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Abstract The omega-3 fatty acids, cis-5, 8, 11, 14, and 17-
eicosapentaenoic acid (C20:5; EPA) and cis-4, 7, 10, 13, 16,
and 19-docosahexaenoic acid (C22:6; DHA), have wide-
ranging benefits in improving heart health, immune function,
mental health, and infant cognitive development. Currently,
the major source for EPA and DHA is from fish oil, and a
minor source of DHA is from microalgae. With the increased
demand for EPA and DHA, DuPont has developed a clean and
sustainable source of the omega-3 fatty acid EPA through
fermentation using metabolically engineered strains of
Yarrowia lipolytica. In this mini-review, we will focus on
DuPont’s technology for EPA production. Specifically, EPA
biosynthetic and supporting pathways have been introduced
into the oleaginous yeast to synthesize and accumulate EPA
under fermentation conditions. This Yarrowia platform can
also produce tailored omega-3 (EPA, DHA) and/or omega-6
(ARA, GLA) fatty acid mixtures in the cellular lipid profiles.
Fundamental research such as metabolic engineering for strain
construction, high-throughput screening for strain selection,
fermentation process development, and process scale-up were
all needed to achieve the high levels of EPA titer, rate, and
yield required for commercial application. Here, we summa-
rize how we have combined the fundamental bioscience and
the industrial engineering skills to achieve large-scale produc-
tion of Yarrowia biomass containing high amounts of EPA,
which led to two commercial products, New Harvest™ EPA
oil and Verlasso® salmon.
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Introduction

Omega-3 fatty acids refer to the long-chain polyunsaturated
fatty acids (LCPUFA) with the first C=C double bond at the
n-3 position, i.e., the third carbon from the methyl end of the
carbon chain. There have been many clinical studies showing
a wide range of health benefits from the omega-3 LCPUFAs,
especially the eicosapentaenoic acid (C20:5; EPA) and
docosahexaenoic acid (C22:6; DHA) (Martins et al. 2013;
Chacon-Lee and Gonzalez-Marino 2010; Kapoor and Patil
2011; Calder 2006). In general, it is believed that EPA is able
to improve cardiovascular health, mental health, and immune
function, while DHA is able to improve mental health and
infant cognitive development. The Japan EPA Lipid
Intervention Study (JELIS) showed that EPA is a promising
treatment for prevention of major coronary events (Yokoyama
et al. 2007). The AMR101 study also showed that pure EPA
fatty acid significantly reduced triglyceride levels in adult
patients with severe hypertriglyceridemia (Ballantyne et al.
2012). The human body can only inefficiently synthesize the
EPA and DHA from omega-3 alpha-linolenic acid (C18:3;
ALA) but cannot de novo synthesize them (Kapoor and Patil
2011). EPA and DHA in our bodies are largely from our foods,
especially cold-water oceanic fishes (Martins et al. 2013).
EPA and DHA are synthesized de novo in marine micro-
organisms and phytoplankton. Some ocean fishes (e.g., wild
salmon, Pacific sardine) can accumulate significant amounts
of EPA and DHA by eating microalgae cells in the ocean. Fish
oil is the main source of EPA and DHA; however, its avail-
ability and sustainability have been questioned due to
overfishing and contamination in the ocean environment. To
overcome this limitation, biotechnology industries started to
produce DHA directly from microalgae in large-scale fermen-
tation process (Kyle 2001). However, there is no large scale
land-based EPA production from wild-type organisms, be-
cause EPA productivity is too low to meet commercial targets.
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Consequently, DuPont initiated a research program to develop
a sustainable EPA source by metabolic engineering of
Yarrowia lipolytica (Fig. 1). We now have successfully dem-
onstrated that the engineered Y. lipolytica strains can produce
various omega-3 and omega-6 fatty acids. Our first targeted
product for commercialization was EPA due to its unique
health benefits and the lack of a land-based sustainable supply.

This mini-review summarizes DuPont’s results in both
metabolic engineering research and fermentation process de-
velopment for commercial production of EPA. The
engineered Gen I strain Y4305 (Xue et al. 2013a) produced
EPA at more than 15 % of its dry cell weight (DCW); the Gen
II strain Z1978 (Hong et al. 2011a) produced EPA at more
than 20 % of its DCW, the Gen III HP strain Z5567 (Hong
et al. 2011a) produced EPA at more than 25 % of its DCW.
The purified lipids from EPA producing strains have been
used to develop a commercial product, New Harvest™ EPA
oil, for a human nutritional supplement. The high-EPA bio-
mass of these strains has also been used to raise Verlasso®, a
sustainably farmed salmon. This is a good example of a yeast
metabolically engineered to produce a commercial product to
replace a fish-derived product. Our work has paved the way
for further improvement of EPA production strains and devel-
opment of strains with desired fatty acid compositions for
specific applications. This advanced Yarrowia biotechnology
platform can also be used for production of other high-value
products.

