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Abstract: Many aquaculture systems generate high amounts of wastewater containing 

compounds such as suspended solids, total nitrogen and total phosphorus. Today, 

aquaculture is imperative because fish demand is increasing. However, the load of waste is 

directly proportional to the fish production. Therefore, it is necessary to develop more 

intensive fish culture with efficient systems for wastewater treatment. A number of 

physical, chemical and biological methods used in conventional wastewater treatment have 

been applied in aquaculture systems. Constructed wetlands technology is becoming more 

and more important in recirculating aquaculture systems (RAS) because wetlands have 

proven to be well-established and a cost-effective method for treating wastewater. This 

review gives an overview about possibilities to avoid the pollution of water resources; it 

focuses initially on the use of systems combining aquaculture and plants with a historical 

review of aquaculture and the treatment of its effluents. It discusses the present state, 

taking into account the load of pollutants in wastewater such as nitrates and phosphates, 

and finishes with recommendations to prevent or at least reduce the pollution of water 

resources in the future. 
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1. Introduction and Aims of the Review 

Worldwide, there is a growing contamination of soil and irrigation water, caused, among other 

reasons, by intensive agricultural use and environmentally-unfriendly activity, which is due to the need 

to generate ever greater quantities of food to meet the demands of the growing population. 

Today, aquaculture is growing rapidly: according to the FAO [1], aquaculture provides 47%  

(51 million tons) of the global human fish consumption. In order to keep up with population growth and 

increasing per capita fish consumption, aquaculture output is set to increase by a further 60%–100% 

over the next 20–30 years. In 2015, the production from aquaculture will be 74 million tons [1]. More than 

40% of the world population lives not more than 100 km away from the coastlines, putting high 

pressure on the coastal ecosystems. Aquacultures as monocultures have been developed in the last 

decades, from keeping fish in ponds for easier harvesting to high technological fish farms extensively 

using feed, hormones and often antibiotics with a known impact on the environment. To achieve 

sustainability, it is necessary to intensify the production using technologies such as water recirculation 

systems and proper treatment to optimize this valuable resource. Further, is it important to reduce the 

pressure on the coastlines and produce large amounts of fish also in inland aquaculture systems close 

to consumers. In recent years long-forgotten historical approaches have been recovered and adapted to 

new technologies, such as the parallel production of fish with filter feeders and plants or algae, even in 

multi-trophic systems [2,3]. This concept is applicable to many standard aquaculture installations, such 

as ponds or net cages. 

With respect to the pollution generated by aquaculture, nitrogen and phosphorus are considered as 

waste components of fish farming, causing serious environmental problems. In addition, several fish 

excrete nitrogenous waste products by diffusion and ion exchange through the gills, urine and feces. 

Decomposition and reuse of these nitrogenous compounds is especially important in aquaculture using 

recirculation systems due to the toxicity of ammonia and nitrite and the chance of hypertrophication of 

the environment by nitrate [2]. 

All aspects of water treatment play a significant role in intensive fish production, because the 

control and monitoring of water quality is of vital importance to the success or failure of the 

production. It is therefore necessary to develop new research applications focused on avoiding or at 

least reducing the negative impacts of aquaculture effluents on the environment. This review aims at 

giving an overview about aquaculture systems developed in historical times which could still be 

valuable for the future, about the present problems, and about innovative ideas, especially with respect 

to the integration of halophytic plants as biofilter in saline aquaculture systems. 

2. Systems Combining Aquaculture and Plants 

Several systems for combining aquaculture and biofiltering plants exist at different levels of more 

or less sophisticated techniques. The simple co-culture of different fish species from the same trophic 

level has been practiced for a long time and is known as aquatic polyculture. These organisms share 

the same biological and chemical processes. The culture systems show only a few synergistic benefits. 

Some traditional polyculture systems incorporate a greater diversity of species, occupying several 

niches as extensive cultures within the same pond [4,5]. 
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A more advanced system is the integrated multi-trophic aquaculture (IMTA). Here, the by-products 

or waste from one species are recycled to become inputs as fertilizers or food for another. The term 

―multi-trophic‖ refers to the incorporation of species from different trophic or nutritional levels in the 

same system and this is one potential distinction from polyculture systems [6]. The ―integrated‖ in 

IMTA refers to the more intensive cultivation of the different species in proximity of each other, 

connected by nutrient and energy transfer through water. Ideally, the biological and chemical processes 

in an IMTA system should be balanced. This is achieved through the appropriate selection and ratios of 

different species providing different ecosystem functions. The co-cultured species are typically more 

than just biofilters; they are harvestable crops of commercial value. A working IMTA system can result 

in greater total production based on mutual benefits for the co-cultured species and improved ecosystem 

health, even if the production of individual species is lower than in monoculture over a short term 

period [3,7,8]. 

Recirculating aquaculture systems (RAS) recycle water by running it through filters to remove fish 

waste and food and then recirculating it back into the tanks. This saves water and the waste gathered 

can be used in compost or, in some cases, could even be treated and used on land. Aquaponics is a 

food production system that combines conventional aquaculture practices or RAS, i.e., raising aquatic 

animals such as snails, fish, crayfish or prawns in tanks, with hydroponics, i.e., cultivating plants in 

water, in a symbiotic environment [9,6]. In conventional aquaculture, excretions from the animals 

being raised can accumulate in the water and increase toxicity. In an aquaponics system, water from an 

aquaculture system is fed to a hydroponic system where the by-products are broken down by bacteria 

into nitrate and ammonium which are utilized by the plants as nutrients. The water is then recirculated 

back to the aquaculture system. As existing hydroponic and aquaculture farming techniques form the 

basis for all aquaponics systems, the size, complexity, and types of foods grown in an aquaponics 

system can vary as much as any system found in either distinct farming discipline [6,9,10]. 

