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Abstract. In this study, nitrogen fixation in the electrolyte was achieved by

atmospheric pressure non-thermal plasma generated by a sinusoidal power supply (with

an applied voltage of 10 kV and frequency of 33 kHz). Ammonia measurements on

plasma exposed electrolyte at several working gas and purging gas conditions revealed

that nitrogen plasma on the same gas environment is more favorable for plasma-assisted

ammonia synthesis. In addition, photo-electrochemical water splitting was performed

by irradiating UV light (316 nm) on a titanium dioxide semiconductor photo-anode

to generate hydrogen donor in nitrogen reduction reaction. The amount of ammonia

synthesized by this synergistic process of photo-electrochemical water splitting and

nitrogen plasma is six times higher than that obtained by nitrogen plasma alone. An

increase in the co-synthesized NOX concentrations and background contamination at

reaction site reduces the ammonia synthesis rate and Faraday efficiency. However, the

ammonia production efficiency was increased up to 72% by using a proton-exchange

membrane which prevent the diffusion of oxygen evolved from water splitting into the

plasma, and by reducing the axial distance between the plasma electrode and reaction

site. The sustainable nitrogen fixation process reported herein can be performed at

atmospheric pressure conditions without a direct input of hydrogen gas or any catalyst.

Keywords: nitrogen fixation, non-thermal plasma, Ammonia synthesis, water splitting,

nitrogen reduction reaction

1. Introduction

The route to industrial ammonia (NH3) synthesis was opened by two Nobel laureates,

Fritz Haber and Carl Bosch, in the early twentieth century, and the method is known as
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Haber-Bosch (H–B) process [1]. About 136 million tons of NH3 is produced annually by

this process, which covers 29% of total nitrogen fixation on earth and directly benefits

approximately 40% of the world’s population [1, 2, 3, 4]. Currently, approximately 80%

of the NH3 produced worldwide is utilized for nitrogen based manure generation [5].

The other uses of NH3 are explosives, pesticides, dyes, medicine, etc. Recently, other

creative uses of NH3 are being seriously considered, including refrigeration, fermenta-

tion, and energy storage [2]. The H–B process starts with the breakdown of nitrogen

(N2) triple bond [6], which is a very strong bond owing to its high bond dissociation en-

ergy of 9.1 eV (8.7× 105Jmol−1), and ionization energy of 14.53 eV (1.39× 106Jmol−1)

[7]. This nitrogen atom reacts with hydrogen gas (H2) over an iron-based catalyst under

pressures of 150–300 atm and temperatures of 400–5000C [8]. NH3 producing indus-

tries consume 80% of the total energy demand in the chemical industry to overcome

these extreme physical conditions [9]. These intensive energy and cost requirements

led to the centralization of the NH3 yield industry. Furthermore, the steam reforming

of petroleum for hydrogen production involves the use of 2% of worldwide petroleum,

releasing more than 200 million tons of carbon dioxide (CO2) gas each year, which

corresponds to approximately 75% of total annual greenhouse gas generation on earth

[5, 9, 10]. Therefore, scientists are seeking an alternative that can overcome these inad-

equacies of the H–B process.

The numerous studies on non-thermal atmospheric pressure plasma (NTAPP)

suggested that it is a potential alternative to the high-temperature and pressure

technique for the synthesis of numerous compounds such as benzene and isooctane

[2, 11, 12, 13, 14]. Nowadays, the electrochemical reduction of nitrogen to ammonia

induced by plasma sources is seen as an alluring hitherto alternative to the H–B pro-

cess [8]. The main advantages of plasma-assisted nitrogen fixation are that it obviates

the necessity of extremely high temperatures and pressures, requires renewable energy

sources, and avoids the emission of greenhouse gases like CO2 [9, 15]. In non-thermal

plasma, the electron temperature is in the range of few-electron volts [16]. The impact

collision between the N2 (N ≡ N) and electrons (e−) has sufficient energy to break

or weaken the triple bond of N2 [16]. The weakened triple bond can then be broken

with additional energy provided by the NTAPP. These atomic nitrogen react with the

hydrogen ions (H+) in the plasma and the plasma/liquid (P/L) interface, thus forming

NH3 [17, 16] in the presence of aqueous electrons (e−aq) [8].