Y. lipolytica is a safe and productive host for EPA
production

Appropriate host selection is a pre-request for the success of
this project. The number one selection guideline is the safety
of the organism. Y. /ipolytica is found primarily in foods with
high proportions of fat and/or protein, particularly in
(fermented) dairy products and meat. Extensive research and
analyses demonstrated that Y. lipolytica is a safe organism to
be used for industrial applications (Groenewald et al. 2014).
Y lipolytica was first used to produce single cell protein using
cheap and abundant n-paraffins as the sole carbon source for
animal feeds under the trade name of Toprina (Ratledge
2005); it was also classified as “Generally Recognized as
Safe (GRAS)” for commercial production of food grade citric

Fig. 1 Fermentation production
of eicosapentaenoic acid (EPA,
C20:5 n-3) from sugar by
metabolically engineered
Yarrowia lipolytica strains
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acid (US Food and Drug Administration list of microbial-
derived ingredients approved for use in food; Title 21, Part
173, Sec. 165). Other applications include production of
erythritol, wax esters, 2-ketoglutaric, 2-hydroxyglutaric, and
isopropylmalic acids and secretion of heterologous proteins,
including several food enzymes (Ratledge 2005; Groenewald
et al. 2014).

Y. lipolytica has an established history of robust fermenta-
tion performance. The cell density can reach more than 100 g
DCW/L with carbohydrates such as glucose, fructose, glycer-
ol, or fatty acids as sole carbon source. Most Y. lipolytica
strains are haploid (Barth and Gaillardin 1997), but can also
exist in diploid form. Depending on growth conditions,
Y. lipolytica cells can differentiate into yeast,
pseudomycelium, and true mycelial forms (Pérez-Campo
and Dominguez 2001; Szabo and Stofanikova 2002).
Y. lipolytica has a metabolism that is well suited to fatty acid
production and lipid accumulation (Blank et al. 2005; Nicaud
2012; Tai and Stephanopoulos 2013); it has also been used as
host organism for sustainable production of biodiesel, func-
tional dietary lipid compounds, and other value-added com-
pounds (Beopoulos et al. 2009 and 2010; Abghari and Chen
2014).

Some Y. lipolytica strains are oleaginous organisms that can
accumulate up to more than 30 % DCW as storage triglycer-
ides (TAG) under the condition of nitrogen starvation and
glucose excess. Although the central carbon metabolism of
Y. lipolytica is similar to other yeasts, it has significant regu-
latory differences. It also has high flux for the pentose phos-
phate pathway that generates cofactor NADPH to support
lipid biosynthesis (Blank et al. 2005). The lipid from
glucose-grown cells is comprised mainly of TAG in which
oleic acid (C18:1 n-9) and linoleic acid (LA, C18:2 n-6) are
the two major fatty acids (Xue et al. 2013a).

There are six chromosomes in Y. lipolytica. A complete
genome sequence of strain CLIB122 has been published
(Dujon et al. 2004). It has a total of about 20 Mb DNA that
encodes about 6,500 genes. There is no extra-chromosomal
plasmid discovered in wild-type strains. Genetic transforma-
tion occurs when exogenous DNA integrates into the genome
by homologous and nonhomologous recombination.
Y. lipolytica has been used as a model system for studying
hydrophobic substrate utilization, peroxisome biogenesis, lip-
id metabolism, and bio-lipid production (Nicaud 2012; Tai

Yarrowia lipolytica
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and Stephanopoulos 2013). It is easy to develop auxotrophic
mutants for Y. lipolytica. Transformants can be selected by
complementation of auxotrophic mutations, and the use of
antibiotic resistance genes as selectable markers is not re-
quired. The auxotrophic markers most commonly used are
the LYS5 gene coding for saccharopine dehydrogenase (Xuan
et al. 1988), the LEU?2 gene coding for beta-isopropylmalate
dehydrogenase (Davidow et al. 1987a, b), and the URA3 gene
encoding for orotidine 5’-monophosphate decarboxylase
(Mauersberger et al. 2001). The counter selection system of
the URA3 gene and 5-fluoroorotic acid (5-FOA) allows mul-
tiple rounds of integration of functional genes into the
Y. lipolytica genome thereby to introduce many copies of
foreign genes (Barth and Gaillardin 1996; Zhu et al. 2010).
In the last 30 years, Y. lipolytica is one of the most studied
unconventional yeasts (Nicaud 2012). There is extensive
knowledge accumulated on its genetics, molecular biology,
and physiology. Most of these studies suggest that Y. lipolytica
is a good model system not only for basic scientific research
but also for industrial applications.

We collected and screened over 40 different Y. lipolytica
strains from various public depositories all over the world for
their fermentation performances and ability to accumulate
omega-3 fatty acids such as EPA and DHA when these fatty
acids are fed as substrates. After a careful execution of statis-
tically designed experiments, the strain American Type
Culture Collection (ATCC) #20362 achieved our fermentation
performance targets: DCW greater than 100 g/L, lipid content
greater than 30 % DCW, and lipid productivity greater than
1 g/L/h. We then selected ATCC #20362 strain for pathway
engineering. The genome sequence of strain ATCC #20362
has more than 99 % identity with the genome sequence of
strain CLIB122 (www.genolevures.org/yali.html). Like
French strain W29 and German strain H222, strain ATCC
#20362 does not contain retrotransposon-like element (Ylt1)
that exists in strain CLIB122 and some American strains
(Schmid-Berger et al. 1994; Mauersberger et al. 2001).