3. Historical Overview of Aquaculture and Treatment of Its Effluents 

Aquaculture systems have already been invented by the indigenous inhabitants of Australia. They 

may have raised eels as early as 6,000 BC by developing about 100 km2 of volcanic floodplains into a 

complex of channels and dams using woven traps to capture eels and preserve them to eat all year 

round. The Japanese cultivated seaweed by providing bamboo poles, nets and oyster shells to serve as 

anchoring surfaces for spores [11]. Aquaponics also has ancient roots, although there is some debate 

on its first occurrence. First examples of aquaponics systems are found in South China and Thailand 

where rice was cultivated and farmed in paddy fields in combination with fish. These polycultural 

farming systems existed in many Far Eastern countries where fish, such as the swamp eel, common 

and crucian carp, as well as pond snails were raised in the paddies [4]. The Aztecs cultivated 

agricultural islands in Mexico as early as 1150–1350 BC where plants were raised on stationary (and 

sometimes movable, ―floating gardens‖) islands in lake shallows, and waste materials dredged from canals 

and surrounding cities were used to manually irrigate the plants. This method of early agriculture, called 

chinampa, usually measured roughly 30 × 2.5 m or even up to 91 × 9.1 m in Tenochtitlan. The 

agricultural output of the chinampas allowed the postclassic Aztec civilization to flourish. Chinampas 

were created by staking out the shallow lake bed and then fencing in the rectangle with wattle. The 



Sustainability 2014, 6 839 

 

 

fenced-off area was then layered with mud, lake sediment, and decaying vegetation, eventually bringing it 

above the level of the lake. Often trees such as the willow Salix bonplandiana (H.B.K.)-Kunth, and the 

cypress Taxodium mucronatum Ten., were planted at the corners to secure the chinampa. Canals 

navigated by canoe surrounded the islands and were used to raise fish. Waste from the fish fell to the 

bottom of the canals and was collected to fertilize plants. These stationary or floating gardens had very 

high crop yields with four (or up to seven) harvests a year [12]. 

The development of modern aquaponics is often attributed to the various works of the New 

Alchemy Institute at the North Carolina State University where researchers developed the use of deep 

water culture hydroponic grow beds in a large-scale aquaponics system in the 70s [6]. Actually, the 

inorganic compounds in aquaculture systems comply to a large extent with the nutrient requirements of 

plants and algae. Thus, the potential of process water from RAS for plant cultivation is obvious. 

Approaches are dated back to 1978 and 1984, when Lewis and co-workers [13] and Watten and Busch [14] 

combined the production of tilapia and tomatoes. The combination of fish and plant culture where the 

plants not only act as biofilter but also as food for humans for examples as vegetable, salad, 

nutraceutical etc. dictates that hormones and chemicals cannot be applied. Also, the sizes of aquaponic 

systems were optimized and adapted to local use. For example, Canada first saw a rise in aquaponic 

setups throughout the 90s, predominantly as large commercial installations raising high-value crops such 

as trout and lettuce. Findings were made on rapid root growth in aquaponic systems and on closing the 

solid-waste loop. It was found that owing to certain advantages in the system over traditional 

aquaculture, the system can run well at a low pH level, which is favored by plants but not fish. The 

commercially sized system was adapted to a smaller-scale prototype that can be operated by families, 

small groups or restaurants [9]. The newest approach in marine aquaculture in the 21st century is to 

develop the necessary parameters for the design and construction of an integrated marine recirculation 

aquaculture system (IMRAS) using different halophyte species [15]. Modern technical filter 

technologies and long practiced hydroponic systems are combined in a very efficient, hygienic and 

sustainable way with almost any exchange of water. The reduction of exchanging process water makes 

the systems ecologically more sustainable and economically more successful. 

4. Present State 

Water is one of the most abundant compounds in nature and covers approximately three quarters of 

the surface of the earth. Over 97% of the total water on the planet is in the oceans and other saltwater 

bodies, and its use is restricted. Of the remaining 3%, above 2% is in the solid state, which makes it 

practically inaccessible. Therefore, only the remaining 0.62% found in lakes, ponds, rivers and 

groundwater is available for human use such as industrial and agricultural activities. The main problem 

is its patchy distribution across the planet [16]. The primary renewable source of freshwater is 

continental rainfall, which generates a global supply of 40,000–45,000 km3 per year. This more or less 

constant water supply must support the entire world population, which is steadily increasing by 

roughly 85 million per year [17]. Thus, the availability of freshwater per capita is decreasing rapidly. 

The immoderate use of natural resources has a negative effect on the ecosystems from which they 

are obtained and ecosystems in which they are used. The case of water is one of the best examples; 

more water consumption by human beings leads to an increase in wastewater discharges. From the 
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total of this contaminated water, only a portion is collected in treatment plants, while the rest is 

discharged to natural systems directly without any pretreatment. It is necessary to establish purification 

systems before discharging as an important measure for the conservation of the systems [16]. In this 

context, aquaculture is an activity that requires a high volume of water and therefore a considerable 

amount of wastewater is discharged. The accumulation of excreta and food waste during fish culture 

often causes a deterioration of water quality, with negative effects on the fish and on the environment. 

This wastewater contains considerable amounts of nitrogen, phosphorus and organic matter [18], and 

can degrade other water bodies. Therefore, an appropriate wastewater treatment process is vital to 

prevent negative impacts on the surrounding aquatic environment—such as hypertrophication—and 

for sustaining aquaculture development worldwide. 

