. This
mapping is not completely documented in any of the Xilinx
application notes; rather, it was discovered through repetitive
trial-and-error experiments.

Each experiment was designed to discover the mapping
between one of the LUT coordinates and the corresponding
bit offset in the CBS file. This discovery was accomplished



10 International Journal of Reconfigurable Computing

Configuration bitstream

X1 X2 X3

X1 X2 X3

Y1 Y1 Y1

Y2 Y2 Y2

LUT mapping

Evolved FE

LUT coordinates (X ,Y)

CBS offset

Figure 4: Mapping from LUT coordinates to CBS offset.

by viewing the native circuit description (NCD) file using
the visual Xilinx FPGA editor tool [29] and negating the
content of one known LUT. The NCD files before and after
the negations were used to generate bitfiles with the same
bit generation (bitgen) options [29]. The two resulting CBSs
were then compared using a hex comparator. The 16-bit
LUT content could be readily identified by monitoring the
inverted bits between the two hex files; other differences
resulting from the header and time stamps were usually
located at the beginning of the bitfiles and thus promptly
discarded. After many trials, a relation can be inferred be-
tween the XY of the LUTs and their offsets in the file, or rather
store a lookup table that contains all of the used LUTs along
with their corresponding offsets in the CBS file, to assist in
the mapping.

(2) Intrinsic Fitness Evaluation. There are two methods to
measure the fitness of the evolved individual. The common
approach is extrinsic evaluation [13], which operates on a
software model of the FPGA device. This abstraction sim-
plifies the experiments and can be tuned more dynamically.
However, the resulting representation has to undergo map-
ping and PAR on the target FPGA at deployment time. This
step imposes a risk of incompatibility between the device’s
physical constraints and the software model that was used in
simulation, thereby possibly leading to incorrect solutions.
Instead, the OGA performs intrinsic fitness evaluation [31],
whereby the hardware itself is used to measure the fitness
of the evolved individuals. All of the device’s physical
constraints are considered during the process, and even the
output is measured from the FPGA device while it processes
the functional inputs of the user application.

Therefore, the system can remain on line during fitness
evaluation provided that there are redundant parts to com-
pensate for the evolved individual. Intrinsic evaluation re-
quires that the evolved circuit be configured into the FPGA
device each time the fitness is measured. This process is
made feasible because of the direct bitstream feature of OGA,
which means that the GTP requires only a Xilinx iMPACT
device configuration to place the circuit on the FPGA.

(3) Model-Free Fitness Function. An accurate fitness function
is a critical factor in designing an efficient GA because it
determines the shape of the problem landscape that the GA
will search [30]. This process can be extremely complicated
in real-life engineering problems because it requires captur-
ing all the attributes that distinguish a good solution from
other ones. In addition, it is highly dependent on the prob-
lem domain because what is appropriate for one particular
purpose does not usually fit other purposes.

Because SMART is intended to be a generic platform that
fits any application domain, the OGA employs a novel, ap-
plication-independent, model-free fitness function that can
be ported to other applications with minimal effort. This
was made possible because of the design of RARS, which
enables run-time discrepancy detection between the evolved
FE and other redundant, fault-free one(s). The model-free
fitness function quantifies the fitness of the evaluated FE by
counting the number of discrepancies between its output
and other fault-free FEs. The number of discrepancies over
a window of evaluations is stored in the PM and is reported
by the RC to the OGA engine using a performance report
message. This value quantifies the deviation between the
evaluated individual’s fitness and the ideal one, in which low
values indicate fitter individuals. Therefore, the GA becomes
a minimization optimizer for this value.

It is important to note that this model-free fitness func-
tion is only possible when the goal is to repair a faulty circuit
and there is another redundant circuit on the FPGA that can
produce the same functionality. This condition does not pose
any limitation on redundancy-based fault-tolerant systems
because the redundant parts are activated anyway to mask
faults and thus maintain correct functional output. The OGA
takes advantage of that activation and implements the mod-
el-free fitness function.

The OGA platform consists of the following modules
[21].

(1) GA Engine. This is a C++ application that implements a
customizable, standard GA (SGA). This module is platform
independent; it encapsulates the implementation of the SGA,
including the population data structures, the functionality
for selection and replacement, and other standard GA
operators such as mutation and crossover.

(2) Chromosome Manipulator. This is a C-based library that
abstracts the underlying hardware from the perspective of the
OGA engine. It provides hardware-independent abstraction
of the genetic operators so that they can be executed with
regard to the LUT boundaries in the long CBS string.

(3) Multilayer Run-Time Reconfiguration Architecture
(MRRA). This is a set of APIs that facilitates communication
with the target FPGA device [23]. This module handles direct
bitstream manipulation and decoding and includes the LUT
mapping module depicted in Figure 4.

(4) Bitstream File. This is the PR bitstream file that repre-
sents the FE design.



International Journal of Reconfigurable Computing 11

OGA engine

Chromosome
manipulator

MRRA

Read ()

Write ()

iMPACT

Parallel
cable

Communication
manager

Configure ()

JTAG

GNATFE
Send ()
Receive ()

Virtex-4

PC

Bitstream

file

EvaluateInput ()
PerfromMutation ()

PerformCrossover ()

Get/setLUTConfig ()

Send ()/receive ()

Download design ()

GetFitness ()

FitnessValue

SendMessage ()
ReceiveMessage ()

SerialToParallel ()
ParallelToSerial ()

Figure 5: Intrinsic evolution platform.

Figure 5 shows the complete experimental OGA plat-
form. The OGA engine relies on the chromosome manip-
ulator to perform platform-independent mutation and
crossover operations. It also reads the fitness values from
the communication manager, which in turn acquires them
directly from the hardware via the communication protocol
messages. The MRRA module operates directly on the
bitstream using the LUT mapping module shown in Figure 4
and then execute a batch file that runs the iMPACT tool,
which performs boundary-scan device-chain initialization
and then programs the chip. All communication proceeds
via the parallel port from the host PC side and the JTAG port
from the FPGA side.

The OGA creates the initial population based on the
partial bitfile that was used to configure the original faulty
FE. It generates a copy of the bitfile for each individual in
the initial population and then randomizes its LUT bits to
promote genetic diversity that could lead to more innovative
solutions.

Next, each individual’s fitness is evaluated intrinsically by
downloading its bitfile to the FPGA using iMPACT. The OGA
engine then requests the fitness value of the evaluated indi-
vidual using a PERFORMANCE REQUEST message that is
sent to RARS through the JTAG-GNAT interface. The RC
reads the PM counters, which are updated periodically based

on the actual run-time functional inputs that the FEs are
processing. It then formulates PERFORMANCE REPORT as
a reply message and sends it back to the GA engine.

After evaluating the fitness of all individuals, the OGA
selects the individuals that will participate in the creation of
the next generation using a tournament selection of size 2.
This value was set based on preliminary runs designed to
locate the most promising GA parameters for the experimen-
tal work. The selected individuals are then mated to create
the offspring using single-point crossover and conventional
bit-flip mutation operations. Both operators are executed on
the raw bitfile, as mandated by the direct bitstream evolution
premise. The mapping between the LUT coordinates and
its actual location in the bitfile is abstracted using the LUT
mapping module demonstrated in Figure 4 to map LUT X Y
coordinates to the actual offset in the bitfile.

Finally, the newly created offspring is assigned to the
population of the next generation, and the OGA repeats the
same steps until an adequate solution is found, which in
our experiments was defined as achieving no discrepancy
between the evolved individual and the fault-free one over
a predefined window of readings.

3.3. Communication Protocol. The communication proto-
col consists of two components. The first is the hardware



12 International Journal of Reconfigurable Computing

component that resides on the FPGA board and includes the
standard JTAG interface serial port and the GNAT platform
[21], which is configured on the device to support input
and output operations with the AE. The second component
is the software, which runs on a host PC that is connected
to the FPGA. The messages are 16 bits in width; therefore,
the communication link can theoretically handle up to
300,000 messages per second with a Xilinx Parallel Cable
IV download rate of 5 Mbps [32]. SMART has a customiz-
able message-exchange frequency that can be controlled via
a settings file.

