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Otolithic afferents with regular resting discharge respond to gravity or low-frequency 

linear accelerations, and we term these the static or sustained otolithic system. However, 

in the otolithic sense organs, there is anatomical differentiation across the maculae and 

corresponding physiological differentiation. A specialized band of receptors called the 

striola consists of mainly type I receptors whose hair bundles are weakly tethered to 

the overlying otolithic membrane. The afferent neurons, which form calyx synapses on 

type I striolar receptors, have irregular resting discharge and have low thresholds to 

high frequency (e.g., 500 Hz) bone-conducted vibration and air-conducted sound. High-

frequency sound and vibration likely causes �uid displacement which de�ects the weakly 

tethered hair bundles of the very fast type I receptors. Irregular vestibular afferents show 

phase locking, similar to cochlear afferents, up to stimulus frequencies of kilohertz. We 

term these irregular afferents the transient system signaling dynamic otolithic stimulation. 

A 500-Hz vibration preferentially activates the otolith irregular afferents, since regular 

afferents are not activated at intensities used in clinical testing, whereas irregular afferents 

have low thresholds. We show how this sustained and transient distinction applies at the 

vestibular nuclei. The two systems have differential responses to vibration and sound, to 

ototoxic antibiotics, to galvanic stimulation, and to natural linear acceleration, and such 

differential sensitivity allows probing of the two systems. A 500-Hz vibration that selec-

tively activates irregular otolithic afferents results in stimulus-locked eye movements in 

animals and humans. The preparatory myogenic potentials for these eye movements are 

measured in the new clinical test of otolith function—ocular vestibular-evoked myogenic 

potentials. We suggest 500-Hz vibration may identify the contribution of the transient 

system to vestibular controlled responses, such as vestibulo-ocular, vestibulo-spinal, 

and vestibulo-sympathetic responses. The prospect of particular treatments targeting 

one or the other of the transient or sustained systems is now being realized in the clinic 

by the use of intratympanic gentamicin which preferentially attacks type I receptors. 

Abbreviations: ABR, auditory brainstem response; ACS, air-conducted sound; BCV, bone-conducted vibration; Fz, the 

midline of forehead at the hairline; GVS, galvanic vestibular stimulation; IO, inferior oblique eye muscle; ITG, intratympanic 

gentamicin; MSNA, muscle sympathetic nerve activity; VEMP, vestibular-evoked myogenic potential; cVEMP, cervical 

vestibular-evoked myogenic potential; oVEMP, ocular vestibular-evoked myogenic potential; OCR, ocular counterrolling; 

PID, proportional–integral–derivative; SCD, semicircular canal dehiscence; n10, the initial negative potential of the oVEMP at 

about 10 ms latency; SCM, sternocleidomastoid muscle; VIN, vibration-induced nystagmus; VsEP, vestibular-evoked potential.
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KEY CONCEPTS

Vestibular a�erents with regular resting discharge constitute a 
system for signaling sustained vestibular stimuli, such as main-
tained head tilts.

Vestibular a�erents with irregular resting activity constitute a 
system for signaling transient vestibular stimuli.

Otolith irregular a�erents originate from a specialized region 
of the otolithic maculae called the striola and form calyx synapses 
on type I receptors which have fast membrane dynamics.

Otolith irregular a�erents are selectively activated by high-
frequency (~500  Hz) low-intensity BCV and ACS. Regular 
otolithic a�erents do not respond to these stimuli at comparable  
levels.

Ototoxic antibiotics selectively a�ect type I receptors and thus 
the transient system.

�e 500-Hz vibration causes eye movements in humans, and 
the preparatory myogenic potentials for these movements are the 
ocular VEMPs which index the activity of the transient system.

Vestibular nucleus neurons exhibit transient or sustained 
responses, as in the periphery.

INTRODUCTION

�e early recordings of the response of cat single vestibular 
nucleus neurons to angular acceleration established that di�er-
ent neurons had very di�erent response patterns to identical 
angular acceleration stimuli (1–3). Some neurons showed a 
sustained response to maintained stimuli (termed tonic neu-
rons), whereas others showed a transient response to the same 
stimulus (termed kinetic neurons). �ese results were con�rmed 
and extended in later research which also showed a similar 
distinction applied to primary semicircular canal (4–6) and 
otolithic neurons (7–9). �at research and later work showed 
how these characteristics were associated with the regularity of 
resting discharge of primary a�erent neurons—neurons with 
regular resting discharge showing sustained (tonic) responses 
to maintained stimuli, whereas neurons with irregular resting 
discharge showed transient (kinetic or phasic) responses to the 
same stimuli (10). �ere is a continuum of regularity, and we 
will use the terms sustained and transient for convenience to 
refer to the ends of this continuum.

�is review shows how recent evidence about otolithic 
responses to sound and vibration demonstrates the value of 
applying this distinction of sustained and transient from the 
receptors to the behavioral responses. We suggest it is a valuable 
principle for interpreting the results of vestibular functional 
tests—focusing attention on di�erent aspects of the response 
rather than just treating the whole response as uniform. �is 
is especially clear with the otoliths, but even with the canals it 
is useful to distinguish between responses to the onset of an 

acceleration, as opposed to responses during maintained accel-
erations. �e paper will not cover particular areas in great detail 
since it has already been done in many other reviews to which 
the reader is referred. Instead, we aim to bring together evidence 
from physiology to highlight the relevance of this evidence for 
understanding vestibular function testing as used clinically. �e 
�rst part of this review covers physiological evidence and the 
second part covers the application of the sustained-transient 
principle to vestibular responses.