4.1. Wastewater Management  

A number of physical, chemical and biological methods used in conventional wastewater treatment 

have been applied in aquaculture systems. Solids removal is accomplished by sedimentation, sand or 

mechanical filtration. Biological processes such as submerged biofilters, trickling filters, rotating 

biological contactors, and fluidized bed reactors are employed for the oxidation of organic matter, 

nitrification, or denitrification [19]. Rotating microscreens are commonly used in land-based intensive 

fish-farms in Europe, with a screen mesh pore size of 60–200 μm [18]. These methods do help with 

phosphorus removal but are costly in terms of capital investment, energy consumption and 

maintenance requirements; however, little research has been focused on aquaculture wastewater. 

Researchers have demonstrated that wetland systems can remove significant amounts of suspended 

solids, organic matter, nitrogen, phosphorus, trace elements and microorganisms contained in 

wastewater [20]. The aims of waste treatment and solids management differ, depending on whether the 

intensive culture system is single-pass flow-through, water reuse with little exchange, or a recirculating 

water system, as summarized by Losordo and Westers [21]. Removal of solids, organic matter, 

ammonia and nitrite are critical for the development of recirculating aquaculture systems [22]. In these 

systems, fish can be cultured next to other organisms, which are converting otherwise discharged 

nutrients into valuable products [23], and therefore make the system feasible. 

4.1.1. Solids Loads 

In order to maintain the total suspended solids (TSS) at acceptable levels for discharging or 

recycling, it is important to understand the nature of the waste. Appropriate management practices 

and/or treatment technology can then be applied as described by Cripps and Bergheim [18]. Many 

studies and reviews, including Cripps and Kelly [24], have shown that aquaculture waste 

characteristics are not conducive to easy treatment, because of their low concentrations in the effluent. 

Fish-farm operations have changed in recent years, due to an intensification of farming. These changes 

involve an increase in culture density and a decrease in specific water consumption. There have also 

been improved feeding formulations and systems that reduce losses through runoff. The addition of 

dietary binders to fish feed, such as Alginate and Guar gum, significantly enhances the stability of fish 

feces thus favoring the formation of large waste particles with high mechanical removal potential and a 

considerably improved leaching resistance. These binders have no negative side effects on the health 

http://www.sciencedirect.com/science/article/pii/S0144860900000315#BIB67
http://www.sciencedirect.com/science/article/pii/S0144860900000315
http://www.sciencedirect.com/science/article/pii/S0144860900000315#BIB40
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of the fish and digestibility of macronutrients [25]. Supporting this, data presented by Kelly et al. [26] 

and Bergheim et al. [27] showed that treatment efficiency, in terms of the separation of particles from 

the effluent, increased with increased solids concentration; the settling efficiency of an aquaculture 

sludge sedimentation chamber increased from about 58% at about 1 mg suspended solids (SS) min−1 to 

nearly 90% at 18 mg SS min−1 at the same flow rate. 

This indicates that aquaculture waste solids are difficult to treat, and that by increasing the 

concentration prior to treatment, an increase in treatment efficiency, or clarification rate, can be 

expected [18]. 

Generally, solid concentrations in the untreated effluent from flow-through farms are around  

5–50 mg L−1, and do not appear to have altered greatly within the last 20 years. This was shown by 

Hennessy et al. [28], Bergheim et al. [29] and Cripps [30] who reported a wide range of total solid 

concentrations of 1.6–14.1, 0–20.1, and 6.9 mg L−1, respectively. However, these concentrations can 

vary widely depending on the management of aquaculture systems. 

4.1.2. Nutrient Load 

The pollution load in wastewater is variable, it depends on several parameters. Kelly et al. [31] 

found that the waste quantity discharged from a fish farm is directly related to temperature. Foy and 

Rosell [32] showed that the proportion of nutrients in the particulate fraction increased with 

temperature. This relationship is based on the fact that an increase in temperature also increases the 

rate of metabolism. In integrated intensive aquaculture systems, the waste load such as nitrates and 

phosphates can be reduced if the system fish is cultured with other organisms, such as plants used as 

biofilter, which can convert nutrient discharges into valuable products. Schneider et al. [23] concluded 

that the combination of fish culture with subsequent phototrophic and herbivorous conversion 

increases nutrient retention in the culture system (e.g., 20%–42% feed nitrogen to 29%–45% feed 

nitrogen). This relative small increase is due to the herbivores, as herbivorous conversion substantially 

decreases the nutrient retention achieved by phototrophic conversion by 60%–85% feed nitrogen and 

50%–90% feed phosphorous.  

Other compounds that are present in aquaculture wastewater are feed-derived waste, antibiotics and 

some hormones, as described by Tacon et al. [33]. The feed-derived waste includes components that 

are either dissolved, such as phosphorus (P) and nitrogen (N) based nutrients, or that are in the solid 

phase such as suspended solids, as described by Losordo and Westers [21]. These solids can 

commonly carry 7%–32% of the total nitrogen (TN) and 30%–84% of the total phosphorus (TP) in 

wastewater. The remainder is transported out of the farm in the dissolved fraction, because it is largely 

not possible to remove them by particle separation techniques, which are commonly employed for 

aquaculture wastewater treatment [18]. 