The JTAG boundary scan interface (IEEE 1149.1) is im-
plemented on the nonreconfigurable area of the Xilinx Virtex
devices. The interface offers half-duplex serial communica-
tion between the user circuit on the FPGA and the host PC.
The GNAT component is implemented on the reconfigurable
area of the chip to connect the JTAG boundary scan with
the user circuit to provide a bidirectional communication
channel. The communication protocol relies on handshaking
to acknowledge received messages and to request new ones.
The protocol also specifies a 16-bit packet format with 5 bits
reserved for the opcode, thus supporting up to 32 message
types, while the remaining fields are used for AE and FE
addressing and for other purposes, such as performance
readings and component status. Examples of the messages
that flow from the software layer to the hardware layer are as
follows:

FE STATUS REQUEST: request the status of a par-
ticular FE,

AE STATUS REQUEST: request the status of a par-
ticular AE,

PERFORMANCE REQUEST: request the value of the
Performance Counter (PM).

The respective responses of the hardware layer to these
messages are as follows:

FE STATUS REPORT: reports FE status (such as on-
line fault-free, online faulty, and off line),

AE STATUS REPORT: reports AE status (such as
simplex, duplex, and triplex),

PERFORMANCE REPORT: reports the PM value.

4. Dynamic Partial Reconfiguration

SMART relies on the repetitive reconfiguration of the FPGA
to achieve active repair via scrubbing and intrinsic evolution.
Dynamic PR was successfully introduced into the RARS
hardware to reduce repair time. The size of the partial
bitstream of the edge-detection FE is 31,350 bytes, which
results in a reconfiguration time of 49 milliseconds. However,
the full bitstream size for the original design without PR is
1,712,626 bytes, which corresponds to a reconfiguration time
of 2.61 seconds. As a result of introducing dynamic PR into
this design, the faulty FEs could be reconfigured in 1.8% of
the time originally required to reconfigure the entire system.
This improvement becomes extremely important during

the repair process, considering that the OGA may require
thousands of evaluations to evolve an adequate solution. This
approach also has the added advantage of keeping the system
on line during bitstream downloading.

early access partial reconfiguration (EAPR) design flow
[33] was used to achieve dynamic PR capabilities. This flow
requires a strict design routine that does not follow the con-
ventional single-pass of synthesis, mapping, and PAR. In-
stead, it requires the design to have an explicitly modular
structure such that the PR modules are singled out at the top-
level module. These modules are called Partial Reconfigurable
Modules (PRMs), and the region of the fabric to be reconfig-
ured is defined as a partial reconfigurable region (PRR). PRMs
define the functionality of each PRR. All the other logic in the
design is termed static logic. All resources required for an FE
must be confined within a PRR.

The connection between each FE and the adjacent logic
was accomplished using a number of 8-bit bus macros (BMs).
BMs are made available by Xilinx to compensate for the old
alternative of hard-wired tristate buffers (TBUFs), which have
been used in earlier PR flows and are known to present strict
constraints on communication bandwidth due to the limited
number of TBUFs available on the fabric.

The configuration frame of Xilinx Virtex 4 FPGAs is
16 CLB long and 1 CLB wide. In RARS, each FE requires
112 CLBs, which corresponds to seven logic-configuration
frames. Figure 6 shows a snapshot of each of the three PRRs
along with the static, top-level full design of the RARS. The
placement of the PRR and the bus macro was achieved with
the help of the Xilinx PlanAhead tool [33].

5. The Repair Cycle and Self-x Properties

The controlled emergence of self-x properties is what distin-
guishes OCs from other design paradigms [19]. Rather than
providing all alternative execution paths at design time, the
system is equipped with the innate capability to actuate dif-
ferent configurations based on run-time sensory informa-
tion, making it adaptive to diverse execution scenarios.

Figure 7 shows the repair cycle that the system executes to
maintain the highest possible correct throughput. The flow
diagram is partitioned into three black-framed boxes to sig-
nify the observed organic self-x properties that emerge upon
executing each repair stage.

The left side of the diagram shows the organic repair that
is implemented on the FPGA device. The prominent ob-
served self-x properties are self-monitoring and self-organ-
ization. The self-monitoring property is manifested by the
system’s self-awareness of any discrepancy that results from
one or more faulty FEs through the use of different sensors,
which is enhanced with self-diagnosis of the exact faulty FE
through monitoring the discrepancies of the output lines.
The first repair action the system takes upon detecting
faults is reorganizing the components of the system to mask
the fault. The self-organization property emerges through
adjusting the redundancy configuration of RARS to hide
the effect of hardware failures. The example in Figure 7
shows a Duplex-TMR-Duplex reorganization scenario, but



International Journal of Reconfigurable Computing 13

Figure 6: FE1, FE2, FE3, and the complete circuit.

Self-monitoring
Self-organization

Self-configuration

Self-healing

Duplex

“no fault”
100%

throughput

AE detects faulty FE
triggers watchdog timer

Triplex
“one faulty FE”

100%
throughput

Discrepancy?

Transient fault
cleared

Watchdog
expired?

Initiate
self-configuration

Triplex

“FEx under repair”

100% throughput

Repaired?

GA-based
repair

Recovery paths

No fault

Fault

Diversity-based
repair

More

bitfiles?

Download bitfile to FPGA

via JTAG (partial reconfig)

Read performance

JTAG-GNAT communication

Repaired?
Initiate

self-healing

Download bitfile to FPGA via
JTAG (partial reconfig)

Read fitness
JTAG-GNAT communication

JTAGFPGA Software

New

generation?

Create new
generation
(selection, GA
operators,
replacement)

No

No

N
o

N
o

N
o

N
o

Yes

Yes

Yes

Yes

Yes

Yes

Recovery
paths

Self-x transition

Partial reconfiguration

Fitness reading

Figure 7: System self-x properties flow and transitions.



14 International Journal of Reconfigurable Computing

other reorganization sequences can be applied to meet the
reliability levels stipulated by the mission requirements.

When the degree of the faults exceeds the inherent redun-
dancy capacity of RARS, SMART triggers a different repair
cycle that demonstrates another organic activity, namely,
self-configuration. The self-configuration property emerges
through successive lazy-scrubbing cycles, which is a process
that begins by rewriting the same CBS to eliminate SEUs in
the configuration logic. Then, if the fault is caused by a stuck-
at hard fault in the configuration logic, scrubbing proceeds
to reconfiguring the FPGA with a preseeded set of bitstreams
that have different area constraints to potentially introduce
an FE that excludes the faulty LUT.

Finally, if self-configuration fails to bypass the faulty ele-
ment(s), the system initiates a more elaborate refurbishment
cycle that relies on OGA. This evolutionary repair introduces
a self-healing property at the system level that is character-
ized by the system’s ability to actively recover from more
catastrophic fault scenarios by searching for innovative so-
lutions using evolutionary approaches. Self-healing is not
limited by the degree of redundancy nor by the number of
preseeded bitfiles, which makes it a compelling option for
complex fault scenarios. However, SMART makes OGA the
last resort in the repair sequence due to its long repair time.

A key consideration in our technique is that reconfig-
uration adds minimal additional component to functional
critical path. The design attempts to promote the fact that,
if faults occur outside the FEs logic, only the recovery is
impacted, not the FEs functionality. Therefore, we can apply
the RARS concept recursively if needed to provide coverage
for faults in the AE. Nonetheless, reconfiguration capability
needs to remain intact for recovery by reconfiguration to
remain viable, and also the voter logic should remain intact,
as in conventional TMR approach, to guarantee that the
correct vote is propagated as the functional output.