In most of the studies on plasma-assisted NH3 synthesis, the process starts with

the hydrogen evolution reaction (HER) from plasma exposed water/liquid via ultravio-

let (UV) irradiation [6, 7, 9], electrolysis [3], electrocatalytic [18], electrochemical [8, 19],

or direct chemical reactions [20]. This evolved hydrogen reduces the plasma generated

atomic and vibrationally excited nitrogen into ammonia. The main reaction pathways of

plasma-assisted nitrogen fixation is summarized in figure 1. However, the development

of a method for an efficient HER from a sustainable and low-cost process is of great
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Figure 1. Plasma-assisted nitrogen fixation reaction pathways

importance. One of our main enthusiasm is encouraged to generate hydrogen from the

photo-electrochemical decomposition of water, which could be a hydrogen donor in ni-

trogen reduction reaction (NRR). Titanium dioxide (T iO2) is an effective semiconductor

for photo-electrochemical and photocatalytic water-splitting under the irradiation of UV

light of less than 382 nm wavelength [21, 22, 23, 24, 25]. Herein, we noticed that the hy-

drogen generated from the photo-electrochemical decomposition of water increased the

plasma-assisted NH3 synthesis rate. To increase NRR rate, other metal-oxide semicon-

ductor as a sacrificial reaction catalyst has been used in various study [26, 27, 28] but

till now synergistic interaction of metal-oxide semiconductor induced HER and non-

thermal atmospheric pressure plasma in NRR has hardly been discussed. The novel

nitrogen fixation method presented in this experiment is environmentally friendly, and

the photo-generated hydrogen will be accessible in various locations at a low cost.

2. Experimental setup and methodology

Figure 2(a) schematically illustrates the concept of our four electrode configuration used

for sustainable plasma-assisted nitrogen fixation. A custom built plasma jet was fabri-

cated by inserting a stainless steel syringe electrode with a length of 40 mm and outer

and inner diameters of 0.9 mm and 0.6 mm, respectively, inside a quartz tube of length

56 mm and outer and inner diameters of 4 mm and 2 mm, respectively. A 2 mm wide

copper tape was used for peripheral ground by wrapping around the quartz tube, which

is located 5 mm below the needle electrode. To synthesize NH3 in the electrolyte, a

glass reaction cell sealed with a polystyrene lid was prepared and a portion (10 mm) of

quartz tube 3 mm below the ground was inserted through the lid and the distance of

surface of the electrolyte and nozzle of the quartz tube was maintained at 3 mm unless

it is stated. Unlike the other common plasma-assisted nitrogen fixation processes such

as lightning and the Birkeland–Eyde process [29, 30], two holes were also drilled for the

inlet and outlet of the purge gas with a flow rate of 2000 sccm to remove the back-

ground contamination. When working gas with a flow rate of 1000 sccm was supplied

with an alternating sinusoidal voltage of ∼ 10 kV (peak) to the syringe electrode with
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a repetition frequency (f) of 33 kHz, plasma was generated between the high-voltage

syringe electrode and the copper ground electrode and propagated along the direction

of working gas flow to reach the electrolyte surface.

Figure 2. (a) Schematic diagram of N2 plasma jet impinging on the electrolyte at

the cathode side of the photo-electrochemical water splitting reaction cell together

with a proton exchange membrane (PEM). (b) Potentially important species in the

plasma region are vibrationally excited N2 species and atomic nitrogen (N), and those

in the water are aqueous electrons (e−aq) and H+ transported through the PEM. The

overall reactions involved in the nitrogen reduction reaction generatingNH3 in the P/L

interfacial region are shown. (c) Photograph of the experimental setup. (d) Optical

spectrum of UV source used in experiment.

To achieve the HER through photo-electrochemical water splitting, two other elec-

trodes were constructed for the photo-electrochemical reaction cell (PECRC). Generally,

PECRC for water splitting is made up of UV exposed photo-anode, photo-cathode and

electrolyte. A 0.05-cm-thick circular T iO2 layer with a diameter of 3.8 cm coated over

the glass substrate was used as the anode of the cell. This anode completely covered

the bottom of the reaction cell. A carbon rod was used as the cathode of the cell, and

both the electrodes were immersed in 40 ml of 0.01 M H2SO4 electrolyte (pH ∼ 2). The

cell anode was irradiated with a UV lamp (Sankyo Denki G4TE5, Japan) of 15 W and

a peak wavelength of 319 nm (3.9 eV) from the bottom of the reaction cell for effective

disassociation of water into oxygen and protons (H+). For selective transportation of

H+ from the anode to the cathode, a 25.4 µm-thick Nafion 211 film used as a proton ex-

change membrane (PEM) was placed in the middle of the cell electrodes. We performed

several experiments at different working and purging gas with and without UV, the cell

electrodes, and PEM in the reaction cell and the obtained result was characterized by

the corresponding nitrogen-based compounds formed in the plasma-exposed electrolyte.
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During the synergic interaction, the transport and reduction of H+ at the cell cathode,

and the interaction of the vibrationally excited nitrogen species or atomic nitrogen and

electron coming from the nitrogen plasma with the hydrogen ion in the plasma liquid

(P/L) interface to form NH3 are shown in figure 2(b). Similarly, photograph of the

experimental setup is shown in figure 2(c) and in figure 2(d) optical spectrum of UV

lamp used in experiment is shown.