Cripps and Kelly [24] found that the amount of SS, TN and TP were commonly low in aquaculture 

effluents, at about 14, 1.4 and 0.13 mg L−1, respectively. However, this waste may vary depending on 

the aquaculture system and can cause a negative effect on the environment. Lin et al. [20] reported that 

nutrient concentrations in a fishpond increased as feed residue and fish excreta accumulated and the 

influent concentrations in the constructed wetlands system ranged from 0.12–14.7 mg NH4–N L−1, 

0.02–1.5 mg NO2–N L−1, 0.01–5.3 mg NO3–N L−1, and 3.1–17.7 mg PO4–P L−1. 

http://www.sciencedirect.com/science/article/pii/S0144860900000315#BIB60
http://www.scopus.com/authid/detail.url?authorId=24358311900&amp;eid=2-s2.0-0032124949
http://www.sciencedirect.com/science/article/pii/S0144860900000315#BIB57
http://www.sciencedirect.com/science/article/pii/S0144860900000315#BIB11
http://www.sciencedirect.com/science/article/pii/S0144860900000315#BIB38
http://www.sciencedirect.com/science/article/pii/S0144860900000315#BIB59
http://www.sciencedirect.com/science/article/pii/S0144860900000315#BIB50
http://www.sciencedirect.com/science/article/pii/S0144860900000315#BIB50
http://www.scopus.com/authid/detail.url?authorId=8754486100&amp;eid=2-s2.0-13744253629
http://www.sciencedirect.com/science/article/pii/027312239500425M
http://www.sciencedirect.com/science/article/pii/S0144860900000315#BIB67
http://www.sciencedirect.com/science/article/pii/S0144860900000315#BIB40
http://www.sciencedirect.com/science/article/pii/S0044848601008018
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4.1.3. Feed Quality 

Appropriate treatment technology and waste management must be adequate to facilitate the removal 

of particles as described by Cripps and Bergheim [18]. A very important issue is to improve feed 

quality, with a greater bio-availability of phosphorus and proteins, reducing the amount of fish excreta. 

Improved pellet integrity with subsequent slower breakdown rates and optimized feeding systems and 

protocols has also reduced wastage [18]. 

The development of ―high-energy diets‖ with increased fat content, reduced carbohydrate levels, 

reduced protein levels, and improved digestibility has significantly decreased waste production in 

salmonid farming. In a standard diet for salmonids, the following fractions of the main components 

were reported by Åsgård and Hillestad [34] to be indigestible and excreted as fecal waste: 13% of the 

protein, 8% of fat, 40% of carbohydrate (fiber completely indigestible), 17% of organic matter, 50% of 

ashes and 23% of dry matter; about 40% of ingested protein N is excreted as dissolved N 

(TAN=NH3+NH4
+) by salmon. Recent studies indicate that a minimum of 11 g kg−1 dietary P is 

required by juvenile Atlantic salmon [35]. The daily nutrition discharges per fish (DND) for nitrogen 

and phosphorus are predicted by the following equation [36]: 

gainnutrientfednutrientPNDND ),(  (1)  

where 

)()( 1 dietggfeedinnutrientXgfedrationfednutrient   (2)  

)()( 1 fishggfishinnutrientXggrowthgainnutrient   (3)  

At a feed conversion ratio (FCR) of 1.0 kg feed kg−1 gain, the estimated discharges from juvenile 

salmonids, in terms of g (N, P) kg−1 fish gain, are about 33 g N (26 g dissolved and 7 g solid-bound) 

and 7.5 g P (80%–90% solid-bound) [18]. Based on digestibility estimates of typical diets [34], the 

calculated discharge of suspended solids from salmon and trout farms should be 150–200 g SS kg−1 

fish gain at a FCR of 0.9–1.0. 

As described above, it is clear that the best way to reduce the quantity of discharged waste is to 

improve the feed management. The required capacity of treatment systems can then be minimized, 

thus reducing capital and operating costs. Technology for monitoring uneaten pellets has been shown 

to be a useful means of reducing wastage [37]. Reduced water consumption, often by combining 

recirculation and addition of oxygen, is a means to improve the utilization of the water supply and to 

reduce the discharged effluent load because of improved treatment efficiency [38]. 

4.1.4. Bead Filters 

Bead filters or expandable granular biofilters (EGBs) can operate as both mechanical and biological 

filters [39,40] and for this reason they have been used in recycling systems. There are several potential 

ways for beneficial disposal of organic waste from aquaculture: application on agriculture land, 

composting, vermiculture and reed drying beds [41,42]. Newly produced sludge from aquaculture is 

considered a good ‗slow-release‘ fertilizer in agriculture with a high concentration of organic matter, 
nitrogen and phosphorus, but with a low potassium content [29,43,44]. 

http://www.sciencedirect.com/science/article/pii/S0144860900000315
http://www.sciencedirect.com/science/article/pii/S0144860900000315#BIB108
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4.1.5. Wetlands  

Constructed wetland technology has grown in popularity for wastewater treatment since the early 

1970s [45]. Wetlands are a well-established and cost-effective method for treating wastewater, such as 

municipal or domestic sewage, industrial and agricultural wastewater, landfill leachate, and stormwater 

runoff as described by Webb et al. [46] (Figure 1).  

Figure 1. Typical man-made constructed wetland for a recirculation system. 

 

Various biotic and abiotic processes regulate pollutant removal in wetlands [47,48]. Microbial 

mineralization and transformation (e.g., nitrification–denitrification) and uptake by vegetation are the 

main biotic processes, whereas abiotic processes include chemical precipitation, sedimentation, and 

substrate adsorption. Constructed wetlands are characterized by the advantages of moderate capital 

costs, low energy consumption and maintenance requirements, landscape esthetics and increased 

wildlife habitat [45]. 

