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Abstract: Cobalt catalysts supported on Y zeolite and mesoporized Y zeolite (Y-mod) have been
studied in steam reforming of ethanol (SRE). Specifically, the effect of the mesoporosity and the
acidity of the y zeolite as a support has been explored. Mesoporous were generated on Y zeolite by
treatment with NHA4F and the acidity was neutralized by Na incorporation. Four cobalt catalysts
supported on Y zeolite have been prepared, two using Y zeolite without mesoporous (Co/Y, Co/Y-Na),
and two using Y zeolite with mesoporous (Co/Y-mod and Co/Y-mod-Na). All catalysts showed a
high activity, with ethanol conversion values close to 100%. The main differences were found in
the distribution of the reaction products. Co/Y and Co/Y-mod catalysts showed high selectivity to
ethylene and low hydrogen production, which was explained by their high acidity. On the contrary,
neutralization of the acid sites could explain the higher hydrogen selectivity and the lower ethylene
yields exhibited by the Co/Y-Na and Co/Y-mod-Na. In addition, the physicochemical characterization
of these catalysts by XRD, BET surface area, temperature-programmed reduction (TPR), and TEM
allowed to connect the presence of mesoporous with the formation of metallic cobalt particles with
small size, high dispersion, and with high interaction with the zeolitic support, explaining the high
reforming activity exhibited by the co/y-mod-Na sample as well as its higher hydrogen selectivity.
It has been also observed that the formation of coke is affected by the presence of mesoporous and
acidity. Both properties seem to have an opposite effect on the reforming catalyst, decreasing and
increasing the coke deposition, respectively.
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1. Introduction

The continuous increase of the energy consumption, the depletion of fossil fuels, and the
environment pollution associated with their use are the three main problems of the current energetic
system [1]. According to this panorama, it is clear that it is necessary to find renewable energetic
alternatives, cleaner and more sustainable. Hydrogen from renewable sources can be considered
as the ultimate clean and climate-neutral energy carrier system. Hydrogen exhibits the greatest
heating value (39.4 kWh/kg) of all chemical fuels and its combustion with oxygen produces water,
as the only by-product, and no pollutants are generated or emitted. However, hydrogen is not a
primary energy source; it must be produced from a primary one. At present the most favorable route
to produce hydrogen comes from fossil fuels, mainly through steam reforming of natural gas [2,3],
which is associated with the emission of large quantities of greenhouse gases (GHG), especially carbon
dioxide (CO2). Consequently, a new eco-friendly hydrogen production route is needed for a clean and

Nanomaterials 2020, 10, 1934; d0i:10.3390/nan010101934 www.mdpi.com/journal/nanomaterials


http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
http://www.mdpi.com/2079-4991/10/10/1934?type=check_update&version=1
http://dx.doi.org/10.3390/nano10101934
http://www.mdpi.com/journal/nanomaterials

Nanomaterials 2020, 10, 1934 20f 13

sustainable production of energy. Reforming of renewable biomass feedstocks, such as bioethanol,
a water and ethanol mixture (10-18 wt. % in ethanol), has become an important and active research
area in view of hydrogen production [4-7]. Bioethanol results in a promising feedstock due to its
availability, low toxicity, and easy storage and distribution [8]. It is estimated to have had a worldwide
production of 100.2 billion liters in 2016 and it is estimated 134.5 billion liters by 2024 [8]. Thus, catalytic
steam reforming of ethanol (SRE) has been intensely investigated for the production of renewable
hydrogen [9-12].