The discharge voltage and current were measured using a Tektronix P6015A high-

voltage probe and a LeCroy CP030 current probe, respectively, and the measured voltage

and current waveforms were monitored using 434 LeCroy wideband digital oscilloscopes.

Photo-biased voltages and corresponding currents were measured by a multimeter (Fluke

287 true RMS multimeter) and recorded by a software (Fluke view forms). Optical

emission spectroscopy (OES) was performed 3 mm below the peripheral ground using

a HR4000+CG-UV-NIR (Ocean Optics, Inc.) spectrometer with the help of an optical

fiber whose diameter is 400 µm. The spectrometer was calibrated for wavelength

measurements using a Hg-Ar lamp (Newport Corporation, model: 6048). Quantitative

measurement of NH3 in the plasma exposed electrolyte was performed by a fluorometric

method using a QuantiF luoTM Ammonia Assay Kit (DNH3-200) (Bio-Assay Systems).

The assay is based on an improved o-phthalaldehyde method [31]. This reagent reacts

withNH3 and forms a fluorescent product. The fluorescence intensity (λex/em = 360/450

nm) is proportional to the NH3 concentration in the sample. Similarly, the quantitative

colorimetric determination of NOx (NO−

2 , and NO−

3 ) at 540 nm was performed using an

improved Griess reagent kit [32] (BioAssay Systems, D2NO-100). The concentration of

species in the electrolyte was determined from the calibration curves obtained from the

absorbencies of compounds of known concentrations, which were determined following

the manufacturer’s instructions. Respective fluorescence and absorbance of the sample

were measured by microplate reader (BioTeK Gen5). Similarly, Faradaic efficiency (η)

of NH3 synthesis measured in this experiment was calculated from the give relation [8].

η[%] =
Measured NH3 concentration

Faradaic NH3 concentration
× 100%. (1)

Faradaic NH3 concentration = q/FnV. Here, q is for total charge flowing through the

external circuit of reaction cell and F (= 96485 Cmol−1, is Faraday’s constant, n (=

3) is the number of electron required for ammonia synthesis and V (= 40ml) is total

volume of electrolyte.

3. Results

3.1. Electrical and optical characteristics of plasma

The typical voltage and current waveforms of plasma discharge are shown in figure 3(a)

The several discharge current (I) peaks in the rising part of the discharge voltage (V) are
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generated by the accumulation of wall charges (Q) on the inner side of the quartz tube

during discharge. These discharge currents were measured as a few tens of milliamperes

with duration of a nanosecond to tens of nanoseconds. At the negative alternate of

the voltage waveform, these accumulated charges were reversed in the negative voltage

polarity, which generated similar current peaks in the negative direction. Plot of

the corresponding charge (Q =
∫
Idt) versus voltage (Lissajous figure) is shown in

figure 3(b). When the applied voltage across the electrodes is not high enough to

generate a plasma, the charge versus voltage plot shows a straight line. However, when

the applied voltage is adequate to cause the discharge of N2 gas, the charge in the circuit

increases or decreases sharply according to the discharge. In this case, the Lissajous

figure becomes a parallelogram and the area of the closed-loop (parallelogram) is equal

to the discharge energy (E) dissipated in each cycle [33, 26]. The power dissipated

during discharge can be calculated by multiplying the area with frequency. The energy

dissipated per cycle was calculated as follows [33]

E =
∫ t=T

t=0

V Idt = Alissajous. (2)
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Figure 3. Electrical characteristics of discharge. (a) Current (black) and voltage

(red) waveforms of discharge current versus time plot. (b) Plot of corresponding charge

versus voltage. [Working gas: nitrogen; gas flow rate in the main tube: 1000 sccm.]

The area of the Lissajous figure in our experiment was calculated as 215 µJ . All

the plasma measurements were performed at an applied power of P = E × f = 7.1W

Numerous reactive oxygen and nitrogen species are delivered during the plasma

discharge in the air ambient. In the gas phase, depending on the injected energy,

working and surrounding gas, dissociation of working gases and water molecules by the

energetic electrons in the discharge and UV photolysis mostly leading to the formation of

various reactive oxygen and intro gen species including excited species through several

reaction pathways. Figure 4 shows a typical optical emission spectrum of nitrogen

plasma recorded 3 mm below the peripheral copper ground with 7.2 Watt plasma input

power. The emission profile from 200 to 400 nm is mostly composed of reactive nitrogen
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species including NOγ (200-280) [34], N2 second positive system (SPS) (311–380

nm) corresponding to the transition N2(C
3
∏

g-B
3
∏

g) [35, 36], and N2 first negative

system (FNS) (around 400 nm) corresponding to the transition N+
2 (B

2
∑+

u −X2
∑+

u )

