Photochemical & Photobiological Sciences

COMMUNICATION

Check for updates

Cite this: *Photochem. Photobiol. Sci.*, 2018, **17**, 1018 Received 28th April 2018, Accepted 2nd July 2018 DOI: 10.1039/c8pp00177d

rsc.li/pps

Sustained production of H_2O_2 in alkaline water solution using borate and phosphate-modified Au/TiO₂ photocatalysts[†]

Xianqiang Xiong, Xiao Zhang, Shengwei Liu, Jianjun Zhao modednowbell and Yiming Xumodednowbell *

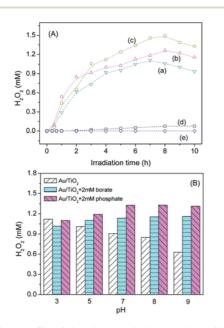
UV irradiation of Au/TiO₂ photocatalysts in the presence of borate and phosphate anions can produce H_2O_2 at a millimolar level in alkaline water solution. The positive effect of the anions is ascribed to the anion-mediated hole transfer from Au/TiO₂ to an electron donor which thus accelerates the two-electron reduction of O₂ to H_2O_2 .

Hydrogen peroxide has been widely utilized in the chemical industry and environmental remediation as a green oxidant, with only water and O₂ as the reaction byproducts.¹ At present, H_2O_2 is mainly synthesized through anthraquinone oxidation.² This process requires significant organic solvents, hydrogen gas and energy input, and is not environmentally friendly. Another route is the direct synthesis of H_2O_2 from O₂ and H_2 using metal-based catalysts (Pd or Pd/Au alloys).^{2–5} However, this reaction suffers from the explosion risk, due to the mixture of H_2 and O₂. As such, a novel and green method for the generation of H_2O_2 is essentially needed.

Photocatalytic O₂ reduction offers a completely sustainable route to produce H_2O_2 with only water, oxygen and solar energy as the input, which has attracted much attention in recent years.⁶⁻¹⁹ For example, UV irradiation of a TiO₂ system in the presence of electron donors and O₂ can produce H_2O_2 . However, the generated H_2O_2 is limited to the micromolar level, which is ascribed to the slow oxygen reduction and fast H_2O_2 decomposition *via* the surface Ti-OOH species with the excited electrons.^{7,8,20} To improve the formation of H_2O_2 in the TiO₂-based photocatalytic system, numerous studies have been done, including the loading of noble metals (Au or Au/Ag alloys) on TiO₂,^{6,7,10} modification of TiO₂ with a reduced graphene oxide cocatalyst,⁸ carbonate loading on Au/TiO₂,⁹ doping of TiO₂ with S or N,¹² the addition of Cu²⁺ ions into a TiO₂ suspension,¹³ surface-fluorination of TiO₂,¹⁴ replacement of an aliphatic alcohol electron donor with benzylic alcohol¹⁵ and designing of an SiO₂-TiO₂-Au core-shell structure.¹⁹ Of particular note is the loading of Au nanoparticles on TiO₂, which has been confirmed as one of the most effective methods to enhance the H₂O₂ production at a millimolar level. The increased production of H₂O₂ on Au/TiO₂ is due to the increase in the electron transfer from TiO2 to Au through a Schottky junction, the increase in the two-electron reduction of O₂ on Au, and the decrease in the adsorption and decomposition of H₂O₂ on Au as well.^{6,7,9–11} However, to our knowledge, the solution used in most of these studies is acidic, probably due to the following two reasons. First, the rate of H₂O₂ formation decreases with the increase of the solution pH, because H₂O₂ is produced through the proton coupled electron transfer.¹⁰ Second, the rate of H₂O₂ decomposition increases with the solution pH.¹⁰ Therefore, the production of H₂O₂ with a larger steady-state concentration in a neutral or basic solution is a challenge.

Inorganic anions have been widely used as a hole transfer cocatalyst for the TiO₂-photocatalyzed degradation of organic pollutants in aqueous solution.^{21,22} For example, we have recently reported that borate anions have a positive effect on the photocatalytic degradation of phenol over TiO₂ (brookite or anatase)^{23,24} and Pt/TiO₂ (anatase)²⁵ in aqueous suspensions from pH 5 to 9. We have also reported that the addition of phosphate anions into the suspension of brookite TiO₂²³ and Pt/Bi₂WO₆²⁶ can enhance the photocatalytic degradation of phenol in the initial pH range of 3-9. The anion-induced rate enhancement of phenol degradation is ascribed to the hole oxidation of anions to produce the anion radicals, followed by phenol oxidation to regenerate the anions.²⁴⁻²⁶ Based on the results reviewed above, we guess that the anionmediated hole transfer may cooperate with the Au-mediated electron transfer from TiO₂ to Au. This would accelerate the two-electron reduction of O2 on Au particles and consequently enhance the photocatalytic formation of H₂O₂.