Catalysts play a crucial role in the reactivity toward complete conversion of bioethanol. However,
each catalyst induces different reaction pathways and, therefore, the selection of the suitable catalyst
is a key factor in the SR of bioethanol. The studies show that the best catalytic results are exhibited
by Ni and Co among the non-noble metals [13-34]. The main problems during the catalytic steam
reforming of bioethanol are: (i) sintering of active metal and catalyst poisoning by coke depositing
at high temperature, and (ii) formation at moderate temperatures of undesired products such as
acetaldehyde, diethyl ether, acetic acid, or ethylene. All these problems were found to be related
to the physicochemical properties of the catalyst, which highly depend on: the nature of the metal
active site, the preparation methods, the type of metal precursors used, the nature of metal support,
the presence of additives, and the operating conditions [32-34]. Among them, support plays a crucial
role in the preparation of highly active and selective catalysts for the steam reforming of bioethanol,
since it favors the dispersion of metal in the catalyst and increases its activity through metal-support
interactions [32-34]. Specifically, it has been found that the high specific surface of the support may
enhance the catalytic activity [16,35], and its topology and the crystal structure may affect the dispersion
of the metal particles, improving their stability against sintering [28,36]. Taking this into account,
the unique structure of the zeolites would make these materials attractive for use as support of metallic
active phases [37-40]. Considering the above, we believe that the use of Y zeolite, (Faujasite zeolite),
as a support of Co, could be an attractive option, since it has a large surface area and can be prepared
with neutral characteristics if it is exchanged with alkaline metals. Additionally, mesoporosity can be
generated in Y zeolite, which could increase the dispersion and stability of the supported Co metallic
particles. Thus, synthesized Y zeolite with neutral characteristics through an ionic exchange with
Na could prevent ethanol dehydration reaction. This reaction produces ethylene, a coke precursor,
which affects the stability of the catalyst [29,39,40]. The characterization of the cobalt-based catalysts
prepared here has been completed and connected to its catalytic performance.

2. Materials and Methods

2.1. Preparation of Catalysts

Y zeolite was subjected to a dealumination/desilication process for the generation of mesoporous
following the methodology reported in [41] with some modifications. Specifically, 5 g of NH4-Y
zeolite (Si/Al: 2.5, supplied by STREAM) was stirred in 65 mL of aqueous 3M ammonium acetate
solution at 298 K for 30 min. Then, 30 g of an aqueous solution of NH,F 2.4M was added drop-wise
(addition rate: 12 mL/h) on the previous suspension at 353 K under stirring. After complete addition
of solution, the suspension was kept stirred for 30 min, followed by filtering and washing with boiling
deionized water. The filtered solid was washed in 0.5 L of boiling deionized water for 1 h and then
recovered by filtering. This latter procedure was repeated once again. Finally, the result solid was
dried at 37 K for 12 h to obtain the final acid zeolite (Y-mod). The neutralization of the acid sites of
the samples were accomplished by Na ion exchange. Y and Y-mod zeolites were stirred in a 2.5 M
aqueous solution of NaCl (liquid/solid ratio of 10) at 353 K for 1 h. After, the sample was filtered and
washed with distilled water and it was dried at 373 K for 30 min. Na ion exchange treatment was
repeated 3 times. Finally, the sample was calcined at 773 K for 3 h. Co was incorporated in the Na
exchanged and non-exchanged zeolites by incipient wetness impregnation with an aqueous solution
containing the required amount of Co(NO3),-6H,0O to achieve a nominal concentration of 20 wt.% of
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metal in the final catalysts. In this method, the metal precursor was dissolved in a certain volume of
milli-Q water, causing the introduction of the metal in the catalyst support due to the capillary action,
which causes absorption of the solution into the pores. Finally, the obtained solid was further dried
at room temperature for 16 h and, afterwards, calcined in a muffle oven at 873 K for 3 h. Following
this procedure, the cobalt-based catalysts were obtained, and they were labelled as Co/Y, Co/Y-Na,
Co/Y-mod, and Co/Y-mod-Na.

