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Abstract 25 

Bacteria often evolve resistance to phage through the loss or modification of cell-surface 26 

receptors. In Escherichia coli and phage λ, such resistance can catalyze a coevolutionary 27 

arms race focused on host and phage structures that interact at the outer membrane. Here, 28 

we analyze another facet of this arms race involving interactions at the inner membrane, 29 

whereby E. coli evolves mutations in mannose permease-encoding genes manY and manZ 30 

that impair λ’s ability to eject its DNA into the cytoplasm. We show that these man 31 

mutants arose concurrently with the arms race at the outer membrane. We tested the 32 

hypothesis that λ evolved an additional counter-defense that allowed them to infect 33 

bacteria with deleted man genes. The deletions severely impaired the ancestral λ, but 34 

some evolved phage grew well on the deletion mutants, indicating they regained 35 

infectivity by evolving the ability to infect hosts independently of the mannose permease. 36 

This coevolutionary arms race fulfills the model of an inverse-gene-for-gene infection 37 

network. Taken together, the interactions at both the outer and inner membranes reveal 38 

that coevolutionary arms races can be richer and more complex than is often appreciated. 39 

 40 

IMPACT STATEMENT 41 

Laboratory studies of coevolution help us understand how host defenses and pathogen 42 

counter-defenses change over time, which is often essential for predicting the future 43 

dynamics of host-pathogen interactions. One particular model, termed “inverse-gene-for-44 

gene” coevolution, predicts that coevolution proceeds through alternating steps, whereby 45 

hosts lose the features exploited by pathogens, and pathogens evolve to exploit 46 

alternative features. Using a classic model system in molecular biology, we describe the 47 
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nature and timing of a previously overlooked step in the coevolution of E. coli and 48 

bacteriophage lambda. Our work demonstrates that this mode of coevolution can 49 

profoundly re-shape the interactions between bacteria and phage. 50 

 51 

INTRODUCTION 52 

An issue of longstanding interest is whether the coevolution of bacteria and virulent 53 

(lytic) phages involves endless rounds of bacterial defenses and phage counter-defenses. 54 

Based on experiments in chemostats, Lenski and Levin (1) suggested that bacteria 55 

typically had the upper hand, as Escherichia coli often eventually evolved resistance by 56 

deleting or inactivating the phage’s specific receptor, which the phage could not readily 57 

overcome. This resistance did not imply the extinction of the phage, however, because it 58 

often reduced the bacteria’s competitiveness for resources. Instead, the typical outcome 59 

was coexistence of resistant and sensitive bacteria, with the latter more efficient at 60 

exploiting resources and thus able to sustain the phage’s persistence (2, 3). A study of 61 

cyanobacteria and their phages in the marine environment also supported this pattern (4).  62 

On the other hand, Lenski and Levin also pointed out that bacteria would lose the 63 

upper hand if the phage targeted a receptor that was essential for the bacteria to survive in 64 

their current environment. They cited then-recent work by Williams Smith & Huggins (5, 65 

6), who showed they could successfully treat mice with otherwise lethal bacterial 66 

infections using a phage that specifically targeted a receptor required for the bacteria to 67 

colonize the mice. As the problem of bacterial resistance to antibiotics has grown, similar 68 

strategies are now being tested in which phage that specifically target drug-efflux pumps 69 

are deployed as therapeutic agents (7-9). In the meantime, yet other forms of bacteria-70 
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phage coevolution have been discovered, including CRISPR systems in bacteria and 71 

countermeasures to avoid these defenses in phage (10-13).  72 

Another part of the argument that bacteria had the upper hand in the coevolutionary 73 

arms race depended on the idea that, while phages could often counter minor mutations in 74 

receptors, it was much more difficult for them to evolve the ability to use another 75 

receptor if the bacteria simply stopped producing the usual receptor (1). However, more 76 

recent work has shown that some host-phage pairs can undergo longer coevolutionary 77 

cycles involving defenses and counter-defenses at the outer membrane (14-16), and some 78 

phages can evolve to use new receptors even on a short time scale (17). This 79 

coevolutionary dynamic – in which hosts lose structures exploited by specific pathogens, 80 