PHYSIOLOGICAL DATA

Peripheral Vestibular Physiology
�e regularity of resting discharge of vestibular primary a�erents 
is associated with a range of characteristics, such as conduction 
velocity, axon thickness, and a range of response dimensions, 
such as gain to acceleration, sensitivity to electrical vestibular 
stimulation [including so-called galvanic vestibular stimulation 
(GVS)—DC or low-frequency electrical stimulation of the sense 
organs]. While a�erents from all vestibular sense organs are 
activated by GVS at approximately equal thresholds (11) irregular 
a�erents from each sense organ have a signi�cantly lower thresh-
old for GVS activation than regular neurons.

Angular and linear acceleration of the whole animal have been 
the usual stimuli in studies of vestibular physiology, and it has 
been shown in a number of species that regular and irregular neu-
rons have di�erent frequency responses—with irregular a�erents 
(both canal and otolithic) typically having an increased gain and 
increasing phase lead with increasing frequency—interpreted as 
showing that irregular a�erents are responsive to both accelera-
tion and change in acceleration (jerk). �e characteristics of regu-
lar and irregular neurons have been summarized by Goldberg’s 
de�nitive review of vestibular a�erent diversity (10).

In summary, �rst-order vestibular neurons with regular rest-
ing discharge comprised bouton and dimorphic neurons which 
synapse on the barrel-shaped type II receptors mainly in the 
peripheral zone of the cristae and in the extrastriolar zone of the 
otolithic maculae. �ey are characterized by thin or medium-
sized, slow conducting axons and with a low sensitivity to head 
rotation and relatively low sensitivity to GVS. Irregular �rst-order 
vestibular neurons comprised calyx and dimorphic neurons, 
which innervate the central cristae and the striolar zones of the 
otolithic maculae, synapsing predominantly on the amphora-
shaped type I receptors (Figure  1). �ey are characterized by 
large- or medium-sized fast conducting axons. �eir sensitivity 
to GVS is on average six times higher than that of the regular 
a�erents (11, 12).

In addition, some vestibular a�erents show a sensitive 
response to sound and vibration (13–15). Recent research has 
extended this account (16–21). �e major result is that the otolith 
irregular neurons originating from a special band of receptors 

We suggest that it is valuable to view vestibular responses by this sustained-transient 

distinction.

Keywords: vestibular, utricular, sound, vibration, otolith, vestibular-evoked myogenic potential, vestibulo-ocular 

re�ex, vestibular-evoked myogenic potentials
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FIGURE 1 | (A) Schematic representation of a dorsal view of the whole 

guinea pig utricular macula, with the arrows showing the polarization of 

receptor hair cells. The dashed line is the line of polarity reversal which used 

to be called the striola, but more recently it is recognized that the striola is a 

band of receptors as shown in the adjacent whole mount. (B) To show a 

corresponding whole mount of a guinea pig utricular macula treated by 

calretinin—the band of cells comprising the striola is clearly visible (54). 

Reprinted from Ref. (21), Copyright (2012), with permission from Elsevier.
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on the otolithic macula called the striola (Figure 2) respond to 
both air-conducted sound (ACS) and bone-conducted vibration 
(BCV) up to very high frequencies (>1,000 Hz), while regular 
neurons—mainly from extrastriolar areas—show modest or 
absent responses to such stimuli (see Figure 2).

Detailed analysis of the timing of the action potentials of 
irregular a�erents evoked by sound or vibration show they are 
phase locked to individual cycles of the ACS (up to 3,000 Hz) or 
BCV stimulus (up to 2,000 Hz) (Figure 3) (20). Phase locking 
means that the exact timing of the action potential is locked to 
a particular phase angle (or a narrow band of phase angles) of 
the stimulus waveform at that frequency (Figure 3). It does not 
mean the cell generates an action potential once per cycle up 
to thousands of Hertz, but that the moment when the cell �res 
is locked to the particular narrow band of phase angles of the 
stimulus waveform at that frequency. A vestibular a�erent may 
miss many cycles, but when it does �re it is locked to the phase 
angle of the stimulus waveform. �e phase locking of vestibular 
a�erents is similar to the well-documented phase locking of coch-
lear a�erents to ACS, known since the study of Rose et al. (22).

In stark contrast, regular neurons (canal or otolith) are not 
activated by ACS or BCV stimuli—at least in response to stimulus 
levels used in clinical studies of human otolithic function (see 
Figure 2B)—and so do not show phase locking. As the example 
in Figure  2 shows, regular neurons simply continue to �re at 
their resting rate during stimuli which are much more intense 
than those which cause activation of irregular neurons. Irregular 
a�erents have very low thresholds to BCV—at or below the levels 
needed for auditory brainstem response threshold. McCue and 
Guinan (13, 23, 24) showed that irregular saccular a�erents were 
activated by ACS, and Murofushi et  al. (14, 25, 26) reported 
that saccular a�erents could be activated by high intensity ACS 
click stimuli. �ese results have been con�rmed years later (17, 
20). Curthoys et  al. (18) tested the speci�c, sensitive response 
of irregular utricular neurons to 500 Hz BCV in guinea pig and 
found that very few utricular regular a�erents were activated 
by high intensity ACS or BCV stimulation. �at has also been 

con�rmed in rat: where few regular a�erents are activated even 
by intense ACS, although ACS is an e�ective stimulus for irregu-
lar neurons (27, 28). It has been shown that both saccular and 
utricular irregular a�erents are activated by both 500  Hz ACS 
and BCV (21).