2.2. Characterization Techniques

Inductively coupled plasma with an optical emission spectrometer (Varian 700-ES Series) was
used to determine the content of Co, Si, and Al in the support and catalytic materials studied here.
Textural properties of the supports and catalysts were obtained from the nitrogen adsorption isotherms
determined at 77 K in Micromeritics ASAP 2420 equipment. X-ray diffraction was used to identify the
crystalline cobalt oxide and metallic cobalt phases. XRD patterns were obtained at room temperature
in a Philips X'pert diffractometer using monochromatized CuK« radiation. The reduction behaviors
of the supported oxidized cobalt phases were studied by temperature programmed reduction (TPR)
in Micromeritics Autochem 2910 equipment. Fifty mg of the calcined catalyst was initially flushed
with 30 cm®min~! of Ar at room temperature for 30 min and then a mixture of 10 vol. % of Hj in
Ar was passed through the catalyst at a total flow rate of 50 cm®min~! while the temperature was
increased up to 1173 K at a heating rate of 10 K-min~!. The H, consumption rate was monitored in a
thermal conductivity detector (TCD), previously calibrated using the reduction of CuO as reference.
Transmission electron microscopy (TEM) micrographs was used to observe the aspect of the fresh
and modified Y zeolite supports using a Philips CM-10 microscope operating at 100 kV. Acidity was
measured with a Nicolet 710 FTIR spectrometer. Pyridine adsorption—desorption experiments were
carried out on self-supported wafers (10 mg-cm~2) of calcined samples, previously activated at 673 K
and 1072 Pa overnight in a Pyrex vacuum cell fitted with CaF, windows. After activation, the reference
spectrum was recorded and pyridine vapor (6.5 X 10> Pa) was admitted in the cell and adsorbed onto
the zeolite. The excess of pyridine was removed in vacuum by heating for 1 h at 423, 523, and 623 K,
respectively. After each heating period, the temperature was reduced to room temperature and an IR
spectrum was recorded. All the spectra were scaled according to the sample weight. The amount of
carbon deposited in the catalysts after SRE was determined by elemental analysis using a Carlo Erba
1106 analyzer. 2 Al MAS NMR spectra were recorded at 104.2 MHz with a spinning rate of 10 kHz and
9° pulse length of 0.5 ps with a 1 s repetition time in a Bruker AV 400 MAS spectrometer. 2’ Al chemical
shifts were referred to AI**(H,0).

2.3. Catalytic Study

SRE conditions were H,O/EtOH molar ratio of 13, atmospheric pressure, the value of weight
hourly space velocity (WHSV) in this study was 0.95 h™! (WHSV is defined as the weight of feed
flowing per unit weight of the catalyst per hour), and a range of temperatures between 673 K and 873 K.
The catalysts were reduced with hydrogen (100 mL/min) at 873 K for 2 h before reaction. The reactor
was loaded with 0.3 mL of catalyst, weight 0.2 g, (grain-size: 0.25-0.42 mm), diluted with 3 g of
carborundum (SiC) (grain-size: 0.60-0.80 mm). The water/ethanol mixture was fed from a pressurized
container using a liquid flow controller (Bronkhorst) and vaporized at 473 K into a stream of nitrogen.

The analysis of the products of reaction was carried out online using a gas chromatograph
(Varian 3800) equipped with two columns (TRB-5, L = 30 m, DI = 0.25 mm; CarboSieve SII, L =3 m,
DI = 2.1 mm) and two detectors, thermal conductivity (TCD), and flame ionization (FID). Equations (1)
and (2) show the ethanol conversion and selectivity to the different reaction products, where (Fr;omn)o
is the flow of ethanol fed to the reactor (mol-s™1), (F eton)f the flow of ethanol that comes from the
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reactor, and F; the flow of product j that comes from the reactor. Selectivity values were calculated
excluding water.
(Feron)o — (FEton)

Xeton (%o, mol) = Erord) x 100 )
t 0
S; (%, mol) d 100 %)
i %, mol) = ~ X
(Z‘ FJ )products

