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Abstract: We investigate bulk moduli stabilisation and supersymmetry breaking in lo-

cal string/F-theory models where the Standard Model is supported on a del Pezzo sur-

face or singularity. Computing the gravity mediated soft terms on the Standard Model

brane induced by bulk supersymmetry breaking in the LARGE volume scenario, we ex-

plicitly find suppressions by Ms/MP ∼ V−1/2 compared to M3/2. This gives rise to sev-

eral phenomenological scenarios, depending on the strength of perturbative corrections to

the effective action and the source of de Sitter lifting, in which the soft terms are sup-

pressed by at least MP /V3/2 and may be as small as MP /V2. Since the gravitino mass

is of order M3/2 ∼ MP /V, for TeV soft terms all these scenarios give a very heavy grav-

itino (M3/2 ≥ 108 GeV) and generically the lightest moduli field is also heavy enough

(m ≥ 10 TeV) to avoid the cosmological moduli problem. For TeV soft terms, these sce-

narios predict a minimal value of the volume to be V ∼ 106−7 in string units, which would

give a unification scale of order MGUT ∼ MsV1/6 ∼ 1016 GeV. The strong suppression

of gravity mediated soft terms could also possibly allow a scenario of dominant gauge

mediation in the visible sector but with a very heavy gravitino M3/2 > 1 TeV.
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1 Introduction

During the last years moduli stabilisation, in particular for Type IIB orientifolds on com-

pact Calabi-Yau threefolds, has been under intense study and several scenarios have been

proposed. The original example is the KKLT scenario [1], where dilaton and complex

structure moduli are fixed at tree-level by fluxes while Kähler moduli are stabilised via

instanton generated terms in the superpotential

W = W0 + Ae−a Ts . (1.1)
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As a generalisation of this, including also next-to-leading order corrections to the Kähler

potential, the volume of the compactification manifold V can be stabilised at exponentially

large values [2, 3]. These large volume minima are quite generic [4] and exist whenever there

is a four-cycle in the Calabi-Yau threefold which is shrinkable to zero size, such that the

total volume of the space remains finite. These supersymmetry breaking Type IIB vacua

have been called the LARGE Volume Scenario (LVS). Their phenomenological features

were studied in very much detail for the string scale in the intermediate regime Ms ≃
1011 GeV [5, 6] leading to TeV soft terms and intermediate scales for the neutrino and

axion sector of the MSSM in the preferred range. For computing the high scale soft terms

it was assumed that the D7-branes supporting the MSSM gauge and matter fields wrap

the same four-cycle supporting also the D3-brane instanton. In [7], it was pointed out that

instanton zero mode counting actually forbids such a scenario and that the D7-branes and

instantonic D3-branes should better wrap distinct four-cycles in the underlying Calabi-Yau

manifold. In fact the Kähler moduli associated to the sizes of the four-cycles wrapped by

the D7-branes can be stabilised by D-terms, often at string scale size at the boundary of

the Kähler cone. In this sense the MSSM branes are sequestered from the bulk of the

Calabi-Yau.

A way of realising the MSSM gauge and matter fields in the LVS is by studying

fractional D3-branes at the singular point, discussed in [8, 9]. Various low-energy models

were studied on the first two del Pezzo surfaces dP0 and dP1, allowing for both GUT-

like and extended MSSM scenarios. From the effective field theory point of view, both

scenarios are similar since after stabilising the moduli, both vacua are at or close to the

singular point.

A very similar scenario was proposed recently in the context of local F-theory models

with an SU(5) GUT brane. First of all, it was realised that some of the model building

problems one had with realising simple GUT groups in orientifold constructions [10] are

nicely reconciled in F-theory models on elliptically fibered Calabi-Yau fourfolds [11–18].

The reason for this substantial improvement is that F-theory is genuinely non-perturbative

and also allows for the appearance of exceptional groups E6, E7, E8, which are supported

along a complex surface in the base threefold, over which the elliptic fiber degenerates

appropriately.1 As a consequence, by a further breaking also the spinor representation

of an SO(10) GUT and the top-quark Yukawa couplings 10 10 5H in SU(5) GUTs can be

realised.