�is clear phase locking of irregular vestibular a�erents to 
such high frequencies of ACS and BCV stimulation has posed 
questions about how vestibular hair cell transduction mecha-
nisms operate at such high frequencies. Vestibular responses are 
usually thought of as being for stimuli to a few tens of Hertz, not 
to stimuli of over 1,000 Hz. Furthermore, the fact that irregular 
and regular a�erents have such very di�erent responses to sound 
and vibration raises the possibility of the use of sound and vibra-
tion to probe the relative contribution of irregular (transient) and 
regular (sustained) otolithic a�erents to various physiological and 
even behavioral responses, and thus the likely functional roles of 
these classes of a�erents. One other question is of the mechanisms 
responsible for the regularity of resting discharge, which is now 
clearly established as being due to membrane characteristics of 
the a�erent neurons (29–31).

In these studies, the usual result is that in animals with intact 
bony labyrinths, a�erent neurons (either regular or irregular) 
from semicircular canals are not activated or only weakly acti-
vated by very intense stimulus levels of 500 Hz BCV and ACS 
(18, 27, 28). However, there are drastic changes in neural response 
a�er a small hole is made in the bony wall of the semicircular 
canal (even just 0.1 mm diameter in the case of the guinea pig). 
�is opening, called a dehiscence or a semicircular canal dehis-
cence (SCD) results in a previously unresponsive irregular canal 
a�erent being activated by sound and vibration at low stimulus 
levels (32, 33). �e evidence is that the SCD decreases the imped-
ance of the labyrinth and so, it is argued, acts to increase the �uid 
displacement su�ciently to de�ect the receptors.

More recently, it has been found that even in animals with 
intact bony labyrinths, irregular canal a�erents can be activated 
by very low-frequency BCV and indeed phase lock to 100  Hz 
BCV (17). However, the response of these irregular canal 
a�erents declines with increasing BCV frequency, and so these 
irregular canal a�erents are not activated at 500 Hz BCV even 
at high stimulus levels (17, 34, 35). In light of this evidence, we 
conclude 500 Hz BCV is a selective stimulus for irregular otolithic 
neurons. It is probable that this activation of canal a�erents by 
such low-frequency BCV is the neural mechanism responsible for 
the clinical test of vestibular function—skull vibration-induced 
nystagmus (35, 36).

Mechanism
How can vestibular receptors and irregular otolithic a�erents 
respond to such very high frequencies? Textbook schematic 
diagrams of the cristae and otolithic maculae give the impres-
sion that each vestibular sense organ is a uniform structure with 
receptor hair cells of similar height. It is now clear that is the very 
opposite of what is the case. Each macula and each crista shows 
complex anatomical di�erentiation across the surface. �e recep-
tor types are di�erentially distributed with predominantly type I 
receptors at the striola (37). �e extrastriolar receptors appear to 
be more tightly tethered to the otoconial membrane (38) than are 
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FIGURE 2 | Resting discharge pattern and response to stimulation of an irregular and a regular afferent. (A) Time series of an irregular otolith neuron 

during stimulation by 500 Hz bone-conducted vibration (BCV) and air-conducted sound (ACS). The top trace (a) shows the command voltage, indicating when the 

stimulus is on. The second trace shows the action potentials by extracellular recording. The three bottom traces (x, y, z) show the triaxial accelerometer recording of 

the stimulus. The left panel is an example of response to BCV stimulation and the right of the response to ACS stimulation of the same neuron, showing it is clearly 

activated by both stimulus types. Note the scale of stimulus intensity in g at the left margin between traces x and y. The irregular resting discharge is seen before 

stimulus onset, followed by a large increase in �ring during both BCV and ACS. (B) Time series of a regular semicircular canal neuron during stimulation by BCV and 

ACS as above. The regular discharge is seen before the stimulus onset. The stimuli are far stronger than in panel (A), but there is no evidence of activation of this 

regular neuron by these strong stimuli. From Ref. (19), Curthoys and Vulovic, © Springer-Verlag, 2010, reproduced with permission of Springer.
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the striolar receptors. Receptors across the maculae (and cristae) 
are not of uniform height: at the striola of the maculae and at 
the crest of the cristae, the receptor hair bundles are shorter (and 
sti�er) than in the extrastriolar areas. Remarkably, this height 
di�erence can even be seen in Hunter-Duvar’s scanning electron 
micrograph of the whole utricular macula of the chinchilla (39). 
Morphological evidence shows apparently looser tethering of the 
hair bundles of striolar receptors to the overlying otolithic mem-
brane in comparison with comparable receptors in the periphery 
of the macula (extrastriolar receptors) (38–44).

Most models of otolithic stimulation model displacement of 
the gelatinous otoconial membrane with otoconia adherent to 
its upper surface in response to linear acceleration stimulation, 
e.g., Ref. (45, 46). In such models, frequencies in the kilohertz 
range are beyond the upper mechanical cuto� of the system. 
Nevertheless, it is clear from the neural recordings that action 

potentials in individual neurons do respond and are phase locked 
to a narrow band of phases for stimulus frequencies even as high 
as 3,000  Hz (Figure  3). Phase locking of irregular vestibular 
a�erents shows that every single cycle of the stimulus waveform is 
the adequate stimulus for the receptor–a�erent complex. For this 
to happen at kilohertz frequencies, the receptor membrane and 
calyx membrane must have extremely fast dynamics, and indeed, 
the very fast dynamics of vestibular type I receptors and calyx 
membranes have been shown beautifully by the studies of Songer 
and Eatock (47). �ey used intracellular recording of receptor 
and calyx potentials in response to mechanical displacement of 
the hair bundle at very high frequencies and demonstrated the 
very fast membrane and synaptic dynamics of type I vestibular 
receptors and calyx a�erents.