3. Results and Discussion

3.1. Characterization

The XRD of the calcined Y and Y-mod zeolites without cobalt are shown in Figure 1. As it can
be seen, both zeolites show a similar diffraction pattern, indicating that the treatment to generate
mesoporosity does not have a significant effect on the zeolite structure. Nevertheless, a slight decrease
in the intensity of the diffraction peaks for the Y-mod zeolite is observed, which would be related to a
small loss of crystallinity due mainly to the fact that the dealumination and desilication processes could
not be occurring with the same intensity. Indeed, when the Si/Al ratio for these zeolites is determined,
values of 2.5 for the pattern zeolite and 3.9 for the Y-mod (Table 1) were found, indicating that treatment
seems to be slightly more selective for Al removal. This effect has been already described by Quin et al.
for MFI-Type zeolite, where aluminum extra-framework was initially removed and after-framework
Al and Si were extracted indiscriminately [41].

Y-mod zeolite

U

Intensity, a.u.

Y zeolite

LU
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20, degree (CuKa)

Figure 1. XRD of calcined Y and Y-mod zeolites.

Table 1. Textural properties of the catalysts and supports studied in this work.

. Na BET Area Mesopore Volume Micropore Volume

Catalyst Si/al (wt. %) (m?/g) (cm3/g) (cm3/g)
Y 2.4 0.21 629 0.034 0.292
Y-mod 3.9 0.11 544 0.110 0.244
Co/Y 2.3 0.15 499 0.036 0.241
Co/Y-mod 3.8 0.06 409 0.080 0.180
Co/Y-Na 24 3.13 406 0.020 0.190
Co/Y-mod-Na 3.9 421 371 0.037 0.146

Table 1 shows the textural properties of the zeolitic materials and their corresponding cobalt
catalysts. As it can be seen, the mesopore volume of the Y-mod zeolite is larger than that observed
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for the pattern Y zeolite. This fact seems to indicate that mesoporosity has been generated after
dealumination/desilication treatment.

Mesoporosity can also be detected by the adsorption isotherms of N,. As it can be seen
in Figure 2 in both samples, parent Y and Y-mod zeolites, the isotherms show nearly horizontal
adsorption and desorption branches coupled with small hysteresis loops in the 0.5-1.0 partial pressure
(P/P0) range. For Y-mod zeolite, a higher adsorption of N, is observed compared with Y zeolite,
suggesting the presence of pores with diameters in the range of mesopore for the sample subjected to
dealumination/desilication treatment.
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Figure 2. Adsorption isotherms of N; of Y zeolite and Y-mod zeolite.

The formation of mesoporosity has been definitively confirmed by TEM. Figure 3 shows the TEM
images of the Y and Y-mod zeolites. As it can be seen, Y-mod zeolite presents small brightnesses,
which would confirm the presence of mesopores in its structure.

Y zeolite

@) (b)
Figure 3. TEM microphotographs of Y zeolite (a) and Y-mod zeolite (b).
Figure 4 shows the X-ray diffractograms of the calcined and reduced catalysts. Specifically,

Figure 4a corresponds to the cobalt catalyst supported on the pattern Y zeolite (Co/Y) and Figure 4b
corresponds to the cobalt catalyst supported on mesoporized Y zeolite (Co/Y-mod). As it can be seen for
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the calcined and reduced catalysts, the most part of the diffraction peaks is characteristic of the Y zeolite
structure. For the calcined samples (bottom of Figure 4), additional diffraction peaks corresponding to
Co304 (JCPDS 00-001-1152) [42-45] can be found. For the reduced catalysts (top of Figure 4), the main
diffraction peaks related to the cobalt oxide (Co3O4) disappear, and appears the diffraction peaks
corresponding to metallic cobalt (JCPDS 00-015-0806) as a consequence of the reduction process carried
out [46-50].