EPA biosynthetic pathways

Wild-type Y. lipolytica does not make any omega-3 fatty acids.
The fatty acid profile of the wild-type strain ATCC #20362
(Zhu et al. 2010; Xue et al. 2013a) shows that it can synthesize
linoleic acid (LA, C18:2 n-6). There are different published
biosynthetic routes to make EPA, the anaerobic polyketide
synthase pathway (Metz et al. 2001) or an aerobic desaturase
and elongase pathway (Meesapyodsuk and Qiu 2012). The
microalgae Crypthecodinium cohnii and Schizochytrium sp.
used for DHA commercial production use the polyketide
synthase pathway. Many microalgae and some marine bacte-
ria also use the polyketide synthase pathway to synthesize
EPA (Metz et al. 2001; Wen and Chen 2005). However, the

rate, titer, and yield from these organisms could not meet the
requirement for commercial production. The aerobic pathway
(Fig. 2) can be further classified into a A6-desaturase pathway
(the A6 pathway found in algae, mosses, fungi, and others) or
a A9-clongase and A8-desaturase (Wallis and Browse 1999)
pathways (the A9 pathway). The A9 pathway (Sayanova and
Napier 2004) has been found in some species from
Prymnesiophyceae (Paviova, Isochrysis), Acanthamoebae
(e.g., Acanthamoeba) and Euglenophyceae (e.g., Euglena).

The differences between the A6 and A9 pathways are the
first two steps. In the A6 pathway, the first step is the A6
desaturase to covert the LA and/or ALA to gamma-linolenic
acid (GLA, 18:3 n-6) and/or stearidonic acid (STA, 18:4 n-3).
The second step is the C;g/po elongase to convert the GLA
and/or STA to dihomo-gamma-linoleic acid (DGLA, 20:3 n-
6) and/or eicosatetraenoic acid (ETA, 20:4 n-3). In the A9
pathway, the first step is the A9 elongase to convert LA and/or
ALA to eicosadienoic acid (EDA, 20:2 n-6) and/or
eicosatrienoic acid (ETrA: 20:3 n-3). The second step is the
A8 desaturase to convert EDA and/or EtrA to DGLA and/or
ETA. The last two steps are the same between these two
pathways.

It should be noted that the A15 desaturase and Al7
desaturase are omega-3 desaturases; these two enzymes con-
vert the omega-6 fatty acids into omega-3 fatty acids. The A15
desaturase converts LA to ALA. So far, there is no Al5
desaturase found to convert LA to ALA with 100 % efficiency,
so transformed cells with a heterologous A15 desaturase gene
will contain both LA and ALA. Therefore, the A6 and A9
pathways can simultaneously use both LA and ALA as pri-
mary substrates. Apart from its primary function to convert
ARA to EPA, most A17 desaturases can also convert EDA to
ETrA with less efficiency.

All these desaturation and elongation enzymes carry out
their reactions in the endoplasmic reticulum (ER) membrane
(Meesapyodsuk and Qiu 2012). It is believed that the sub-
strates of desaturases and elongases are in the form of phos-
pholipid and acyl-CoAs, respectively. Elongation usually is
the rate-limiting step of the aerobic pathways for EPA biosyn-
thesis. Nevertheless, introduction of either the A6 or A9 path-
way genes into the wild-type strain should allow the produc-
tion of EPA through desaturation and elongation of the native
fatty acid species.

Toolbox for metabolic engineering of Y. lipolytica for EPA
production

Before we started our project, the Y. lipolytica transformation
system (Chen et al. 1997) had been established, and a low-
copy replication plasmid had been developed (Fournier et al.
1993). Scientists were trying to use it as a host for efficient
secretion of expressed heterologous proteins (Davidow et al.
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Fig. 2 Metabolic engineering in Oleic Acid A9D Stearic Acid Gt paimiticAcia  _ C41eF Myristic Acid
Yarrowia lipolytica for omega-3 [C18:1] [c18:0] [C16:0] [C14:0]
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EPA and DHA production. The
native fatty acid pathway is
indicated in gray and the
engineered pathway for omega-3
EPA and DHA production is
indicated in green (color figure
online)

Yarrowia native pathway

1987a, b) or as a system to study certain biological functions.
There were limited genetic elements such as promoters and
terminators available that are necessary for metabolic engi-
neering (Muller et al. 1998; Juretzek et al. 2001). We quickly
found that the expression of an introduced gene was higher
when it integrated into the genome than when it was in the
low-copy replication plasmid. In order to develop Y. lipolytica
as a host for EPA production by metabolic engineering, we
pursued several research goals simultaneously.

1. Enrich the tool box for metabolic engineering

2. Development and test strategies for introducing multiple
copies of foreign genes into Y. lipolytica

3. Establish a screening system for strain development

4. Develop the fermentation process

To demonstrate that Y. lipolytica can be engineered to
produce EPA, we licensed the promoter of the translation
elongation factor (TEF) gene of Y. lipolytica from
Novozyme Corporation (Muller et al. 1998) and used it to
drive the expression of the individual genes encoding A6
desaturase, C;g/»9 clongase, AS desaturase, and Al7
desaturase that we licensed from Ross Division of Abbott
Laboratories (Knutzon et al. 1998; Picataggio et al. 2007).
Integration of a single copy of these four gene expression
cassettes into the genome of Y. lipolytica strain ATCC
#20362 resulted in the synthesis of EPA at about 3 % of the
total fatty acid methyl esters (FAME), with 34 % of all fatty
acids derived from the engineered pathway, and the majority
was GLA (Zhu et al. 2010). This result demonstrated that
Y lipolytica could be engineered to produce EPA and sug-
gested that additional engineering improvements were needed
to (1) increase the carbon flux into the engineered pathway, (2)
improve the efficiency of the C g/ elongases to convert more
GLA into DGLA, and (3) enhance the expression of other
pathway genes.