[35]. A weak emission from hydroxyl radicals (OH) corresponding to the transition

A2
∑+(v” = 0)-X2

∏
(v” = 0) is also observed at 309 nm [35]. This is due to the

dissociation of water molecules presents in the working gas by electrons or metastable

atoms [37]. In addition to this, weak peaks atomic nitrogen at 742 , 822 , and 868 and

atomic oxygen at 777 nm and 845 nm [38] has also been seen. For greater visualization,

the range of 700– 900 nm is magnified in the inset of Figure 4

Figure 4. Optical emission spectrum of plasma measured 3 mm downstream the

peripheral ground. [Working gas: nitrogen; gas flow rate in the main tube: 1000 sccm;

applied voltage: 10 kV; frequency: 33 kHz].

3.2. Total nitrogen fixation for various configurations and controls

We initially performed a series of experiments to identify the most favourable working

and purging gas condition for NH3 production. Figure 5 shows the average concentra-

tions of NH3 and NOX produced in the electrolyte after 30 minutes of plasma exposure

for the following configurations: (i) Argon (Ar) gas is used for both working and purging

gas; (ii) Ar plasma and air purging gas; (iii) Ar plasma and N2 purging gas; (iv) N2

plasma and Ar purging gas; ; (v) N2 plasma and air purging gas; and ; (vi) N2 is used

for both working and purging gas; In this experiment, plasma was normally exposed

on electrolyte without photo-electrochemical water splitting reaction cell and external

UV source. In the complete set of data trials of Ar plasma, no detectable amount of

NH3 was found. Here, as expected, main products are measured to be NOX . As we
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Figure 5. Concentrations of NH3 and NOX produced in 40 ml of acidic

electrolyte during 30 min of plasma exposure for the following working and purging

gas configurations: (i) Argon (Ar) gas is used for both working and purging gas; (ii)

Ar plasma and air purging gas; (iii) Ar plasma and N2 purging gas; (iv) N2 plasma

and Ar purging gas; ; (v) N2 plasma and air purging gas; and ; (vi) N2 gas is used for

both working and purging gas

manipulate the background argon gas by air and nitrogen in argon plasma, only NOX

concentrations was measured to be increased but NH3 is still undeteactable/negligible.

In contrast with Ar plasma, NH3 was also found to be increased with NOX in nitrogen

plasma when we alter the argon background with air and nitrogen. In nitrogen plasma,

the quantity of NH3 was small in comparison with NOX however, it was significantly

measurable. The NH3 synthesis rate in nitrogen plasma was increased by 50% when

argon environment is altered by nitrogen environment. These measurements confirmed

that N2 plasma on the same gas environment notably enhanced the NH3 synthesis rate.

On behalf of this result, in the proceeding experiment nitrogen gas is used for both

working and purging gas.

The interaction of nitrogen plasma with water activates the production of different

nitrogen based product in the water, which alters the chemical composition of water.

Figure 6 shows the average concentrations of NH3 and NOx produced in the electrolyte

after 30 min of nitrogen plasma exposure at the following configurations: (i) only plasma

without photo-electrochemical water splitting; (ii) plasma with UV exposure on elec-

trolyte without photo-electrochemical water splitting; (iii) Combined effect of plasma

and photo-electrochemical water splitting without PEM; (iv) Combined effect of plasma

and photo-electrochemical water splitting with PEM; and (v) No plasma, only nitrogen

gas is passed on photo-electrochemical water splitting reaction cell. Only 3 ppm NH3

was produced by only plasma, while the NOX concentration was approximately 6 times

more than the NH3 concentration at this configuration. Next, when the plasma exposed
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electrolyte was also exposed by external UV light source from bottom of reaction cells

as in configuration (ii), the NH3 concentration slightly increased to 8 ppm, whereas the

NOX concentration drastically increased to 28 ppm. After that, plasma was exposed on

the photo-electrochemical water splitting reaction cell without PEM, the NOX and NH3

concentration further increased to 35 ppm and 11 ppm, respectively. For configurations

(i)–(iii), the NH3 concentrations were significantly lower than NOX concentrations.

However, after embedding a PEM inside the electrolyte of photo-electrochemical water

splitting reaction cell as described in configuration (iv), the NH3 concentration was

increased more sharply to 19 ppm but NOX concentration was decreased to 15 ppm.