and those pathogens evolve to exploit alternative structures – is called inverse-gene-for-81 

gene (IGFG) coevolution (18-21). This IGFG framework is useful for representing 82 

changes in coevolving communities of bacteria and phage (Fig. 1). For example, if phage 83 

cannot evolve to exploit new features after bacteria have evolved resistance, then phage 84 

populations may be evolutionarily static (22, 23). Conversely, if phage exploit essential 85 

features of the bacteria that cannot be eliminated, then the host’s evolution is constrained 86 

and phage infectivity may remain elevated (6, 8). Our study builds on one such example 87 

of IGFG coevolution, in which it was discovered that populations of a virulent strain of 88 

phage λ often evolved the ability to use another outer-membrane receptor after 89 

coevolving E. coli reduced their expression of the receptor that the phage had initially 90 

exploited (17, 24).  91 

Phage λ requires a two-step infection process to cross the outer and inner bacterial 92 

membranes (Fig. S1). The λ tail initiates infection at the outer membrane of the cell, 93 
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where its J protein fibers adsorb to the bacterial protein LamB (25, 26). The tail proteins 94 

V and H allow λ to enter the periplasm and thereby interact with the mannose permease 95 

proteins (encoded by manY and manZ) in the inner membrane, which λ uses to eject its 96 

genome into the cytoplasm (27-30). Resistance to λ can occur by blocking λ’s entry at 97 

either the outer or inner membrane, with resistance mutations typically mapping to lamB, 98 

lamB’s positive regulator malT (25, 26), or the mannose permease genes (27, 28, 30) 99 

(Fig. S1). It has been shown that sensitive E. coli and lytic λ can coexist, along with 100 

resistant E. coli mutants, in both continuous (31) and batch culture regimes (17). Previous 101 

analysis of this coevolving system has revealed IGFG dynamics focused on outer 102 

membrane defenses and counter-defenses. That is, E. coli often first evolves malT 103 

mutations that reduce LamB expression, resulting in increased resistance to λ (17, 31, 104 

32), and λ then regains infectivity through mutations in the J gene that increase its 105 

adsorption rate and fitness (31, 33). In some, but not all, experiments, specific sets of J 106 

mutations allow the novel exploitation of a second outer membrane protein, OmpF, 107 

catalyzing further evolution including mutations in the ompF gene (17, 34).  108 

Despite extensive knowledge about the evolution of the initial (adsorption) and final 109 

(lysis) steps of λ infection of E. coli, much less is known about the evolution of the 110 

genetic networks during other stages of infection, including λ’s passage through the 111 

periplasmic space and the ejection of its DNA into the host cytoplasm. Meyer et al. (17) 112 

found that E. coli coevolving with λ often acquired mutations that impacted their ability 113 

to grow on mannose, which presumably were favored because they disrupt entry of the 114 

phage genome via the mannose permease. In this study, we examine how this 115 

coevolutionary arms race – previously focused on the cell’s outer membrane – also set off 116 
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an arms race involving the host’s inner membrane, including the mechanism λ uses to 117 

eject its DNA through that membrane and into the bacteria’s cytoplasm.  118 

 119 

METHODS 120 

Bacteria and phage strains 121 

Meyer et al. (17) founded 96 replicate cultures with E. coli B strain REL606 and lytic 122 

phage λ cI26, serially passaged the communities for 20 days, and froze mixed-123 

community samples daily. Some of the phage populations evolved the ability to use the 124 

outer membrane protein OmpF as a receptor, some of the bacterial populations evolved 125 

mutations that affected mannose metabolism, and some communities changed in both 126 

respects. We obtained phage isolates from two of the populations (Table 1, Pop-A and 127 

Pop-B) that changed in both of these key respects; in each case, however, the isolates 128 

were taken four days before the phage had evolved the new ability to use the OmpF 129 

receptor (Table 1, Supplementary Material). E. coli K12 strains BW25113, JW1807, and 130 

