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ABSTRACT 

We study the phenomenon of business ecosystems in which a platform firm orchestrates the functioning 

of the ecosystem by providing a platform and setting the rules for other complementor firms to participate 

in it.  We develop a theoretical framework to explain how the structural and evolutionary features of the 

ecosystem may shape the extent to which participating complementor firms can sustain their superior 

performance.  The structural feature, which we refer to as ecosystem complexity, is a function of the 

number of unique components or subsystems that interact with the complementor’s product.  We 

incorporate the evolutionary features by considering the role of generational transitions initiated by 

platform firms over time as well as the role of complementors’ ecosystem-specific experience.  Evidence 

from Apple’s iOS and Google’s Android smartphone ecosystems supports our arguments that higher 
ecosystem complexity helps app developers sustain their superior performance, and that this effect is 

stronger for more experienced firms.  In contrast, platform transitions initiated by Apple and Google 

make it more difficult for app developers to sustain their performance superiority, and that this effect is 

exacerbated by the extent of ecosystem complexity.  The study offers a novel perspective on how the 

performance of complementor firms in business ecosystems may be shaped by the rules and actions of the 

central platform firms. 
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Introduction 

There is increasing recognition within the strategy field that the locus of value creation has 

shifted from focal firms to business ecosystems (Iansiti and Levien, 2004; Teece, 2007; Baldwin, 2012; 

Adner et al., 2013).  Business ecosystems encompass different types of firms offering complementary 

products and who are connected through an underlying technical architecture.  Often, such contexts are 

characterized by a firm that orchestrates the functioning of the ecosystem by providing a platform and 

setting the rules for other complementor firms to participate in it.  Scholars exploring this phenomenon 

have tended to focus on the strategies and performance of platform firms (e.g., Gawer and Henderson, 

2007; McIntyre and Subramaniam, 2009; Eisenmann et al., 2011; Zhu and Iansiti, 2012).  Much less 

attention has been devoted to understanding the performance of the complementor firms who are critical 

to the value creation within the ecosystem.    

In this study, we focus on the performance of complementor firms within an ecosystem.  

Specifically, we study the extent to which a high performing complementor can sustain its superior 

performance within an ecosystem.  While sustainability of superior performance is a critical goal for 

managers and has been an important line of inquiry for strategy scholars (e.g., Porter, 1985; Rumelt et al., 

1991), it is becoming increasingly difficult for firms to realize it (Wiggins and Ruefli, 2002; D’Aveni et 

al., 2010; McGrath, 2013).  In the context of business ecosystems, sustainability of complementors’ 

superior performance has important implications not only for the complementors but also for the platform 

firms whose performance is tied to that of their complementors.   

To unpack the drivers of sustainability, we first consider the structure of the complementor’s 

interdependence with other actors in the ecosystem.  We characterize this structural feature based on the 

number of unique components or subsystems that interact with the complementor’s product.  For 

example, in the iOS smartphone ecosystem orchestrated by Apple (the platform firm), an application 

software (app) developer firm (the complementor) is interdependent on the specific handset and operating 

system combination offered by Apple.  In contrast, in the Android smartphone ecosystem orchestrated by 

Google, an app developer is interdependent on many unique handset and operating system combinations 
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offered by firms such as HTC, LG, Motorola and Samsung.  We use the notion of ecosystem complexity 

to characterize this difference in the structure of interdependence for complementor firms.  We then 

consider the role of generational transitions initiated by platform firms over time (e.g., introduction of 

new generation of operating system) as well as the role of complementors’ ecosystem-specific experience.   

Drawing on the evolutionary economics perspective (e.g., Nelson and Winter, 1982, 2002; 

Gavetti and Levinthal, 2004), we theorize performance dynamics among complementor firms to be 

shaped by firms searching for superior performance configurations as well as imitating the strategic 

configurations of higher performing firms (Levinthal, 1997; Rivkin, 2000; Zott, 2003; Lenox et al., 2006).  

We argue that greater ecosystem complexity makes it much more difficult for follower firms to search for 

configurations that yield superior performance and to imitate the configurations of the leader firms.  

Hence, complementor firms will find it easier to sustain their success when ecosystem complexity is high 

than when it is low.   

We also argue that while experience in an ecosystem in general facilitates learning, generational 

transitions initiated by the platform firms typically requires complementors to reconfigure their products 

and may reduce the value of their accumulated learning.  As a result, complementors’ ability to sustain 

their superior performance will be facilitated by their experience and will be hampered by platform 

transitions.  Finally, we consider how these effects are impacted by ecosystem complexity.  We argue that 

higher ecosystem complexity will be associated with greater learning opportunities, and therefore, the 

benefit of experience will be greater when ecosystem complexity is high than when it is low.  In contrast, 

during platform transitions, higher ecosystem complexity would make it more difficult for complementors 

to reconfigure and sustain their superior performance.  Hence, the negative effect of such transitions on 

the sustainability of complementors’ superior performance will be stronger when ecosystem complexity is 

high than when it is low. 

We test our arguments on app developers that participate in Apple’s iOS and Google’s Android 

smartphone ecosystems within the U.S. market.  The context provides a valuable opportunity to study 

complementors’ performance dynamics in ecosystems with varying levels of complexity and subject to 
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frequent platform transitions.  The diversity in handsets and operating systems among the user base makes 

the Android ecosystem much more complex for app developers than the iOS ecosystem.  While the 

contrast between iOS and Android is stark, we also observe varying levels of complexity within the 

Android ecosystem over time.  In addition, we observe three episodes of platform transitions that entail 

major updates to the handset and the smartphone operating system.1   

We assembled a unique panel dataset of top-performing app developers in the iOS and Android 

smartphone ecosystems over the two-year period from January 2012 to January 2014.  To gain insights 

into the challenges of developing apps and competing in the iOS and the Android ecosystems, we also 

interviewed several executives and engineers from app developer firms.  The analysis is based on the 

extent to which app developers sustain their superior performance by observing whether their apps 

continue to be in the top performance stratum in a given ecosystem (i.e., Top 500 apps by revenue).  The 

research setting is hypercompetitive and, on average, a firm sustains its superior performance for only six 

months.  Moreover, once a firm exits the top performance stratum in a given ecosystem, the likelihood of 

reappearance in the stratum is very low.  Only 14% of exit events are followed by re-entry in the top 

performance stratum.  Finally, 64% of top-performing firms participate in both the iOS and Android 

ecosystems, which helps us address endogeneity concerns due to firms self-selecting into a given 

ecosystem. 

We find that higher ecosystem complexity increases app developers’ likelihood of sustaining their 

performance superiority.  However, generational transitions initiated by platform firms impede app 

developers’ ability to sustain their superior performance, and that this effect is exacerbated by the extent 

of ecosystem complexity.  Finally, we find that experience within an ecosystem helps app developers 

sustain their superior performance, and that this beneficial effect is more pronounced at higher levels of 

complexity.  

                                                           
1 While smartphone is the dominant hardware for Android and iOS operating systems, these operating systems are 

also used in other hardware categories such as tablets and e-readers.  In this study, we focus on the performance 

dynamics of app developer firms within only the Android and iOS smartphone ecosystems.   
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The study, while limited to a specific empirical context, offers one of the first detailed accounts of 

the drivers of complementors’ performance within an ecosystem.  A key aspect of the study is to 

characterize the structure of interdependence for complementor firms in terms of ecosystem complexity 

and show that this characterization helps explain the drivers of value appropriation among firms.  We also 

illustrate how platform transitions and complementors’ ecosystem experience impact the ease with which 

complementors can sustain their performance advantage, and how these effects vary at different levels of 

ecosystem complexity.  In so doing, the study contributes to the emerging literature stream examining the 

challenges and opportunities faced by complementor firms in business ecosystems (e.g., Boudreau, 2010; 

Kapoor, 2013; Kapoor and Lee, 2013).  By linking ecosystem-level complexity with firm-level search 

processes, the study is also among the first to offer systematic empirical evidence on one of the key tenet 

(i.e., the role of complexity on firm performance) within the evolutionary economics perspective of firms 

(e.g., Levinthal, 1997; Rivkin, 2000;  Lenox et al., 2010).  Finally, our findings contribute to the literature 

on the persistence of superior firm performance (e.g., Wiggins and Ruefli, 2002, 2005; D’Aveni et al., 

2010) by highlighting how the specific features of the business ecosystem can impact sustainability of 

superior performance among complementor firms.   

 

Literature Review and Hypotheses Development 

There is growing recognition within the strategy field that firms are operating in the context of 

business ecosystems in which value is created through a network of firms offering complementary 

products and services.  Often, business ecosystems are orchestrated by firms such as Apple, Cisco, 

Google, Intel, Microsoft, and SAP, which provide the central technological platform and set the rules for 

how complementor firms participate in it (e.g., Gawer and Cusumano, 2002; Iansiti and Levien, 2004).  