@ Springer
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To enhance the expression of foreign genes in Y. lipolytica,
we isolated a set of promoters that are at least as strong as the
TEF promoter (Muller et al. 1998). The promoters we isolated
are from the genes encoding export protein (EXP,
YALIOC12034g), fructose 1,6-bisphosphate aldolase (FBAI;
YALIOE26004g), glycerol-3-phosphate-O-acyltransferase
(GPAT, YALIOC00187g), phosphoglycerate mutase (GPM1,;
YALIOB02728g), glycerol-3-phosphate dehydrogenase
(GPDI; YALI0B02948g), and an ammonium transporter
(YATI1, YALIOE27181g). All these promoter activities were
compared with TEF promoter by quantitative fluorometric
assays of the beta-glucuronidase (GUS) reporter (Jefferson
et al. 1987) driven by each individual promoter. The results
showed that the FBA promoter was the strongest among the
six promoters. The GPM1 promoter was as strong as the TEF
promoter, the GPD I promoter was 2.5 times stronger than the
GPM1 promoter, and the FBAI promoter activity was 5.5 and
2.2 times stronger than the GPDI and GPMI promoters,
respectively.

In the N-terminal coding region of the FBA1 gene, there is
a 102 base pair intron located between the codons for amino
acids 20 and 21. Fusion of the FBAI promoter plus the N-
terminal coding region covering the first 23 amino acids and
the intron (FBA1;,) with the GUS reporter gene resulted in
GUS activity about five times greater than the FBA promoter
alone. As in the case of the FBAI gene, the GPDI gene also
has an intron located in its N-terminus, which can significantly
enhance the GPD promoter activity (Picataggio and Zhu
2007). The N-terminal coding regions with introns of FBA1
and GPDI genes enhanced the activity of GPM promoter
when chimeric promoters were constructed (Hong et al.
2011b).

The YAT1 promoter has a unique feature, since it has
almost no activity under normal growth conditions, but under
nitrogen-limiting conditions, its activity increased approxi-
mately 35-fold (Xue and Zhu 2012). This promoter is useful
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for directing the expression of omega-3 biosynthetic genes,
because lipid synthesis and accumulation need nitrogen star-
vation. The relative strength of these promoters in nitrogen-
limiting conditions was determined by quantitative GUS as-
says, and they are as follows: FBA;,>YAT1>FBA>GPD,
EXP>GPAT>GPM=TEF.

There are about 6,500 genes in Y. lipolytica. The promoter of
each gene has a unique property. A diverse promoter library
could also be generated through random mutagenesis using a
specific promoter as template (Alper et al. 2005). Promoter
characteristic studies are required before they can be utilized to
maximize the expression of targeted genes in desired conditions.

To improve the expression of foreign genes in Y. lipolytica,
we developed a program to codon-optimize all the genes
according to the codon usage pattern and GC content of highly
expressed genes of Y. lipolytica. There are two A6-desaturase
genes from Mortierella alpina and Saprolegnia diclina, two
Cgno-clongase genes from M. alpina and Thraustochytrium
aureum, three A5-desaturase genes from Isochrysis galbana,
M. alpina, and S. diclina, and one Al7-desaturase gene from
S. diclina (Zhu et al. 2010, Knutzon et al. 1998, Picataggio
et al. 2007). The optimized genes also contain the consensus
sequence (5-ACCATGG-3") around the “ATG” translation
initiation codon. We discovered that the substrate conversion
was increased in almost all of the codon-optimized genes
except the A5-desaturase gene derived from M. alpina. The
improved substrate conversion efficiency of these “codon-
optimized” genes is hypothesized to result from more efficient
translation of their encoded mRNAs in Y. lipolytica. Right
now, the genes introduced into Y. lipolytica for strain construc-
tion are all codon-optimized, and each of the synthetic genes
were designed with an Ncol site around its translation initia-
tion site and a Nofl site after its stop codon. The modular
structure of these coding regions, promoters, and terminators
is easy to swap for construction of expression constructs with
different configurations (Fig. 3).

From our early experiments, it was clear that we needed to
introduce multiple copies of genes involved in EPA biosyn-
thetic pathway for production of high amounts of EPA in
engineered Y. lipolytica cells. Using the URA3 gene and its
counter selection by 5-fluoroorotic acid (FOA), we developed
a system that can integrate many copies of foreign genes into
the genome of Y. lipolytica via sequential integrations. FOA is
toxic to yeast cells that possess a functional URA3 gene, and
this compound is not toxic to the yeast cells with an
inactivated ura3 gene (Barth and Gaillardin 1996; Zhu et al.
2010). As shown in Fig. 4, the native URA3 gene can be
knocked out by using a DNA fragment with mutated ura3,
and the transformants growing on FOA plates will have the
ura3-phenotype. A cluster of multiple chimeric genes (or a
single chimeric gene) and a new URA3 gene can be integrated
into a different locus of the genome of Y. lipolytica thereby
producing a new strain having an URA3" phenotype.

Silencer Enhancer TATA Txs Tls
I — —t
Promoters
BsiW|, Clal, Pmel Neol
Swal, EcoRl, Pacl CCATGG
ATG TAA
—
Coding Region cDS
Neol Notl
CCATGG GCGGCCGC
Terminator | |
Notl BsiW!I, Clal, Pmel

GCGGCCGC  swal, EcoRl, Pacl

Fig. 3 Modular genetic elements for chimeric gene construction

Subsequent integration by homologous recombination with
mutated ura3 would produce a new ura3™ strain, identified
with FOA-resistant selection. Thus, the URA3 gene (in com-
bination with FOA selection) can be used as a selection
marker in many rounds of transformation to introduce a large
number of genes into the genome.