In this study, we report a significant enhancement of $\rm H_2O_2$ production at the millimolar level upon the addition of 2 mM


State Key Laboratory of Silicon Materials and Department of Chemistry,

Zhejiang University, Hangzhou 310027, China. E-mail: xuym@zju.edu.cn

 $[\]dagger$ Electronic supplementary information (ESI) available: Experimental details, XRD patterns, N₂ adsorption-desorption isotherms, diffuse reflectance spectra, physical parameters of the catalysts, SEM images, EDS spectra, high-resolution TEM, and the XPS spectrum. See DOI: 10.1039/c8pp00177d

borate or phosphate anions into an air-saturated methanol water solution of Au/TiO₂ in a wide range of pH from 5 to 9. Au particles were deposited on commercial anatase TiO_2 (Sigma-Aldrich) by the deposition-precipitation method described in the literature.^{7,10} The synthetic procedures and sample characterization are shown in the ESI.† In brief, the loading amount of Au in Au/TiO2 was 0.61 wt%, measured by inductively coupled plasma mass spectroscopy. The X-ray diffraction patterns of TiO₂ and Au/TiO₂ (Fig. S1A[†]) well matched those of standard anatase TiO₂ (PDF #65-5714). The specific surface areas of TiO2 and Au/TiO2 were calculated to be 49.5 and 42.7 $m^2 g^{-1}$ (Table S1[†]), respectively. Additionally, scanning electron microscopy images showed that the particles greatly aggregated together, with an average particle size of 40 nm (Fig. S2[†]). Elemental analysis showed that Au particles were uniformly distributed on the surface of TiO_2 (Fig. S3[†]). Using high-resolution transmission electron microscopy, the Au particles were found to be spherical with an average diameter of 13 nm. The lattice distances were 0.35 nm for the anatase TiO_2 (101) and 0.24 nm for the Au (111) facet (Fig. S4[†]). In the X-ray photoelectron spectroscopy of Au/TiO₂ (Fig. S5^{\dagger}), there appeared the binding energies of Au 4f_{7/2} at 83.79 eV and Au $4f_{5/2}$ at 87.37 eV, in accordance with those of metallic Au.⁶

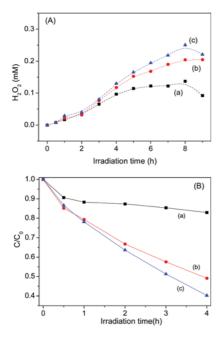
The photocatalytic reaction was carried out in a Pyrex glass reactor, irradiated externally with a 300 W high-pressure mercury lamp at $\lambda > 320$ nm. Fig. 1A shows the time profiles of H₂O₂ formation over different catalysts in a 4 vol% CH₃OH

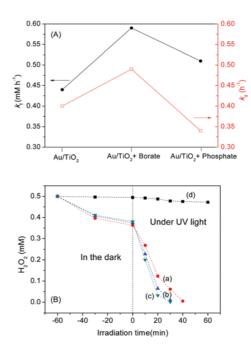
Fig. 1 (A) Time profile of the photocatalytic formation of H_2O_2 under UV irradiation in air-saturated water solution at initial pH 8.0. The catalysts are (a) Au/TiO₂, (b) Au/TiO₂ + 2 mM borate, (c) Au/TiO₂ + 2 mM phosphate, (d) TiO₂ and (e) Pt/TiO₂. (B) Effect of solution pH on the photocatalytic formation of H_2O_2 under photoirradiation for 10 h over Au/TiO₂ in the presence or the absence of 2 mM borate or phosphate anions. Note: H_2O_2 production was measured in the presence of 4 vol% CH₃OH as the electron donor at 20 °C.