Sindilariu et al. [49] concluded that compared to standard mechanical effluent treatment the efficiency 

of the sub-surface flow wetland for TSS polishing is in the range of micro-screening. Webb et al. [46] also 

demonstrated the effectiveness of wastewater treatment from land-based intensive marine aquaculture 

farms by constructed wetlands planted with Salicornia spp. Other studies [20,50–52] have 

demonstrated that constructed wetlands can efficiently remove the major pollutants from catfish, shrimp 

and milkfish pond effluents, including organic matter, SS, N, P, and phytoplankton under a low hydraulic 

loading rate (HLR) and long hydraulic retention time (HRT) ranging between 0.018–0.135 m day−1 and  

1–12.8 days, respectively. These hydraulic conditions would result in a wetland size being 0.7–2.7 

times the size of the pond area for treating the polluted fishpond effluents [20,50]. There are other 

studies where the size of wetlands varies greatly, as shown by Buhmann and Papenbrock [10]. Based 

on this, it is important to calculate the right size of the wetland. 
  

http://www.sciencedirect.com/science/article/pii/S0043135412004484
http://www.sciencedirect.com/science/article/pii/S0044848607002360
http://www.sciencedirect.com/science/article/pii/S0043135412004484
http://www.sciencedirect.com/science/article/pii/S0098847212001566
http://www.sciencedirect.com/science/article/pii/S0098847212001566
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4.1.6. Wetland Area Estimation 

Pollutant removal in constructed wetlands, as described by Lin et al. [53], can be estimated by using 

the first-order plug flow kinetic model. This model is given as follows when omitting the background 

pollutant concentration [45,47]: 

)exp()exp(
HLR

hk
kt

C

C w

i

e 
  (4)  

Where Ci = influent pollutant concentration (mg/L), Ce = effluent pollutant concentration (mg L−1), 

t = nominal hydraulic retention time (day), k = first-order removal rate constant (day−1),  

HLR = hydraulic loading rate (m day−1), ε = porosity of wetland, and hw = water depth of wetland (m). 

The previous equation can be rearranged to provide an estimate of wetlands surface area needed for 

wastewater treatment: 

w

ei

w
hk

CCQ
A


)ln(ln 

  (5)  

Where Q = flow rate of wastewater through wetlands (m3/day). 

tt hrAQ   (6)  

Where r = recirculating ratio is defined as the ratio of daily flow of recirculating water to total water 

in the culture tank (day−1), At = surface area of the culture tank (m2), ht = water depth of culture tank (m). 

If Equation (6) is substituted into Equation (5), then the Aw/At ratio is found to be given as: 

w

ei

t

w

hK

CCrh

A

A


)ln(ln1 


 

(7)  

According to Shpigel et al. [54], using constructed wetland (CW) systems for effluent treatment 

requires a relatively extensive area. About 10,000 m2 of CW with Salicornia spp. are required to remove 

nitrogen and total suspended solids produced from 900 kg of 45% crude protein fish feed (11 m2 kg−1 of 

feed) during one year. 

4.1.7. Salt-Tolerant Plants used as Biofilters in Wetlands  

The expansion of aquaculture and the recent development of more intensive land-based marine 

farms require commercially-valuable halophytic plants for the treatment of saline wastewater [46]. 

Research on wastewater treatment has been done using wetlands with halophytic plants (for a 

classification of plant species tolerant to different salinities see Buhmann and Papenbrock [10]). These 

plants have a high tolerance to salinity and may be used for absorption of nitrates, phosphates and 

other compounds. Halophytic plants differ in presence and specificity of aerenchyma which can 

influence the presence of oxygenated zones within the soil and therefore the growth of certain bacteria 

and processes such as ammonification and nitrification can take place [10]. 

Lin et al. [20] used a free water surface flow (FWS) wetland planted with water spinach (Ipomoea 

aquatic FORSSK.) in the front half and a native weed (Paspalum vaginatum Sw.) in the second half. 

The subsurface flow (SSF) wetland was planted with common reed (Phragmites australis (CAV.) TRIN. 

http://www.sciencedirect.com/science/article/pii/S0269749104003872
http://www.sciencedirect.com/science/article/pii/S0269749104003872#fd3
http://www.sciencedirect.com/science/article/pii/S0269749104003872#fd2
http://www.sciencedirect.com/science/article/pii/S0044848613003128
http://www.sciencedirect.com/science/article/pii/S0044848601008018
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EX STEUD.). During initial plant establishment, the wetland water level was kept static, with a water 

depth of 5 cm for the FWS and 40 cm for the SSF. The planting densities were 12% of wetland cover for 

the FWS and four plants m−2 for the SSF. The aquatic plants grew rapidly to colonize the wetlands since 

influent was continuously added. Plants were not harvested during this study [20]. In 2005, Lin et al. [53] 

reported the use of Cattail (Typha angustifolia L.) and P. australis that were planted in the FWS and 

SSF cell, respectively. At the beginning, both cells had an initial density of around 6 plants m−2, and at 

the end of the study, a plant density of more than 90 plants m−2 was observed [53].  

The economic attractiveness of a halophytic biofilter can also be upgraded by the use of  

salt-tolerant species with a commercial value [55]. Brown et al. [2] studied the feasibility of wetlands 

equipped with different halophytes (Suaeda esteroa Ferren and Whitmore, Salicornia bigelovii Torr. 

and Atriplex barclayana (Benth.) D. Dietr.) with a potential as forage or oilseed crop as biofilter for 

saline aquaculture effluents. 

Grieve and Suarez [56] found Portulaca oleracea L. to be tolerant for chloride- and sulfate-dominated 

salinities and to be a valuable, nutritive crop. Plantago coronopus L. has been reported to be a 

potential cash crop for human consumption. It contains valuable substances such as Vitamins A, C and K 

as well as calcium [57]. However, it has been shown that some plants can sequester significant 

amounts of antibiotics. Therefore, the question of quality control for vegetables has to be solved prior 

to selling such products.  

Buhmann and Papenbrock [10] reported that a series of studies on the purification of recirculating 

aquaculture process water by constructed mangrove wetlands was conducted, resulting in a faster 

growth of shrimp in the treatments with water exchange to ponds planted with mangroves 

(Rhizophora spp.).  