Assuming that the AE voting core is an unbreakable
voting element will indeed add a single-failure point to the
fault-tolerant system. However, this risk is alleviated by the
fact that the core voter element of the AE has much lower area
than the FEs, meaning that the probability of fault hitting
the voter element is reduced accordingly. The FEs in the
experimental use case of the edge detector have a total size of
approximately 1800 LUTs, compared to the voter element of
approximately 100 LUTs. This means that the probability that
a fault happens in the voter is 5% of the probability of a fault
to hit the FEs logic. We still believe that this value cannot be
neglected, we plan to extend our future work to handle this
case via random pairings and temporal voting techniques
that we have successfully demonstrated in [34]. Moreover,
the FEs are expected to considerably increase in area for real
complex applications, and the voter is not expected to scale
with the same degree, further reducing the chance of broken
golden element compared to the functional elements.

In SMART, failures in the reconfiguration logic will only
cause the loss of the software-based fault-tolerance features,
that is, scrubbing and OGA. However, the inherent organic
hardware of RARS will remain intact to switch among the
available simplex, duplex, and triplex configurations. This
graceful degradation property means that the system will

Table 3: System modules implementation.

Module Implementation platform

Organic layer
ML402 (lower board of VSK) with
Virtex-4 FPGA (XCV4SX35)

Video
capturing/buffering

Video IO Daughter Card (VIODC)
(Upper board of VSK) with Virtex-2
PRO FPGA (XCV2P7)

HW-SW connection
JTAG-GNAT from FPGA sideXilinx
Parallel port from PC side

Communication Class Multithreaded C++ application

HIM C++ Message encoder/decoder

GUI monitor Java applet

Application Sobel edge detector (Verilog)

OGA engine C++ based Standard GA [21]

OGA interface C-based API (MRRA) [23]

become, at worst, a TMR system if the parallel/serial interface
fails.

Complete handling of failures in reconfiguration cir-
cuitries in FPGA devices is beyond the scope of this work,
and we relied on proven solutions provided by Xilinx, the
main manufacturer of FPGA chips, to deal with this type of
faults [35]. Moreover, the same techniques used in handling
faults in the datapath can be extended to the reconfiguration
logic. One prominent approach in dealing with this kind of
faults using redundancy can be found in [36].

Virtex-4 FPGAs are fully characterized for single-event
functional interrupt (SEFI) [35], which are SEEs that cause
device-wide operation interrupts such as power on reset
(POR), configuration circuitry, frame address register used
extensively in the reconfiguration process, and some other
global signals that affect reconfiguration logic and device
functionality. Xilinx states that pulsing the PROG signal will
result in correcting any of the aforementioned SEFIs [35].

More catastrophic faults, such as hard faults affecting
the ICAP, can be recovered using redundancy techniques
presented in [36]. This technique protects the ICAP logic
in a similar fashion to any other user application logic: first,
by having TMR inserted in the ICAP circuit using BL-TMR
tools [37] to correct faulty configuration on the fly; second,
by scrubbing the ICAP interface in case an SEU is suspected
in the configuration logic. These techniques can be used
to prevent the parallel/serial configuration interfaces from
becoming a single point of failure in SMART.

6. Experiments and Results

Using the dual-board Xilinx Video Starter Kit (VSK) FPGA
board [38] and the other technologies listed in Table 3, the
benefits of SMART were demonstrated quantitatively [28]
using a gradient-based Sobel edge-detection algorithm [14].

6.1. Experimental Setup: Edge Detection Application. To de-
monstrate SMART’s organic capabilities, we implemented a
popular edge-detection algorithm and tested it under inject-
ed transient and permanent fault scenarios. There are various



International Journal of Reconfigurable Computing 15

GNAT

VSK board

RARS

AEFE-2

FE-1

FE-3

J

T

A

G

VGA-out

VGA-outVGA-in

VGA driver

Edge-detected video stream

Video feed (PC running a video)

Original video stream

Host PC

Status/control

Software

layer

Original

video

Monitor

Edge-detected

video

AD9887 IC

Input buffer

(BRAM)

XCV435SX FPGA

XCV2P7 FPGA

Sequencer

Output

buffer

(BRAM)

Status/control

Bus
macro

Bus
macro

Bus
macro

Bus
macros

Bus
macros

Bus
macros

Figure 8: SMART experimental setup.

applications for edge detection because it primarily involves
identifying boundaries in an image. Thus, it can be employed
for object recognition and quality monitoring in industrial
applications, medical imaging applications such as magnetic
resonance imaging (MRI) and ultrasound imaging [39],
and satellite imaging applications [40]. Numerous efforts
have been made to design edge detectors using evolutionary
techniques [39, 41]; we compare our GA’s performance
against those techniques in the experimental results section.

Figure 8 shows SMART application architecture where a
continuous video stream provides the functional input to the
circuit. The video is transmitted via either the VGA-Out or
the digital video interface (DVI) ports on the host PC to
the VGA-In or DVI-In, respectively, on the upper board of
the Xilinx VSK, the Video IO Daughter Card (VIODC) [38].
In this system, we used the VGA ports on both ends, but
nothing prevents the system from running on a DVI interface
because of the versatility of the AD9887A dual interface
on the VOIDC. Indeed, this IC offers both an analog and
a digital receiver integrated on a single chip. The AD9887
has a parallel digital bus interface with the FPGA for video
data and an I2C control bus for configuration. The captured
frames are buffered into the block RAM (BRAM) of the
Virtex-II Pro XCV2P7 FPGA on VIODC. The frames are
continuously written on the BRAMs; if the video feed stops,
then the last captured frame is used for all pixel operations
until the feed is resumed.

A sequencer module handles memory scanning and syn-
chronization and sends the pixel data through the XGI
connector [38]. This connector is a 64-bit bus, called
VIOBUS, which connects between the lower ML402 board

and the upper VIODC. It uses a simple synchronous interface
running at 100 MHz to send data and control information
between the two boards.

A goal achieved in the prototype is application indepen-
dence. That is, any other application can be implemented
by designing new logic in the FEs and by tuning the clock-
division ratio in the digital clock manager (DCM) to match
the frequencies of the AE and the FEs.

Applications that are known to be more tolerant to
errors than other kinds of design, such as signal processing
applications, will tend to ameliorate the impact of erroneous
behavior. However, the metric reported in our results is
actual data path bitwise discrepancies of the output. The
fitness function did not rely on any kind of pixel averaging
or gradient-based operators to quantify image quality into
fitness values. This discrepancy-based metric on a pixel-
by-pixel basis makes this approach applicable for non-DSP
applications without loss of generality.

On the ML402 motherboard, the enabled FEs in RARS
process the video feed and provide the output to the AE.
Based on the current configuration of the system, the AE
produces the overall output and stores it in the XCV4SX35
BRAMs. In fact, the AE stores both the original and the
edge-detected video stream for demonstration purposes.
The BRAMs are continuously scanned by a VGA driver
implemented on the same FPGA to generate the VSCAN,
HSCAN, and RGB values for the VGA-out interface. The
VGA-out is connected to another monitor that shows both
the original and edge-detected video streams. Any error in
the edge detection can be clearly spotted on this monitor, as
shown in Figure 9.



16 International Journal of Reconfigurable Computing

(a) Fault-free Scenario (b) Single-fault Scenario

(c) Two faulty FEs scenario (d) After-repair scenario

Figure 9: Original and edge-detected images.

Table 4: DIP switch purposes.

DIP Switch Purpose

1 AE enable to control organic capabilities

2 Stuck-at fault injected in FE1

3 Stuck-at fault injected in FE2

4 Stuck-at fault injected in FE3

Table 5: FE status LEDs.

LED 1 LED 2 FE status

OFF OFF Offline and faulty

OFF ON Offline

ON OFF Online and faulty

ON ON Online

The three FEs and the AE are connected to the host PC
that runs the organic software layer. This PC is tied to a moni-
tor that displays the real-time status of the organic layer using
the GUI Java applet. The status and control signals are passed
between the FEs/AE on one side and the BSCAN/JTAG on the
other side. The organic layer and the FEs (i.e., the Sobel edge
detector) are implemented in Verilog HDL and synthesized
into FPGA bitfiles using the Xilinx ISE 9.2 software packs.