aqueous suspension, performed at 20 °C and an initial pH of 8. The H_2O_2 concentration was measured through the horseperoxide-catalyzed oxidation of N,N-diethyl-pradish phenylenediamine.²⁷ With bare TiO_2 , the H_2O_2 production was rather low, with only 77.8 µM after the suspension was irradiated for 10 h. With Au/TiO₂, the H₂O₂ production was increased by an order of magnitude. However, with Pt/TiO₂, the H₂O₂ production was even lower than that measured from TiO₂, which is probably ascribed to the Pt-catalyzed decomposition of H₂O₂.²⁸ These observations indicate that Au is a better cocatalyst for the production of H₂O₂ over TiO₂, which is in good agreement with the literature results.6,7,9,10 Upon the addition of 2 mM borate or phosphate anions, interestingly, the formation of H₂O₂ over Au/TiO₂ was greatly increased. For example, after photoirradiation for 3 hours, the amount of H_2O_2 followed the order of Au/TiO₂/phosphate (1.06 mM) > Au/TiO_2 /borate (0.91 mM) > Au/TiO_2 (0.73 mM). In other words, the H2O2 production at the millimolar level over $\mathrm{Au}/\mathrm{TiO}_2$ can be achieved in alkaline water solution with the assistance of inorganic anions. In all cases, moreover, the H₂O₂ concentration increased with the irradiation time, and then decreased after reaching a maximum. This is indicative of a competition between the formation and the decomposition of H₂O₂.

Fig. 1B shows the results of H_2O_2 production under UV illumination for 10 h in aqueous solution as a function of initial pH. As the initial pH of the suspension was increased, the production of H_2O_2 over Au/TiO₂ rapidly declined. The H_2O_2 concentration at pH 3 was 1.13 mM, but it decreased to 0.63 mM at pH 9. This trend is in good agreement with the results reported by Tada and coworkers.¹⁰In contrast, the production of H_2O_2 over Au/TiO₂ in the presence of 2 mM borate and phosphate anions gradually increased with the increase of the suspension pH. Strikingly, at pH 9, the H_2O_2 concentration in the presence of borate and phosphate anions can still reach 1.16 and 1.31 mM, respectively. These observations indicate that these anions have a positive effect on the H_2O_2 production in a methanolic aqueous solution from an initial pH of 5 to an initial pH of 9.

To produce H₂O₂ through a more sustainable route, it is better to replace the alcoholic electron donor with environmental pollutants. Phenol is a representative environmental pollutant due to the robust nature of its aromatic structure. Fig. 2 shows the result of H₂O₂ production over Au/TiO₂ using phenol as the electron donor. As the irradiation time increased, the H₂O₂ concentration in the aqueous phase increased, and then decreased. At 8 h, the H₂O₂ concentration was 137 μ M, which was much higher than that (10 μ M) previously obtained from anatase TiO₂ in the presence of phenol.²⁹ This observation indicates that Au is indeed an effective cocatalyst for the TiO2-photocatalyzed production of H₂O₂. Upon the addition of 2 mM borate and phosphate anions into Au/TiO₂, the H₂O₂ production at 9 h was increased by 1.21 and 1.39 fold (Fig. 2), respectively. These observations further confirm that the borate and phosphate anions do have a positive effect on the production of H_2O_2 over Au/TiO₂.




Fig. 2 Time profile of H_2O_2 production (A) and phenol degradation (B) under UV irradiation in air-saturated water solution at initial pH 8.0, measured with phenol (0.86 mM) as the electron donor over different catalysts: (a) Au/TiO₂, (b) Au/TiO₂ + 2 mM borate and (c) Au/TiO₂ + 2 mM phosphate.

Meanwhile, the phenol concentration also gradually decreased with the increase of irradiation time (Fig. 2B). The rates of phenol degradation obtained from different catalysts followed the order of Au/TiO₂/phosphate > Au/TiO₂/borate > Au/TiO₂, the trend of which is in good agreement with that observed from H₂O₂ production in Fig. 2A. These observations clearly indicate that photocatalysis can provide a good solution for the simultaneous production of H₂O₂ and the elimination of hazardous environmental pollutants.