By increasing the copy number of the A6 pathway genes
and “pushing” the carbon flux into the engineered pathway by
overexpression of the Ci4/1g-clongase gene of M. alpina
(Macool et al. 2008) to convert the palmitic acid (C16:0) into
stearic acid (C18:0) and the Al12-desaturase gene of Fusarium
moniliforme (Yadav et al. 2009) to convert the oleic acid to
LA, we generated strain Y9027 to produce EPA at about 40 %
of FAME (Zhu et al. 2010). This strain contained 19 copies of
ten different heterologous genes that integrated into its ge-
nome. The in vivo substrate conversion catalyzed by the A6,
A5, and A17 desaturases was about 86, 90, and 97 %, respec-
tively, indicating that these enzymes functioned well in strain
Y2097. The second highest fatty acid in the lipids was GLA,
atabout 21 % of FAMEs. The substrate conversion from GLA
to DGLA catalyzed by C, g/ elongase was only about 69 % in
that strain. The GLA is the product of A6 desaturase and the
substrate of C;gpo elongase. The A6 desaturase introduces a
double bond into the LA acyl chain esterified to a phospho-
lipid backbone; the C /59 elongase catalyzes the condensation
of a malonyl group to GLA acyl chain esterified to coenzyme
A (Domergue et al. 2003; Meesapyodsuk and Qiu 2012).
There were four copies of C;gno-clongase genes driven by
strong promoters in strain Y2097, suggesting that the C;g/50-
elongation reaction was a bottleneck in the engineered path-
way. Thus, to reduce the GLA, amount in the lipids requires
not only an efficient C,g/5-clongase activity but also an active
acyl exchange between the phospholipid and CoA pools in the
ER membrane. To enhance the acyl-exchange process, we
separately amplified genes encoding for acyl-CoA synthase
(ACS), choline phosphotransferase (CPT1), diacylglycerol
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Fig. 4 Strategy for integration of Steps Genotypes

multiple copies of genes into the Ura3 Lipl

chromosomes of Y. lipolytica. 1 N Ura3t
Lipl+

FOA 5-fluoroorotic acid, MM
minimal medium

4 —mfm—

acyltransferase (DGAT1 and DGAT?), glycerol-3-phosphate
acyltransferase (GPAT), lysophosphatidic acid acyltransferase
(LPAAT), lysophosphatidylcholine acyltransferase (LPCAT),
phospholipase C (PCL1), and phospholipase D (SPO22).
These modifications each improved the GLA conversion ef-
ficiency up to 15 %. It is hypothesized that a combination of
some of these genes could improve the efficiency of the C;g/»0
elongase, but it would not be able to eliminate the GLA, in
engineered Y. lipolytica strains.

Generation of EPA commercial production strains using
the A9 pathway

In order to reduce the level of omega-6 fatty acids, especially
the GLA, in lipids enriched with EPA, we decided to use the
A9 pathway (Fig. 2). The selection of the A9 pathway ensured
that the rate-limiting elongation is the first step of the
engineered pathway; therefore, the accumulation of other
intermediates should be kept to a minimum. The genes
encoding A9 elongases (Damude et al. 2007) and A8
desaturases (Damude and Zhu 2007) were isolated and char-
acterized from Euglena gracilis, Euglena anabaena, and
Eutreptiella, sp. CCMP389. To increase the A8-desaturase
activity, we also constructed three A9-elongase and A8-
desaturase bifunctional fusion genes (Damude et al. 2008);
the A8-desaturase activity in these fusion enzymes increased
almost 100 % compared with A8-desaturase alone while
keeping similar A9-elongase activity. At the same time, three
genes encoding AS desaturases from E. gracilis, E. anabaena,
and Eutreptiella, sp. CCMP626 (Pollak et al. 2012), and three
genes encoding A17 desaturases from Pythium
aphanidermatum, Phytophthora ramorum, and
Phytophthora sojae were also isolated and studied for their
activities and substrate selectivity (Xue et al. 2013b).
Additionally, several genes encoding different
acyltransferases (Zhang et al. 2012) were also isolated and
used to improve fatty acid traffic in the ER.
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ura3 mutant ‘

2 —m)lm—

Selection:
FOA resistant, MM Sensitive

ura3-
Lipl+

Integration cassette
Selection: MM media

3-4 Gene cassette + Ura3

3 =*ﬂ
lipl-

Ura3+

Selection:
FOA resistant, MM Sensitive
ura3 mutant

*:

ura3-
lipl-

To construct a high EPA production strain using the A9
pathway, we used a series of strategies. First, an efficient EPA
biosynthetic pathway was built by using strong promoters
such as EXP1, FBAINm, GPAT, GPD, and YAT, all heterol-
ogous genes were codon-optimized and multiple copies of
structural genes were inserted for each step. To increase the
A8-desaturase activity, several copies of A9-elongase and A8-
desaturase bifunctional fusion genes were employed (Damude
et al. 2008). Second, “pushing” and “pulling” the carbon flux
into the engineered A-6 pathway were achieved by overex-
pression of the C¢/15-elongase gene (Macool et al. 2008) and
the Al2-desaturase gene (Yadav et al. 2009) and by using
multiple copies of Al7-desaturase genes (Xue et al. 2013b).
Third, beta-oxidation was reduced by knockout of genes
encoding for peroxins (Xue et al. 2013a; Hong et al. 2009)
such as PEX3 or PEXI0 that are involved in peroxisome
biogenesis and matrix protein import. Fourth, fatty acid trans-
port was controlled by fine regulation of different
acyltransferases to increase fatty acid flux for EPA production
and lipid accumulation.