Scholars studying this phenomenon have explored how platform firms compete and manage their 

interdependence with complementors (e.g., Schilling, 2002; Gawer and Henderson, 2007; Boudreau, 

2010; Eisenmann et al., 2011; Zhu and Iansiti, 2012).  The emphasis has been on explaining how firms 

can create a platform, attract users and complementors, and achieve market dominance.  Hence, the 
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research so far has tended to focus on the strategies and performance of the unitary actor that orchestrates 

the business ecosystem.  Much less attention has been devoted to understanding the performance 

consequences for complementors who typically represent a vast majority of firms in the ecosystem and 

who are critical to the total value created by the ecosystem.  

In this study, we focus on the performance of complementor firms.  In particular, we consider the 

problem of sustaining superior performance, and we explore the extent to which a high performing 

complementor can sustain its performance advantage within an ecosystem. Sustainability of superior 

performance is an important goal for managers (e.g., Porter, 1985), and it has been studied extensively by 

strategy scholars (e.g., Rumelt et al., 1991; Teece, 2007).   However, recent empirical evidence suggests 

that it is becoming increasingly difficult for firms to sustain their superior performance (Wiggins and 

Ruefli, 2002; 2005; McGrath, 2013).  For example, drawing on a comprehensive database of 40 industries 

from 1974 to 1997, Wiggins and Ruefli (2005) found that periods of persistent superior performance 

among firms have decreased over time.  They found that this pattern is not only limited to high-

technology or manufacturing industries but is also prevalent across a broad range of industries.  

Moreover, several scholars have underscored in general a lack of understanding of the reasons why the 

persistence of superior performance varies across different types of firms and industry environments 

(McGahan and Porter, 1997; Hoopes et al., 2003; D’Aveni et al., 2010).  We theorize how 

complementor’s sustainability of superior performance is impacted by two key features of the ecosystem.  

First, we consider the structure of complementor’s interdependence with other actors in the 

ecosystem based on the number of unique components and subsystems that interact with a 

complementor’s product.  We refer to this structural feature as ecosystem complexity.  The greater the 

number of unique components and subsystems that interact with a complementor’s product, the greater is 

the degree of ecosystem complexity faced by the complementor.  Hence, depending on the architecture of 

the ecosystem, the same complementor may be subject to varying degrees of complexity across two 

different ecosystems (e.g., an app developer in iOS and Android smartphone ecosystems), or two different 

complementors may be subject to varying degrees of complexity within the same ecosystem (e.g., an app 
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developer and a handset manufacturer within the Android smartphone ecosystem). 2  Figure 1 illustrates 

our approach of considering varying levels of ecosystem complexity faced by a complementor through a 

simple schema.   

 (Insert Figure 1 about here) 

 

Second, we consider the evolutionary shifts in the ecosystem as a result of generational 

transitions initiated by platform firms (e.g., new generations of gaming consoles introduced by Sony, 

Nintendo, or Microsoft).  These transitions represent a common means by which platform firms compete 

and create value over time.  From a complementor’s perspective, however, they necessitate significant 

adaptation, as complementors reconfigure their products to leverage the performance improvements 

accorded by the new generation of the platform. 

We derive predictions regarding how structural complexity and platform transitions within an 

ecosystem impact a complementor’s ability to sustain its superior performance.  Given the importance of 

experience in shaping firms’ performance outcomes across different types of industry environments 

(Dutton and Thomas, 1984; Balasubramanian and Lieberman, 2010), we also consider the effect of 

complementor’s ecosystem experience across varying degrees of ecosystem complexity.   

Our theoretical predictions stem from the evolutionary economics perspective of firms (e.g., 

Nelson and Winter, 1982, 2002; Levinthal, 1997; Gavetti and Levinthal, 2004).  Drawing on this 

perspective, we consider the dual search processes of innovation and imitation as shaping performance 

dynamics among firms (e.g., Zott, 2003; Lenox et al., 2006).  The first process, innovative search, is 

characterized by firms searching for superior solutions to a given problem and improving their 

performance over time (e.g., Levinthal, 1997).  The second process, imitative search, represents firms’ 

                                                           
2 Since our emphasis in this paper is to explore the performance outcomes of complementor firms, we are 

considering the local structural complexity that the complementor firm is subjected to in a given ecosystem. A 

separate characterization can entail the complexity of the entire ecosystem.  Note also, as these examples illustrate, 

ecosystem complexity that a given complementor is subjected to could be driven by the number of actors producing 

variants of the same component.  It could also be driven by the underlying technical architecture such that a given 

complement may vary in the number of components that it interacts with.  Our empirical context presents a nice 

setting in which ecosystem complexity is driven by the former while controlling for the latter.  
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attempting to imitate other high performing firms (e.g., Rivkin, 2000).  We assume that complementor 

firms are continuously searching for superior performance configurations within an ecosystem.  While 

search processes for complementors with inferior performance (follower firms) are more likely to be 

characterized by some combination of innovative and imitative search, the search processes for 

complementor firms with superior performance (leader firms) are more likely to be characterized by 

innovative search.  We first explore the role of ecosystem complexity in impacting complementors’ 

ability to sustain superior performance.  We then examine the role of complementors’ experience and 

platform transitions and how they interact with ecosystem complexity. 

 

Ecosystem Complexity 

To explain how ecosystem complexity influences complementor firms’ sustainability of superior 

performance, we need to understand how ecosystem complexity impacts the search processes of firms in 

the ecosystem.  As ecosystem complexity increases, complementors need to optimize their products so as 

to account for greater interdependence between their products and other components or subsystems within 

the ecosystem.  For example, in our empirical context, the large variety of the handset and operating 

system combinations subjected app developers to significantly greater complexity in the Android 

ecosystem than in the iOS ecosystem.  During our interviews, many executives and engineers from app 

developer firms emphasized this difference.  The quote below from an engineer elucidates the difference: 

“We need to test our app on different OEM devices likes Samsung, HTC to make sure our app 

works on different Android devices.3 This creates a lot of work for developer and testing teams.  

iOS does not have any such issue…this is our biggest technological challenge with Android.” 

From a theoretical perspective, greater ecosystem complexity subjects complementors to 

numerous interrelated design choices and decision variables (i.e., creates high level of interdependence).  

Under these conditions, the search for superior performance configuration by follower firms is difficult 

(e.g., Levinthal, 1997).  This is because a high level of interdependence increases the number of possible 

                                                           
3 OEM stands for Original Equipment Manufacturer.  In our empirical context, it is used to refer to handset 

manufacturers. 
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combinations of decisions, which makes the search process intractable.  Moreover, even if a follower firm 

is able to innovate and identify a higher performance configuration, it is more likely that the configuration 

represents a local optimum and may not lead to superior performance.  Further, greater complexity also 

makes it difficult for follower firms to search by incrementally changing their decision variables.  In 

enhancing the performance of one variable, managers often inadvertently undermine the performance of 

other variables.  

Beyond searching for superior configurations through innovation, followers can also imitate 

leader firms.  When ecosystem complexity is high, the focal firm with the leadership position is also 

protected against imitation in two ways.  First, follower firms will find it difficult to decipher the exact 

configuration of the leader firm (Lippman and Rumelt, 1982; Rivkin, 2000).  Second, even if a follower 

attempts to replicate the exact configuration of the leader, greater complexity will help sustain the leader’s 

superior performance.  This is because a small error in imitation will generate large penalties in 

performance when there is a high level of interdependence among design choices (Rivkin, 2000). 

Finally, the leader firm can also sustain its performance by continuously searching for superior 

performing configurations.  However, such a search process is prone to errors, and the firm can 

unknowingly end up in a lower performance configuration (Harrison and March, 1984, Knudsen & 

Levinthal, 2007).  The high level of interdependence among design choices can help leader firms avoid 

such errors.  Under such conditions, configurations that lead to superior performance tend to be less 

correlated (Levinthal, 1997).  A small change in a given configuration can lead to substantially different 

performance outcomes.  This reduces the likelihood of leader firms selecting an inferior alternative 

(Knudsen & Levinthal, 2007).  As a result, a focal complementor that is subject to a high level of 

ecosystem complexity and that has already achieved superior performance is less likely to erroneously 

move towards a lower performance configuration.  

In summary, ecosystem complexity acts as a buffer for complementors with superior performance 

by making it more difficult for other complementors to search for or imitate higher performance 
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configurations and by reducing the likelihood of leaders’ search processes erroneously moving them 

toward lower performance configurations.  Accordingly, we predict: 

Hypothesis 1: A complementor firm will be more likely to sustain its superior 

performance when ecosystem complexity is high than when it is low. 

 

Ecosystem Experience 

A complementor firm’s experience within an ecosystem can also play a significant role in its 

ability to sustain superior performance.  Experience within an ecosystem will help confer several types of 

learning-based advantages on leader firms.  Experience facilitates the development and improvement of 

routines, making search more reliable (i.e., less prone to mistakes) (Nelson and Winter, 1982; Katila and 

Ahuja, 2002).  Experience also helps improve the efficiency of leader firms’ search processes by reducing 

the cost of experimentation and, hence, making it less costly for firms to innovate over time (Zott, 2003).   