To understand the positive effect of borate and phosphate anions on H₂O₂ generation over Au/TiO₂, a kinetics analysis was carried out by assuming that the formation and decomposition rates of H₂O₂ follow the zero-order and the first-order kinetics, respectively. Then the following equation for the time-dependent concentration of H₂O₂ is obtained (ESI[†]),^{7,9,10} where k_f and k_d are the formation rate constant and the decomposition rate constant, respectively.

$$[\mathbf{H}_2\mathbf{O}_2] = \frac{k_{\mathrm{f}}}{k_{\mathrm{d}}} [1 - \exp(-k_{\mathrm{d}}t)]$$

By using this equation, the data at the first 7 hours as shown in Fig. 1A were well fitted, and the results are shown in Fig. 3A. It is clear that the k_f value is increased upon the addition of either borate or phosphate anions. This provides direct evidence for the positive effect of the anions on the Au/ TiO₂-photocatalyzed formation of H₂O₂. However, upon the addition of borate and phosphate anions, the k_d value is increased and decreased, respectively. This might be due to the rate of H₂O₂ decomposition that changes with the H₂O₂

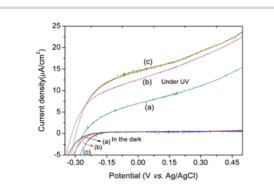


Fig. 3 (A) Formation rate constant (k_f , solid symbol) and the decomposition rate constant (k_d , open symbol) for H_2O_2 production. (B) Dark adsorption and photocatalytic decomposition of 0.50 mM H_2O_2 . All experiments were carried out in an aerated aqueous suspension at initial pH 8.0, under the conditions of (a) Au/TiO₂, (b) Au/TiO₂ + 2 mM borate, (c) Au/TiO₂ + 2 mM phosphate and (d) H_2O_2 .

concentration. Since the total concentration of H₂O₂ in the aqueous phase and on the catalyst surface is unknown, it's difficult to distinguish the decomposition rate of H2O2 by using k_d . Then, we conducted a H_2O_2 decomposition experiment by using H₂O₂ as the reacting substrate, and the result is shown in Fig. 3B. In the dark, H₂O₂ in the aqueous solution greatly adsorbed onto Au/TiO2, due to the formation of a surface Ti(w) complex. Upon the addition of borate or phosphate anions, the amount of H2O2 adsorption on Au/TiO2 was slightly decreased, indicative of the anion species occupying the oxide surface. Under UV illumination, the concentration of H_2O_2 decreased with time. Surprisingly, the rate of H_2O_2 decomposition in the presence of the anions was higher than that in the absence of the anions. In previous studies, Maurino *et al.* found that the surface fluorination of TiO_2 led to a significant increase of H₂O₂ production, which is ascribed to the decrease of H₂O₂ adsorption and decomposition.¹⁴ Tada et al. found that the carbonate-modified Au/TiO2 has a high visible-light activity for H₂O₂ production, and they also ascribed it to the decrease of H2O2 adsorption and decomposition.⁹ In the present study, however, an opposite effect of the anions was observed from the H2O2 decomposition on Au/ TiO_2 . In the alkaline solution, the surface of Au/TiO₂ would be negatively charged. This would disfavor the adsorption of the negatively charged borate and phosphate anions onto Au/TiO₂, due to the electrostatic repulsion. In fact, the dark adsorption of H2O2 on Au/TiO2 changed a little upon the addition of borate and phosphate anions (Fig. 3B). Then, the observed increase of H_2O_2 production upon the addition of borate and phosphate anions (Fig. 1A and 2A) must be attributed to other factors, as will be discussed below.

To further understand the anion effect, a photoelectrochemical measurement with an Au/TiO2 film electrode was carried out. Fig. 4 shows the linear sweep voltammetry of Au/ TiO₂ in the absence and the presence of 2 mM borate or phosphate anions. The experiment was carried out in a three-electrode configuration using 0.43 mM phenol as the hole scavenger. In the dark, the electrode currents were very weak, either in the absence or the presence of the anions. Under UV light, the Au/TiO₂ electrode exhibited an anodic photocurrent, which started at approximately -0.25 V (vs. Ag/AgCl) and then increased as the bias anodically shifted. This is indicative of phenol oxidation by the photogenerated holes of Au/TiO₂. Upon the addition of borate and phosphate anions, interestingly, the onset potentials for phenol oxidation were negatively shifted by 60 and 40 mV, respectively. Meanwhile, the photocurrents were also significantly increased. These observations suggest that the borate and phosphate anions are capable of mediating the hole transfer from irradiated Au/TiO₂ to phenol, and thus increase the photocurrent of phenol oxidation. The same mechanism would hold for the photocatalytic system, in which both H₂O₂ production (Fig. 2A) and phenol degradation (Fig. 2B) are notably accelerated upon the anion addition. Such anion-mediated hole transfer would improve the charge separation of Au/TiO₂, and consequently increase the electron accumulation on the Au particles. As a result, the H₂O₂ formation is enhanced, because the two-electron reduction of O_2 to H₂O₂ preferentially occurs on the Au sites of Au/TiO₂.^{11,30}