In light of this phase locking up to such high frequencies, 
we have suggested that the hair bundles of the striolar otolithic 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


FIGURE 3 | Showing phase locking of a single utricular neuron. 

(A,B) Time series of successive action potentials of the neuron to 

bone-conducted vibration (BCV) at 985 Hz. Panel (B) shows 142 action 

potentials superimposed and the onset of the action potential is shown by 

the arrow. The red trace shows the x channel of the 3D linear accelerometer. 

Panel (A) shows the circular histogram of the phases of the action potentials 

clustered around a mean of 129.1°, with angular deviation 28.7°. The test of 

circular uniformity, Rayleigh’s z, is highly signi�cant showing the probability 

of a uniform phase distribution is <0.001. The neuron misses some cycles, 

but when it �res is locked to the stimulus waveform. (C–F) Histograms of 

interspike intervals to show phase locking in the same utricular afferent 

neuron in guinea pig at two high frequencies of BCV (C,E) and air-

conducted sound (ACS) stimuli (D,F). The bin width is 0.16 ms. The dots 

below each histogram show integral multiples of the period for the given 

stimulus frequency. The clustering around these integral multiples 

demonstrates phase locking at both frequencies. This �gure is a replotting 

of the histograms of the response of neuron 151011, which has been 

published as Figure 10 of Curthoys et al. (20). Reprinted from Ref. (20), 

© 2016, with permission of Elsevier.
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receptors are de�ected by each cycle of �uid displacement caused 
by the stapes pumping into the �uid-�lled inner ear (33). �is 
�uid displacement is small but vestibular receptors have great 
sensitivity: the maximum sensitivity of the hair bundles of 
vestibular receptors is around 0.40° of cilia de�ection, similar to 
the value for cochlear receptors (0.39°) (48), caused by just a few 
nanometers of �uid displacement.

We (33) have put forward the following account. Striola 
receptors are predominantly amphora-shaped type I receptors 
(37) and have short sti� hair bundles (44, 49), apparently loosely 
attached to the overlying otolithic membrane (38). �is �uid 
motion within the �uid-�lled hole in the gel-�lament layer of 
the otolithic membrane produces a drag force on the hair bun-
dle, causing it to de�ect. �e �uid environment is so viscously 
dominated (Reynold’s Numbers of 10−3 to 10−2) that bundles 
move instantaneously with any �uid movement. In other words, 
this coupling of �uid motion to hair bundle is so strong that the 
hair bundle displacement follows the �uid displacement almost 
exactly (17). �us, �uid displacement is synonymous with hair 
bundle displacement.

Complementing that anatomical evidence is physiological 
evidence from recordings of primary otolithic a�erent neurons 
originating from striola type I receptors as shown by neurobiotin 
labeling (21) (Figure 4A), these a�erents have irregular resting 
discharge and are activated by ACS and BCV up to very high fre-
quencies. �ere is evidence that it is the striolar receptor hair cells 
(probably mainly type I receptors) which respond to frequencies 
far higher than modeling of canal or otolith mechanics indicates. 
�is account is indirectly con�rmed by the e�ect of SCD on the 
response of irregular canal a�erents from the crest of the crista 
(17). Prior to the SCD, these neurons do not respond to ACS or 
BCV at the levels used in human clinical testing, whereas a�er 
the SCD [which acts to increase �uid displacement (50, 51)] these 
same irregular a�erents show strong phase-locked activation to 
the same stimulus (33) (Figure 4B).

Why is it that regular a�erents are not responsive to vibra-
tion and sound at such high frequencies? One possible reason is 
that regular neurons synapse on few type I receptors mainly in 
extrastriolar areas, whereas their largest number of synapses are 
usually on multiple extrastriolar type II receptors with long cilia 
apparently more tightly tethered to the overlying gel-�lament 
layer (38). In this way, �uid displacement would be less likely 
to activate type II receptors because, instead of projecting into 
holes in the overlying membrane, the hair bundles project into 
the gel-�lament layer or cupula, which limits the de�ection of 
the receptors.

Mechanism—Summary
�ere are two issues: (1) the regularity of resting discharge and 
(2) the response to sound and vibration determined by recep-
tor mechanisms. �ese are two di�erent aspects of the a�erent 
response, and the evidence is that they are determined by di�er-
ent factors.

(1) Recent evidence shows that regularity of vestibular a�er-
ent resting discharge is due to membrane characteristics 
(29–31). �at has been most convincingly shown by recent 
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FIGURE 4 | (A) Direct dorsal view of a whole mount of a guinea pig utricular 

macula showing one neuron labeled by neurobiotin activated by both 500 Hz 

bone-conducted vibration (BCV) and air-conducted sound (ACS). The labeled 

axon terminates on three calyx endings which envelop the whole type I 

receptor(s), but in addition there are small bouton endings, so this axon is 

strictly a dimorphic afferent. The calyx receptors are in or close to the striolar 

area of the utricular macula. The scale bar is 200 μm. Reprinted from Ref. 