JW1808 are from the Keio collection (35). REL606 ∆manZ was constructed using a two-131 

step allelic exchange (Supplementary Material, Table S1, and Table S2). 132 

Phage growth assays 133 

We measured the population growth of the ancestral and evolved phages under the same 134 

culture conditions as those in which the communities evolved (17) (Supplementary 135 

Material). The initial densities were ~9 × 10
6
 cells per ml and ~1 × 10

4
 phage per ml. We 136 

calculate the phage’s net population growth as the ratio of its final density after one day 137 

to its initial density; we show the resulting net growth on a log10-transformed scale. We 138 

enumerated the initial and final phage populations using dilution plating and soft-agar 139 
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overlays (Supplementary Material). We performed 5 or 6 replicate assays for each phage-140 

host combination shown in Figure 2. 141 

Frequency of mutants with altered mannose phenotypes 142 

We estimated the frequency of bacteria with mutations affecting the mannose permease 143 

by plating from the time-series of frozen samples taken from populations Pop-A and Pop-144 

B on tetrazolium mannose agar, as done previously (17). Mutants with reduced ability to 145 

metabolize mannose form deeply pigmented colonies that can be readily distinguished 146 

from those of the ancestral strain REL606, which forms light pink colonies on that 147 

medium.  148 

Data accessibility: Data are available as Supplementary Datasets S1 (net population 149 

growth of phage λ on wild type and knockout bacteria) and S2 (temporal dynamics of 150 

man mutants in E. coli populations).  151 

 152 

RESULTS AND DISCUSSION 153 

Our experiments focus on two independently coevolved communities of mixed E. coli 154 

and λ populations, designated Pop-A and Pop-B (17). Both λ populations evolved from a 155 

common ancestral phage (strain cI26). From each evolved population, we isolated a 156 

single phage clone: λ-A from Pop-A and λ-B from Pop-B (Table 1). Each clone was 157 

isolated 4 days before its population evolved the ability to use the OmpF receptor; hence, 158 

the phage clones were isolated on different days of the coevolution experiment performed 159 

by Meyer et al. (17).  160 

To examine whether and how coevolution affected λ’s dependence on the ManY and 161 

ManZ proteins, we measured the population growth of the ancestral (cI26) and the two 162 
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coevolved phage isolates (λ-A and λ-B) on bacterial strains with and without the manY 163 

and manZ genes (Table 1). Both the ancestral and evolved phage isolates grew well on 164 

bacterial strains with intact manY and manZ genes, including both the ancestral E. coli B 165 

strain, REL606, used in the coevolution experiment, and the K12 genetic background in 166 

which the Keio collection was made (Fig. 2, Table 1). Deletion of either the manY or 167 

manZ gene in either background severely reduced the ancestral phage’s population 168 

growth. In two cases (REL606 ∆manZ and Keio ∆manY), we saw no growth whatsoever 169 

in the ancestral phage (cI26) population after 24 hours; in the other case (Keio ∆manZ), 170 

the ancestral phage population increased ~10-fold, but that was five orders of magnitude 171 

less than the increase on the same background with both mannose permease genes 172 

present. In striking contrast, both evolved phage isolates showed substantial growth on all 173 

three bacterial strains that lacked either the manY or manZ gene (Fig. 2). These results 174 

thus indicate an inverse-gene-for-gene coevolutionary interaction at the inner membrane. 175 

That is, the bacteria modified or lost the mannose permease, which the ancestral phage 176 

used to eject its genome into the cytoplasm, and the phage countered by evolving 177 

independence of that function. 178 

To determine when the mutant mannose permease mutants arose in the two E. coli 179 

populations studied here, we plated frozen samples from the coevolution experiments on 180 

tetrazolium mannose agar, on which man mutants form pigmented colonies 181 

distinguishable from the wild type (Supplementary Material) (36). We are particularly 182 

interested in the timing of the appearance of the man mutants relative to two other steps 183 

in the coevolutionary arms race that were previously characterized: (i) the malT 184 

mutations that reduced the bacteria’s expression of LamB and thus the adsorption of the 185 
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ancestral phage (33); and (ii) λ’s new ability to adsorb to OmpF as an alternative receptor 186 