Since Y. lipolytica strain ATCC #20362 prefers nonhomol-
ogous end-joining over homologous recombination
(Weterings and Chen 2008), we designed to screen 96
transformants for each parent strain/construct combination
by gas chromatography (GC) analysis (Cahoon et al. 2001).
The nonhomologous recombination arising from each trans-
formation generated a library of transformants with diverse
performance. Several beneficial traits for EPA and lipid pro-
duction were found through screening this diversity. For ex-
ample, knockout of the PEX10 gene (Xue et al. 2013a; Hong
et al. 2009) was discovered to increase EPA titer in lipid to
more than twice as those of its PEX+ siblings. We also
discovered that deletion of the PEXI0 gene in DGLA and
ARA production strains could also more than double DGLA
and ARA titers in lipids compared to the parent strains with a
wild-type PEX10 gene (Xue et al. 2013a). In these strains with
pexI0A, beta-oxidation is greatly reduced and there were no
normal peroxisomes inside cells. Unidentified membrane-like



Appl Microbiol Biotechnol (2015) 99:1599-1610

1605

structures are observed that might be the deformed nonfunc-
tional peroxisomes.

By combining the above strategies, we first generated the
Gen I strain Y4305 (Xue et al. 2013a) that contains 30 copies
of 9 different genes and produces EPA at 56.6 % FAME,
without GLA accumulation. The total EPA produced was
about 15 % of DCW. The lipid produced by strain Y4305
has a unique and healthy fatty acid profile that contains less
than 5 % saturated fatty acids and has only small amounts of
intermediates. As is the case in strain Y2097 using the A6
pathway, the substrate conversion efficiency of the introduced
desaturases is still significantly higher than the elongases in
strain Y4305. However, the selection of the A9 pathway
ensured that the rate-limiting elongation is the first step of
the engineered pathway. Accumulation of intermediates is
therefore minimized, in contrast to cells engineered with the
A6 pathway where the first step is not rate limiting and
accumulation of GLA becomes significant.

To increase the rate, titer, and yield for EPA production, we
generated Gen Il strain 21978 (Hong et al. 2011a) via 24 steps
of genetic modifications. It contained 35 copies of 17 different
genes and produces EPA at >58 % FAME. The total EPA
content in strain Z1978 is about 20 % DCW. The fatty acid
profile of strain Z1978 is similar to that of strain Y4305, with
extremely low saturated fatty acids and only small amounts of
intermediates and no GLA. Strain Z1978 has increased lipid
contents over strain Y4305 from about 30 % DCW in Y4305
strain to more than 38 % DCW in strain Z1978.

Based on strain Z1978, we generated strain Gen III HP
75567 (Hong et al. 2011a) by six more steps of metabolic
engineering. Strain Z5567 contained 41 copies of 19 different

Fig. 5 Workflow of omega-3 i
fermentation for both strain

evaluation and process w
development. New strains T, pH, pOy, -..
generated by metabolic
engineering (a) are sequentially
evaluated in 24-well blocks,
shake flasks, and micro-
fermentors (b) before they are
tested in lab-scale fermenters (c).
Strains that perform well in lab-
scale fermentors are further tested
in pilot scale (d) before being
adopted for EPA production in
commercial-scale fermenters

(b) 24-well plates, test tubes,
flasks, and micro-fermentors

Control System
i
1

-

S0

(c) Lab-Scale Fermentation

T, pH pO2

genes. It produced EPA at about 50 % FAME but with a total
lipid of more than 50 % DCW; therefore, strain Z5567 pro-
duced EPA at about 25 % DCW, which is about 25 and 67 %
improvement over strain Z1978 and Y4305, respectively.

Selection of production strains under fermentation
conditions

Fermentation process development as well as strain engineer-
ing plays a critically important role in converting the funda-
mental research to real commercial application. The fermen-
tation research was initiated at the start of the strain engineer-
ing research. Fermentation experimentation included (1) strain
screening under fermentation conditions, (2) optimization of
fermentation conditions for each promising new strain, and (3)
process scale-up. Figure 5 summarizes the typical workflow
for the omega-3 fermentation research work. Figure 5a repre-
sents the generation of candidate strains by metabolic engi-
neering in Yarrowia cells. Thousands of new or promising
strains that are generated by metabolic engineering were test-
ed sequentially in small-scale simple bioreactors (working
volume=1~100 mL), which included 24-well blocks, test
tubes, shake flasks, and micro-fermentors (Fig. 5b). The
omega-3 fermentation is a two-stage (growth+lipid produc-
tion/oleaginous) process. Therefore, cells are first grown in
these simple bioreactors to a specified density after which they
are deprived of nitrogen for growth and given glucose for
maintenance and lipid production. At the end of the produc-
tion stage, the lipid composition in the Yarrowia biomass,
including EPA and other fatty acids, is determined by GC

Strain
Evaluation

Yarrowia lipolytica

Top candidate strains suggested
by strain engineering team

<

Process
Development

Scale up

=

Scale down

(d) Large Scale Fermentation
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analysis (Cahoon et al. 2001). In shake flask and micro-
bioreactor experiments, dry cell weight (DCW) is also deter-
mined due to the availability of more sample volume (~5 mL),
so that the total lipid content of each sample (total lipid/DCW)
is determined to better evaluate the biomass, lipid, and EPA
productivities.