In this configuration, NH3 leads the NOx concentration, in contrast to the previous

configuration. A comparison of configurations (iii) and (iv) revealed that the PEM is

responsible for the increase in NH3 concentration by 72% and the decrease in NOx

concentration by 57%. Besides this, to study the direct interaction between N2 gas and

the evolved hydrogen, N2 gas was passed (without plasma) on photo-electrochemical

water splitting reaction cell. No nitrogen-based product was detected in the electrolyte

during this process.

iv ii iii iv v
0

6

12

18

24

30

36

C
o

n
ce

n
tr
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io

n
s 

[p
p

m
]

NH
3
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NO plasma

  

N
2
 plasma

    only

Figure 6. Concentrations of NH3 and NOX produced in 40 ml of acidic electrolyte

during 30 min of plasma exposure for the following configurations: (i) only plasma

without photo-electrochemical water splitting; (ii) plasma with UV exposure on

electrolyte without photo-electrochemical water splitting; (iii) Combined effect of

plasma and photo-electrochemical water splitting without PEM; (iv) Combined effect

of plasma and photo-electrochemical water splitting with PEM; and (v) No plasma,

only nitrogen gas is passed on photo-electrochemical water splitting reaction cell.
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10

3.3. Spatiotemporal NOx and NH3 measurement and efficiency

In the subsequent experiment, we studied the temporal variations in NOX and NH3

concentrations after the combined effect of nitrogen plasma and photo-electrochemical

water splitting reaction with and without PEM. Which is shown in figure 7(a). The

concentrations of all nitrogen based products (NH3 and NOX) increased linearly with

an increase in plasma exposure time in both the configurations. In absence of PEM,

NOX is quite higher than NH3 concentration but after insertion of PEM the overall

trend is reversed. This evidences that the overall nitrogen fixation is more significant in

the absence of a PEM but the utilization of a PEM leads to the selective production of

NH3. Furthermore, corresponding variation of Faradaic efficiency for NH3 synthesis is

presented in figure 7(b). Maximum 48% faradaic efficiency was measured without PEM

but with PEM it increased to 91%. Results presented in this figure indicates that, the

average faradaic efficiency increased by 35% after implantation of PEM.
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35%

(b)

Figure 7. Temporal variations in (a) NOX and NH3 concentrations (b)Faradaic

efficiency for NH3 synthesis in the electrolyte during the synergistic interaction of

photo-electrochemical water splitting and nitrogen plasma with and without PEM.

Next to this experiment, spatial variation of NOX and NH3 concentrations

synthesized by the combined effect of nitrogen plasma and photo-electrochemical water

splitting in presence of PEM was investigated and obtained result is presented in figure 8.

Different from the aforementioned experiment, axial distance between the nozzle of the

quartz tube and surface of the electrolyte (Z) is varied by from 0-7 mm by shifting the

plasma jet in upward direction (away from the electrolyte) in this experiment. From

this result, Both NOx and NH3 concentration in plasma exposed electrolyte decreased

with increase in axial distance but NH3 concentration decreased more sharply than

NOx concentration. Here, the average concentration of NOx and NH3 diminished

by 2 and 3 fold every millimeter in axial direction, respectively. The average NH3

and NOX concentrations decreased slowly while increasing the axial distance from o

mm to 3 mm, after that, it falls more sharply. As seen in figure 8, at z=0 mm NH3

concentrations was about 21 ppm with high error but at z= 3 mm it was about 19 ppm
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11

Figure 8. Spatial variation of NOX and NH3 concentration synthesized by the

synergistic of photo- electrochemical water splitting and plasma in nitrogen plasma

exposed electrolyte in configuration.

with low error values. Afterward it was sharply reduced to 5 ppm at 7 mm. Thus, the

moderate distance between the nozzle of the quartz tube and surface of the electrolyte is

advantageous in this experiment to achieve a higher synthesis rate at greater consistency.

In this experiment, when the nozzle of the quartz tube is very close to the surface of the

electrolyte, plasma generation is disturbed by water droplets coming from the splash

of water caused by the gas flow. As a result of this disturbance, highly fluctuated

concentrations of NH3 and NOX was obtained at z <3 mm.

4. Discussion

Photo-electrochemical water splitting converts photon energy into electrical energy in a

cell comprising two electrodes immersed in an aqueous electrolyte. In this experiment,

a semiconductor, T iO2, was used as the photo-anode and exposed to light for photon

absorption, and a conductor, carbon rod, was used as the cathode. If the energy of the

photon (E = hν) is equal or greater than the band gap of T iO2, the electrons jump

to the conduction band (CB), leaving holes in the valance band (VB) [23]. The light-

induced intrinsic ionization of T iO2 resulting in the formation of quasi-free electrons

(e−) in the CB and holes (h+) in the VB is illustrated in figure 9(a). The band gap

of T iO2 is approximately 3.2 eV [21], and the threshold wavelength required to form a

charge carrier pair in this semiconductor as shown in equation (3) is approximately 382

nm.[23].