In addition to the abovementioned learning-by-doing advantages, an important type of learning-

based advantage in business ecosystems is what Rosenberg (1982) referred to as learning-by-using.  This 

type of learning-based advantage is not a function of the experience in developing and producing the 

product per se, but rather of the experience in the product’s utilization by its users.  Rosenberg (1982) 

provided a detailed account of learning-by-using in the aircraft engine industry and conjectured that this 

type of learning is especially important in systemic industries such as electric power generation, 

telephones, and computers, where the use of the product is influenced by its interaction with other 

components and subsystems.  In such industry contexts, it is very difficult for firms to know in advance 

how the product will perform during use and, hence, user experience plays a vital role in helping firms 

innovate and improve their products over time.   

In our interviews, a senior engineer from an app developer firm elaborated on the importance of 

experience-based benefits through both learning-by-doing and learning-by-using: 

"Experience plays a critical part in our product lifecycle. From pure engineering 

perspective…most of the knowledge and skills are acquired through the development efforts over 

time. It is not easily accessible from outside-firm sources, and it [is] essential for building a high 

quality, user delightful application…The application keeps evolving at design and feature level, 
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through responding to user feedbacks and data. Engineering team also benefits from this mostly 

capturing edge cases which is rarely producible in the internal environment.” 

Finally, experience in an ecosystem enables leader firms to accumulate knowledge-based assets.  

Follower firms imitating such assets will be subject to time compression diseconomies (Dierickx and 

Cool, 1989), making it easier for the leader firms to sustain their performance superiority.  Hence, 

experience in an ecosystem is likely to confer a high performing complementor with both learning-by-

doing and learning-by-using advantages as well as make it more difficult for followers to replicate its 

knowledge-based assets.  Accordingly, we predict: 

Hypothesis 2: The greater the complementor’s ecosystem experience, the more likely the 

complementor will sustain its superior performance within the ecosystem. 

 

We next explore the extent to which a complementor firm’s experiential advantage within an 

ecosystem is impacted by the level of ecosystem complexity.  Greater complexity among design choices 

is associated with steeper learning curve that makes it more difficult for followers to catch up with 

experienced leaders (Balasubramanian and Lieberman, 2010).  In addition, the greater the degree of 

ecosystem complexity that a focal firm’s product is subjected to, the more uncertain will be the 

interactions between the product and the rest of the system and, hence, the more valuable will be learning-

by-using.  Finally, time compression diseconomies associated with the followers’ imitation of assets 

accumulated by the leader firms are also likely to increase in ecosystem complexity (Pacheco-de-

Almeida, 2010).  Hence, we expect that complementors’ ecosystem experience would be more valuable in 

sustaining their superior performance when ecosystem complexity is high than when it is low: 

Hypothesis 3: The positive effect of a complementor’s ecosystem experience on the 

sustainability of its superior performance will be stronger when ecosystem complexity is 

high than when it is low. 

 

Generational Transitions by Platform Firms 

Finally, we consider the impact of generational transitions initiated by platform firms on the 

complementors’ ability to sustain their superior performance.  Transitioning to a new platform generation 

is an important mode by which platform firms compete and create value.  New platform generations 
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typically offer improvements in existing functionality and also add new functionality.  In so doing, they 

alter the interactions among components and subsystems within the ecosystem (Venkatraman and Lee, 

2004; Ansari and Garud, 2009; Adner and Kapoor, 2010).  This renders the strategic configurations of the 

high performing complementor firms from the previous platform generation less effective.  Put at a more 

abstract level, the fitness landscape (i.e., mapping between strategic configurations and performance) is 

re-specified (Levinthal, 1997).  For example, when Apple introduced the new mobile operating system 

named iOS 6, some of the music apps stopped working.  After updating to the new operating system, 

many users found that their music data had disappeared.  Application developers had to optimize and 

retest their apps with the new operating system to ensure smooth functioning of their apps.  During our 

interview, a senior engineer from an app developer firm also elaborated on this challenge: 

“Although OS upgrades do a good job of the issue of backward compatibility, but the new OS 

will depreciate some APIs from the older version.4 If the apps are using the API from the older 

version, it is going to crash. Further, we also try to use latest APIs in the new OS. If the user tries 

to run the latest APIs on the older version, the app is going to crash.” 

 

In another interview, a cofounder of a leading app developer firm discussed how a recent 

transition in iOS impacted the functioning of his firm’s app: 

“In iOS 7 [released in September 2013], Apple changed some parts of the background 

infrastructure [API] the way an app interacts with the operating system, in order to 

enhance the graphics on its new hardware.  And because of this change, our app literally 

stopped working on the new version, when it was working perfectly in the previous 

version.” 

 

Hence, while platform transitions are important for sustaining technological progress within an 

ecosystem, they may present challenges for complementors to sustain their superior performance:  

Hypothesis 4: Generational transition initiated by the platform firm will make it more 

difficult for the complementor firm to sustain its superior performance within the 

ecosystem. 

 

In the face of a platform transition, complementors need to adapt so as to identify new strategic 

configurations that can yield high performance.  We now consider how ecosystem complexity affects 

                                                           
4 API stands for application program interface.  In the context of smartphone ecosystems, these are software 

protocols provided by platform firms such as Apple and Google for app developers to create apps for their 

platforms. 
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these firms’ ability to adapt — i.e., we explore the interaction between platform transitions and ecosystem 

complexity.  When ecosystem complexity is low (i.e., products offered by complementors are subject to 

fewer technological interactions within the ecosystem), adaptation through local search performed in the 

neighborhood of a firm’s previous configuration is effective (Levinthal, 1997).  Hence, a complementor 

with a superior performance configuration in the previous platform generation will find it relatively easier 

to identify a high performance configuration in the new platform generation.  In contrast, when ecosystem 

complexity is high, adaptation through local search is not very effective.  Successful adaptation would 

require a greater degree of change (i.e., often referred to as a long jump on a fitness landscape).  However, 

at the same time, a high degree of interdependence among firms’ choices makes such a large-scale change 

very risky, as a small error or miscalculation can result in subpar performance (Henderson and Clark, 

1990).  Therefore, we predict:   

Hypothesis 5: The negative effect of platform transition on the sustainability of a 

complementor’s superior performance will be stronger when ecosystem complexity is 

high than when it is low. 

 

Methodology 

We explore our arguments in the context of the iOS and Android smartphone ecosystems within 

the U.S. market.  The focal complementor firms are application software developers who were able to 

attain superior performance in these ecosystems from January 2012 to January 2014.  Smartphones based 

on iOS and Android operating systems represent more than 90% of the U.S. smartphone installed base 

during the study period.  Both Apple and Google provide a daily list of Top 500 apps by revenue.  We use 

that information to identify the focal firms.  The context is hypercompetitive, where hundreds of 

thousands of app developers are frequently introducing new apps or improved versions of their existing 

apps.  Such high intensity of competition makes it very difficult for app developers to sustain their 

superior performance, even for a few months. 

This setting also provides a natural experiment in which we can observe two ecosystems with 

varying levels of complexity for the app developers within the same industrial context.  This difference 
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arises primarily due to the difference in the strategies used by Apple and Google for controlling and 

governing their respective ecosystems.  Apple’s strategy is often described as a closed strategy, as it 

exercises strong control over the entire ecosystem, with the objective of providing high quality experience 

to the user (Ghazawneh and Henfidsson, 2013).  Most notable is Apple’s strict control and ownership of 

both the handset and the iOS operating system.  In contrast, Google’s strategy is premised on Android as 

an open-source operating system, which allows its development and distribution by various original 

equipment manufacturers (OEMs) such as HTC, LG, and Samsung.  This has resulted in the Android 

ecosystem being more fragmented.  Hence, an app in the Android ecosystem interacts with multiple 

specialized handset and operating system combinations offered by various OEMs.  As a result, an app 

developer firm in the Android ecosystem operates in a relatively more complex ecosystem compared to 

the one operating in the iOS ecosystem.  The two ecosystems also collectively underwent three episodes 

of platform transitions during our observation period, which allowed us to examine the impact of platform 

transition on complementors. 

 

Data 

The primary sources for our data are App Annie (www.appannie.com) and appFigures 

(www.appfigures.com), two of the leading analyst firms in the mobile computing sector.  App Annie has 

been tracking and archiving information related to all the applications developed on iOS and Android 

platforms since 2009.  Its data is extensively used by app developers, venture capital firms, and financial 

analysts.  Similarly, appFigures has developed a comprehensive database of all apps in the iOS and 

Android ecosystems since 2009.  We used appFigures as a supplementary data source in order to validate 

the data received from App Annie and to also extend the data to incorporate a more recent time frame.5  

Note that both App Annie and appFigures do not generate their own data, but accumulate daily data from 

Google Play and Apple iTunes over time and offer their users easy-to-use tools for analyzing trends. 