(21), Copyright (2012), with permission from Elsevier. (B) Whole mount of the 

crista of the anterior canal of a guinea pig showing an afferent �ber labeled by 

neurobiotin which forms two calyx endings enveloping two type I receptors at 

the crest of the crista. This neuron was unresponsive to ACS prior to a 

semicircular canal dehiscence, but showed activation and phase locking to 

985 Hz ACS after dehiscence.

6

Curthoys et al. Sustained and Transient Vestibular Systems

Frontiers in Neurology | www.frontiersin.org March 2017 | Volume 8 | Article 117

experiments blocking speci�c membrane channels. �is is 
the empirical evidence—the regularity of a�erent discharge 
is due to channels of the a�erent membrane and not the 

receptors. Neurobiotin labeling has shown that the irregular 
a�erents which respond to these stimuli form calyx synapses 
on striolar type 1 receptor cells, not on type I extrastriolar 
receptors (20, 21). However, the receptor type does not 
determine the regularity of resting discharge: �sh only have 
type II receptors but they have both regular and irregular 
a�erents (52).

(2) We (33) have put forward the hypothesis that the short sti� 
hair bundles of these striolar receptors are de�ected by �uid 
displacement once per stimulus cycle so the calyx-bearing 
a�erents of striolar irregular a�erents are activated once 
per cycle, resulting in phase-locked action potentials up 
to such high frequencies. Hair cell height and sti�ness 
have been demonstrated to vary across the macula surface 
(39, 49, 53–55). �e cells which do show high-frequency 
phase locking are from calyx-bearing a�erents originat-
ing from the striola (21) with shorter sti�er receptor hair 
cells. A�erents from extrastriolar areas do not show high-
frequency phase locking. With only type II receptors, �sh 
also show phase locking, but to much lower frequencies 
(~400  Hz), and it may be that the type I receptor calyx 
combination allows the very high-frequency phase locking 
found in guinea pigs.

Central
�e sustained–transient distinction is clear at the level of the 
primary a�erent, whereas these complementary a�erent systems 
would appear to be lost centrally (10, 56–58). In those studies, 
it was found that regular and irregular a�erents projected to 
second-order vestibular neurons and showed overlapping projec-
tions—such that many second-order neurons received input from 
both regular and irregular a�erents. Di�erent vestibular nucleus 
neurons showed di�erent strengths of irregular and regular 
projections. It appeared that the sustained and transient systems 
from the periphery were not established centrally (57, 58).

However, in vitro physiological studies, recording from ves-
tibular nucleus neurons in slice preparations, have shown that at 
the vestibular nucleus there is clear evidence of di�erent neurons 
with very di�erent temporal responses to identical stimuli 
(injected current in these cases, rather than angular or linear 
acceleration), and that these neurons can be characterized by the 
same sustained–transient distinction as for primary a�erents. 
Type A neurons show tonic characteristics—maintained �ring to 
a step of injected current—whereas type B neurons show a brief 
high-frequency burst of spikes at stimulus onset (see Figure 5). 
�ese patterns have been established in frog and in mammals and 
echo the phasic-tonic distinction of Shimazu and Precht (2) in cat 
vestibular nucleus neurons. In frog, there are two well-de�ned 
populations of neurons with very di�erent membrane properties 
and response patterns, and these correspond well to the transient 
and sustained classes. One approach has been to consider these 
matters from the point of view of �lter characteristics, which is 
just another way of schematizing sustained (low-pass �lter) and 
transient (high-pass �lter) systems.

�ese results from in vitro studies (59) and from frogs (60–66) 
have been shown to apply also in mammalian vestibular system. 
Type A and B neurons previously found in brainstem slices 
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were identi�ed in the guinea pig whole-brain preparation, and 
these neurons receive direct inputs from the vestibular nerve. 
Type A and B vestibular nucleus neurons di�er in their intrinsic 
membrane properties which are responsible for the very di�erent 
response patterns shown in Figure 5 (62, 67) and for the di�erent 
�ltering properties (61, 68).

SUSTAINED AND TRANSIENT ASPECTS 

OF VESTIBULAR RESPONSES

Tools for Probing the Functional State of 

the Sustained and Transient Systems
�e evidence from physiology reviewed above establishes the 
sustained and transient categories of vestibular neural responses 
and provides tools for exploring the sustained and transient 
aspects of vestibular responses and how pathology may a�ect 
them. Using these tools, it is possible to identify sustained and 
transient aspects of behavioral responses. However, is this quest 
valuable for evaluating vestibular responses? We consider it is, 
because whereas some disorders a�ect all a�erents it is likely 
that di�erent treatments (e.g., gentamicin) and disorders will 
di�erentially a�ect the sustained and transient systems.

Acceleration Frequency
�e frequency of the acceleration stimulus is one such tool. 
Sustained and transient systems have di�erent frequency 
responses to acceleration stimulation (10)—the irregular neurons 
of both canals and otoliths showing a high-frequency preference, 
which has been interpreted as jerk sensitivity.

Galvanic
Galvanic stimulation via surface electrodes on the mastoids has 
been used in a very large number of studies of human vestibular 
responses. GVS is a complex stimulus which acts on all vestibular 
sense organs (11). It had been argued that GVS acts only on the 
a�erent axon at the “spike trigger zone,” but the careful experiments 
of Gensberger et al. (69) show that GVS acts on both receptors 
and the axon. While irregular a�erents do have a lower threshold 
for galvanic stimulation compared to regular neurons  (11, 12), 
the numerical di�erence is not large and the variability between 
neurons is considerable. In principle, low-current, short-duration 
galvanic stimulation should preferentially activate irregular 

axons, and indeed, this stimulus is e�ective for evoking a myo-
genic response which, in light of the above evidence, we consider 
is a transient vestibular response—vestibular-evoked myogenic 
potentials (VEMPs)—discussed below (70, 71).