2hν → 2e− + 2h+. (3)

Then, the photo-induced holes oxidized the water molecules into gaseous oxygen and

hydrogen ions on the surface of T iO2, as presented in equation (4). The detailed
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12

mechanism of water oxidation at the oxygen vacancies present on the surface-active

sites of T iO2 has been discussed elsewhere [21, 23].

2h+ +H2O →
1

2
O2 + 2H+. (4)

Threshold energy Et required for equation (3) is [21]

Et =
∆G0

H2O

2NA

=
237.141kJmol−1

2× 6.023×mol−1
= 1.23eV . (5)

Figure 9. (a) Mechanism of electron-hole pair formation on T iO2 photo-anode by

UV irradiation, oxidation of water at the photo-anode, transport of H+ through the

PEM, and reduction of H+ at the cathode. (b) Effect of UV-irradiated T iO2 with and

without plasma exposure of the electrolyte on photo-biased voltage.

Where, ∆G0
H2O

is the standard free enthalpy per mole of reaction and NA is

Avogadro’s number. Electrochemical water splitting is feasible only when the potential

difference between the two cell electrodes is equal to or greater than 1.23 V. Even though

the band gap of T iO2 is approximately 3.2 eV [21], the photo-biased voltage between the

two electrodes is only ∼0.7–0.9 V owing to its high corrosion resistance [21]. The effect

of UV light on photo-biased voltages is shown in figure 9(b). These plots were recorded

during plasma off and plasma plume touching the electrolyte surface. As can be seen,

the photo-biased voltage reached its maximum within a few minutes of exposing the

photo-anode to UV and returned to its initial background value within a few seconds

of switching off the UV light. The photo-biased voltage generated within the cell in the

absence of plasma is less than that required for water decomposition as calculated by

equation (5). After turning on plasma, when electrolyte is encountered by plasma at the

cathode side of reaction cell, deposition of charge on the electrolyte contribute sufficient

biased voltage for water splitting. In this presented result, photo-biased voltage of 1.8
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13

V was achieved that was enough for water decomposition. The oxygen evolved from

equation (4) cannot diffuse through the PEM so it escapes out through the outlet from

the anode side of the reaction cell. Only H+ ions transport toward the cathode in the

cell through the PEM. At the same time, the electrons transfer to the external circuit

and the cathode, where hydrogen ions (H+) are reduced into hydrogen, as presented in

equation (6) [25]

2H+ + 2e− → H2. (6)

The electrons generated by plasma also injected into the interfacial surface of the

electrolyte [13]. These electrons are responsible for the formation of vibrationally excited

nitrogen species and atomic nitrogen in the plasma phase through collision excitation,

direct ionization, and step-wise ionization. Then, these electrons and vibrationally

excited nitrogen species and atomic nitrogen transported to the aqueous electrolyte.

The overall breakdown reaction of N2 triple bond in the plasma phase is shown in

equation (7). These nitrogen atoms could electrochemically combine with H+ and e−aq
at the plasma-liquid interface as in equation (8) [8, 39],

N2 + e− → 2N + e−. (7)

N + 3H+ + 3e−aq → NH3. (8)

Nitric oxide (NO), nitrite (NO2) and nitrate (NO3) can form in the plasma/plasma-

liquid interface via several possible pathways. In the main reaction pathway, Reactive

nitrogen species react with the OH radicals produced by plasma initiated UV photolysis

[40, 41], as shown in equation (9) to form NO, NO2 and NO2 via mechanism as in

equations (10),(11) and (12) [9, 14]:

H2O + UV → H +OH. (9)

N +OH → NO +H. (10)

NO +OH → H +NO2. (11)

NO2 +OH → H +NO3. (12)

The formed NOX species dissolved in the liquid transform very fast to NO−

2 and NO−

3

through the equations (13) and (14) [42, 43]

NO2(aq) +NO2(aq) +H2O(l) → NO−

2 +NO−

3 + 2H+. (13)

NO(aq) +NO2(aq) +H2O(l) → 2NO−

2 + 2H+. (14)

The formed NH3 will also immediately dissolve in the acidic electrolyte because

the trapping of these nitrogen compounds is significantly higher in acidic media than in

neutral and basic media [8]. The further increase in NOX concentrations in the absence

of a PEM as seen in figure 6 and 7 is possibly due to Telestich’s reactions [44] caused
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by the interaction of oxygen with the nitrogen plasma. Oxygen and hydrogen ion ions

obtained from equation (4) or hydrogen atom from equation (6) directly interact with

the nitrogen plasma at the interfacial region of the electrolyte and gas environment.

The reactive nitrogen species tend to form more stable compounds in a liquid since

the reactions in equations (10),(11) and (12) are faster than reaction in equation (8)

[9] so main products obtained in the liquid phase were NOX . Owing to the electron

scavenging effect of dissolved NOX , the NH3 concentration further decreased with an

increase in NOX concentration.