) vCo,0, v Co50,
CofY-Nare ° oco’ Co/Y-mod-Nared [ ] ® Co°
Co/Y-mod red ®
Co/Y red ]
5 S
2 ]
z £ Y
5 o Co/Y-mod-Nacal
@ g '
£ E \ l i
Co/Y-mod cal AR
Co/Y cal v M
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

26, degree (CuKa) 20, degree (CuKa)

(a) (b)

Figure 4. XRD of calcined and reduced Co catalysts (reduction conditions: 100 mL/min H, at 873 K
for 3 h). (a) Catalysts prepared using the pattern Y zeolite as support. (b) Catalysts prepared using
mesoporized Y zeolite (Y-mod) as support.

Table 1 also shows the textural properties of the cobalt-based catalysts studied in this work.
Therefore, the effect of the Co and Na, incorporated by incipient wetness impregnation and ionic
exchange, respectively, on the textural properties of the final catalysts is presented in this Table.
The obtained results show the presence of Co and Na decreases the BET surface area and the micropore
and mesopore volume of the final catalysts. This result would be related to the partial blockage of the
pores and mesopores of the zeolitic supports when Co and Na are incorporated. In addition, the high
amount of incorporated cobalt (20 wt. %) could be also responsible of a dilution effect, which could be
also contributing to the observed decrease of the pore volume.

The size of the cobalt metallic particles has been determined by the XRD of the reduced catalysts
using the Scherrer equation [51]. As it can be seen in Table 2, the size of the Co® clusters is smaller
and the dispersion is significantly higher for the catalysts prepared with the zeolite Y-mod as support.
This circumstance does not seem to occur for the cobalt supported on the pattern Y zeolite, without
mesoporosity, where the sizes of the metallic particles are clearly larger. This result seems to show a
positive effect of mesoporosity on the size and dispersion of metallic particles of cobalt.
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Table 2. Co content, crystal size of metallic Co (XRD), dispersion of metallic Co, and percentage of Co
reduced at 873 K (reducibility).

Catalyst Co (wt. %) Co% XRD (nm) Co’ Dispersion (%) 2 Reducibility % (873 K)
Co/Y 19.1 29 3.3 95.4
Co/Y-mod 19.0 14 6.9 88.3
Co/Y-Na 19.3 28 34 94.2
Co/Y-mod-Na 18.7 13 74 89.1
2 Calculated from dCo(nm) = 96/D(%), D: dispersion and dCo(nm): size of the Co metallic particle determined
by XRD.

The acidity of the samples has been studied by adsorption-desorption of pyridine [52]. As it can
be seen in Table 3, the parent Y zeolite and its mesoporized derivative prepared by NH4F contain
mainly Bronsted acid sites. This result is consistent with the 2 Al MAS NMR spectra presented in
Figure 5, where a single peak at 55 ppm, corresponding to tetrahedral aluminum, is observed in both
samples, parent and mesoporized Y zeolite.

Table 3. Acidity of the catalysts and supports studied in this work.

Catalyst B (mmol py) L (mmol py)
523 (K) 623 (K) 673 (K) 523 (K) 623 (K) 673 (K)
Y 0.254 0.127 0.076 0.034 0.023 0.023
Y-mod 0.235 0.127 0.029 0.070 0.061 0.018
Co/Y 0.010 0.005 0.004 0.777 0.312 0.140
Co/Y-mod 0.103 0.025 0.019 0.861 0.385 0.249
Co/Y-Na - - - 0.532 0.276 0.127
Co/Y-mod-Na - - - 0.671 0.302 0.177

Intensity

T T T T T T T
130 110 90 70 50 30 10 -10 -30

ppm
Figure 5. 7 Al MAS NMR spectra of Y and Y-mod zeolites.

For the samples containing Co (Co/Y and Co/Y-mod), the Lewis acidity increases significantly,
while Brensted acidity decreases considerably. This decrease in Brensted acidity and rise in Lewis
has already been described in zeolites when transition metals as cobalt are incorporated [53].
Finally, the acidity of the catalysts exchanged with Na was neutralized since Brensted acidity was not
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detected. Therefore, the Bronsted acidity decreases as follows in the catalysts: Co/Y-mod > Co/Y >>>
Co/Y-Na = Co/Y-mod-Na.