The DIP switches beneath the LCD screen on the ML402
FPGA board were used in our experiments to simulate stuck-
at faults in the data path to test the ability of the RARS to
switch configurations in order to mask faults immediately.
One of the switches was also used to enable or disable the
organic repair capabilities, as shown in Table 4. Nine LEDs
were used to show the status of various modules of the
design. Three of them reflected the status of the voter report

shown in Table 2, whereas the other six showed the status of
the FEs, with two LEDs per FE, as shown in Table 5.

It is imperative to mention that the fault simulation
accomplished via the dip switches was only for the SEUs or
stuck-at faults in the data path. This was done by masking
the enabled dip switch logical value with one bit of the pixel
input of the edge detector to affect the data signals. This
kind of error should be repaired instantly by the hardware
through the embedded configurations of RARS. However, to
simulate stuck-at faults in the configuration logic, we had to
actually alter the value of one or more of the LUT contents.
We accomplished this by using the Xilinx FPGA editor tool
to manually alter the content of one LUT in the NCD file in
the schematic view. Both types of fault simulation were used
to test the system repair cycle shown in Figure 7 and to test
the intrinsic OGA repair as shown below.

The PC and JTAG prototype was only meant as a testing
environment for SMART. The convenience and performance
of using a PC to run the GA APIs and the communication
applications have greatly reduced development time and
validation effort. However, deploying the host PC with
SMART will actually eliminate any benefit for such system,
either from power or reliability points of view. Therefore, we
believe that the system will not realize its original design goals
unless it is deployed on a PowerPC processor that comes
embedded within the majority of the high-end Xilinx FPGAs.
To substantiate this plan, we have surveyed many of the
successful PowerPC deployment efforts for fault-tolerant sys-
tems, especially ones that employ evolutionary repair tech-
niques.

In [43], the design and implementation of an intrinsic
evolution system are presented. The system relies on online
evaluation of fitness, that is, using the functional input of the
circuit in runtime. The GA was implemented in C (similar to



International Journal of Reconfigurable Computing 17

0

500

1000

1500

2000

2500

0 50 100 150 200 250
F

it
n

es
s

Generations

Best fitness

Average fitness

Stdev of best fitness

Stdev of average fitness

Figure 10: GA best and average fitness.

OGA in this work) and was embedded on PowerPC 405
embedded processor on a Virtex-II device. Another approach
is reported in [44] where a PowerPC-based intrinsic GA and
a workstation-based extrinsic GA are compared in terms of
the fitness evaluation time. The intrinsic GA that evolves
image recognition system was implemented on a PowerPC
residing on a Virtex-II Pro FPGA, and it was shown that
it achieved fitness evaluation speed comparable to software
fitness evaluation that was run on a workstation operating on
30 times the frequency of the PowerPC. One might consider
using the softcore that can be configured on the FPGA,
like Microblaze, to achieve similar goals. However, as [45]
demonstrates, softcores will consume huge number of LUTs
and would consume much more power, and they are also
vulnerable to the same radiation effects that can affect other
logic on the board, making them far less appealing approach
for fault-tolerant system implementations. Finally, the ability
of IBM PowerPC to process C/C++ code [46] mitigates
the risk of porting SMART into on-board implementation
as all the GA and communication APIs in SMART are
based on ANSI/ISO standard, the only difference being the
need to interface with the ICAP rather than the parallel IV
cable, which is completely supported by the PowerPC APIs
[46].

6.2. Experimental Results. Figure 9(a) shows the sample
input satellite image of urban buildings with industrial fac-
tory fans along with the fault-free result of real-time process-
ing of that image using the Sobel edge-detection algorithm.
Figure 9(b) depicts the scenario of single fault in the data
path, which can be simulated using switches 2, 3, or 4 as
defined in Table 4. Upon the detection of the discrepancy
caused by the fault, the RARS switches to the TMR config-
uration, thereby allowing the system to maintain 100% of
its fault-free throughput. Hence there is no degradation in
quality compared to the fault-free scenario. Figure 9(c) de-
picts the impact of another stuck-at fault at a different FE,
in which case system performance drops, as can be seen
from the degraded edge-detected image. When the software
monitoring layer initiates the refurbishment of one of
the faulty FEs through PR, the system regains 100% per-
formance, as shown in Figure 9(d). Thus, the application

throughput is restored using hardware identification of
resource capabilities and autonomous refurbishment.

The intrinsic bitstream evolution targeted eight LUTs
in the entire FE design. These LUTs were selected after
investigating the different impacts each LUT selection might
have on overall system performance. Based on preliminary
experiments, we were able to extract the critical LUTs [26]
that are highly influential for the performance of the edge
detector circuit.

The average fitness and best fitness values per generation
averaged over 20 runs along with the standard deviation for
both values are shown in Figure 10. The figure also shows
that the standard deviation is steadily decreasing, which
means that the 20 runs followed a consistent evolutionary
path. The maximum fitness value in this work is 2047; this
value does not actually denote the number of possible output
combinations as in most conventional circuit evolution
approaches. Instead, it indicates the number of discrepancies
between the outputs of the evolved FE compared to another
fault-free FE. To establish enough significance in the reported
fitness value, the application records the number of discrep-
ancies over a window of 65,536 evaluations, which denotes
the number of pixels in one 256 × 256 video frame for the
use case under study. Due to the message width limitation
which confined the fitness value field width to 11 bits only,
the hardware implemented a scaling scheme in which the
actual number of evaluations of 65,536 values was scaled
down by 32 to fit the field width of 11. This means that the
circuit is actually evaluated for 65,536 input combinations
where each 32 discrepancies are translated into 1 point on
the normalized fitness scale. This technique provides wide
evaluation window for the GA to span one full frame, yet
avoids high transmission bandwidth for fitness reporting
between the hardware and software. Another approach to
expand the evaluation window while keeping the 11-bit field
width is to poll the fitness values for a number of times
in the OGA API and then average the readings or possibly
detect and eliminate outliers; this software solution provides
a way to control the number of evaluations needed to assess
the evolved individual’s fitness. Finally, the message width
of 16 bit is just an arbitrary selection given the experi-
mental extension of the edge detector. In real application,



18 International Journal of Reconfigurable Computing

Table 6: Fitness and timing information for 20 GA runs.

Run #
Final fitness Timing information

Best Average
Number of
generations

Total fitness
evaluation time

(sec)

Total FPGA
configuration

time (sec)

Total genetic
operators time

(µsec)

1 2047 2033 147 23.69 83.50 2098.75

2 2047 2043 217 35.27 111.97 3172.50

3 2047 2006 78 12.13 35.65 1106.88

4 2047 2015 156 25.34 81.74 2421.88

5 2047 1989 99 15.96 50.09 1470.00

6 2047 2001 148 24.09 77.40 2205.00

7 2047 2005 152 25.01 79.34 2170.63

8 2047 2020 126 20.50 63.76 1835.94

9 2047 2044 252 41.27 127.01 3686.56

10 2047 2032 71 11.46 36.00 984.38

11 2047 2000 221 35.99 112.49 3093.75

12 2047 1998 162 26.27 75.82 2364.69

13 2047 2018 103 16.65 51.19 1530.00

14 2047 2044 129 21.18 64.89 1920.00

15 2047 2046 177 29.01 91.33 2585.00

16 2047 2045 161 78.80 84.85 2250.00

17 2047 2007 75 12.18 39.00 1133.13

18 2047 1993 233 38.11 117.43 3480.00

19 2047 2015 62 9.99 31.93 876.88

20 2047 2044 202 33.42 98.78 2826.56

Average 2019.90 148.55 26.82 75.71 2160.63

Standard deviation 19.80 56.73 15.40 29.00 825.48

Confidence 0.95 0.95 0.95 0.95 0.95

Alpha 0.05 0.05 0.05 0.05 0.05

95% confidence interval (2011.2, 2028.58) (123.69, 173.41) (20.07, 33.57) (63.00, 88.42) (1798.85, 2522.4)

Table 7: Static versus partial resource usage comparison.