                                                           
5 Originally, App Annie was the primary source of data for the paper.  We had received data from App Annie from 

January 2012 to June 2013.  We subsequently received data from appFigures that allowed us to extend the timeline 

to January 2014.     

http://www.appannie.com/
file:///C:/Dropbox/Shiva/Paper/www.appfigures.com
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The dataset comprises information on app developers whose apps attained top-ranking positions 

by revenue (i.e., Top 500) in either the iOS or Android ecosystem from January 2012 to January 2014.  

The revenue distribution for smartphone apps is heavily skewed.  For example, based on a recent survey 

of more than 10,000 app developers, it was found that the top “1.6% of developers make multiples of the 

other 98.4% combined” (VisionMobile, 2014).6  Therefore, having an app in the Top 500 list offers clear 

evidence of performance superiority among hundreds of thousands of app developers.  Such a list is also 

keenly followed by industry observers and analysts as a reference for successful app developers. 

The majority of firms whose apps appear in the Top 500 list do not stay in that list for more than 

six months, a finding that is consistent with the context being hypercompetitive.  Unpacking such finer-

grained performance dynamics requires choosing an observation window that is shorter than the annual 

window typically employed in strategy research (D’Aveni et al., 2010).  We chose the period of 

observation to be a given month that would allow us to explain greater variance in the app developer’s 

sustainability of superior performance without being subject to exogenous intermittent fluctuations in the 

Top 500 ranking associated with daily or weekly observations.  This required aggregating the daily 

revenue rank data obtained from App Annie and appFigures into monthly data.  Because of the skewness 

of the distribution of revenues across the Top 500 apps, taking a simple average of apps’ daily ranks to 

compute monthly ranks is problematic.  To adjust for this skewness, we followed a procedure guided by 

prior research.   

Researchers have attempted to infer revenue and sales data from rank data by conducting 

experiments, collaborating with focal firms, or using publicly available information (e.g., Brynjolfsson, 

Hu, and Simester, 2003; Chevalier and Goolsbee, 2003; Garg and Telang, 2013).  These studies have 

found that the relationship between revenue (or sales) and rank closely follows a Pareto distribution 

according to which: 𝑟𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑏 ∗ (𝑟𝑎𝑛𝑘)−𝑎+ ∈ 
 

                                                           
6 The report is available at http://www.developereconomics.com/reports/developer-economics-q3-2014/. 

http://www.developereconomics.com/reports/developer-economics-q3-2014/
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where b is the scale parameter that is a function of the total revenue and a is the shape parameter 

of the underlying distribution that drives the difference in revenues across ranks.  Moreover, the shape 

parameter for the Pareto distribution has been found to be proximate to 1.  For example, in a recent study 

by Garg and Telang (2013), shape parameters for the iOS and Android apps were estimated to be between 

0.86 and 1.16.  Hence, to account for the Pareto distribution in our data, we assume the daily revenue for 

an app in the Top 500 list to be inversely proportional to its rank.7  Further, we assume the scale 

parameter for each ecosystem to be constant during a given month.  This allows us to calculate an app’s 

monthly revenue rank for both the iOS and the Android ecosystems.  

In addition to data on app developers whose apps achieved a Top 500 rank by revenue, we also 

obtained monthly data on the total number of apps and firms within each category of apps (e.g., games, 

social networking, productivity).  We supplemented data from App Annie and appFigures with data from 

firms’ websites and LinkedIn (www.linkedin.com) to gather information on the number of employees and 

firms’ participation in businesses other than smartphone apps.  We contacted some firms that had missing 

data via e-mail.  To measure ecosystem complexity faced by app developers within the Android 

ecosystem, we obtained data on the monthly share of the U.S. installed base for each of the smartphone 

OEMs from comScore (www.comscore.com). The final dataset comprises 12,720 monthly observations 

from 1,533 app developer firms. 

 

Measures 

Dependent variable: We examine the sustainability of superior performance for app developers 

by observing whether their apps continue to be among the Top 500 apps by revenue in the iOS or Android 

ecosystem.  For about 80% of the cases, a firm had a single app in the Top 500 list in the same month.  

Since our level of analysis is a firm and not an app, if a firm had more than one app in the Top 500 list, 

                                                           
7 Note that the inversely proportional relationship between app revenue and rank also follows from Zipf’s law that is 

frequently used to approximate actual data from rank data in physical and social sciences.  
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we treated those cases as a single firm-level observation.8  Similar to Wiggins and Ruefli (2002, 2005) 

and Hermelo and Vassolo (2010), we consider a firm’s superior performance to be eroded if it exits the 

superior performance stratum (i.e., the Top 500 list).  In order to ensure that the exit is somewhat 

persistent rather than intermittent, we use a window of three months to record the exit event (i.e., firm’s 

app is not present in the Top 500 list for three consecutive months after being in that list in the previous 

month).  Hence, a firm is assumed to sustain its superior performance if its app continues to be in the Top 

500 list in at least one of the following three months.  We also performed sensitivity checks by using 

windows of two and four months.  

On average, an app developer firm remains in the Top 500 list for a longer duration in the 

Android ecosystem (7 months) than in the iOS ecosystem (5 months).  Moreover, in the iOS ecosystem, 

about half of the firms exit the Top 500 list in less than two months, whereas in the Android ecosystem, 

this duration is about five months.  This pattern is consistent with our prediction in Hypothesis 1. 

 

Independent variables:  Complexity has been defined and measured in many different ways 

across different scientific fields (Lloyd, 2001).  This is because no single approach can capture what 

scientists from different fields mean by complex (Page, 2010).   In general, most definitions and 

associated measures consider complexity based on the difficulty of describing or creating an object, or 

based on the degree of organization with respect to the object (e.g., structural linkages between parts of a 

system).  Our measure of ecosystem complexity needs to account for the structural interdependencies that 

an app developer is subjected to within a smartphone ecosystem.  Therefore, our approach here is 

consistent with characterizing complexity in terms of the degree of organization.  It is also consistent with 

the formal theoretical literature in strategy using NK models (i.e., N elements and K interactions) that we 

extensively draw upon in our theorizing.   In the context of business ecosystem, the greater the diversity 

of components and subsystems that a complementor is interdependent on, the greater is the ecosystem 

                                                           
8 In such cases, we used the higher ranking app to create app-level control variables. 
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complexity.9  For smartphone ecosystem, the most obvious interdependencies for an app developer are 

with respect to the operating system and the handset.  Hence, the greater the diversity of operating system 

and handset configurations that an app developer is subjected to, the greater is the ecosystem complexity.  

As Apple controls both the operating system and handset, an app developer in the iOS ecosystem interacts 

only with the unitary configuration.  In the case of the Android ecosystem, although the core operating 

system is designed by Google, each smartphone OEM customizes the operating system and the handset.  

As a result, an app developer in the Android ecosystem interacts with handset and operating system 

configurations from many different OEMs.  We use a Simpson index-based measure to characterize this 

diversity in the operating system and handset configurations faced by the app developer (Page, 2010).10  

The measure ecosystem complexity is the sum of the squares of the monthly shares of the U.S. installed 

base for smartphone OEMs in an ecosystem.11  The measure takes a value of 1 for the iOS ecosystem and 

ranges from 0.28 to 0.40 for the more complex Android ecosystem.  We multiplied the measure by -1 so 

that higher values indicate higher ecosystem complexity.    

We measured ecosystem experience as the total number of months that a firm gained experience 

in a given ecosystem.  To obtain this measure, we first identified the month in which the firm introduced 

                                                           
9 Note that greater diversity in components or subsystems is not a sufficient condition for greater complexity, rather 

greater diversity coupled with interdependencies among components results in greater complexity.  This is also 

consistent with the dictionary definition of complex  – “composed of many interconnected parts” 

(http://dictionary.reference.com/browse/complex). 
10 An alternative could be a measure based on the Shannon index. The two indices differ with respect to the relative 

weights that they ascribe to each OEM’s user base. The Simpson index uses the proportion of each OEM’s installed 
base as weights to calculate the weighted arithmetic mean of the share of installed base for each OEM. The Simpson 

index thus gives higher weights to the OEMs which have high installed base. In contrast, the Shannon index uses 

weights based on natural logarithm of the proportion of installed base of each OEM and thus ascribes relatively 

higher weights to the OEMs with the low installed base. Hence, the measure is somewhat inconsistent with the fact 

that app developers focus most of their efforts on OEMs with high installed base.  The Simpson index measure is 

also mathematically identical to the popular Herfindahl index used in economics and management literature to 

measure industry concentration based on the sales of different firms within an industry. 
11

 Note also that our measure is based on the share of OEMs installed base and not the share of their sales. This is 

because the market for apps is not only confined to new smartphones being sold but it also encompasses existing 

smartphones being used.  As an additional alternative measure, we could have also used a count-based measure of 

the number of Smartphone OEMs or the number of the different types of smartphones in a given ecosystem.  