Moreover, it was proposed in [13] that such models can allow for an essentially local

treatment, if there exists a limit in which gravity decouples from the gauge theory on the

GUT brane. Geometrically this means that the space transverse to the brane can become

arbitrary large or from a different perspective that the four-cycle the brane is wrapping

can shrink to zero size. Such four-cycles are so-called del Pezzo surfaces, which are P
2

blown up at up to eight points. Since there exists a limit where gravity decouples from

the physics on the SU(5) brane, one expects that for gravity induced couplings on the

1In the Type IIB interpretation, such loci support general (p, q) seven brane systems, where the extra

states are realised by massless string junctions.
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brane there exists an Ms/MP suppression relative to their general values. This decoupling

argument was used heavily when studying the further phenomenological implications of

local F-theory GUTs [19, 20]. In particular, it was argued that, since gravity/moduli

mediated supersymmetry breaking soft terms on the GUT brane should also experience

such a suppression, gauge mediation could become the dominant source. Indeed, under

this assumption a very nice numerology for the soft terms was deduced, which besides

flavour universality includes a solution to the µ/µB problem and a candidate for the QCD

axion solving the strong CP-problem. The gauge mediation was parametrised in the usual

way by the non-zero VEV of a scalar field 〈X〉 = x + θ2F mediated to the MSSM by

charged messenger fields. Note that in this scenario the gravitino mass was assumed to

be dominantly set by gauge mediation. Therefore, the gravitino was the LSP with a

mass of 1 GeV.

Since both the LARGE volume scenario and local F-theory GUTs require the same

kind of geometry, i. e. Calabi-Yau respectively base threefolds containing del Pezzo surfaces,

it is natural to combine these two set-ups and study, for this concrete moduli stabilisation

mechanism in the bulk, the computable effects of gravity mediation for the physics on

the GUT brane. It is the primary aim of this paper, to compute for a minimal set-up

these gravity mediated soft terms explicitly and compare them with the expectation of

an V− 1

2 = Ms/MP suppression. Indeed, as we will show such a computation requires to

compute the soft terms at next-to-leading orders in 1/V.

This paper is organised as follows: In section 2 we review the geometric framework

of local GUTs and the LARGE volume approach to moduli stabilisation that is appli-

cable in this regime. In section 3 we describe the computation of gravity mediated soft

terms. We describe how the soft terms cancel at O(M3/2) and how it is necessary to

consider sub-leading corrections. We find sub-leading contributions to soft terms at order

O(M3/2/
√
V) = O

(

M
3/2

3/2

M
1/2

P

)

. In certain circumstances these contributions can also cancel

and we give a set of well posed assumptions when this can occur. In section 4 we discuss the

implications from these soft terms for both gauge mediation and the cosmological moduli

problem, and in section 5 we conclude.

2 Effective field theories and moduli stabilisation

The minimal set-up we are investigating in this paper is that we have a threefold with at

least three four-cycles, one large cycle and two small del Pezzo four-cycles, i. e. the threefold

is of the (strong) swiss-cheese type. One of the del Pezzos supports the SU(5)/MSSM gauge

theory while the other one can support a D3-brane instanton inducing a non-perturbative

contribution to the superpotential. Therefore, for the size of the overall volume and the in-

stanton four-cycle (without any further contributions) there exists the non-supersymmetric

AdS-type LARGE volume minimum. Since the GUT brane is localised on a del Pezzo

surface orthogonal to the instantonic del Pezzo and the size of the GUT brane is fixed

by D-terms at small values, the previous computations of the gravity induced soft terms

– 3 –
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should be modified. The same calculation is also necessary for the case that the GUT cycle

is collapsed at the quiver locus.

There are two basic regimes where the effective field theory (EFT) for light modes

is reliable:

• All of the 4-cycles, including the standard model or GUT cycle are larger than the

string scale. This is the geometric regime.

• The size of the standard model cycle is much smaller than the string scale. It is a

standard blow-up mode expanded around its vanishing value corresponding to the

del Pezzo singularity. Fortunately string theory is under control at the singularity

and the EFT can be safely defined in an expansion on the blow-up mode.