Dozens to hundreds of candidate strains that show high
EPA content in lipid and high lipid content in biomass in the
simple bioreactors are taken one step further to lab-scale
fermenters (2~10 L), in which the dissolved oxygen, pH
value, and especially substrate feed can be controlled more
consistently than is possible in the simple bioreactors. The lab-
scale fermentation results, including the time course data for
EPA titer, rate, and yield, are used to determine the very top
strains to be scaled up in pilot-scale fermentors under com-
mercially achievable medium and process conditions
(Fig. 5d).

The rate-limiting step in the workflow shown in Fig. 5 is
the use of some simple bioreactors (24-well blocks, test tubes,
flasks, and micro-fermentors) to identify the top strains or to
prescreen medium and process conditions (Xie 2012). It is
desirable to have a multi-bioreactor system with small work-
ing volumes to allow testing of thousands of candidate strains,
yet each small bioreactor system must have high-quality pro-
cess and feed controls so that the data obtained from these
small bioreactors predict the performance in lab- and pilot-
scale fermentors.

The 24-well block or test tube is the simplest bioreactor, but
its data is much less reliable due to the low controllability in a
small volume and insufficient sample volume available for
both lipid content and lipid composition analysis (Danielson
et al. 2004; Stockmann et al. 2003). Shake flasks are also
simple and easy to run at larger working volumes (10~
100 mL) typically without monitoring and controlling pH
values and dissolved oxygen (DO) levels, but they are rela-
tively labor intensive to prepare and require fairly bulky
shakers (Biichs 2001). Micro-titer plates/bioreactors have a
large number of small reaction wells (1 mL or less) with each
well’s pH value and DO level possible to monitor, which is
very efficient for high-throughput growth evaluation (Duetz
et al. 2000; Amanullah et al. 2010). However, the precise
controls of pH values and DO levels are still not available
for most micro-titer/bioreactors on the market. The small
working volume also limits the micro-titer bioreactor’s appli-
cation in the omega-3 project due to the insufficient biomass
samples (less than 5 mL) available for DCW and total lipid
content analysis.

To minimize the limitations in control and to combine the
high-throughput advantages of the 24-well blocks, test tubes,
flasks, and micro-titer/bioreactors, we used an advanced
micro-fermenter system for EPA strain screening and fermen-
tation optimization (Xie 2012). A micro-fermenter is a highly
integrated multi-fermentor system with a few milliliters
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of working volume per reactor; each reactor was independent-
ly controlled at the preset temperature, pH value, and DO
level. There have been several different types of micro-
fermenters reported in fermentation research work (Doig
et al. 2005; Betts et al. 2006; Gilla et al. 2008). We used a
Micro-24 bioreactor system for the EPA strain screening (Xie
2012). In this case, 24 individual micro-reactors, each with its
own strain and process condition (T, pH, DO), can be proc-
essed at the same time. The high controllability of this system
provided high-quality fermentation data for the end-of-run
samples, including the by-product analysis, DCW, lipid con-
tent, EPA content in lipid, and EPA conversion yield. These
data significantly increased the predictability of each individ-
ual strain’s performance in lab- or large-scale fermentation, as
shown in an example in Fig. 6.

Optimization of lab-scale fermentation

After we selected the top candidate strains by micro-
fermentation analysis, we needed to further optimize the me-
dium and process conditions (e.g., T, pH, DO, substrate feed)
for a given strain to maximize its EPA production and mini-
mize by-product formation (e.g., organic acids), in order to
reduce the cost of manufacture (COM) under commercially
achievable conditions. While flasks and micro-fermenters
gave some guidance around optimization of the fermentation
conditions, they are not sufficient for understanding, explor-
ing, and further improving a complete fermentation run’s titer,
rate, yield, and cost of a fermentation process at large scale.
For that purpose, the optimization work for a selected produc-
tion strain was mainly conducted in lab-scale fermenters.
Since the EPA lipid is an intracellular product of the
Yarrowia biomass, the goal of optimization is first to maxi-
mize the biomass production in growth phase, and then to
maximize EPA production and minimize by-product
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g 151 A R o T FE—
S ! ‘
CIET\ ) R T =o—Lab-scale (2-L) B
£ i
< | ={J=Pilot-Scale (5000-L)
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fermentation time

Fig. 6 EPA titer comparison of Gen III HP strain in typical runs of micro-
24 bioreactor (5 mL), lab-scale fermentor (2 L), and pilot-scale fermentor
(5,000 L). The micro-fermentor achieved very consistent performance
compared with the larger-scale fermentation
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formation in the oleaginous phase. We developed a two-stage
(or two-phase) fed-batch fermentation process to maximize
both biomass and EPA production, as shown in Fig. 7. In the
first stage of the fermentation, the Yarrowia cells are grown on
the carbohydrate substrate with nitrogen provided by both the
organic nitrogen source (e.g., yeast extract) in the nutrient
medium and the inorganic NH,OH used for pH control.
After a certain period of time, the base for pH control is
switched from NH,OH to KOH to restrict further nitrogen
supply. Cell growth then stops after consuming the residual
nitrogen in the medium, and the Yarrowia cells start to accu-
mulate lipids by using the carbohydrate supplied. Our experi-
ence showed that the optimal conditions often vary when the
strain is engineered in significantly different genetic back-
grounds. Therefore, more optimization work is always expect-
ed to improve a newly selected strain’s performance.