However, in our interviews, industry participants repeatedly asserted that their firms focus their app development 

efforts on the small subset of more commonly used handsets.  For example, in Android, they consistently referred to 

focusing their efforts on 6-8 leading smartphones from multiple OEM firms.  The Simpson index-based measure 

helps to account for this concentration effect. 
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its first app in the ecosystem (i.e., month of entry) and then computed the number of months between the 

observation month and the month of entry.   

We identified the effect of platform transition using a dummy variable that takes a value of 1 if a 

new generation of smartphone operating system was introduced within the prior three months.  The 

reason for the three-month window is that it often takes users several weeks to adopt the new generation 

of operating system and a similar time frame for app developers to adapt and reconfigure their apps.  

During the period of study, there were two major platform transitions in the iOS ecosystem (launch of 

iOS 6 in September 2012 and launch of iOS 7 in September 2013) and one major transition in the 

Android ecosystem (launch of the Jellybean 4.1 operating system in July 2012).  Although Google 

officially launched Jellybean 4.1 in July 2012, it became available to the majority of U.S. consumers 

through the different OEMs only in December 2012.  We verified this information by searching for news 

articles discussing the launch of Jellybean 4.1 by OEMs such as Samsung, HTC, and Motorola, often with 

new generations of handsets.  Hence, for the Android ecosystem, we considered the period of platform 

transition to last from January to March 2013.  

To ensure that our coding of these platform transitions matches with our theoretical premise of 

challenges faced by complementors during such episodes, we used data from Google Trends for searches 

made on Google in the U.S. with the search term “app not working.”12  Figure 2 plots the normalized 

weekly trend of search volume from January 2012 to January 2014.   It shows clear instances of peaks 

during the months in which new generations of operating system are introduced within the iOS and 

Android ecosystems.  Hence, these trends confirm our coding schema and provide evidence of the 

challenges faced by app developers during periods of platform transitions.  

(Insert Figure 2 about here) 

 

Control variables: We controlled for a number of covariates that may influence an app 

developer’s ability to sustain its superior performance.  We used the total number of employees as a proxy 

                                                           
12 Results can include searches containing "app" and "not working" in any order. Other related terms may be 

included in the search results, like "music app not working." 
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for firm size and used this variable to control for scale-related effects.  Data on the total number of 

employees was collected from the firm’s website or LinkedIn.  For those firms for which this information 

was not available, we contacted them via e-mail and received a 78% response rate.   

About 64% of firms in the sample participated in both the iOS and Android ecosystems.  

Participation in both ecosystems may create challenges with respect to resource allocation over time.  We 

controlled for this effect through the variable dual participation, which takes a value of 1 if the firm had 

an app in both the iOS and Android ecosystems in a given month and 0 otherwise.  We also controlled for 

the firm’s presence in businesses other than smartphone apps.  The variable other online business takes a 

value of 1 if a firm participated in other web-based businesses like an e-commerce or a social networking 

website.  The variable other offline business takes a value of 1 if the firm’s scope of businesses expanded 

beyond the internet domain, such as game consoles, brick and mortar retail, etc.   

App developers often try to gain visibility by providing free apps.  We controlled for this effect 

through a dummy variable Top 500 free ranking that takes a value of 1 if any of the apps developed by 

the firm were also part of the Top 500 ranking based on the number of downloads for free apps in a given 

month.  We also controlled for the overall quality of firms’ apps by using data on consumer ratings 

received by all apps developed by the firm until March, 2014.  We are unable to observe the change in 

ratings for all apps over time.  Hence, we used a time-invariant firm-level control to capture firm-level 

differences in app quality.  Consumers can rate an app from 1 to 5 stars, with 5 being the highest 

quality.  The variable firm app rating is the average rating of all apps developed by the firm as of March, 

2014.  We also controlled for the price of the focal app that is in the Top 500 list (by revenue).  For the 

few firms that had more than one app in the Top 500 list in the same month, we used the price for the app 

with the higher rank.  

Firms predominantly offered apps in a specific category such as games, music, social networking 

or productivity.  We controlled for this category-level heterogeneity through category fixed effects and 
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other category-level time-varying controls.13  A firm can continue to have its apps in the Top 500 ranking 

if there is a high level of demand for a particular category of apps in which the firm is active in.  We 

account for this possibility using the variable apps in top 500, which is the total number of apps from the 

focal firm’s app category in the Top 500 list in a given month.  While the context in general is 

hypercompetitive, there may be differences in the competitive intensity across categories over time.  We 

included two variables to account for these differences.  First, we included the total number of new apps 

that were introduced in a category in a given month.  This variable captures apps launched by both new 

and existing firms.  Second, we included the total number of new firms that entered the category in a 

given month.  The two variables are log-transformed to account for skewness. 

  

Analysis 

We tested our hypotheses using discrete time event history analysis to estimate the rate at which 

app developers exit the superior performance stratum.  This approach is consistent with prior studies 

which have focused on studying the sustainability of firms’ superior performance (e.g., Wiggins & Ruefli, 

2002, 2005; Hermelo & Vassolo, 2010).  Many firms in our sample did not exit the superior performance 

stratum during the observation period.  Hence, our data is right censored.  Event history models are well 

suited to account for right-censored observations (Allison, 1984).  Since we are studying only those firms 

that made it to the Top 500 ranking and were subjected to the risk of exiting the superior performance 

stratum, our data does not have left censoring.  Some firms in our sample entered the superior 

performance stratum before the start of the observation period.  Hence, our data is left truncated.  We 

checked for potential biases due to left truncation through additional robustness checks.  We did this by 

including observations only for firms whose apps entered the Top 500 list after January 2012 or for firms 

that participated in the iOS or Android ecosystems from January 2012 onward, regardless of when their 

apps made it to the Top 500 list.  We report these analyses in the robustness checks section. 

                                                           
13 In the few cases where firms offered apps in multiple categories, we used information for the highest ranking app 

to calculate values for the category-level control variables.  
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We constructed data in the long form to account for time-varying covariates.  We used the Cox 

proportional hazards model, a robust technique for hazard rate analysis that does not require making an 

additional assumption about the shape of the baseline hazard, which may be increasing, decreasing, 

constant, or non-monotonous (Cox, 1975).  This helps address concerns with respect to incorrect 

distributional assumptions yielding biased estimates (Blossfeld and Rohwer, 2002), and the choice of 

parametric specification based on observed data generating inconsistent results (Carroll and Hannan, 

2000).  Further, we tested for proportionality hazard assumption by checking if the slope of the regression 

equation of scaled Schoenfeld residuals on time is nonzero for full model as well as for all predictor 

variables (Grambsch and Therneau, 1994). We found that the proportionality hazard assumption was not 

satisfied for Top 500 free ranking and price variables.  To overcome this issue, we followed the 

recommended approach in the literature by including interaction terms between time (in months) and the 

respective variables to allow for different effects of these variables at different points in time.  As a 

robustness check, we also performed our estimations using the piecewise constant model with month-

specific effects.  The estimates from these models were consistent with those obtained from the Cox 

model. 

 

Results 

We report the summary statistics and correlations between our covariates in Table 1.  We report 

the results from the Cox model in Table 2.  The model estimates the hazard rate that a firm exits the 

superior performance stratum and, hence, its inability to sustain its superior performance.  The reported 

coefficients can be exponentiated to obtain hazard ratios, which are interpreted as the multiplier of the 

baseline hazard of the firm exiting the superior performance stratum when the variable increases by one 

unit (Allison, 2001).  An increase in hazard can also be interpreted as shortening the time period for 

which a firm sustains its superior performance.  All standard errors reported were corrected for non-

interdependence across multiple observations faced by the same firm by clustering observations for each 

firm.  Model 1 is a baseline model.  In Models 2, 3, and 4, we include ecosystem complexity, ecosystem 
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experience, and platform transition to test Hypotheses 1, 2, and 4, respectively.  In Model 5, we include 

the interaction term between ecosystem complexity and ecosystem experience to test Hypothesis 3.  In 

Model 6, we include the interaction term between ecosystem complexity and platform transition to test 

Hypothesis 5.  Model 7 is the fully specified model. 

 

(Insert Tables 1 and 2 about here) 

 

In Hypothesis 1, we predicted that higher ecosystem complexity will be associated with greater 

likelihood of complementor firms sustaining their superior performance.  This prediction was supported 

in all of the models (Models 2, 5, 6, 7).  The coefficient for ecosystem complexity is negative and 

statistically significant (p-value < 0.01).  Hence, higher ecosystem complexity is associated with lower 

likelihood of app developer exiting from the superior performance stratum.  In considering the magnitude 

of estimated coefficient in Model 2, we find that an increase in ecosystem complexity by one standard 

deviation reduces the app developer’s likelihood of exiting the superior performance stratum by 19%.  

In Hypothesis 2, we predicted that firms with greater experience within the ecosystem will be 

more likely to sustain their superior performance. We find support for Hypothesis 2, as the coefficient for 

ecosystem experience is negative and statistically significant in Models 3, 5, and 7 (p-value < 0.01).  