Vibration
�e very di�erent otolithic a�erent responses to vibration mean 
that vibration is a particularly powerful tool in di�erentiating 
sustained and transient responses. Otolithic irregular a�erent 
neurons are activated by high frequencies of vibration, whereas 
otolithic regular neurons are not activated at intensities used in 
usual clinical practice. Some caution is needed since recent results 
have shown that low-frequency BCV is not selective for otoliths: 
even in animals with intact bony labyrinths, 100-Hz BCV activates 
canal a�erents (17). But the response of these canal neurons to 
BCV declines as the BCV frequency is increased, so that at 500 Hz 
there is no detectable activation at intensities which are used 
clinically. In light of this, we consider it reasonable to conclude 
that if high-frequency vibration (e.g., 500 Hz) elicits a response, 
then it is due to the action of the irregular otolithic a�erents—the 
otolithic transient system, originating predominantly from type I 
receptors at the striola.

Vestibular-Evoked Potentials (VsEP)
Brief pulses of linear acceleration cause a short latency-evoked 
potential (called a VsEP) recorded in a variety of species with a 
variety of recording montages (72–76). Control experiments a�er 
cochlea ablation have shown that the VsEP is not due to the coch-
lea, but is a neural response to otolithic activation (77). �e VsEP 
would appear to be due to the otolithic transient system, since 
it is change in linear acceleration (jerk) which is the adequate 
stimulus for the VsEP (78).

Gentamicin
Animal studies have shown that the type I receptors are more 
vulnerable to the e�ects of ototoxic antibiotics than are the type II 
receptors (79–81). In human patients, gentamicin is administered 
for therapeutic reasons either systemically or more commonly by 
intratympanic injection [intratympanic gentamicin (ITG)]. On 
the above account, it follows that gentamicin should a�ect the 
transient system and leave the sustained system relatively unaf-
fected. As we show below, the responses to ITG are now identify-
ing the di�erences between the sustained and transient systems.

SUSTAINED AND TRANSIENT ASPECTS 

OF BEHAVIORAL RESPONSES

Otolithic Responses
�ere are profound di�erences in otolith-mediated responses—
even eye-movement responses—due to the characteristics of the 
otolithic stimuli. For example: on the one hand are maintained 
eye-movement responses to maintained otolithic stimuli, such 
as maintained roll-tilt. On the other hand, there are brief eye-
movement responses to transient otolithic stimuli such as clicks 
or brief tone bursts (Figure  6). �e otoliths transduce both of 
these very di�erent stimulus aspects, and we suggest they do so by 
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during right mastoid stimulation (columns 1 and 2) and bilateral mastoid stimulation with a B71 bone oscillator. Tone bursts of 20 ms were presented at 

360-ms intervals over a 12-s recording period. The bottom trace in each panel shows the mean values and 95% con�dence intervals of the individual responses in 

that panel. The eye moves horizontally and torsionally away from the side of mastoid stimulation during unilateral mastoid stimulation, but there is no clear response 

in either horizontal or torsion during simultaneous bilateral stimulation. The eye moves vertically down during both unilateral and bilateral mastoid stimulation, the 

response being greater during bilateral than unilateral stimulation. Reprinted from Ref. (138), © New York Academy of Sciences, 2011.
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means of the di�erent receptor types and the di�erent sustained 
and transient neural systems. We discuss these examples below.

A maintained rolled head position alters the linear accel-
eration stimulus to the otoliths and causes both eyes to adopt a 
rolled position in the orbit in the opposite direction to head tilt 
(82–84). �is response is called ocular counterrolling (OCR). It is 
a maintained ocular response with very little adaptation, even 
over minutes, to the maintained otolithic stimulus (85). OCR 
would appear to be due to the action of regular a�erents which 
show very little adaptation to maintained otolith stimulation 

(7) in contrast to irregular a�erents. �ese regular a�erents are 
bouton or dimorphic a�erents and receive input primarily from 
extrastriolar receptors, many of them being type II receptors 
(86), so we suggest that OCR re�ects primarily the activity of the 
sustained system—regular otolithic a�erents.

In contrast, brief bursts of 500-Hz BCV, which physiology 
has shown to selectively activate otolithic irregular a�erents 
originating from striolar receptors, cause short-latency stimulus-
locked eye movements in guinea pigs (87) and also in humans 
(see Figure 6) (88, 89). �e pattern of these vibration-induced 
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eye movements is consistent with the pattern of cat eye move-
ments to direct electrical stimulation of the utricular nerve (90). 
We suggest these small vibration-induced eye movements re�ect 
the action of the transient system, since neurobiotin staining has 
shown that it is irregular a�erents synapsing on striolar type I 
receptors which are di�erentially activated by the same 500-Hz 
vibration stimulus eliciting the eye movements. In con�rmation 
is the fact that the analogous guinea pig eye-movement response 
to 500 Hz BCV is abolished by ITG at low concentration which 
does not a�ect auditory brainstem threshold response (87).

It has been argued that irregular neurons comprise the 
transient system. But how is it that their activation, for example, 
by sustained vibration, can result in maintained nystagmus? For 
example, maintained 100-Hz vibration stimulation of one mas-
toid in a patient with unilateral loss induces a nystagmus during 
the stimulation (vibration-induced nystagmus). It would appear 
that such a maintained nystagmus during a maintained vibration 
stimulus should be due to the sustained system (regular neurons), 
which the physiology shows, are not activated by vibration.

�e answer lies in the fact that for irregular neurons every 
single cycle of the stimulus is the direct stimulus to the receptor/
a�erent neuron. So a maintained 100-Hz vibration will cause 100 
repetitive activations, once per cycle, of irregular a�erents. So 
the average �ring rate of irregular neurons will increase, just as 
would occur during a sustained de�ection of the cupula during 
an angular acceleration, and a sustained nystagmus will result.