Approach Full Partial

LUTs 2785 601

Slices 1734 368

IOB 70 0

BUFGs 11 0

RAMB16s 98 0

DCM 1 0

BSCAN 1 0

the message width can be extended to 32 or even 64 bits, al-
lowing for largest fitness value field and thus accommodating
wider evaluation window.

Table 6 shows details of the 20 runs that are averaged
in Figure 10. All runs converged to a final solution based
on the GA parameters listed in Table 9. These parameters
were determined using preliminary experiments with anal-
ysis of variance (ANOVA) study of the interaction effect
between the parameters. We found that these parameter set-
tings produced the best GA performance for this particular

Table 8: Virtex-2 versus Virtex-4 configuration comparison.

Approach
Virtex-2

[21]
Virtex-4

Full
Virtex-4
Partial

Bitstream size 548 KB 1.633 MB 30.61 KB

JTAG cable
parallel cable
III300 Kbps

parallel cable
IV5 Mbps

parallel cable
IV5 Mbps

Configuration
time (msec)

22000 2613 49

Table 9: GA Parameters used in experiments.

Parameter Value

Population size 10

Mutation rate 0.3

Elitism size 1

Crossover rate 0.8

Tournament size 2

application. The average number of generations required to
repair the fault for the 20 runs was 148 generations, while



International Journal of Reconfigurable Computing 19

Table 10: Comparison of the RARS prototype and three other edge-detection evolution techniques.

Hollingworth et al. [41] Gudmundsson et al. [39] Ross et al. [42] SMART

Application
Generic images (fairly
simple)

Unfragmented, localized
thin edges in medical
images.

Microscopic images
from mineral samples.

Generic (satellite images,
uniform patterns, etc.).

Methodology
Exploit inherent
parallelism in images

Split image into linked
subimages. Maintain
links between adjacent
pixels.

Implement a training
stage (requires sampling
23.6% of image),
followed by genetic
programming.

Evolve a subset of the
edge detector (i.e.,
critical LUTs) to recover
from faults.

Fitness evaluation Software model Software model Software model Intrinsic evolution

Evolutionary algorithm Genetic programming.
2D genetic algorithm
with problem-specific
operators.

Genetic programming
training (∼25%) and
evolution (∼75%).

Genetic algorithm.

Genetic String coding

Four node functions
(i.e., and, or, not, and
xor) and eight terminal
values for pixels around
the evolved pixel.

Edge map. Image pixels
are masked with
corresponding values in
pixel map (i.e., 0: no
edge, 1: edge).

High-level functions
(i.e., avg, min, max, and
stdev). Terminal pixels
and high-level
ephemerals (i.e.,
gradient and intensity).

Direct bitstream
evolution. The solution
coding is the actual
bitfile.

Fitness function

Pratt figure of merit
(PFM) relative to
fault-free Sobel edge
detector

Highly complex cost
function based on five
cost factors.

Biased random sampling
fitness evaluation for
training. Program fitness
is similar to PFM.

Model-free, triplex
discrepancy-based
function. No
application-specific a
priori knowledge
needed.

Evolution speed
Partial solution in 2,333
generations after 24
hours of evolution time.

2,300 generations used
for ring imaging; 300
generations used for
thin, well-localized
edges.

75 generations, with
25% of images used for
training. Very large
population size of 2,000.

148 generations, with
low population size of
10. Evolved 8 critical
LUTs.

Best fitness Not reported
0.85 PFM with scaling
factor of 0.01.

0.590 for Image 1;0.633
for Image 2.

100% as compared to
output from fault-free
Sobel edge detector.

the 95% confidence interval was between 123 and 173 gener-
ations. Thus, 95% of the time, a repair happens in less than
173 generations.

The runs produced very small deviation in the average
fitness of the population; this is partly due to the small pop-
ulation size. The table also shows the timing information for
fitness evaluation, PR time, and genetic operator overhead.
Although we used PR, the configuration time was still the
dominant factor in repair time. For example, the first run
required 83.5 seconds of reconfiguration time for a total of
147 generations, which means that each generation required
83.5 ÷ 147 = 0.568 seconds to configure a population of 10
individuals, resulting in 56.8 msec per bitfile. This is close to
the theoretical value obtained by dividing the bitstream size
by the cable speed (30.61 KB÷5 Mbps = 49 msec). This value
accounts only for CBS transmission time. In reality, there is
a 95% probability that the download time will take 64 to
88 msec.

Tables 7 and 8 rely on the results of our previous work
on Virtex-2 [21] to compare resource usage, utilization, and
configuration details between the Virtex-2 platform and the
Virtex-4 SMART platform for the full and partial bitstream

cases. These tables show the advantages of using PR in terms
of bitstream size, download time, and resource requirements.

Table 10 compares the edge-detection evolutionary ap-
proach that was implemented in this work and the other
three approaches found in the literature [39, 41, 42], convey-
ing the merits of intrinsic evolution. In addition, the model-
free fitness function provides an application-independent
approach compared to the complex fitness functions adopted
by the others. Finally, OGA performance and results show
that the PR paired with direct bitstream evolution yielded
evolutionary repair in 148 generations on average.

6.3. The Relationship between RARS and the OGA. RARS is
the hardware organic component of SMART. Its primary
purpose is masking transient faults resulting from SEU in the
user logic until the affected user register is rewritten with new
value from the datapath, thus eliminating the SEU impact. In
addition, RARS helps maintaining correct functional output
even in the case of soft faults in the configuration logic,
until the scrubber redownloads the CBS and corrects the
upset. However, in the cases of hard faults, RARS cease to
be efficient as it does not have the mean to find alternative



20 International Journal of Reconfigurable Computing

paths at the LUT granularity of the FEs. Here comes the role
of the OGA, which will be invoked by SMART’s controller to
realize solutions even in the case of hard faults. Still, RARS
plays significant role in hard-fault repair by interacting with
the OGA in the following ways.

(1) As the OGA is a guided heuristic search method that
requires evaluating many individuals until a good so-
lution is found, and because the OGA performs on-
line fitness assessment, meaning that the evaluated
individual is configured on the circuit and is evalu-
ated using the runtime functional inputs that drive
the application, RARS conceals the effect of evalu-
ating suboptimal individuals by switching to TMR
mode so that the—sometimes—erroneous outputs
of the evaluated individual are overruled by other
fault-free FEs, just as if the evolved FE is affected
by a transient fault. This will give the OGA enough
time to evolve optimal individual without affecting
the functional operation of the circuit.

(2) The OGA relies on the self-monitoring capabilities or
RARS, which evaluates the evolved FE and presents
its fitness value to the OGA engine. The OGA by itself
cannot assess the fitness of the intrinsically evolved
individual and thus needs to interact with RARS.

To demonstrate this behavior, we applied a sequence of
injected faults on RARS and monitored the performance
of the application. Then, we superimposed OGA repair
experiments taken under the same conditions to create a
holistic experiment that exploits the two pieces together. The
precondition for this sequence of events is that hard-fault
MTTR should be greater than the MTBF; this condition is
almost always realized in space missions due to low MTTF
in radiation-hardened FPGA devices that employ epitaxial
CMOS process technology to lessen the impact of energetic
particles hitting the silicon. As seen in Figure 11, the number
of faulty FEs in RARS goes from 1 to 2 to 3 by time, as there
is no mechanism to repair hard faults. On the other hand,
hard faults in FEs are corrected as they occur to maintain a
number of faulty FEs less than or equal to 1.