4.1.8. Removal Efficiency of Wetlands  

Lin et al. [20] described that the average removal efficiency of a wetland system was 86%–98% for 

NH4–N, >99% for NO2–N, 82%–99% for NO3–N, and 95%–98% for total inorganic nitrogen (TIN). 

These efficiencies were extremely high and were only slightly affected by the hydraulic loading rate 

(1.8–13.5 cm day−1). In the same research, it is stated that the overall removal efficiency for phosphate 

decreased markedly from 71.2%–31.9% as the hydraulic loading rate increased from 2.3–13.5 cm 

day−1. This constructed wetland system also performed well with respect to the removal of chemical 

oxygen demand (25%–55%), suspended solids (47%–86%) and chlorophyll a (76%–95%) from the 

fishpond effluent. In another research done by Lin et al. [53], the average removal of TSS was 66% 

under high hydraulic loading rates (1.57–1.95 m day−1). Five-day biochemical oxygen demand (BOD5) 

was, on average, removed by 37% and 54% across the FWS–SSF wetland in Phases 1 and 2, 

respectively. Phase 1 was conducted during a warm season from April to June and Phase 2 was 

performed during a cold season from August to January. Consequently, overall total ammonia nitrogen 

(TAN) reduction percentage of the FWS–SSF wetland averaged 66% and 64% in Phases 1 and 2, 

respectively. The whole treatment wetland basically showed effective NO2-N removal with average 

reduction efficiency of 94% and 83% (average removal rate of 0.16 and 0.58 g m−2 day−1) in Phases 1 

and 2, respectively. In applications for wetland treatment of aquaculture wastewater and recirculating 

water, an efficient nitrate removal between 68% and 99% was demonstrated [20,58].  

http://de.wikipedia.org/wiki/Ernst_Gottlieb_von_Steudel
http://www.sciencedirect.com/science/article/pii/S0269749104003872
http://www.sciencedirect.com/science/article/pii/S0044848699000848
http://www.sciencedirect.com/science/article/pii/S0098847212001566#bib0225
http://www.sciencedirect.com/science/article/pii/S0098847212001566
http://www.sciencedirect.com/science/article/pii/S0098847212001566
http://www.sciencedirect.com/science/article/pii/S0044848601008018
http://www.sciencedirect.com/science/article/pii/S0269749104003872
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The TIN removal efficiency also depends on the nutrient load, which was demonstrated by  

Webb et al. [46]. Zachritz and Jacquez [59] and Panella et al. [60] concluded that wetlands can also be 

potentially used for treating the recycling water in a recirculating intensive aquaculture system by 

operating at higher hydraulic loading rates and consequently with lower removal efficiency. 

Nevertheless, further research on recirculating aquaculture systems is needed, focusing on higher 

hydraulic loading rates and their effect on fish growth and environmental effects. With regard to 

environmental effects, Lin et al. [53] concluded that the treated effluent from wetland cells can be 

discharged directly to the water body if a partial water exchange or draining after harvesting is 

necessary. Something important to consider is to keep the NO3-N level below 1000–3000 mg L−1 as 

higher levels are considered toxic to many fish and invertebrates [22]. 

4.2. Present Problems  

Wastewater treatments are usually physical processes, including sand and mechanical filters. 

Biological processes such as submerged biofilters, trickling filters, rotating biological contactors, and 

fluidized bed reactors are employed in the oxidation of organic matter, nitrification, or denitrification. 

The disadvantages of these treatment methods are that they produce sludge, require much higher 

energy and depend on frequent maintenance. The development of an effective, low-cost treatment is 

therefore imperative if aquaculture is to expand continually at the present rate [59]. Constructed 

wetland systems are characterized by the advantage of a high effectiveness in the treatment of 

wastewater, but the disadvantage is that they require a considerable area of land, being 0.7–2.7 times 

the size of the pond area. Thus, wetland methods may need a large land area when a great amount of 

aquaculture wastewater needs to be treated. For this reason, there is a concern about the feasibility of 

wetlands as a cost effective method because wetlands typically require a low hydraulic loading rate and a 

long hydraulic retention time to achieve efficient pollutant removal [53]. Nevertheless, Sindilariu et al. [61] 

pointed out that the combination of effective pre-treatment (80% TSS removal) with small constructed 

wetlands processing high hydraulic loads, are economically most feasible, with annual costs of 

€15,450. For a 100 L s−1 trout farm with an annual production of 770 kg (L s−1)−1, this represents a 

production cost increase of €0.20 kg−1. 

5. What can be Learned for the Future? Facts and Aspirations 

A large body of good-quality research has been carried out worldwide on different integrated 

aquaculture systems that use plants to take up waste nutrients and, at the same time, add to the 

income of the farms. Research over three decades has brought the integrated land-based technology 

to a commercial reality. Through plant biofilters, often in combination with additional filtering 

species, integrated aquaculture recycles nutrients into profitable products while restoring water 

quality. Fish–phytoplankton–shellfish systems convert the fish waste into bivalves, which have a 

large global market value. Fish–seaweed–macroalgivore (such as abalone and sea urchin) systems 

have a choice of marketing either the seaweed or the macroalgivore, while they use less land than the 

fish–phytoplankton–shellfish systems and maintain a more stable water quality. Integrated 

aquaculture, in both freshwater and seawater, can be profitable, thanks to the sales of the biofilter 

organisms such as vegetables, shellfish and seaweed. The results are higher yields and income per ton 

http://www.sciencedirect.com/science/article/pii/S0043135412004484
http://www.sciencedirect.com/science/article/pii/S0044848601008018#BIB11
http://www.sciencedirect.com/science/article/pii/S0044848601008018#BIB5
http://www.sciencedirect.com/science/article/pii/S0269749104003872
http://www.sciencedirect.com/science/article/pii/S0925857408002681
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of feed and per ton of water. Furthermore, the integrated culture system fulfills, at no extra effort, 

practically all the requirements of organic aquaculture, a feature that opens up new lucrative 

markets to the aquaculturist [11]. 