�ere are three pieces of evidence in support of such an 
account:

 1. stimulus onset and o�set. Vibration-induced activation of 
irregular neurons starts on the �rst cycle of the stimulus and 
so one would expect any nystagmus to start at the very onset 
of the vibration. �at is the observed result [summarized in 
Dumas et al. (35)].

 2. Similarly, the vibration-induced neural activation ceases 
abruptly at vibration o�set and so one expects the nystagmus 
to cease abruptly without any decay or overshoot. �at is the 
observed result (35).

 3. As vibration frequency is increased on successive trials 
from 30 to 100 Hz, the number of phase-locked spikes/s will 
increase and so one expects nystagmus velocity to increase in 
a corresponding fashion. �at is the observed result (35). For 
these reasons, we consider that a repetitive activation of the 
transient system can produce a maintained eye movement, or 
nystagmus, just as can a maintained de�ection of the cupula 
during a long-duration angular acceleration. �e train of 
action potentials in the a�erent �bers will be indistinguishable 
for these two stimuli.

�ese results are complemented by other evidence from 
the preparatory potentials of the muscles activated by BCV, 
called VEMPs. �ese are recorded in response to brief clicks 
or bursts of 500-Hz ACS or BCV, which the physiological 
evidence shows to selectively activate otolith irregular neurons. 
In response to stimuli which are speci�c for otolith irregular 
a�erents, these VEMPs are small EMGs recorded by electrodes 
beneath the eyes [ocular vestibular-evoked myogenic potential 

(oVEMPs)] or over the tensed sternocleidomastoid muscle 
[cervical vestibular-evoked myogenic potential (cVEMP)] 
(91–93) (Figure  7). �e short latency potentials have been 
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demonstrated to be indicators of utricular function (oVEMP) 
and saccular function (cVEMP) (87, 94, 95). VEMPs are now 
widely used clinically (71, 95).

So, in our terms, ocular counter roll is a test of static (main-
tained) otolith function—how the otoliths respond to maintained 
roll-tilt stimulus—in contrast to VEMP responses, which are tests 
of otolith dynamic responses to transient otolithic stimulation 
mediated by otolith striolar type I receptors and otolith irregular 
a�erents. Regular a�erents are not activated by these transient 
sounds and vibrations, which are such e�ective stimuli in eliciting 
otolith dynamic responses.

What is the clinical value of making this distinction? 
Immediately a�er surgical unilateral vestibular loss, there is 
asymmetrical OCR (82), but over time the e�ect of unilateral 
loss on OCR is not consistent, so that the OCR test of sustained 
function does not clearly detect a unilateral vestibular loss acutely 
and chronically. Presumably, processes of vestibular compensa-
tion are acting to reduce any asymmetry. �e data from studies 
of the OCR of patients a�er vestibular neuritis also show great 
variability, but here it is not known conclusively whether otolith 
function may have returned a�er the neuritis (96, 97). On the 
other hand, VEMPs do show a clear asymmetry a�er unilateral 
vestibular loss acutely and chronically a�er surgical unilateral 
loss (98, 99) and a�er neuritis (100). �e asymmetrical VEMPs 
are preserved for many years and probably permanently a�er the 
vestibular loss (92, 101–103). �e clinical value lies in realizing 
that one cannot rely on the results of one of the tests of otolith 
function: the test of static otolithic function—OCR—which may 
show symmetrical responses indicating normal otolithic func-
tion, whereas in the same patient, the VEMPs may show the 
loss of transient otolithic function and so identify the patient’s 
problem (95, 104).

Semicircular Canal Responses
During normal head movements, the neural drives from the 
sustained and transient systems are combined to generate smooth 
compensatory responses. For example, in response to brief, pas-
sive unpredictable horizontal head angular accelerations (a head 
impulse), they combine to generate a smooth compensatory eye 
movement—the vestibulo-ocular re�ex (VOR). One index of the 
adequacy of vestibular responses is VOR gain, typically de�ned as the 
ratio of the area under the eye velocity record to the corresponding 
area under the head velocity record during the head impulse. �is 
clinical test is called the video head impulse test (vHIT) (105, 106). 
VOR gain measured in this way is a global measure of the whole 
response to a head turn, and as such, it cannot show the �ne detail 
of the time series of the response which may re�ect the way in which 
the sustained and transient systems are combined. Fortuitously, 
an answer about how these systems work may be provided by the 
therapeutic treatment of patients with Meniere’s disease by the use 
of intratympanic injections of gentamicin (ITG) (107–111).

As noted above, histological studies in animals have shown 
that gentamicin di�erentially attacks type I receptors, and so ITG 
presumably selectively attenuates the contribution of type I recep-
tors to generate responses to transient stimuli (79–81). We have 
argued that this loss of type I receptors will di�erentially degrade 
the irregular (transient) a�erent system. Consistent with this 
account is the evidence that the human transient eye-movement 
response to brief 100-ms square wave pulses of electrical stimu-
lation is impaired a�er systemic gentamicin, to a greater extent 
than the tonic response (112). �e new evidence showing that 
galvanic stimulation acts on receptors (69) would predict such a 
decrease in the GVS response if the gentamicin-vulnerable type I 
receptors were degraded.