With the help of RARS, this guarantees a steady 100%
overall performance of the application, even though the
faulty FEs are being evaluated on line with performance
levels down to 15% at some point of time. The non-OGA
mode will eventually suffer degraded operation when there
are two faulty Fes; this is because the voting mechanism
cannot guarantee correct vote. With 3 faulty FEs, the overall
performance of RARS gets closer to 50% as the three FEs can
generate faulty outputs. The voter hits this performance level
due to compensating fault scenarios in which the FEs do not
fail in the same way and thus can still vote for the correct
output in about 50% of the cases.

6.4. Power Savings. A conventional TMR configuration em-
ploys three times the required user logic plus a voter to ensure
that the system can tolerate faults in finite portions of the
mission. In the current state-of-the-art technology, in which
a single FPGA chip can contain millions of gates at a low

price, power consumption continues to be the prevailing
concern of hardware-redundancy fault-tolerance approach-
es, especially in missions that operate under stringent power
limitations.

However, RARS operates under the minimal level of re-
dundancy necessary to satisfy mission requirements and only
enables redundant parts as they are needed. This design re-
sults in power savings under the no-fault scenario, which
usually constitutes the majority of an application’s lifetime.
To analyze the power savings of RARS over TMR, let the
quantities of interest be denoted as follows:

PFE: dynamic power consumption of one FE,

PAE: dynamic power consumption of one AE (with-
out the voter component),

PV: dynamic power consumption of the voter,

PTMR: dynamic power consumption of conventional
TMR,

PRARS: dynamic power consumption of RARS,

PS: power savings by using RARS over conventional
TMR

PS =
PTMR − PRARS

PTMR
. (2)

The power consumed by conventional TMR is three times
the FE power plus the power of the voter:

PTMR = 3× PFE + PV. (3)

In RARS, power consumption is divided into two
components, namely, power consumption when the system
is fault-free and power consumption when the system is
under repair:

PR: RARS power consumption when the system is
fault-free,

P1−R: RARS power consumption when the system is
under repair,

R: reliability of the system, defined as having no single
or multiple faults in any of the FEs

PRARS = R× PR + (1− R)× P1−R. (4)

Assume a simple scenario for RARS such that it runs in
duplex mode until the DS detects a disagreement between
the outputs of the two enabled FEs, at which point RARS
enables the voter and the stand by FE to implement the
TMR configuration. Upon removal of the fault, RARS
returns to duplex mode. Thus, the system has duplex power
consumption under normal operating conditions (R) and
TMR power consumption under single or multiple faults
mode (1− R):

PR = 2× PFE + PAE,

P1−R = 3× PFE + PAE + PV.
(5)



International Journal of Reconfigurable Computing 21

0

1

2

3

4

5

6

7

8

9

10

0

10

20

30

40

50

60

70

80

90

100

0 250 500 750 1000 1250 1500

P
er

fo
rm

an
ce

(%
)

(time)

Number of faulty FEs without OGA

Number of faulty FEs with OGA

System performance without OGA

Perfor am nce of evolved FE in OGA

N
u

m
b

er
o

f
fa

u
lt

y
F

E
s

System performance with OGA

Figure 11: Holistic experiment to demonstrate the interaction between RARS and OGA.

V

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

FE

V

V
V

AE

AE

AE

AE

TMR RARS Difference

Normal operation
while system is

Repair mode
while system has at

fault-free (R)

least one fault (1− R)

Figure 12: Component difference between RARS and TMR.

Substituting (3) and (4) into (2) results in

PS =
3× PFE + PV − [R× PR + (1− R)× P1−R]

PTMR
. (6)

Substituting (5) into (6) results in

PS =
R(PFE + PV)− PAE

PTMR
. (7)

Equation (7) represents the power savings of using RARS
over conventional TMR. Thus, increasing system reliability
(R) results in increased power gain for RARS because the sys-
tem can benefit from prolonged operation under the low-
power profile. The same equation can be inferred by com-
paring the difference between TMR and RARS under two
operation modes, namely, normal operation (R) and repair
operation (1 − R).

Figure 12 can be used to substitute (PTMR − PRARS) into
(2) by accounting for the difference between the two config-
urations:

PTMR − PRARS = R× (PFE + PV − PAE) + (1− R)× (−PAE).
(8)

Substituting (8) into (2) produces the same PS equation in
(7).

To experimentally qualify the analytical results, we em-
ployed the Xilinx XPower analyzer tool (XPA) [47] to mea-
sure the dynamic power consumption for the different sys-
tem components. The XPA is part of the Xilinx ISE design
suite and provides a way to analyze the power profile of post-
PAR designs, which has an advantage over the alternative
tool, Xilinx power estimators (XPEs) [47], which relies only
on mapping reports and ignores the details of placement and
routing in estimating power consumption. Table 11 shows
the XPA settings that we used, and Table 12 shows the
measured dynamic power for the various components.

Substituting the values of Table 13 into (8), RARS obtains
an advantage over TMR in power consumption at mod-
erately low reliability ratings. For instance, using (3), and
(5) PTMR = 9.91 mWatts, PR = 6.98 mWatts, and P1−R =

10.71 mWatts. Table 13 lists PS for selected reliability values.
As shown in Figure 13, plotting the PS function versus

reliability produces linear improvement in RARS power
consumption over TMR as reliability values increase. The
cutoff point when RARS becomes advantageous in terms of
power saving is R = 0.214, which is a rare, very low reliability



22 International Journal of Reconfigurable Computing

Table 11: Xilinx XPower analyzer settings.

Setting Value

Airflow (LFM) 250

Ambient temp. 25

Toggle rate (%) 12.5

Fanout for clock Actual

Fanout for logic Actual

Heat sink No

Table 12: XPower analyzer results (power in mWatts).

Component LUTs
User
FF

Signals
power

Logic
power

Total
power

FE 526 138 1.21 1.88 3.09

AE 136 78 0.25 0.55 0.8

Voter 107 0 0.12 0.52 0.64

Table 13: XPA power savings results.

Reliability PS

1% −7.07%

21% −0.17%

22% 0.21%

50% 10.75%

70% 18.27%

90% 25.8%

97% 28.44%

99% 29.19%

100% 29.57%

value in real-life mission-critical systems because it implies
that the mission is under repair 80% of the time. RARS
offers 20% power savings at R values as low as 0.75, and the
gain approaches 30% for high-reliability systems (R > 0.95)
while retaining similar fault-protection capabilities to those
associated with TMR.

Additional savings can be achieved if the application can
accommodate simplex configurations for part of the mission,
especially if some data-encoding scheme can accomplish a
sufficient level of fault detection. Also, the DS can be further
power-gated in the TMR configuration of RARS to save
more power while the system is under repair. Finally, the
implemented FE was for demonstration purposes and thus
consumed limited power compared to real-life complex
applications. The AE power budget will not scale propor-
tionally with the FEs when increasing application complexity.
This means that PS should improve even further when using
RARS in more complex applications.

Neglecting the reconfiguration process power consump-
tion can only be acceptable if the configuration time is very
low compared to the application running time, which can be
achieved by two ways.

First, by reducing the bitstream size through the use of
PR rather than full configuration approach. As we have de-
monstrated in the experimental section, the bitstream size
was reduced using the PR flow to 30.61 KB compared to
1.633 MB for the full static bitstream. This reduction in CBS
size led to decreasing reconfiguration time to 1.8% of the
original value, which should translate into comparable power
saving during the reconfiguration process.

Second, the configuration time can be vastly reduced by
relying on the much faster internal configuration port
(ICAP) instead of external configuration ports such as the
JTAG. As mentioned previously, and in spite of the usage of
the parallel Cable IV in the experimental setup, the intended
deployment platform which will utilize the PowerPC pro-
cessor will make use of the ICAP for all reconfigurations.
The ICAP can reach download speed of up to 400 MB/Sec
compared to the 5 MB/Sec for the parallel Cable IV that we
used in experimental setup. The problem that faces most
designers is that this speed is bounded by the limiting factor
of fetching the CBS from the configuration memory into
ICAP with the same rate. Thus, ICAP is able to support
the maximum throughput 400 MB/Sec, but the bottleneck
becomes how fast the application can fetch the configuration
data from memory.