The reducibility of the Co-based catalysts has been studied by TPR. Figure 6 shows that the four
catalysts present two reduction peaks around 550 K and 590 K, which correspond to the reduction of
the oxidized Co species to metallic cobalt in two stages. The first one corresponds to the transition
from Co30, to CoO and the second to the transition from CoO to Co® [42,54-56]. The catalysts based
on Y-mod show a third peak at higher reduction temperatures (680-1050 K), indicating the existence
of cobalt species interacting strongly with the support. These cobalt species could be assigned to the
reduction of cobalt silicates probably formed during the calcination stage [42,57,58]. These results seem
to indicate that cobalt oxides exhibit higher interaction with modified Y zeolite and could be related
to the different size of the Co metallic particles found in each support (Table 2). Smaller particle size
would be related to stronger metal-support interactions, explaining the reduction peaks found at higher
reduction temperatures. Indeed, the highest amount of hydrogen adsorbed at high temperatures were
detected for Co/Y-mod and Co/Y-mod-Na catalysts, which exactly showed the smallest Co metallic
particle sizes. Considering that the catalysts before reaction are reduced at 873 K, it is possible that
a part of the cobalt species in the catalysts remains in its oxidized form. The degree of reduction of
the oxidized Co species present in the catalysts at 873 K has been determined from the TPR profiles
(Table 2). In general, the reducibility of the oxidized species of Co in the catalysts at 873 K is remarkably
high. The lowest reducibility value is 88%, corresponding to the Co/Y-mod catalyst, and the highest
value is 95%, corresponding to the Co/Y catalyst. In the case of the catalysts prepared with Y zeolite
subjected to the dealumination/desilication process, it can be seen that they present a slightly lower
degree of reduction compared to the catalyst prepared with untreated Y zeolite.

Intensity, a.u.

Co/Y-mod-Na

200 400 600 800 1000 1200

Temperature (K)

Figure 6. Temperature-programmed reduction (TPR) of calcined catalysts. (—) Reduction temperature
of the catalysts before reaction (873 K).

3.2. Catalytic Activity

Table 4 shows the ethanol conversion and selectivity to the different products obtained in the
steam reforming for the four catalysts studied in this work. As it can be seen, ethanol conversion is
extremely high for all the catalysts, almost complete, at least at the temperature range here studied
(773-873 K). However, in terms of selectivity, important differences can be found. As it can be seen,
Co/Y and Co/Y-mod catalysts present a high selectivity to ethylene and a low production of hydrogen.
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This effect is more prominent in the catalyst based on Y-mod. These results could be related to the
acidity presented by these samples (Table 3). It is well known that the presence of acid sites favors the
reaction of dehydration of ethanol [29,39], explaining the high concentration of ethylene produced
by the Co/Y and Co/Y-mod samples. Specifically, the largest production of ethylene observed in the
sample based on Y-mod could be due to the higher accessibility of its acid sites, probably favored by
the presence of mesopores. On the contrary, the highest production of hydrogen by the neutralized
catalysts (Co/Y-Na and Co/Y-mod-Na) suggests that the presence of acid sites is not advantageous to
produce hydrogen via steam reforming of ethanol [29,39]. In addition, the larger size of the cobalt
metal particles present in the Y zeolite with Na (Co/Y-Na), would explain its higher production
of acetaldehyde, methane, and CO compared to the Co/Y-mod-Na catalyst, whose sizes are much
smaller [31]. Large metallic particles would lead to a decrease of the active metal surface and thus,
to a decrease in the number of the active sites where the reforming reaction can occur. This fact could
explain the high selectivity to H, presented by the Co/Y-mod-Na sample, which contains smaller
metallic cobalt particles. These results seem to indicate that the presence of mesopores could help to
promote a higher interaction of cobalt with the support, resulting in the formation of smaller and more
dispersed metallic Co particles. Therefore, if small metal particles were presented, a larger number of
active sites of Co would be available for the steam reforming of ethanol and for all those secondary
reactions related to the selective production of Hj.