Figure 10. Ammonia production pathway (blue) together with e− and H scavenging

reactions of dissolved NO2 and NO3 (red).

The crucial role of aqueous electrons (e−aq) on NH3 synthesis has already been veri-

fied by scavenging experiments elsewhere [8]. The scavenging effect and the formation of

other new reducing radical species such as (NO2)
2−, (NO3)

2− are presented in figure 10.

The high reactivity of dissolved NOX with e−aq could effectively control the formation

of NH3 because the absorption rate of the electron by NOX (red reactions in figure 10)

is 500 times faster than N and H combination [8] (blue reactions in figure 10). The

decrease in NOX concentrations in the presence of a PEM, as seen in the results of fig-

ure 6 and 7 is attributed to the extinct Zeldovich’s reactions at the reaction site due to

a lack of surrounding environment of oxygen; subsequently, more NH3 was formed and

it became the dominant nitrogenous compound in the electrolyte. Distribution of NH3

and NOX concentrations is directly affected by electron density, energy and abundance

of the reactive nitrogen species. It has been also reported that, energy, electron density

and the reactive species generated by plasma jet are delivered to the electrolyte which

is higher at lower axial distance and continuously decrease with the downstream prop-

agation of plasma plume [45]. In this presented work, the electron density continuously

reduced from 5.23 ×1013 cm−13 to 1.17 ×1013 cm−13 with increase in axial distance from

o mm to 7 mm, respectively. Which has been measured using a method described in

our previous publication [37]. Electrons delivered to the electrolyte is a major source of

solvated electron (e−aq.) therefore the rate of NH3 formation is decreased with increase

in axial distance as seen in the figure 8

Considering their performance, the HER from the photo-electrochemical water
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splitting was better than that from the electrolysis of water [3], electrochemical reduc-

tion of water [8, 19], and UV induced dissociation of water[6, 7, 9] for NH3 synthesis.

A commercial membrane electrode assembly (MEA) electrolyzer is available for elec-

trochemical water splitting; however, according to Kumari et al. [3], the direct plasma

exposure of the costly MEA electrolyzer causes several drawbacks such as the gradual

degradation of MEA performance via a sputtering mechanism, dehydration of electrode,

and difficulties in the stabilization of current after plasma exposure. Nevertheless, in

this photo-electrochemical water splitting, the current stabilized within 2–5 minutes and

no physicochemical change was observed in the PEM after the operation, which was con-

firmed by contact angle measurements. The contact angle of PEM did not change and

was 73.160 ± 0.530 before and after the 4-hour operation. Next, superiority of our ex-

periment over others previously reported HER technique [3, 19, 6, 7, 9] is also verified

by Faradaic efficiency measurement as presented in figure 7(b). The average Faradaic

efficiency of NH3 synthesis in this experiment is surprisingly higher than those of other

previously reported plasma-assisted nitrogen fixations (2–60%) [15, 46, 47, 48] and also

quite stable than the report of Hawtof et al. [8].

The energy consumption of the H–B process is approximately 9-13kWhkg−1 [1, 8]

using natural gas, coal, or fuel oil as feedstock. However, in this experiment, the energy

consumption (= Power/NH3 production rate) was ∼ 4500 kWhkg−1, which is much

higher than that of the H–B process and lower than that of other previously reported

plasma-assisted NH3 synthesis process (∼ 17000 kWhkg−1 [46]. Plasma-assisted NH3

synthesis could be a potential competitor of the H–B process if the Faradaic efficiency

can be improved by the selective production of NH3, which remains a challenge [49, 50]

because plasma simultaneously produces a bulk variety of by-products. H2 resources will

not remain a challenge in the future because water splitting has great potential similar

to the steam transformation of petroleum [21, 22, 23, 24]. Thus, we developed a novel

method that integrates the photo-electrochemical water splitting method with a plasma

system for nitrogen fixation and obtained expected results. In our experiment, NH3 is

the desired product; however, the concentrations of NOx formed in the electrolyte were

also analyzed, which could add extra value to the nitrogenous compound. It is obvious

that a higher selectivity is required in the cell, which could be achieved using a catalyst

in the future. Nevertheless, our approach could be a milestone for applying the HER via

photo-electrochemical water splitting in plasma-assisted NRR to ammonia. Considering

the overall cost associated with the establishment, production, transportation, and

storage, the plasma technology could be an economic and environment friendly approach

for localized small-scale production of ammonia at a site of use such as farmland.