Hence, higher ecosystem experience is associated with lower likelihood of an app developer exiting from 

the superior performance stratum.  In considering the magnitude of estimated coefficients, an increase in 

an app developer’s experience by one standard deviation (16 months) decreases its likelihood of exiting 

the superior performance stratum by 11%. 

In Hypothesis 4, we predicted that generational transitions initiated by platform firms will make it 

more difficult for complementors to sustain their superior performance.  We find support for this 

prediction as the coefficient for platform transition is positive and statistically significant in Models 4, 6, 

and 7 (p-value < 0.01).  In considering the magnitude of estimated coefficient in Model 4, we find that an 

app developer’s likelihood of exiting the superior performance stratum increases by about 38% during the 

platform transition.  
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In Hypothesis 3, we predicted that the effect of complementor’s ecosystem experience on the 

sustainability of its superior performance will be moderated by ecosystem complexity such that the effect 

will be stronger when ecosystem complexity is high than when it is low.  We find support for Hypothesis 

3, as the coefficient for the interaction term between ecosystem complexity and ecosystem experience is 

negative and statistically significant (p < 0.10) in both Models 5 and 7.  Therefore, the effect of ecosystem 

experience on lowering the likelihood of an app developer’s exit from the superior performance stratum is 

stronger when ecosystem complexity is high than when it is low.  Figure 3 illustrates this interaction 

effect by plotting the predicted hazard of an app developer’s exit as a function of ecosystem experience 

and ecosystem complexity based on the estimates in the fully specified model (Model 7) and holding all 

other variables at their mean values.  High and low ecosystem complexity refers to values of one standard 

deviation above and below the mean.  The interaction effect seems to be more pronounced at lower levels 

of experience.   

(Insert Figure 3 about here) 

 

Finally, the coefficient for the interaction term between ecosystem complexity and platform 

transition is positive and statistically significant in both Model 6 and Model 7 (p < 0.05).  Hence, we find 

support for Hypothesis 5 that platform transitions make it more difficult for complementors to sustain 

their superior performance when ecosystem complexity is high than when it is low.  This interaction 

effect can be clearly seen in Figure 3 with the slope of predicted hazard of exit being much steeper for the 

high level of ecosystem complexity.  

 

Robustness checks 

We conducted a number of additional checks to establish the robustness of our findings.  The 

results from the robustness checks are reported in Tables 3 and 4.  First, in our main results, we 

considered a firm to be in the superior performance stratum if its app appeared in the Top 500 list by 

revenue, and we used a three-month observation window to assess whether the firm sustains its superior 
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performance or not.  To ensure that our results are not sensitive to these choices, we used a higher 

performance threshold based on a firm’s app in the Top 250 list by revenue (Model 8), and we also used 

windows of two and four months (Models 9 and 10).  The coefficient estimates for all the three models 

continue to support our predictions.   

 

(Insert Table 3 about here) 

 

Second, in order to account for firms self-selecting into the iOS or Android ecosystems, we 

estimated a model by including data for only those firms that participated in both ecosystems.  The 

coefficient estimates are reported in Model 11 and exhibit very similar patterns as our main results. The 

only exception was that the interaction term between ecosystem complexity and ecosystem experience is 

marginally insignificant (p-value = 0.115).  In order to ensure that the significant effect of app 

developers’ ecosystem experience is not simply an artifact of their general experience with apps, we 

performed a supplementary analysis on these firms that participated in both ecosystems.  We controlled 

for the app developers’ general experience – the total number of months that an app developer has been 

active in the smartphone app market for iOS and Android apps.  The results are reported in Model 12.  

While the coefficient for general experience is significant, the coefficient for ecosystem experience 

remains significant and is of the similar magnitude as in the main results.  Note also that the magnitude of 

the coefficient for ecosystem experience is more than twice as that of the coefficient for general 

experience.  Hence, this check helps to reinforce that complementor firms’ experiential benefit has a 

strong ecosystem-specific component. 

Some firms in our sample entered the superior performance stratum before the start of the 

observation period.  Hence, our data is left truncated.  We tested for any potential biases due to left 

truncation by only including observations for those firms whose apps appeared in the Top 500 list after 

January 2012 (Model 13).  Additionally, we ran a model (Model 14) by only including observations for 

those firms that entered these ecosystems from January 2012 onwards, regardless of when their apps 

made it to the Top 500 list.  The coefficient estimates are qualitatively similar as our main results with the 
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exception of the interaction term between ecosystem complexity and firm experience exhibiting similar 

magnitude and sign, but the estimates are not precise enough for statistical significance.  This is possibly 

due to the fact that these estimations are based on a smaller sample and that too of younger app developer 

firms. 

Another potential concern with the analysis could be that our measure for ecosystem complexity, 

based on the OEMs’ installed base, does not account for the diversity of handset configurations within 

OEMs.  For example, in the case of iOS ecosystem, the measure remains constant throughout the 

observation period and does not capture differences with respect to the types of phones, especially does 

with different screen sizes (e.g., iPhone 4s and 5).  For an app developer, screen size in addition to OEM 

operating system configuration can be an important driver of the variety of the handset and operating 

system combinations that their app interacts with.  While designing an app, the developer needs to 

carefully ensure that its app fits and works seamlessly across the different screen sizes of the different 

OEMs (Panzarino, 2012).  Hence, we explore the robustness of our results by including a finer-grained 

measure of ecosystem complexity based on the number of unique OEM firm and screen size 

combinations.   

Further, since the measure of ecosystem complexity is significantly correlated with the type of 

platform (i.e., iOS or Android), it might be capturing some unobserved differences with respect to 

platform firms’ strategies or user-characteristics across these platforms.  These differences may impact 

the relative ease with which app developer firms can sustain their superior performance in a given 

ecosystem, and may make some of our inferences problematic.  To address this possibility, we obtained 

detailed data on installed base of handsets and user characteristics from comScore.  comScore conducts a 

monthly survey of about twelve thousand U.S. smartphone users and collects data on their handset 

profiles, user demographics and the app usage patterns.  The survey data for each month is then adjusted 

to account for national demographics.  Due to cost constraints, we were able to obtain this data only for 

the period from Jan’ 2012 to May’ 2013.  
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We used the information on screen size and OEM type in the comScore survey dataset to 

calculate the finer-grained measure of ecosystem complexity.  The use of this measure also allows us to 

control for the focal platform.  The variable iOS takes the value of 1 if the app developer is participating 

in the iOS platform and 0 if it is participating in the Android platform.  We mean centered the ecosystem 

complexity measure to address multicollinearity with the iOS variable.  Finally, we also control for 

differences in app usage behavior for the two platforms as it can be an important driver of app developers’ 

ability to sustain its performance in the specific ecosystem.  The variable App download measures the 

percentage of users who download 5 or more apps in a given month in the focal platform.  In addition, we 

also control for the differences in age and gender as these two demographic characteristics can drive 

differences in user preferences for various apps.  The variables Female user and Age measure the 

percentage of female users and the percentage of users of age between 18 to 45 years, respectively, for the 

focal platform in a given month.  We report the results in Table 4.   

 

(Insert Table 4 about here) 

 

Model 15 is used to test the direct effects of the predictor variables with the new measure of 

ecosystem complexity and with additional controls for user characteristics.  Model 16 includes the 

additional control for the focal platform.  The coefficient estimates for the direct effects of the predictor 

variables are significant and consistent with our predictions.  Models 17 and 18 also include the 

interaction terms.  The coefficients for the interaction term between ecosystem complexity and platform 

transition are consistent with our main results with the coefficient being statistically significant in Model 

17 but insignificant in Model 18 (p-value = 0.198).  The coefficients for the interaction term between 

ecosystem complexity and experience have the expected sign but the standard errors are not precise to 

offer any statistical significance.  This is likely because of fewer observations and limited time period for 

the observation window.  Overall, these additional analyses help to establish the robustness of our 

findings and give us greater confidence in our inferences.  
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Discussion 

In this study, we focus on the emergent phenomenon of business ecosystems in which value is 

created through a network of firms offering complementary products and services.  We explore how the 

structural and evolutionary features of the ecosystem shape the extent to which complementor firms can 

sustain their superior performance.  We use the notion of ecosystem complexity to characterize the 

structure of the complementors’ interdependence with other actors in the ecosystem.  We incorporate the 

evolutionary features of the ecosystem by considering the impact of platform-level transitions and firm-

level experience on the complementors’ ability to sustain their performance superiority.   

We test our arguments on app developers in Apple’s iOS and Google’s Android smartphone 

ecosystems from January 2012 to January 2014.  During the period of study, both of these ecosystems 

were populated by hundreds of thousands of app developers that offered a wide variety of specialized 

software applications to smartphone users.  The stark contrast between Apple’s “closed” model and 

Google’s “open” model, in addition to several episodes of platform transitions initiated by these firms, 

allowed us to examine how ecosystem complexity and platform transitions impacted the ease with which 

complementors such as app developers could sustain their superior performance within an ecosystem.  