Table 4. Ethanol conversion and products selectivity in steam reforming of ethanol for the catalysts
studied in this work. (Reaction conditions: HyO/EtOH = 13, WHSV 0.95 h~! and atmospheric pressure).

Selectivity % mol
Catalyst T (K) Ethinol Conw. y
% mol CH,4 CcoO CO, H, CH, CH,0

673 98.5 1.1 43 47 17.5 71.6 0.7
Co-Y 773 99.8 17 34 214 39.0 32.7 17
873 99.9 34 11.2 222 435 18.7 1.0
Cory 673 99.9 0.0 0.0 0.3 0.2 95.8 3.6
o 4 773 100 0.6 1.0 0.9 13.9 78.7 4.6
mo 873 99.8 22 5.0 2.3 25.7 59.6 4.9
673 94.7 7.0 7.0 14.2 68.9 0.6 22
Co-Y Na 773 95.9 3.7 5.1 18.1 70.3 0.8 1.0
873 99.9 4.6 11.6 12.0 69.7 0.8 12
Cory 673 99.8 49 6.0 15.2 73.3 0.2 0.4
21_1\1 773 99.9 3.0 2.6 20.3 74.0 0.1 0.0
mod Na 873 99.9 2.0 43 19.5 74.1 0.0 0.0

Finally, carbon deposition on the exhausted catalysts were determined to know their stability.
It is well known that the formation of ethylene is directly related to the coke formation and the presence
of coke directly related to the stability of one catalyst [14,59,60]. At first glance, the catalysts after
reaction showed a characteristic black color, which suggests the presence of coke. Elemental analysis
technique was used to determine quantitatively the amount of deposited coke. Table 5 shows that the
samples containing Na (Co/Y-Na and Co/Y-mod-Na) present a lower amount of coke than the catalysts
without Na (=20 wt. % against ~30 wt. %). The larger coke deposition observed in the catalysts not
subjected to ionic exchange with Na (Co/Y and Co/Y-mod) could be explained by the greater acidity
of theses samples and the consequences that this entails: increasing of the dehydration reaction and
generation of high amounts of ethylene, an important coke precursor.
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Table 5. Carbon deposition of the catalysts after 34 h of reaction time. (Reaction conditions: H,O/EtOH
=13, WHSV 0.95 h~! and atmospheric pressure).

Catalyst Carbon (wt. %)
Co/Y 31.3
Co/Y-mod 34.7
Co/Y-Na 24.8
Co/Y-mod-Na 19.1

Table 5 shows also that the Co/Y-Na catalyst presents a higher carbon content compared to the
Co/Y-mod-Na catalyst. In both catalysts, the acidity was neutralized. Therefore, it is foreseeable that
the mesoporosity present in the Co/Y-mod-Na catalyst could provide a positive effect to decrease the
formation of carbon. This fact could be explained in part considering the better diffusion of reagents
and products during the SRE [29]. In addition, mesoporosity seems to promote the formation of cobalt
metallic particles of smaller size, which seem to also decrease the formation of coke and coke precursors
during the steam reforming of ethanol [27,36]. In summary, the results here showed seem to indicate
that it is possible to improve the activity and stability of a cobalt bioethanol steam reforming catalyst
supported on Y zeolite through the generation of mesoporosity and the neutralization of its acid sites.

4. Conclusions

The effect of mesoporosity and acidity of a Y zeolite-based catalyst promoted with Co has been
studied in the steam reforming of ethanol. The results obtained with the “mesoporized” Y zeolite
and neutralized with Na show a high activity, selectivity, and low coke deposition. The results of the
physicochemical characterization suggest that the mesoporosity generated and the neutralization of
the acid sites by Na exchanged would be primarily responsible of the good performance exhibited by
the cobalt catalyst supported on Y zeolite, due to the lower acidity and the smaller size of the metallic
Co particles present in this sample.
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