5. Conclusions

In this experiment, the cathode side of the electrolyte was exposed to non-thermal

atmospheric pressure nitrogen plasma in a photo-electrochemical water-splitting
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reaction cell. The atomic nitrogen generated from plasma electrochemically react with

the hydrogen ion generated from UV-induced water oxidation at the T iO2 photo-

anode. A practical advantage of this method is that ammonia can be achieved from

nitrogen gas and water at ordinary temperatures and pressures without any catalyst and

sacrificial reagent. The interaction of vibrationally excited nitrogen species generated by

plasma with the oxygen evolved from the water dissociated is responsible for the higher

concentration of NOX in the absence of a PEM. However, when a PEM was implanted,

the selective transportation of hydrogen ion towards the reaction site reduced the NOX

formation rate and significantly enhanced the ammonia synthesis rate and efficiency (up

to 91%). Consequently, NH3 became the dominant nitrogenous product in the plasma-

exposed electrolyte at lower axial distance between plasma electrode and electrolyte.

Despite the current challenges, plasma technology will provide opportunities to direct

the ammonia production industry toward a sustainable process in the future.

Acknowledgments

This work was supported by the National Research Foundation of Korea. This research

was supported by leading Foreign Research Institute Recruitment Program through the

National Research Foundation of Korea (NRF) funded by the Korea government (MSIT)

(NRF-2016K1A4A3914113) and in part by Kwangwoon University, Seoul, Korea, 2019.

References

[1] Erisman J W, Sutton M A, Galloway J, Klimont Z and Winiwarter W 2008 Nature Geoscience 1

636

[2] Peng P, Chen P, Schiappacasse C, Zhou N, Anderson E, Chen D, Liu J, Cheng Y, Hatzenbeller

R, Addy M et al. 2018 Journal of cleaner production 177 597–609

[3] Kumari S, Pishgar S, Schwarting M E, Paxton W F and Spurgeon J M 2018 Chemical

Communications 54 13347–13350

[4] Patil B, Wang Q, Hessel V and Lang J 2016 Plasma assisted nitrogen fixation reactions Alternative

Energy Sources for Green Chemistry (Royal Society of Chemistry Cambridge, UK) pp 296–338

[5] Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z, Freney J R, Martinelli L A,

Seitzinger S P and Sutton M A 2008 Science 320 889–892

[6] Sakakura T, Uemura S, Hino M, Kiyomatsu S, Takatsuji Y, Yamasaki R, Morimoto M and

Haruyama T 2018 Green Chemistry 20 627–633

[7] Haruyama T, Namise T, Shimoshimizu N, Uemura S, Takatsuji Y, Hino M, Yamasaki R, Kamachi

T and Kohno M 2016 Green Chemistry 18 4536–4541

[8] Hawtof R, Ghosh S, Guarr E, Xu C, Sankaran R M and Renner J N 2019 Science advances 5

eaat5778

[9] Peng P, Chen P, Addy M, Cheng Y, Zhang Y, Anderson E, Zhou N, Schiappacasse C, Hatzenbeller

R, Fan L et al. 2018 Chemical Communications 54 2886–2889

[10] Razon L F 2014 Environmental Progress and Sustainable Energy 33 618–624

[11] Rahemi N, Haghighi M, Babaluo A A, Jafari M F and Estifaee P 2013 Journal of Industrial and

Engineering Chemistry 19 1566–1576

[12] Petitpas G, Rollier J D, Darmon A, Gonzalez-Aguilar J, Metkemeijer R and Fulcheri L 2007

International Journal of Hydrogen Energy 32 2848–2867

[13] Lu X, Naidis G, Laroussi M and Ostrikov K 2014 Physics Reports 540 123–166

Page 16 of 18AUTHOR SUBMITTED MANUSCRIPT - PSST-103678

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

A
cc

ep
te

d 
M

an
us

cr
ip

t



17

[14] Lu X, Keidar M, Laroussi M, Choi E, Szili E and Ostrikov K 2019 Materials Science and

Engineering: R: Reports 138 36–59

[15] Bao D, Zhang Q, Meng F L, Zhong H X, Shi M M, Zhang Y, Yan J M, Jiang Q and Zhang X B

2017 Advanced Materials 29 1604799

[16] Peng P, Li Y, Cheng Y, Deng S, Chen P and Ruan R 2016 Plasma Chemistry and Plasma Processing

36 1201–1210

[17] Mehta P, Barboun P, Herrera F A, Kim J, Rumbach P, Go D B, Hicks J C and Schneider W F

2018 Nature Catalysis 1 269

[18] Chen S, Perathoner S, Ampelli C, Mebrahtu C, Su D and Centi G 2017 Angewandte Chemie

International Edition 56 2699–2703

[19] Kyriakou V, Garagounis I, Vasileiou E, Vourros A and Stoukides M 2017 Catalysis Today 286

2–13

[20] Kubota Y, Koga K, Ohno M and Hara T 2010 Plasma and Fusion Research 5 042–042

[21] Bak T, Nowotny J, Rekas M and Sorrell C 2002 International journal of hydrogen energy 27

991–1022
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