(17). Our phage-growth data demonstrate that manY and manZ deletions confer 187 

substantial resistance even to the ancestral phage, which can use only the LamB surface 188 

receptor (Fig. 2). That result suggests the possibility that the man mutants could have 189 

arisen early in the coevolution experiments, perhaps alongside or even before the malT 190 

mutations that provided resistance at the outer membrane. However, time-course data 191 

show that the man alleles consistently reached high frequencies (above the detection 192 

limits, shown as gray dashed lines in Fig. 3) only after the fixation of the malT mutations, 193 

which occurred by day 8 in both populations studied here (17) (Fig. 3, Fig. 4, Table S3). 194 

These temporal data also show that the man mutations had nearly fixed in both 195 

bacterial populations (frequencies >95% on day 10 in Pop-A and on day 12 in Pop-B), 196 

but then the mutants sharply declined the next day. This reversal suggests these mutants 197 

were killed by phages that evolved independence of the mannose permease, and it is 198 

consistent with previous data showing that mutant man alleles rarely fixed in the bacterial 199 

populations (17). Meyer et al. (Fig. S2 in (17)) reported that the bacterial population 200 

densities remained high (~2 × 10
9
 cells per ml, near the carrying capacity of the medium) 201 

throughout this period of the evolution experiment. Therefore, the mutant frequencies 202 

that we observed (Fig. 3) correspond to ~4 × 10
7
 cells per ml (about 2% of the total 203 

population, the limit of detection in that assay) to almost 2 × 10
9
 cells per ml (the 204 

carrying capacity). With such large population sizes, any phage mutants that gained the 205 

ability to infect the man mutants would have access to a large number of hosts, and 206 

correspondingly, a large fitness benefit. The resulting growth of the man-independent 207 

phage population would drive the frequency of man mutants down, especially if the man-208 
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independent phages preferentially infected and killed the man mutants relative to other 209 

cells that retained the wild-type permease. Fitness costs associated with loss of the 210 

mannose permease may also have contributed to the reversal, although the costs of the 211 

resistance mutations are small compared to their benefit in the presence of phage (36).  212 

In host Pop-A, variation in colony morphology further suggested that different man 213 

alleles were present before and after the sudden decline in the frequency of man mutants 214 

on day 11 (Fig. 4, Supplementary Material). The initial boom and bust of the mutant man 215 

alleles in both populations also occurred before the phage had evolved to use OmpF (Fig. 216 

3, dashed arrows). Whether λ gained independence from the mannose permease by 217 

exploiting another inner membrane protein, and whether E. coli did (or could) respond by 218 

eliminating such a structure, are interesting questions for future work.  219 

Our results are broadly consistent with genetic and molecular biology studies of λ 220 

host-range mutations. Scandella and Arber (30) isolated E. coli mutants that allowed 221 

phage adsorption to the cell envelope but interfered with ejection of the phage genome, 222 

thereby reducing infection success to a small fraction of that observed on wild-type cells. 223 

The responsible mutations were mapped to the mannose permease operon (27, 37), and λ 224 

mutants that could infect these mutant bacteria had mutations in phage genes V or H (38). 225 

Mutations in V and H have also been observed in another population in this study system 226 

(39). Williams et al. (37) found that, for E. coli strain K12, manZ is not strictly required 227 

for wild-type λ to eject its genome, and our results accord with that finding (Fig. 2, Keio 228 

background). However, our results suggest that λ cI26 does require manZ when infecting 229 

E. coli strain B, at least in the culture conditions that we used (Fig. 2, REL606 230 

background). Alternatively, λ cI26 might occasionally infect and replicate in hosts 231 
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without manZ, but at a rate that is offset by the decay or inactivation of free virus 232 

particles under these conditions (17, 33). In any case, the net population growth of the 233 

ancestral phage on either the ∆manY or ∆manZ bacteria is insufficient to offset the 100-234 

fold daily dilutions (Fig. 2, dashed line) that took place during the coevolution 235 

experiment (17). 236 

Taken together, our results imply that E. coli and λ coevolved in an inverse gene-for-237 

gene manner (18) (Fig. 1). This coevolution involved two infection steps – crossing first 238 

the outer and then the inner membrane – and at least three, and probably four, distinct 239 

host features (Figs. 1, 5, and S1). E. coli evolved resistance to phage λ through the loss or 240 

alteration of maltose transport across the outer membrane (via mutations in malT) and 241 

mannose transport across the inner membrane (via mutations in manY or manZ), while λ 242 

evolved to exploit other E. coli features including another outer membrane protein 243 