Several efforts in the literature have implemented CBS
fetching mechanisms to match the speed of the ICAP. In
[48], an implementation of BRAM next to the ICAP along
with a finite state machine (FSM) to drive the memory load
operations into the ICAP is presented. The resulting system
was able to write 4-byte words to the ICAP at a frequency
of 100 MHz, matching the maximum throughput made
available by ICAP. In [4], the lightweight hardware artNOC-
ICAP interface is developed to support fast readback-
modify-writeback (RMW) mechanism that achieved 40 us
configuration time per frame, again matching the maximum
speed of the ICAP. Another successful approach to match the
ICAP speed is presented in [49], based on direct memory
Access (DMA) aided by master burst and BRAM caching
technique. Another extensive effort is demonstrated in [50]
where the JTAG dynamic power consumption is measured
via a digital oscilloscope from a Spartan III FPGA that does
not have an ICAP interface. The reconfiguration time for a
PR bitfile of 21 KB was 34 ms, utilizing ICAP instead with a
performance of 66 MB/Sec on a Virtex II device would reduce
the configuration time to 0.32 ms, and this 99% reduction in
configuration time would again yield considerable reduction
in reconfiguration power.

7. Conclusion

A dual-tiered approach can adapt to run-time failures based
on alternative FPGA configurations. This allows the use
of a continuum of power utilization versus reliability. The
organic hardware approach provides decentralized awareness
and control by means of distributed RARS modules across
the hardware fabric. The supervisory software layer provides
the ability to assimilate hardware sensory information while
providing vital high-level decision-making.



International Journal of Reconfigurable Computing 23

PS = 0.3764∗R− 0.0807

−10

−5

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

o
w

er
sa

vi
n

g
(%

)

Reliability

Figure 13: RARS power savings over TMR.

RARS avoids the dilemma of choosing a fixed degree of
redundancy by deferring commitment to a particular fault-
handling configuration until run-time. This approach, uti-
lizing the reconfigurability of SRAM-based FPGAs, demon-
strates an effective use of resources depending on current
mission conditions. TMR consumes three times the default
resources required to survive during the short periods of
time when faults hit the circuit. RARS, in contrast, adapts
to the various requirements at different stages of the mission
by enabling just the right number of spares. Unnecessary
spares can be completely disabled or even replaced by other
circuits. In the age of power-aware devices, in which cooling
and battery life are as crucial as performance, RARS is
able to save up to 30% of the power used by TMR while
still providing protection against transient and permanent
faults.

PR has made it possible to keep the system on line while
being repaired. Moreover, it has allowed the implementation
of active fault-handling techniques at the software layer, such
as lazy scrubbing and intrinsic fitness evaluation.

The software layer relies on a JTAG interface to com-
municate with the FPGA and to download partial bitfiles.
This layer facilitates experiments with evolutionary repair in
which recovery ability is not limited by the number of spares
available. OGA, unlike other conventional GAs, supports
features matched to OC requirements. The model-free fitness
function guarantees the portability and scalability of the GA
to fit any application domain. Direct CBS evolution reduces
the mapping time of the genetic material onto physical
individuals, thereby boosting the performance of the GA.
Finally, intrinsic evolution improves the accuracy of the
GA because it allows evolution of the system on the actual
hardware rather than on a software model.

Now that we have successfully demonstrated the ability
to implement power-conservative evolutionary-based OC on
reconfigurable devices, in future research we aim to incor-
porate the random pairings and temporal voting technique
that we presented in [34] to eliminate the dependency on
the AE as a golden element in RARS. Moreover, we plan to
improve the performance of the OGA to achieve further re-
duced repair times that fit the critical nature of the missions

employing such fault-tolerant systems. We intend to investi-
gate the prospect of parallelizing the OGA under the Island-
GA model to leverage the distributed nature of OC systems
on reconfigurable devices.

Acknowledgment

This research was sponsored by the Defense Advanced
Research Projects Agency (DARPA) under Contract no.
W31P4Q-08-C-0168.

References

[1] H. Schmeck, “Organic computing-a new vision for distributed
embedded systems,” in Proceedings of the 8th IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed
Computing, (ISORC ’05), pp. 201–203, Washington, DC, USA,
May 2005.

[2] C. Müller-Schloer, “Organic computing: on the feasibility of
controlled emergence,” in Proceedings of the 2nd IEEE/ACM/
IFIP International Conference on Hardware/Software Codesign
and System Synthesis, pp. 2–5, Stockholm, Sweden, September
2004.

[3] G. Lipsa, A. Herkersdorf, W. Rosenstiel, O. Bringmann, and
W. Stechele, “Towards a framework and a design methodology
for autonomic SoC,” in 2nd International Conference on Auto-
nomic Computing, (ICAC ’05), pp. 391–392, Washington, DC,
USA, June 2005.

[4] S. Christian, H. Bastian, and J. Becker, “An interface for a de-
centralized 2d reconfiguration on xilinx virtex-FPGAs for
organic computing,” International Journal of Reconfigurable
Computing, vol. 2009, 2009.

[5] J. Haase, A. Hofmann, and K. Waldschmidt, “A self distribut-
ing virtual machine for adaptive multicore environments,”
International Journal of Parallel Programming, vol. 38, no. 1,
pp. 19–37, 2010.

[6] M. Parris, C. Sharma, and R. Demara, “Progress in auton-
omous fault recovery of field programmable gate arrays,”
Accepted to, ACM Computing Surveys.

[7] G. Asadi and M. B. Tahoori, “Soft error rate estimation and
mitigation for SRAM-based FPGAs,” in Proceedings of the
13th ACM/SIGDA ACM International Symposium on Field



24 International Journal of Reconfigurable Computing

Programmable Gate Arrays, (FPGA ’05), pp. 149–160, New
york, NY, USA, February 2005.

[8] F. Lima, L. Cairo, and R. Reis, “Designing fault tolerant sys-
tems into SRAM-based FPGAs,” in Proceedings of the 40th
Design Automation Conference, pp. 650–655, Anaheim, Calif,
USA, June 2003.

[9] R. DeMara, J. Lee, R. Al-Haddad et al., “Invited paper: dy-
namic partial reconfiguration approach to the design of
sustainable edge detectors,” in Proceedings of the Engineering of
Reconfigurable Systems and Algorithms (ERSA ’10), p. 11, Las
Vegas, Nev, USA, 2010.

[10] S. Mitra, N. R. Saxena, and E. J. McCluskey, “A design diversity
metric and reliability analysis for redundant systems,” in
Proceedings of the International Test Conference (ITC ’99), pp.
662–671, September 1999.

[11] M. Garvie and A. Thompson, “Scrubbing away transients and
Jiggling around the permanent: long survival of FPGA systems
through evolutionary self-repair,” in Proceedings of the 10th
IEEE International On-Line Testing Symposium, (IOLTS ’04),
pp. 155–160, July 2004.

[12] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb, “FPGA partial
reconfiguration via configuration scrubbing,” in Proceedings
of the 11th International Workshop, Field-Programmable Logic
and Applications and Lecture Notes in Computer Science, pp.
99–104, August 2009.

[13] S. Vigander, Evolutionary Fault Repair of Electronics in Space
Applications, Norwegian University Science and Technology,
Trondheim, Norway, 2001.

[14] I. Sobel, Camera models and machine perception, Ph.D. thesis,
Department of Computer Science, Stanford University, 1970.

[15] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Low
overhead fault-tolerant FPGA systems,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 6, no. 2, pp.
212–221, 1998.