Recently, this ITG procedure for the treatment of patients with 
Meniere’s disease has been combined with sequential vHIT testing 
of semicircular canal function (106) as a monitor of the e�ect of 
ITG (110). In many patients, the pre-ITG treatment eye-movement 
response to impulsive head rotations may be normal, but a�er just 
a single dose, there is frequently a change in the exact time series of 
the eye-movement response. Most clinicians have been interested 
in the global VOR gain measure since it appears that even a small 
reduction in VOR gain a�er ITG is associated with a decrease in 
patient reports of vertigo (110). �e small reduction in VOR gain 
is objective evidence that the ITG treatment has worked, and the 
ITG injections should stop in order to minimize risk of potential 
hearing loss. On the evidence presented here, we suggest the exact 
time series of the response should be examined in detail. From a 
physiological viewpoint, there is good reason for such a change in 
the response pattern because it is likely that the early response is 
dominated by the very fast dynamics of the type I receptors and 
irregular a�erents for the semicircular canals (113, 114).

Sustained and Transient Systems in Blood 

Pressure Control and Vestibulo-

Sympathetic Responses?
�ere is now strong evidence that otolithic inputs contribute to 
early transient adjustments to human blood pressure control 
and muscle sympathetic nerve activity (MSNA) (115–122). �e 
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neural pathways for these functions are even being mapped 
(123–125). �ese responses are modulated by sinusoidal galvanic 
stimuli which preferentially activate irregular otolithic neurons, 
although regular neurons are activated by galvanic stimuli at high 
intensities (11). Given that BCV is such an e�ective stimulus for 
the transient system, it will be of interest to see if bursts of 500-Hz 
BCV also modulate blood pressure and MSNA since that would 
establish the transient circuit from otolithic striolar receptors to 
sympathetic responses.

Escape Movements
Recent evidence suggests that type I receptors may even have a 
role in triggering escape behavior in response to hypoxia, and 
by implication in sudden infant death syndrome. Under hypoxic 
conditions, healthy mice show marked escape movements, but 
following ITG (which most probably disables the transient sys-
tem selectively)—mice in the same hypoxic conditions show little 
escape movement (126–128). �e neural pathways by which the 
transient system triggers escape behavior is not at all clear, but the 
possible signi�cance of these results demands replication.

Proportional–Integral–Derivative (PID) 

Control
�e existence of these complementary transient and sustained 
systems seems to re�ect a fundamental principle in the design 
of robotic control of limb movement. Designers of robotics have 
adopted a principle for initiation of movement of robots called a 
PID controller (129, 130). �e principle is that movement con-
trollers should be governed not by a single control signal, such 
as velocity, but by a combination of acceleration, velocity, and 
position signals (131). Controlling movement by just one signal 
(e.g., velocity) does not ensure dynamical stability.

�ere is a big advantage in such a combination especially at the 
onset of a movement, since the acceleration component initiates 
the responses rapidly. If there had only been a velocity signal at 
the onset, the early response would have been inadequate. �e 
appropriate combination of acceleration and velocity provides a 
functionally e�ective way of dealing with response initiation. In 
an analogous fashion, we suggest these transient and sustained 
inputs are combined to yield dynamically stable oculomotor 
responses (and postural responses) analogous to PID control. 
Zhou et  al. (132) have shown how a PID model can closely 
approximate oculomotor performance.

A Complementary View
A series of studies from Cullen’s group has approached the regu-
lar–irregular distinction from the point of view of analyzing the 
neural coding of information about self motion. �eir analysis of 
the responses of regular and irregular monkey single neurons to 
repetitions of various vestibular stimuli leads to the conclusion 
that it is irregular neurons that have distinct advantages in self 
motion coding, for example, great temporal precision. Regular 
a�erents code information via changes in �ring rate, whereas 
irregular a�erents give information about self motion via precise 
spike timing (133–137). �e evidence we have presented here, 
such as the phase locking of irregular neurons to very high vibra-
tion frequencies, is exactly consistent with such ideas.

SUMMARY

�e old ideas of the otoliths being uniform structures function-
ing mainly to signal direction of gravity or low-frequency linear 
acceleration is just totally inadequate. It is now being replaced 
by evidence showing that there is complex anatomical di�er-
entiation of receptors and a�erents in each macula and also in 
the cristae of the canals. �is anatomical diversity is matched 
by a�erent diversity of physiological response with di�erent 
neurons signaling sustained aspects of the stimulus as opposed 
to other neurons signaling changes in stimulation (the transient 
system). �ere is corresponding di�erentiation of neural types 
and neural responses at the vestibular nuclei. �ese di�erent 
systems—sustained and transient—are di�erentially susceptible 
to ototoxic antibiotics, have di�erent frequency responses, 
di�erent sensitivity to galvanic stimulation, and most interest-
ingly di�erential sensitivity to high-frequency BCV (500  Hz) 
and ACS. �ese di�erential sensitivities are now allowing the 
di�erential contribution of sustained and transient systems to 
vestibular responses, such as eye movements, and possibly other 
vestibular-evoked responses—such as blood pressure—as well. 
�e prospect of particular treatments targeting one or the other 
of the systems is now being realized in the clinic by therapeutic 
treatment of ITG preferentially attacking type I receptors with 
reported bene�t to patients while retaining considerable ves-
tibular function. �is paper has highlighted parallels between 
the response characteristics of vestibular a�erents and basic 
principles of robotic design.

�e old terms “vestibular stimulation” or “otolith stimulation” 
are just too vague—we now know that a�erent input with very 
di�erent dynamics conveys a range of di�erent information. 
�e evidence reviewed in this paper has pointed to the value 
of regarding vestibular responses in terms of the transient and 
sustained characteristics.

DEDICATION

�is review is dedicated to Bernard Cohen who has made so 
many pioneering contributions to understanding vestibular 
function.
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