Consistent with our arguments, we find that higher ecosystem complexity helps app developers sustain 

their superior performance and that this effect is stronger for more experienced firms.  In contrast, 

platform transitions make it more difficult for app developers to sustain their performance superiority, and 

this effect is exacerbated by the extent of ecosystem complexity.  

Our study's findings make important contributions to the emerging literature streams in strategy 

on business ecosystems, platforms, and persistence of superior performance.  Scholars studying business 

ecosystems have focused on the coordination and technological challenges with respect to complementors 

and the resulting implications for firms’ organizational choices and value creation (e.g., Iansiti and 

Levien, 2004; Adner and Kapoor, 2010, 2014; Kapoor and Lee, 2013; Kapoor, 2013).  Scholars studying 

platforms have focused on the strategies used by platform firms to attract complementors and to compete 

against rival platforms (Gawer and Cusumano, 2002; Gawer and Henderson, 2007; Boudreau, 2010; 



29 

Eisenmann et al.; Zhu and Iansiti, 2012).   While these literature streams have shifted the theoretical 

emphasis from industries and products to business ecosystems and platforms, the primary mode of inquiry 

is to illustrate how firms manage their interdependence with complementors so as to create and 

appropriate value.   

In this study, we focus on the other side of the phenomenon and illustrate how complementors’ 

value appropriation is shaped by the structural and evolutionary features of the business ecosystem.  Our 

findings have implications for both platform firms such as Apple and Google that set the rules and own 

the core technological platform and complementors such as app developers that follow the rules and 

leverage the technological platform.  We show how the choices made by the platform firms (e.g., Apple’s 

closed model and Google’s open model) may play a significant role in the ability of complementors to 

appropriate value over time.  In addition, while major technological changes within the platform are 

important for sustaining the progress of the business ecosystem over time, we show that these changes 

can disrupt members who are leaders within specific market niches.  At the same time, platform 

transitions provide opportunities for other complementors in the ecosystem to gain leadership.  Hence, we 

shed light on the challenges and the trade-offs that platform firms and complementors face in their quest 

for superior performance over time.  

The study is also among the first to provide systematic empirical evidence regarding the role of 

complexity on firm performance as theorized within the evolutionary economics perspective.  While 

scholars have drawn on a variety of theoretical approaches to model firms’ search processes and their 

performance outcomes at different levels of complexity (e.g., Levinthal, 1997; Rivkin, 2000; Siggelkow 

and Rivkin, 2005), empirical evidence regarding the role of complexity on firm performance has been 

somewhat lacking (Lenox et al. (2010) is an important exception). We show that complexity plays an 

important role in sustaining superior performance in business ecosystems, and its impact is especially 

strong for more experienced firms and during periods of platform transitions.  

Finally, our findings also offer important implications for the literature stream examining 

persistence of superior performance. There is growing evidence that it is becoming increasingly difficult 
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for firms to sustain their superior performance over time (Wiggins and Ruefli, 2002, 2005; D’Aveni et al., 

2010; McGrath, 2013).  However, the underlying drivers of this trend are not well understood, nor are the 

reasons why the persistence of superior performance varies across different types of firms and industry 

contexts (McGahan and Porter, 1997; Hoopes et al., 2003; D’Aveni et al., 2010).  We contribute to this 

literature stream by generating and validating some theoretical mechanisms regarding why firms’ ability 

to sustain their superior performance may be influenced by the structural and evolutionary features of the 

business ecosystems.  Knowledge of such relationships can help managers devise strategies (e.g., 

frequency and nature of competitive moves, resources reconfigurations) that exhibit a superior fit with 

their business environment (e.g., Young et al., 1996; Lee et al., 2010).  We also offer an empirical 

contribution to this literature stream and reaffirm the need to go beyond annual datasets that are typically 

used in the strategy literate to shorter temporal windows, such as months or quarters. We show that such 

finer-grained observational periods can be more useful in deciphering performance dynamics in high 

velocity environments than the more aggregated annual data.  

The findings and the inferences from the study are subject to a number of caveats that offer 

opportunities for future research.  First, they are limited to a single empirical setting, and their validity 

needs to be established across other contexts.  Second, our measure of superior performance based on the 

Top 500 list by revenue, although widely accepted as a proxy for competitive superiority in our empirical 

setting and consistent with the strategy literature, may not represent true economic performance for 

complementors.  Finally, our dataset is limited to only 25 months, and while we observe significant 

fluctuations within the competitive landscape over this relatively short period, we are unable to draw 

inferences over longer time frames. 

Despite these and other limitations, the study offers one of the first explorations of how business 

ecosystems influence performance dynamics among complementors.  By drawing on arguments from the 

evolutionary economics perspective and by linking ecosystem-level effects with firm-level search 

processes of innovation and imitation, we show how they explain the extent to which firms can 

appropriate value within an ecosystem over time.   
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Figure 1: Simple schema illustrating varying levels of ecosystem complexity for a 

complementor.  Each circular node represents a specific component or subsystem that 

interacts with the complementor’s product in an ecosystem. 

 

 

 

 

 

 

 

 

 

Figure 2: Normalized weekly trend of Web search in the U.S. on Google for the term “app 
not working.” (Data source: Google Trends; http://www.google.com/trends/) 
 

 

Figure 3: Graphical plots of the interaction effects  
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Table 1: Descriptive statistics and correlations 

 

Variable Mean Std. Dev. 

Ecosystem 

complexity 

Ecosystem 

experience 

Platform 

transition 

New 

apps 

New 

firms 

Apps in 

Top 

500 

Firm 

size  

Other 

Online 

business 

Other 

Offline 

business 

App 

price 

Firm 

app 

rating 

Top 500 

free app 

Dual 

parti- 

cipation 

Ecosystem 

complexity -0.665 0.341 1.000 

            Ecosystem 

experience 22.343 16.063 -0.530 1.000 

           Platform 

transition 0.178 0.382 -0.142 0.128 1.000 

          
New apps 7.842 0.974 -0.137 0.065 0.108 1.000 

         
New firms 6.351 0.769 -0.034 -0.017 0.067 0.952 1.000 

        Apps in Top 

500 198.842 162.808 0.063 -0.086 0.051 0.764 0.714 1.000 

       Firm size 

(employees) 620.432 1790.673 -0.043 0.162 0.000 -0.055 -0.068 -0.066 1.000 

      Other online 

business 0.587 0.492 -0.029 0.095 0.013 -0.038 -0.044 -0.011 0.230 1.000 

     Other offline 

business 0.300 0.458 -0.032 0.118 0.007 -0.063 -0.092 -0.069 0.398 0.293 1.000 

    
App price 3.555 30.865 -0.042 0.028 0.000 -0.082 -0.092 -0.103 0.010 0.008 0.040 1.000 

   Firm app 

rating 4.008 0.489 0.248 -0.293 -0.025 0.167 0.162 0.220 -0.228 -0.139 -0.180 0.010 1.000 

  Top 500 free 

app 0.558 0.497 -0.173 0.155 0.009 0.115 0.123 0.133 0.075 0.027 -0.048 -0.101 0.012 1.000 

 Dual 

participation 0.625 0.484 0.124 0.030 0.007 0.121 0.141 0.196 0.150 0.203 0.174 -0.027 -0.044 0.076 1.000 

 

Correlations greater than 0.01 or smaller than -0.01 are significant at p <0.05, N= 12,720 
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Table 2: Cox proportional hazards estimates for firms exiting the superior performance stratum 
 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

Ecosystem complexity  -0.634***   -0.572*** -0.682*** -0.630*** 

  (0.116)   (0.168) (0.124) (0.168) 

Ecosystem experience   -0.007***  -0.026***  -0.026*** 

   (0.002)  (0.007)  (0.008) 

Platform transition    0.321***  0.727*** 0.793*** 

    (0.075)  (0.244) (0.249) 

Ecosystem complexity*Experience     -0.015*  -0.016** 

     (0.008)  (0.008) 

Ecosystem complexity* Transition      0.651** 0.762** 

      (0.297) (0.304) 

New apps 0.066 -0.397** 0.194 0.023 -0.287* -0.392** -0.279* 

 (0.146) (0.168) (0.145) (0.149) (0.168) (0.169) (0.169) 

New firms -0.171 0.206 -0.268 -0.111 0.161 0.201 0.150 

 (0.185) (0.206) (0.182) (0.188) (0.202) (0.207) (0.203) 

Apps in Top 500 0.003 0.005 0.002 0.001 0.004 0.004 0.003 

 (0.007) (0.006) (0.007) (0.007) (0.007) (0.006) (0.007) 

(Apps in Top 500)2 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Firm size (employee) -0.012*** -0.012*** -0.011*** -0.012*** -0.011*** -0.012*** -0.011*** 

 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

Other online business -0.207*** -0.214*** -0.201*** -0.207*** -0.210*** -0.213*** -0.209*** 

 (0.066) (0.065) (0.066) (0.066) (0.064) (0.065) (0.064) 