In conclusion, we have presented a simple method of anion addition for the sustained production of H_2O_2 at the millimolar level in a methanol aqueous suspension of Au/TiO₂ in the initial pH range of 5–9. It is proposed that the borate and phosphate anions can mediate the hole transfer, and hence accelerate the electron transfer from TiO₂ to Au for the O₂ reduction to H_2O_2 . This addresses the dilemma how to produce a large amount of H_2O_2 in an alkaline aqueous solu-

Fig. 4 Linear sweep voltammetry of the Au/TiO₂ film electrode in the presence of 0.43 mM phenol, recorded in the dark (black, red and blue lines), and under UV light (upper lines), at a scan rate of 20 mV s⁻¹. The experiments were carried out in 0.5 M NaClO₄ at pH 8, in the absence (a), and the presence of 2.0 mM borate (b) or 2.0 mM phosphate (c).

tion. Moreover, we have also shown that H_2O_2 production and phenol degradation on Au/TiO₂ can be simultaneously enhanced upon the anion addition. This provides a sustainable route for pollution treatment and H_2O_2 production.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Creative Research Group of the National Natural Science Foundation of China (No. 21621005).

Notes and references

- 1 C. W. Jones, *Applications of hydrogen peroxide and derivatives*, Royal Society of Chemistry, Cambridge, 1999.
- 2 J. M. Campos-Martin, G. Blanco-Brieva and J. L. G. Fierro, Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process, *Angew. Chem., Int. Ed.*, 2006, 45, 6962–6984.
- 3 J. K. Edwards, B. Solsona, E. N. Ntainjua, A. F. Carley, A. A. Herzing, C. J. Kiely and G. J. Hutchings, Switching off hydrogen peroxide hydrogenation in the direct synthesis process, *Science*, 2009, 323, 1037–1041.
- 4 Y. H. Yi, L. Wang, G. Li and H. C. Guo, A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuelcell method and plasma method, *Catal. Sci. Technol.*, 2016, 6, 1593–1610.
- 5 S. Kanungo, V. Paunovic, J. C. Schouteme and M. F. N. D'Angelo, Facile synthesis of catalytic AuPd nanoparticles within capillary microreactors using polyelectrolyte multilayers for the direct synthesis of H₂O₂, *Nano Lett.*, 2017, **17**, 6481–6486.
- 6 D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka and T. Hirai, Photocatalytic H_2O_2 production from ethanol/O-2 system using TiO₂ loaded with Au-Ag bimetallic alloy nanoparticles, *ACS Catal.*, 2012, 2, 599–603.
- 7 M. Teranishi, S. Naya and H. Tada, In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium(IV) dioxide photocatalyst, *J. Am. Chem. Soc.*, 2010, **132**, 7850–7851.
- 8 G. H. Moon, W. Kim, A. D. Bokare, N. E. Sung and W. Choi, Solar production of H₂O₂ on reduced graphene oxide-TiO₂ hybrid photocatalysts consisting of earth-abundant elements only, *Energy Environ. Sci.*, 2014, 7, 4023–4028.
- 9 M. Teranishi, R. Hoshino, S. Naya and H. Tada, Gold-nanoparticle-loaded carbonate-modified titanium(IV) oxide surface: visible-light-driven formation of hydrogen peroxide from oxygen, *Angew. Chem., Int. Ed.*, 2016, 55, 12773–12777.