[16] M. Abramovici, C. Stroud, C. Hamilton, S. Wijesuriya, and V.
Verma, “Using roving STARs for on-line testing and diagnosis
of FPGAs in fault-tolerant applications,” in Proceedings of
the International Test Conference (ITC ’99), pp. 973–982,
September 1999.

[17] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica, “Fault-
tolerant evolvable hardware using field-programmabletrans-
istor arrays,” IEEE Transactions on Reliability, vol. 49, pp. 305–
316, 2000.

[18] A. Bouajila, A. Zeppenfeld, W. Stechele et al., “Organic com-
puting at the system on chip level,” in Proceedings of the IFIP
International Conference on Very Large Scale Integration and
System-on-Chip, (VLSI-SoIC ’06), pp. 338–341, October 2006.

[19] J. Branke, M. Mnif, C. Müller-Schloer et al., “Organic Com-
puting-addressing complexity by controlled self-organi-
zation,” in Proceedings of the 2nd International Sympo-
sium on Leveraging Applications of Formal Methods, Verifica-
tion and Validation, (ISoLA ’06), pp. 185–191, Paphos, Cyprus,
November 2006.

[20] J. Becker, K. Brändle, U. Brinkschulte et al., “Digital on-
demand computing organism for real-time systems,” in Pro-
ceedings of the 19th International Conference on Architecture
of Computing Systems, (ARCS’06), pp. 230–245, Frankfurt am
Main, Germany, 2006.

[21] R. Oreifej, R. Al-Haddad, H. Tan, and R. DeMara, “Layered
approach to intrinsic evolvable hardware using direct bit-
stream manipulation of Virtex II Pro devices,” in Proceedings of
the International Conference on Field Programmable Logic and
Applications, (FPL ’07), pp. 299–304, August 2007.

[22] R. F. DeMara and K. Zhang, “Autonomous FPGA fault han-
dling through competitive runtime reconfiguration,” in Pro-
ceedings of the ASA/DoD Conference on Evolvable Hardware,
(EH ’05), pp. 109–116, Washington, DC, USA, July 2005.

[23] H. Tan and R. DeMara, “A multilayer framework supporting
autonomous run-time partial reconfiguration,” IEEE Transac-
tions on Very Large Scale Integration Systems, vol. 16, no. 5, pp.
504–516, 2008.

[24] R. E. Lyons and W. Vanderkulk, “The use of triple-modular
redundancy to improve computer reliability,” IBM Journal of
Research and Development, vol. 6, pp. 200–209, 1962.

[25] S. Mitra and E. J. McCluskey, “Which concurrent error detec-
tion scheme to choose?” in Proceedings of the International Test
Conference, pp. 985–994, Atlantic City, NJ, USA, October 2000.

[26] B. Pratt, M. Caffrey, J. F. Carroll, P. Graham, K. Morgan, and
M. Wirthlin, “Fine-grain SEU mitigation for FPGAs using
partial TMR,” IEEE Transactions on Nuclear Science, vol. 55,
no. 4, pp. 2274–2280, 2008.

[27] S. Y. Yu and E. J. McCluskey, “Permanent fault repair for
FPGAs with limited redundant area,” in Proceedings of the 16th
IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, (DFT ’01), pp. 125–133, October 2001.

[28] R. Al-Haddad, “RARS in action,” 2010.
[29] Xilinx, ISE In-Depth Tutorial (V 9.1), 2007.
[30] M. Srinivas and L. M. Patnaik, “Genetic algorithms: a survey,”

Computer, vol. 27, no. 6, pp. 17–26, 1994.
[31] G. Hollingworth, S. Smith, and A. Tyrrell, “The intrinsic evo-

lution of virtex devices through internet reconfigurable logic,”
in Proceedings of the 3rd International Conference on Evolvable
Systems, 2000.

[32] Xilinx, Xilinx Parallel Cable IV, Product Specification DS097
(v2.5), 2008.

[33] Xilinx, Partial Reconfiguration User Guide, UG702 (v 12.1),
2010.

[34] R. F. DeMara and C. A. Sharma, “Self-checking fault detection
using discrepancy mirrors,” in Proceedings of the International
Conference on Parallel and Distributed Processing Techniques
and Applications, (PDPTA ’05), pp. 311–317, Las Vegas, Nev,
USA, June 2005.

[35] C. Carmichael and C. W. Tseng, “Correcting Single-Event
Upsets in Virtex-4 FPGA Configuration Memory,” Xilinx
Application Note (XAPP197), 2009.

[36] J. Heiner, N. Collins, and M. Wirthlin, “Fault tolerant ICAP
controller for high-reliable internal scrubbing,” in Proceedings
of the IEEE Aerospace Conference, (AC ’08), pp. 1–10, Big Sky,
Mont, USA, March 2008.

[37] H. Quinn, P. Graham, K. Morgan, J. Krone, M. Caffrey, and
M. Wirthlin, “An introduction to radiation-induced failure
modes and related mitigation methods for Xilinx SRAM
FPGAs,” in Proceedings of the International Conference on Engi-
neering of Reconfigurable Systems and Algorithms, (ERSA ’08),
pp. 139–145, July 2008.

[38] Xilinx, Video Starter Kit User Guide UG217 (v1.5), 2006.
[39] M. Gudmundsson, E. A. El-Kwae, and M. R. Kabuka, “Edge

detection in medical images using a genetic algorithm,” IEEE
Transactions on Medical Imaging, vol. 17, no. 3, pp. 469–474,
1998.

[40] J. F. Cayula and P. Cornillon, “Edge detection algorithm for
SST images,” Journal of Atmospheric and Oceanic Technology,
vol. 9, no. 1, pp. 67–80, 1992.

[41] G. S. Hollingworth, S. L. Smith, and A. M. Tyrrell, “Design
of highly parallel edge detection nodes using evolutionary
techniques,” in Proceedings of the 7th Euromicro Workshop on
Parallel and Distributed Processing, 1999.



International Journal of Reconfigurable Computing 25

[42] B. J. Ross, F. Fueten, and Y. Y. Dmytro, “Edge detection of pet-
rographic images using genetic programming,” in Proceedings
of the Genetic and Evolutionary Computation Conference, pp.
658–665, San Francisco, Calif, USA, 2000.

[43] S. Merchant, G. Peterson, S. Park, and S. Kong, “Intrinsic
embedded hardware evolution of block-based neural net-
works,” in Proceedings of the IEEE Congress on Evolutionary
Computation, pp. 3129–3136, Vancouver, BC, Canada, 2006.

[44] K. Glette, J. Torresen, and M. Yasunaga, “Online evolution for
a high-speed image recognition system implemented on a
Virtex-II Pro FPGA,” in Proceedings of the 2nd NASA/ESA
Conference on Adaptive Hardware and Systems, (AHS ’07), pp.
463–470, Edinburgh, Scotland, UK, 2007.

[45] A. Telikepalli, “Power vs. performance: the 90 nm inflection
point,” Xilinx White Paper 223, 2005.

[46] E. J. McDonald, “Runtime FPGA partial reconfiguration,”
IEEE Aerospace and Electronic Systems Magazine, vol. 23, no.
7, pp. 10–15, 2008.

[47] Xilinx, Xilinx Power Tools Tutorial UG733 (v1.0), 2010.
[48] S. Liu, R. N. Pittman, and A. Forin, “Energy reduction with

run-time partial reconfiguration,” in Proceedings of the 18th
annual ACM/SIGDA international symposium on Field pro-
grammable gate arrays, Monterey, CA, USA, February 2010.

[49] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time partial
reconfiguration speed investigation and architectural design
space exploration,” in Proceedings of the 19th International
Conference on Field Programmable Logic and Applications, (FPL
’09), pp. 498–502, September 2009.

[50] K. Paulsson, M. Hübner, S. Bayar, and J. Becker, Exploitation
of run-time partial reconfiguration for dynamic power man-
agement in Xilinx spartan III-based systems, ReCoSoc2007,
Montpellier, France, 2007.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