Since the D-term conditions tend to prefer a small value of the standard model cycle, it

is important to understand the physics in both regimes of validity of EFT. It is clear that

these are two different effective field theories for standard model physics. But, as we will

see, since the standard model cycle does not participate in the breaking of supersymmetry,

the structure of soft breaking terms will be the same in both cases.

Let us discuss the ingredients in some more detail.

2.1 Gauge couplings on the GUT brane

Let us recall the set-up for Type IIB respectively F-theory GUT models, where we use

for concreteness the Type IIB orientifold language of [21, 22]. We consider the Type IIB

string compactified on a compact Calabi-Yau threefold M modded out by an orientifold

projection Ω σ (−1)FL . The holomorphic involution is such that one gets O7- and O3-

planes. The base of the corresponding elliptically fibered four-fold is then B3 = M/σ. The

SU(5) GUT is localised on D7-branes wrapping a rigid del Pezzo surface Da. The resulting

tree-level SU(5) gauge kinetic function fSU(5) = 4π
g2

X
+ iΘ is simply given by

fSU(5) = Ta =
1

2 gsℓ4
s

∫

Da

J ∧ J + i

∫

Da

C4 , (2.1)

where gs = eϕ denotes the string coupling constant and Vol(Da) = 1
2

∫

Da
J ∧ J is the

volume of the del Pezzo surface Da.

In orientifold models, we actually get on a stack of five D7-branes the Chan-Paton

gauge group U(5), which allows for a non-vanishing gauge flux Fa in the diagonal U(1) ⊂
U(5). Since a del Pezzo is rigid and does not even contain any discrete Wilson lines, the

gauge symmetry is broken to SU(3) × SU(2) × U(1)Y by a non-trivial U(1)Y gauge flux

FY supported on a two-cycle Ca ∈ H2(Da, Z) which is trivial in H2(M, Z) [13, 14]. As

explained in [22], this way of breaking the SU(5) gauge group leads to a specific pattern of

MSSM gauge couplings at the unification scale

fi = Ta −
1

2
κi S, i ∈ {1, 2, 3} , (2.2)
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with

κ3 =

∫

Da

F2
a , κ2 =

∫

Da

F2
a + F2

Y + 2Fa FY (2.3)

κ1 =

∫

Da

F2
a +

3

5
(F2

Y + 2Fa FY ) . (2.4)

For concreteness we are using these orientifold relations in the following.

In the limit that the cycle is collapsed to the singularity, the gauge kinetic function

takes a similar form:

fi = δiS + sikTk , (2.5)

where now Tk has to be understood as the blow-up modes that resolve the singularity.

For Zn singularities δi is universal; however for more complicated singularities δi can be

non-universal. For applications to unification, we are interested in singularities where the

different gauge groups have universal couplings at the singularity.

For both classes of local models the GUT unification scale and string scale differ

significantly by a factor of the bulk radius. More precisely, the GUT unification scale MX

is given by MX = RMs, where R ∼ V1/6 is the bulk radius of the Calabi-Yau in string

units. This can be seen through the Kaplunovsky-Louis relation between physical and

holomorphic gauge couplings,

g−2
a (Φ, Φ̄, µ) = Re(fa(Φ)) +

(
∑

r nrTa(r) − 3Ta(G))

8π2
ln

(

MP

µ

)

+
T (G)

8π2
ln g−2

a (Φ, Φ̄, µ)

+
(
∑

r nrTa(r) − T (G))

16π2
K̂(Φ, Φ̄) −

∑

r

Ta(r)

8π2
ln detZr(Φ, Φ̄, µ) .

(2.6)

Using the IIB Kähler potential K̂ = −2 lnV and the behaviour for local models Ẑ = V−2/3

we obtain

g−2
a (µ) − T (G)

8π2
ln g−2

a (µ) = Re(fa(Φ)) + βa ln

(

(RMs)
2

µ2

)

, (2.7)

giving effective unification at RMs. As described in [23–25], at the string level this de-

pendence arises from the presence of tadpoles that are sourced in the local model but are

only cancelled globally. This comes from the fact that the U(1)Y flux that breaks the GUT

group is on a two-cycle that is non-trivial in H2(Da, Z) and trivial in H2(M, Z). Locally

the U(1)Y flux sources an RR tadpole, which is in fact absent globally due to the triviality

of the cycle. The finiteness of threshold corrections is tied to the absence of RR tadpoles,

but the triviality of Ca requires knowledge of the global geometry, leading to the presence

of the scale RMs.