Other offline business 0.105 0.121 0.102 0.107 0.124* 0.122 0.126* 

 (0.078) (0.076) (0.078) (0.077) (0.075) (0.076) (0.075) 

Dual participation -0.430*** -0.389*** -0.422*** -0.424*** -0.366*** -0.389*** -0.366*** 

 (0.065) (0.065) (0.065) (0.065) (0.064) (0.065) (0.064) 

Firm app rating -0.085 -0.020 -0.128** -0.078 -0.071 -0.019 -0.069 

 (0.057) (0.057) (0.056) (0.056) (0.055) (0.057) (0.055) 

Top 500 free app -0.666*** -0.793*** -0.601*** -0.672*** -0.710*** -0.797*** -0.716*** 

 (0.094) (0.098) (0.095) (0.094) (0.097) (0.098) (0.097) 

Top 500 free app*time 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

App price 0.040 0.009 0.058 0.039 0.029 0.007 0.027 

 (0.047) (0.048) (0.046) (0.047) (0.046) (0.048) (0.046) 

App price*time 0.002 0.002 0.001 0.001 0.002 0.002 0.002 

 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 
Category fixed effects Yes Yes Yes Yes Yes Yes Yes 
Total observations 12,720 12,720 12,720 12,720 12,720 12,720 12,720 
Total firms 1533 1533 1533 1533 1533 1533 1533 
Total exit events 1,791 1,791 1,791 1,791 1,791 1,791 1,791 
Log likelihood -10,935.71 -10,913.76 -10,927.44 -10,928.48 -10,891.25 -10,908.47 -10,885.81 

* p < 0.1; ** p < 0.05; *** p < 0.01 
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Table 3: Robustness checks 
 Model 8 (Top 

250 ranks) 

Model 9   

(2-month) 

Model 10 

(4-month) 

Model 11 

(common firms) 

Model 12 (general 

experience) 

Model 13 (post- 

Jan’12 Top rank) 
Model 14 (post- 

Dec’11 entry) 
Ecosystem complexity -0.493** -0.570*** -0.624*** -0.682*** -0.490** -0.421** -0.709*** 

 (0.208) (0.164) (0.173) (0.209) (0.222) (0.175) (0.257) 

Ecosystem experience -0.032*** -0.025*** -0.024*** -0.028*** -0.021** -0.005 -0.052*** 

 (0.008) (0.007) (0.008) (0.009) (0.010) (0.009) (0.018) 

Platform transition 0.857** 0.580** 0.801*** 0.722** 0.722** 0.672** 0.995** 

 (0.381) (0.228) (0.268) (0.294) (0.294) (0.269) (0.443) 

Ecosystem complexity*Experience -0.021** -0.016** -0.014* -0.015 -0.016 -0.004 -0.029 

 (0.009) (0.008) (0.008) (0.010) (0.010) (0.009) (0.021) 

Ecosystem Complexity* Transition 0.945** 0.527* 0.728** 0.675* 0.679* 0.636* 0.987* 

 (0.433) (0.278) (0.324) (0.360) (0.360) (0.326) (0.516) 

New apps -0.372* -0.314* -0.310* -0.234 -0.195 0.133 0.011 

 (0.193) (0.162) (0.172) (0.229) (0.227) (0.173) (0.317) 

New firms 0.272 0.260 0.157 0.044 0.022 -0.350* -0.143 

 (0.249) (0.191) (0.208) (0.267) (0.265) (0.199) (0.376) 

Apps in Top 500 0.017** 0.003 0.003 0.004 0.003 -0.002 0.013 

 (0.007) (0.006) (0.007) (0.010) (0.010) (0.007) (0.012) 

(Apps in Top 500)2 -0.000** -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Firm size (employee) -0.006** -0.012*** -0.011*** -0.010*** -0.010*** -0.007** -0.024 

 (0.002) (0.003) (0.003) (0.003) (0.003) (0.003) (0.016) 

Other online business -0.129* -0.200*** -0.210*** -0.198** -0.194** -0.138** -0.264*** 

 (0.073) (0.061) (0.065) (0.079) (0.079) (0.063) (0.097) 

Other offline business -0.022 0.141* 0.093 0.127 0.137 0.137* 0.255** 

 (0.083) (0.074) (0.077) (0.085) (0.086) (0.072) (0.128) 

Dual participation -0.215*** -0.333*** -0.392***   -0.293*** -0.176* 

 (0.074) (0.062) (0.065)   (0.064) (0.102) 

Firm app rating -0.041 -0.070 -0.067 -0.002 -0.004 -0.002 0.027 

 (0.066) (0.054) (0.057) (0.072) (0.073) (0.053) (0.087) 

Top 500 free app -0.470*** -0.647*** -0.728*** -0.767*** -0.775*** -0.581*** -0.770*** 

 (0.140) (0.096) (0.099) (0.117) (0.117) (0.098) (0.187) 

Top 500 free app*time 0.001* 0.001*** 0.001*** 0.002*** 0.002*** 0.001*** 0.002*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) 

App price 0.056* 0.049 0.034 -0.063 -0.053 0.095** 0.063 

 (0.034) (0.044) (0.047) (0.058) (0.059) (0.043) (0.073) 

App price*time -0.000* 0.001 0.002 0.007** 0.007* 0.000 0.002 

 (0.000) (0.003) (0.003) (0.003) (0.003) (0.002) (0.004) 

General experience     -0.008**   

     (0.004)   

Category fixed effects Yes Yes Yes Yes Yes Yes Yes 

Total observations 6,785 12,720 12,720 10,010 10,010 6,578 3,675 

Total firms 1042 1533 1533 997 997 1325 662 

Total exit events 1,034 2,013 1,658 1,243 1,243 1,442 620 

Log likelihood -5,700.77 -12,265.69 -10,069.45 -7,297.72 -7,294.45 -7,864.84 -3,000.25 
* p<0.1; ** p<0.05; *** p<0.01 
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Table 4: Robustness checks (Alternative complexity measure) 

 Model 15 Model 16 Model 17 Model 18 

Ecosystem complexity -1.067** -1.066** -1.760** -1.502* 

 (0.511) (0.512) (0.789) (0.818) 

Ecosystem experience -0.014*** -0.015*** -0.015*** -0.015*** 

 (0.003) (0.003) (0.003) (0.003) 

Platform transition 0.316*** 0.274** 0.002 0.075 

 (0.116) (0.117) (0.181) (0.192) 

Ecosystem complexity*Experience   -0.004 -0.005 

   (0.020) (0.020) 

Ecosystem Complexity* Transition   7.320** 5.026 

   (3.336) (3.906) 

New apps 0.186 0.099 0.104 0.077 

 (0.257) (0.263) (0.263) (0.265) 

New firms -0.289 -0.157 -0.215 -0.157 

 (0.277) (0.290) (0.283) (0.291) 

Apps in Top 500 -0.003 -0.002 -0.000 -0.001 

 (0.011) (0.011) (0.011) (0.011) 

(Apps in Top 500)2 0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) 

Firm size (employee) -0.010** -0.010** -0.010** -0.010** 

 (0.004) (0.004) (0.004) (0.004) 

Other online business -0.247*** -0.248*** -0.250*** -0.249*** 

 (0.087) (0.087) (0.087) (0.087) 

Other offline business 0.025 0.028 0.027 0.029 

 (0.104) (0.104) (0.104) (0.104) 

Dual participation -0.416*** -0.412*** -0.415*** -0.413*** 

 (0.103) (0.103) (0.103) (0.103) 

Firm app rating -0.158** -0.152* -0.156* -0.153* 

 (0.080) (0.080) (0.080) (0.080) 

Top 500 free app -0.763*** -0.768*** -0.771*** -0.773*** 

 (0.113) (0.114) (0.115) (0.115) 

Top 500 free app*time 0.002* 0.002* 0.002* 0.002* 

 (0.001) (0.001) (0.001) (0.001) 

App price 0.002 -0.000 0.001 -0.001 

 (0.053) (0.053) (0.053) (0.053) 

App price*time 0.015*** 0.015*** 0.015*** 0.015*** 

 (0.006) (0.006) (0.006) (0.006) 

User characteristics     

Female usersa 5.194 3.211 5.409 4.134 

 (3.831) (3.906) (3.819) (3.990) 

Age(18-45)a  4.335 1.231 2.133 0.936 

 (3.015) (3.303) (3.109) (3.298) 

App download (>5 per month)a 5.283* -1.825 4.721* 0.579 

 (2.769) (3.996) (2.735) (4.458) 

iOS  0.356**  0.217 

  (0.179)  (0.211) 

Category Fixed effects Yes Yes Yes Yes 

Total observations 8,742 8,742 8,742 8,742 

Total firms 1099 1099 1099 1099 

Total exit events 1,010 1,010 1,010 1,010 

Log likelihood -6,127.13 -6,125.26 -6,125.03 -6,124.54 
aVariables are in percentage of total subscribers. * p<0.1; ** p<0.05; *** p<0.01 
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