Using modeling to guide fermentation process
optimization and scale-up

Though the optimization of lab-scale fermentation is critical
for a selected production strain to achieve good performance
at large scale, it is very time-consuming and labor-intensive.
As we had accumulated more fermentation data and gained
more understanding for both the strain and process, we used a
set of mathematical equations, i.e., the dynamic models, to
describe the fermentation behavior. A unique and also critical
aspect of process development and scale-up for the EPA

Fig. 7 EPA production by a two-
stage fermentation developed
primarily in lab-scale fermenters.
In growth phase, nitrogen is
mainly provided by NH4,OH for
pH control to build up biomass.
During the production phase,
nitrogen is limited by switching

NH,OH

project was the use of dynamic models. Unstructured mathe-
matical models were built from first principles, which includ-
ed the model equations of cell growth, substrate consumption,
nitrogen utilization, oxygen uptake, lipid and EPA formation,
and by-product accumulation. The models were matched to
the historical experimental data from many lab-scale and pilot-
scale fermentation experiments under different conditions.
The models could predict cell growth, DCW, DO level, oxy-
gen uptake rate (OUR), CO, evolution rate (CER), and vari-
ables that were also measured during the fermentation as a
function of various medium and process conditions. When a
new production strain was applied, a few model parameters
may need to be adjusted to keep the model’s predictability
based on the new experimental data and the understanding of
the new strain. The dynamic models were thus able to predict
the key performance parameters (e.g., titer, rate, and yield of a
product) before and during the run and further help guide the
fermentation optimization and process scale-up. Examples of
the dynamic model’s capability are shown in Fig. 8.

Fermentation scale-up

The last step in fermentation process development is the scale-
up to pilot and then commercial scales. There are a few criteria
commonly used for fermentation scale-up, including geome-
try similarity, power input, and mass transfer coefficient K,
(Shuler and Kargi 2002). For the EPA fermentation process,
we often tested our selected production strain in the pilot-scale
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EPA Productivity (g/L/h) @

fermentation time

Fig. 8 Examples of using the predictive fermentation model for process
optimization (a) and scale-up (b). a The model simulation (solid lines)
guided the experiments (symbols) to significantly improve EPA
productivities by changing the process condition from #/ to #2 and #3.

facilities before we set a criterion for scale up, by which we
were able to gather information of the pilot-scale fermenta-
tion’s dynamic behavior. Besides the regular online data of
temperature, pH value, feed rate, and DO levels, the dynamic
information also included the agitation, aeration rate, and the
mass transfer characteristics. Now, the benefits of highly
predictive dynamic models became even more evident as we
moved from the pilot plant to commercial production. We
incorporated the agitation and aeration rate of the pilot-scale
fermentation into the dynamic models so that we could study
mass transfer characteristics as functions of superficial gas
velocity and agitation power for each run. We then used the
dynamic models to predict the commercial-scale fermenta-
tion’s performance with the specific agitation and aeration in
commercial-scale fermentors and thus guided the successful
scale-up for the commercial production.

However, we quite often faced some challenges when there
were some restrictions in the commercial scale fermentors,
either for the use of some important medium components or
for the process control that we could achieve at commercial
scale. For example, the commercial scale fermentor uses only
commercially available raw materials, which may have some
other minor components affecting fermentation performance.
Also, the much larger size of a commercial-scale fermentor
causes significantly different fluid dynamic behavior in the
reactor. To understand how a difference of a commercial-scale
fermentor affects the fermentation results, we designed a
series of lab-scale experiments to mimic the fermentation with
the medium and/or process conditions at commercial scale.
These are called “scale-down” studies (Ozbek 1997; Nienow
et al. 2011). By the scale-down studies, we were able to
identify a few important factors that affecting the scale-up.
Then, we either sent the feedback to the strain-engineering
team to reengineer the strain or modified our fermentation
protocols for the lab-scale and pilot-scale experiments to fix
the possible scale-up problems, as previously indicated in
Fig. 5.
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b The model (solid line) was used to design the scale-up fermentation
conditions so that very comparable results (symbols) were achieved in
lab-, pilot-, and commercial-scale fermentors

Conclusions

The Y. lipolytica yeast was engineered in DuPont to produce a
high level of EPA in biomass under commercial-scale fermen-
tation conditions. By overexpressing a combination of en-
zymes that are necessary for synthesis of EPA via the A9/A8
pathway and for optimization of lipid metabolism, the Gen III
HP strain was created that is capable of making EPA at 25 %
DCW and at more than 50 % lipids. The high level of EPA
production was achieved through careful balancing of the
expression levels of various pathway enzymes, and modifica-
tion of fatty acid and lipid metabolism of the host. Disruption
of the peroxisome biogenesis gene had a major positive im-
pact on the production of EPA and the metabolism of storage
lipid, as well as reduction of the major by-products.

Both research studies in strain engineering and fer-
mentation process development were initiated at the
same time to help convert the lab research results to
commercial production. Advanced micro-fermentors with
well-controlled process parameters significantly im-
proved the efficiency of strain screening and the pre-
dictability of the selected strains’ fermentation perfor-
mance at much larger scale. A two-stage fed-batch
fermentation process was developed to maximize both
biomass and EPA production and minimize the by-
product formation. Finally, mathematical modeling of
the developed fermentation process and scale-down
studies played critically important roles in the successful
process scale-up. Two commercial products, New
Harvest™ EPA oil and Verlasso® salmon, were devel-
oped using our sustainable EPA source. Our journey
demonstrated the power of modern biotechnology by
combining both fundamental scientific research and in-
dustrial engineering.
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