- 10 M. Teranishi, S. Naya and H. Tada, Temperature- and pHdependence of hydrogen peroxide formation from molecular oxygen by gold nanoparticle-loaded titanium(IV) oxide photocatalyst, *J. Phys. Chem. C*, 2016, **120**, 1083–1088.
- 11 H. Kobayashi, M. Teranishi, R. Negishi, S. Naya and H. Tada, Reaction mechanism of the multiple-electron oxygen reduction reaction on the surfaces of gold and platinum nanoparticles loaded on titanium(IV) oxide, *J. Phys. Chem. Lett.*, 2016, 7, 5002–5007.
- 12 T. Hirakawa and Y. Nosaka, Selective production of superoxide ions and hydrogen peroxide over nitrogen- and sulfur-doped TiO(2) photocatalysts with visible light in aqueous suspension systems, *J. Phys. Chem. C*, 2008, **112**, 15818–15823.
- 13 R. X. Cai, Y. Kubota and A. Fujishima, Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles, *J. Catal.*, 2003, **219**, 214–218.
- 14 V. Maurino, C. Minero, G. Mariella and E. Pelizzetti, Sustained production of H₂O₂ on irradiated TiO₂ – fluoride systems, *Chem. Commun.*, 2005, 20, 2627–2629.
- 15 Y. Shiraishi, S. Kanazawa, D. Tsukamoto, A. Shiro, Y. Sugano and T. Hirai, Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water, *ACS Catal.*, 2013, 3, 2222–2227.
- 16 L. Shi, L. Q. Yang, W. Zhou, Y. Y. Liu, L. S. Yin, X. Hai, H. Song and J. H. Ye, Photoassisted construction of holey defective g-C₃N₄ photocatalysts for efficient visible-lightdriven H₂O₂ production, *Small*, 2018, **14**, 1703142.
- 17 Y. Zheng, Z. H. Yu, H. H. Ou, A. M. Asiri, Y. L. Chen and X. C. Wang, Black phosphorus and polymeric carbon nitride heterostructure for photoinduced molecular oxygen activation, *Adv. Funct. Mater.*, 2018, **28**, 1705407.
- 18 Y. X. Liu, F. Y. Chen, Q. Wang, J. P. Wang and J. L. Wang, Direct unassisted hydrogen peroxide generation from oxygen and water on plasmonic Ag-graphene-Cu nanosandwich, *Appl. Catal.*, *B*, 2018, 224, 940–950.
- 19 N. Kaynan, B. A. Berke, O. Hazut and R. Yerushalmi, Sustainable photocatalytic production of hydrogen peroxide from water and molecular oxygen, *J. Mater. Chem. A*, 2014, 2, 13822–13826.

- 20 X. Z. Li, C. C. Chen and J. C. Zhao, Mechanism of photodecomposition of H_2O_2 on TiO₂ surfaces under visible light irradiation, *Langmuir*, 2001, 17, 4118–4122.
- 21 C. Minero, G. Mariella, V. Maurino and E. Pelizzetti, Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system, *Langmuir*, 2000, **16**, 2632–2641.
- 22 H. Sheng, Q. Li, W. Ma, H. Ji, C. Chen and J. Zhao, Photocatalytic degradation of organic pollutants on surface anionized TiO₂: the common effect of anions for high holeavailability by water, *Appl. Catal.*, *B*, 2013, **138**, 212–218.
- 23 X. Zhang, X. Xiong and Y. Xu, Brookite TiO₂ photocatalyzed degradation of phenol in presence of phosphate, fluoride, sulfate and borate anions, *RSC Adv.*, 2016, **6**, 61830–61836.
- 24 L. Hao, X. Xiong and Y. Xu, Borate-mediated hole transfer from irradiated anatase TiO₂ to phenol in aqueous solution, *J. Phys. Chem. C*, 2015, **119**, 21376–21385.
- 25 X. Xiong and Y. Xu, Synergetic effect of Pt and borate on the TiO₂-photocatalyzed degradation of phenol in water, *J. Phys. Chem. C*, 2016, **120**, 3906–3912.
- 26 J. Meng, X. Xiong, X. Zhang and Y. Xu, Improved photocatalytic degradation of chlorophenol over Pt/Bi₂WO₆ on addition of phosphate, *Appl. Surf. Sci.*, 2018, **439**, 859–867.
- 27 H. Bader, V. Sturzenegger and J. Hoigne, Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N, N-diethyl-p-phenylenediamine (DPD), *Water Res.*, 1988, 22, 1109–1115.
- 28 I. Katsounaros, W. B. Schneider, J. C. Meier, U. Benedikt, P. U. Biedermann, A. A. Auer and K. J. J. Mayrhofer, Hydrogen peroxide electrochemistry on platinum: towards understanding the oxygen reduction reaction mechanism, *Phys. Chem. Chem. Phys.*, 2012, **14**, 7384–7391.
- 29 X. Xiong, X. Zhang and Y. Xu, Incorporative effect of Pt and Na₂CO₃ on TiO₂-photocatalyzed degradation of phenol in water, *J. Phys. Chem. C*, 2016, **120**, 25689–25696.
- 30 C. M. Sánchez-Sánchez and A. J. Bard, Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy, *Anal. Chem.*, 2009, **81**, 8094–8100.