(OmpF) and, presumably, some as yet unidentified, alternative inner membrane protein 244 

(shown as encoded by the hypothetical imx gene in Fig. 5). While our study addresses 245 

one particular bacteria-phage interaction in a simple laboratory setting, it illustrates the 246 

extent to which the resulting coevolutionary arms races can be richer and more complex 247 

than is often appreciated.  248 

There are many alternative coevolutionary paths through an inverse-gene-for-gene 249 

network that has four features subject to host defenses and parasite counter-defenses (Fig. 250 

5). This multiplicity of potential paths suggests that mutation and selection could drive 251 

replicate communities to different regions of the coevolutionary landscape, raising other 252 

interesting questions. How might different first-step resistance mutations affect the 253 

subsequent host-range evolution of the phage and the further evolution of host resistance? 254 
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To what extent can IGFG systems continuously evolve host defenses and parasite 255 

counter-defenses? What is the effect of such prolonged coevolution for community 256 

diversity? Do communities become increasingly divergent as the coevolving populations 257 

follow different paths through the network, or might they eventually converge on the 258 

same phenotypic states after a period of divergence? How important are evolutionary 259 

innovations in opening new paths, relative to pleiotropic tradeoffs that may close off 260 

certain paths? Future work should investigate these and other questions about the 261 

coevolution of bacteria and phage and the structure of their genetic interaction networks. 262 
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Figures 397 

 398 

Fig. 1. Genetic interaction networks during gene-for-gene (GFG) coevolution 399 

(panel A) and inverse-gene-for-gene (IGFG) coevolution (panel B). In both 400 

scenarios, host alleles affect selection on pathogen phenotypes, and pathogen 401 

alleles influence selection on host phenotypes. However, the two models have 402 

different implications for understanding historical coevolution and predicting 403 
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future changes. During GFG coevolution, hosts evolve resistance by gaining 404 

resistance genes, and pathogens evolve by losing genes that elicit host 405 

defenses. GFG coevolution is common among plants and their bacterial 406 

pathogens; it may also occur in bacteria-phage interactions that involve 407 

restriction-modification and CRISPR defenses. During IGFG coevolution, 408 

pathogen infectivity requires the exploitation of specific host features, and 409 

resistance involves eliminating the exploited features. Unlike in the GFG model, 410 

host defenses in the IGFG model do not require pathogen recognition, and the 411 

pathogen’s evasion of host resistance does not require the loss of a defense 412 

elicitor. 413 

 414 

 415 

 416 

 417 

 418 

 419 
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 421 

Fig. 2. Net population growth of phage λ on wild type, ∆manY, and ∆manZ 422 

bacteria. Whether the phage could grow was assessed by performing one-tailed 423 

t-tests on the log10-transformed ratio of phage population densities at the start 424 

and end of a one-day cycle, with the null hypothesis of zero growth (***, p < 425 

0.001; **, 0.001 < p < 0.01; ns, not significant, p > 0.05). Each test was based on 426 