The development of new finfish species is a high priority for the diversification of the aquaculture 

in several countries, in order to expand the production to high-value resources and different 

geographical zones. Cultivation in RAS for the whole life cycle is currently being established. Modern 

closed RAS can operate with artificial seawater and less than 1% of water renewal per day. These 

high-tech systems allow the land-based cultivation of ‗exotic‘ species of high commercial interest, 
close to the consumer, and with zero discharge of nutrients and organic matter into natural ecosystems 

when combining with IMTA. Such systems offer the necessary bio-security for the culture of  

non-native species, water quality control as well as waste management. Biosecure RAS also avoid 

disease outbreaks and parasites due to the lack of intermediate hosts. Additionally, product traceability 

is possible. This type of technology is environmentally sound and contributes to the sustainability of 

aquatic food production [15].  

The environmental sustainability of modern RAS does not rely on production results and/or good 

water parameters only, but also on the optimization of the use of land, energy, feed and water. Recent 

developments of IMTA systems allow the use of RAS waste products as nutrients, coupling different 

water loops with the main fish production water system. Another possibility is the implementation of 

end of pipe treatments such as artificial wetlands. A deeper understanding of the interaction between 

nutrient inputs (feed), nutrient retention (growth) and outputs (soluble and particulate waste) will help 

address the sustainability of RAS and integrated land based aquaculture [15]. 

Good practice in the management of water resources will aim to diminish the cost of water, 

reducing consumption and maximizing the reuse or recycling of supply water, while returning it to the 

natural waters with acceptable physicochemical and biological characteristics and, hence, avoiding 

negative impacts on ecosystems. In this context, there has been a shift towards community integration 

of aquaponics that offers job opportunities and training while growing food for the community as can 

be found in several countries (USA, Israel, Germany, The Netherlands) [54]. Taking into consideration 

that the future development of marine aquaculture will face a paradigm shift, it is important that a 

modern medium-scale (500 mt y−1) urban RAS is able to deliver high quality fish and other 

aquaculture products to niche markets in areas with high population density [15]. In addition, 

aquaponic gardeners from all around the world have gathered on online community sites and forums to 

share their experiences and promote the development of this form of gardening. Recently, aquaponics 

has been moving towards indoor production systems. Entrepreneurs are utilizing vertical designs to 

grow food all year round [62].  

6. The Potential Use of Salicornia spp. in Aquaponics 

The limited resources of fresh water for agriculture, aquaculture and the ongoing increase in soil 

salinity throughout the world demands the development of new crops that are able to tolerate higher 

salt concentrations than conventional agricultural crops [63,64]. Different species of Salicornia have 

been studied recently, demonstrating their high potential as new salt-tolerant crop plants based on their 

tolerance to high salt concentrations up to seawater concentration, and potential use for food, fodder, 
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acting as biofilter for treating wastewater, oil production, gas production and other industrial uses 

(Figure 2). 

It was experimentally shown that Salicornia spp. has a great potential for extracting inorganic 

contaminants from wastewater, such as nitrates and phosphates. As Buhmann and Papenbrock [10] 

pointed out, there are currently various approaches to tap the market for halophytes especially for 

Salicornia spp. as vegetable as well as using halophytes as biofilter and valuable side product for 

aquaculture wastewater treatment in temperate and subtropical regions. 

In the same review, Buhmann and Papenbrock [10] stated that the halophytic plants recycle the 

nutrients generated in a fish culture in terms of biomass production and contribute to maintain 

appropriate quality in the process water of the recirculating aquaculture system. One of the main 

problems using plants as biofilters is that after their useful life, their high salt-containing biomass is 

discarded and can contaminate other resources. To permanently remove the nutrients taken up by 

plants and to no longer return them to the water bodies, it is important to harvest them frequently and 

use the biomass for food and fodder and think about meaningful applications for the rest of the plants. 

The income generated from selling Salicornia spp. as an agricultural crop, together with savings on 

water treatment and potential fines, contributes to the system‘s economical viability as described by 
Shpigel et al. [54]. Especially, the cultivation of Salicornia spp. in aquaponic systems shows many 

advantages over sand or soil cultures, such as controllability, reproducible mass cultures of high 

numbers, hygienic aspects etc. (Figure 2). 

As Salicornia spp. is a new fresh vegetable for human consumption, product quality is a major 

concern. Salicornia spp. shoots are not only a good source of minerals, but they also contain proteins, 

various vitamins [65] and higher total lipid and omega-3 contents than spinach, lettuce and mustard 

green leaves [66]. Thus, Salicornia ecotypes may attract considerable interest as an alternative 

source of polyunsaturated fatty acids for human consumption, even when grown on full-strength 

seawater [67]. 

Figure 2. One of the promising Salicornia species in hydroponic culture is Salicornia 

dolychostachya Moss. Photos: Christian Boestfleisch, Institute of Botany, Hannover. 

 
  

 

week 1 week 4 week 6 

http://www.sciencedirect.com/science/article/pii/S0098847212001566
http://www.sciencedirect.com/science/article/pii/S0098847212001566
http://www.sciencedirect.com/science/article/pii/S0098847212001566
http://www.sciencedirect.com/science/article/pii/S0098847212001566
http://www.sciencedirect.com/science/article/pii/S0044848613003128


Sustainability 2014, 6 849 

 

 

As a new crop plant, several growing conditions and selection of genotypes need to be optimized 

before commercial success is guaranteed [67,68]. With respect to growing conditions, the nutritional 

content of Salicornia can vary depending on salinity. Yousif et al. [69] reported a decline in the 

content of K+, Ca2+ and Mg2+ cations with increasing Na+ availability which has been noted for both 

halophytes and non-halophytic plants, while augmented Cl− contents are believed to have antagonistic 

effects on NO3
− uptake. Nevertheless, Ventura et al. [67] reported no changes in these elements with 

high salt concentrations, with the following effects on ion concentrations in the shoots: no change in 

Ca2+ and Mg2+, a slight increase in K+, and marked elevations in Na+ and Cl−. Total polyphenol,  

β-carotene and ureides, all known for their antioxidant capacities, rose with increasing seawater 

percentage, which indicated improved nutritional values for Salicornia spp. irrigated with high 

concentrations of seawater. These plants have high total shoot lipid contents of up to 2.41 mg g−1 fresh 

weight, which includes an omega-3 fraction of 47.6% of the total fatty acid content. Therefore, the 

high fatty acid content of the annual Salicornia spp. was not significantly affected by increasing salt 

concentrations [67]. 

Biogas production can be another important use of the Salicornia spp. biomass. The preservation of 

the environment and the increasing consumption of energy resources are two important aspects, 

requiring the application of new low-cost technologies for the reuse of waste, conducive to obtaining 

other useful products such as biogas. Today, the search for renewable energy sources is a challenge for 

humanity. Worldwide, the use of renewable energy sources is indispensable for development which 

ensures not only the production of fuel, but in many cases, eliminating waste pollutants that harm the 

environment. From this point of view, even high salt-containing Salicornia spp. biomass can be used 

for biogas production, through an anaerobic process after optimization. To date, there are no data and 

experiences on this topic, which is one of the research activities carried out at the Institute of Botany, 

Leibniz University Hannover, Germany. 

7. The Potential Use of Mangroves  

For tropical regions, the use of plants as biofilter is also promising. Actually, many aquacultural 

ponds have been constructed in previous mangrove areas. After the recent strong Tsunami events, it 

has been more and more realized how important mangroves are for the protection and stability of the 

coastlines. Mangroves also promote biodiversity because their roots provide shelter for fish, mammals 

and invertebrates and they have a high economic and ecological value because they act as fishponds. 

Fish growth is conducted under their roots, so these plants are fundamental to ensure the sustainability 

of the fishing industry (Figure 3). At the same time, mangroves contribute to nutrient retention, 

protection and stabilization of shorelines, preserving water quality, climatic regulation and erosion 

prevention. Mangroves are being widely used to treat wastewater and simultaneously can give 

protection against natural disasters. Coastal wetlands, such as reefs, marshes and mangroves, act as 

first-line defenses against the potential devastation through tsunamis and storm events. Mangrove 

forests occupy 14,650,000 ha of coastline globally [70], with an economic value on the order of 

200,000–900,000 USD ha−1 [71]. Regardless of their monetary value, mangrove ecosystems are 

important habitats, especially in developing countries, and play a key role in human sustainability and 

livelihoods [72], being heavily used traditionally for food, timber, fuel, and medicine [73]. 

http://www.sciencedirect.com/science/article/pii/S0304423811000537#bib0140
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Figure 3. Mangrove forest in Tamil Nadu, India. Mangrove roots provide a tangled underwater 

habitat for many marine species. Photo: Jutta Papenbrock, Institute of Botany, Hannover. 

 

Mangrove forests can attenuate wave energy, preventing the damage caused by tsunamis, as shown 

by various modeling and mathematical studies [74–79] which indicate that the magnitude of absorbed 

energy strongly depends on forest density, diameter of stems and roots, forest floor slope, bathymetry, 

the spectral characteristics (height, period, etc.) of the incident waves, and the tidal stage at which the 

wave enters the forest. For instance, one model estimates that at high tide in a Rhizophora-dominated 

forest, there is a 50% decline in wave energy by 150 m into the forest [74]. Moreover, Mazda et al. [77] 

highlighted that the thickly grown mangrove leaves effectively dissipate high wave energy which 

occurs during storms such as typhoons and, therefore, protect coastal areas. 

Especially in rural tropical areas, aquacultures provide a source of income and employment 

opportunities and therefore aid economic and social development. A very attractive idea is to combine 

all positive effects of mangroves to make aquaculture in the tropics more environmentally friendly. 

Vegetation could be used to filter waste water from aquaculture and additionally provide biodiversity, 

coastal protection and economic services to the community. First trials have been successfully 

conducted, for example in the Philippines [80]. However, more research is necessary and the idea 

needs to be promoted in a more professional way in several tropical countries. 

8. Outlook 

In order to feed the growing population in the world with well-balanced food of sufficient quality, 

the development of sustainable aquacultural systems is fundamental. Several ways to improve the 

systems currently used are described and discussed in this review. Optimized RAS combined with 

biofiltering organisms such as plants or algae seem to be the most promising way. Actually, due to 

their highly flexible metabolism, higher plants might be even more suitable to act as biofilters than 

algae. Plants have evolved sophisticated detoxification systems against several xenobiotics following 

the uptake. Different plant species might be able to degrade and/or detoxify hormones and antibiotics 

sometimes used in aquaculture. The plants might reduce toxicity and sequester the xenobiotics in 

http://link.springer.com/search?facet-author=%22Yoshihiro+Mazda%22
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phytotransformation. This could also be a very important aspect in using plants as biofiltering 

organisms for the future. 
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