5 or 6 replicate assays. Phage isolates λ-A and λ-B evolved in a batch-culture 427 

regime with 100-fold dilution each day, and so 100-fold growth was required for 428 

their persistence; this break-even level is indicated by the dashed line. 429 

  430 
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 431 

Fig. 3. Temporal dynamics of man mutants in E. coli populations Pop-A (panel A) 432 

and Pop-B (panel B). Mutant malT alleles had already reached fixation in both 433 

populations by day 8 (17). Bacteria with man mutations, which confer resistance 434 

to the ancestral phage λ, rose to high frequencies and then declined sharply in 435 

abundance in both populations after day 8, but before λ had evolved to use the 436 

alternative receptor OmpF (timing indicated by vertical dashed arrows). These 437 

data imply that the man mutations evolved on malT mutant backgrounds, and 438 

that λ evolved independence of the mannose permease – causing the 439 
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precipitous decline in the frequency of man mutants – before it evolved the ability 440 

to use OmpF. The shaded regions indicate the maximum and minimum 441 

frequencies of the man mutants based on analyzing two samples per population 442 

each day (mean N = 90 colonies tested per sample, minimum 29 colonies). The 443 

horizontal gray dashed lines show the approximate limit of detection of the man 444 

mutants (0.019 for panel A, 0.022 for panel B). 445 

 446 
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 448 

Fig. 4. Evolution of man-related colony morphology on tetrazolium mannose 449 

agar. E. coli mutants with reduced ability to metabolize mannose form more 450 

deeply pigmented colonies than the wild type bacteria. Three representative 451 

colonies are shown for each sample from days 1-20 of two coevolution 452 

experiments. Representative colonies within a column are from the same agar 453 

plate and shown at the same magnification after incubation for 18-21 hours. 454 

Panel A: Pop-A. Panel B: Pop-B. Panel C: Comparison of wild type and ∆manZ 455 

bacteria in the same E. coli strain B genetic background. 456 
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 458 

Fig. 5. An inverse-gene-for-gene model showing the structure of the genetic 459 

network for coevolving E. coli and λ populations. Columns indicate bacterial 460 

genotypes with four exploitable features, and rows indicate λ genotypes that 461 

exploit those features: mal, maltose transport across the outer membrane; man, 462 

mannose transport across the inner membrane; ompF, glucose and electrolyte 463 

transport across the outer membrane; imx, a hypothetical inner membrane 464 

feature that is exploited by λ that evolved independence of the mannose 465 

permease. The "+" symbol indicates that either the bacteria have the feature or 466 

the phage exploit the feature. The "–" symbol indicates the bacteria lack the 467 

feature, express it to a reduced degree, or otherwise modify it to minimize phage 468 

infection. Asterisks (*) indicate infectivity for each host-phage pair, with more 469 

asterisks indicating greater infectivity. Adaptive changes through the network can 470 
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proceed by two types of moves: E. coli resistance (to the right across rows), and 471 

increased λ infectivity (downward across columns). The coevolving communities 472 

were founded by host genotype a and phage genotype vi (shown by the black 473 

circle). The communities analyzed in this study appear to have moved through 474 

the shaded nodes in five steps, as indicated by the arrows. 475 
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Tables 477 

Table 1. E. coli and phage λ strains used in this study.  478 

Strain Description Relevant Characteristics 

Bacteria Clones:   

REL606 E. coli B ancestor of coevolution experiment malT
+, ompF

+, manY
+
, manZ

+ 

REL606 ∆manZ manZ deletion, derived from REL606a ∆manZ 

BW25113 E. coli K12 parental strain of Keio collection  malT
+, ompF

+, manY
+
, manZ

+ 

JW1807 manY deletion in Keio collection ∆manY 

JW1808 manZ deletion in Keio collection ∆manZ 

DH5α Strain used for λ plaque-based enumeration malT
+, ompF

+, manY
+
, manZ

+ 

Phage Clones:   

cI26 Lytic λ ancestor of both phage populations Requires E. coli LamB 

λ-A Evolved λ isolate from Pop-Ab on Day 8 (4 days 

before the population evolved to use OmpF) 

Requires E. coli LamB 

λ-B Evolved λ isolate from Pop-Bb on Day 11 (4 days 

before the population evolved to use OmpF) 

Requires E. coli LamB 

aThis strain also has three mutations that have no known relevance to interactions with phage λ 479 

(Supplementary Material). For construction methods, see Supplementary Material, Table S1, and Table S2.  480 
b For simplicity, we have designated the source populations Pop-A and Pop-B. These correspond to 481 

population numbers D9 and G9 in the original experiment described by Meyer et al. (17). 482 
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