2.2 Moduli stabilisation

So far we essentially considered a local part of the overall Calabi-Yau geometry where the

GUT physics is localised. As has been pointed out in [13], supersymmetry breaking on a

hidden D-brane and mediation via gauge interaction to the visible GUT brane might also

– 5 –
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partly allow a completely local treatment. This presumes of course that all possible Planck

scale suppressed terms are sub-leading.

In this paper, we do not postpone these global issues but instead continue the quite

successful investigation of moduli stabilisation in the framework of Type IIB orientifolds.

More concretely, we consider a set-up where the bulk moduli orthogonal to Da are stabilised

by the LARGE volume scenario and compute the induced soft terms on the SU(5) brane,

respectively the del Pezzo singularity constructions.

2.2.1 Fixing the non-standard model/GUT cycles

For self-consistency let us review briefly the main ingredients for the KKLT respectively

LARGE volume scenario.

At order V−2 in the large volume expansion, the complex structure moduli and the

dilaton are stabilised by a non-trivial G3-flux giving rise to a tree-level superpotential of

the form [26]

Wflux =

∫

M
G3 ∧ Ω3 . (2.8)

The resulting scalar potential is of the no-scale type, with the Kähler moduli still

flat directions.

In the LARGE volume scenario the no-scale structure is broken by a combination of

α′-corrections to the Kähler potential and a D3-instanton correction to the superpotential.

Concretely, the Kähler potential including α′-corrections [27] reads

K = −2 ln

(

V +
ξ̂

2

)

− ln
(

S + S̄
)

+ KCS , (2.9)

where ξ̂ = ξ/g
3/2
s and gs is the string coupling. The resulting inverse Kähler metric for the

Kähler moduli Ta and the axio-dilaton S reads

Kab̄ = −2

(

V +
ξ̂

2

)

(

∂2V
∂τa ∂τb

)−1

+ τa τb
4V − ξ̂

V − ξ̂
,

KaS̄ = −3

2
(S + S̄)

ξ̂

V − ξ̂
τa ,

KSS̄ =
(S + S̄)2

4

4V − ξ̂

V − ξ̂
.

(2.10)

For a D3-instanton to generate a contribution to the superpotential it has to have the right

number of zero modes. In fact an O(1) instanton wrapping a rigid four-cycle, which does

not intersect any four-cycle carrying D7-branes, has the right number of zero modes to give

a contribution

W = W0 + Ae−a Ts (2.11)

to the superpotential. Here W0 is the value of the GVW superpotential in the minimum

and we implicitly assumed that one can first integrate out the complex structure moduli

and the axio-dilaton multiplet. This is justified by observing that the instanton induced

– 6 –
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scalar potential is at order O(V−3) in the LARGE volume expansion and that the Kähler

metric for the complex structure and Kähler moduli has a factorised form (for discussions

of integrating out moduli in supergravity see [28–31]).

Working in the large cycle regime, in the simplest case, one chooses the volume V of

the internal space to be of swiss-cheese form with three Kähler moduli

V = (ηbτb)
3/2 − (ηsτs)

3/2 − (ηaτa)
3/2 . (2.12)

Here τb determines the size of the Calabi-Yau and the small four-cycle of size τs is wrapped

by the D3-brane instanton. The resulting F-term potential at order O(V−3) reads

VF = eK
(

Kab̄ DaW Db̄W̄ − 3
∣

∣W
∣

∣

2
)

= λ
(aA)2

√
τs e−2aτs

V − µ
a
∣

∣AW0

∣

∣ τs e−aτs

V2
+ ν

ξ
∣

∣W0

∣

∣

2

g
1/2
s V3

+ . . . ,
(2.13)

with coefficients λ = gs

2
8

3η
3/2

s

, µ = 2gs, ν = 3
8 , featuring the LARGE volume AdS minimum

at V ∼ eaτs . More details of this minimum are collected in appendix A, which allows one

to compute the value of the scalar potential (2.13) in this minimum to be

V0 = − 3

16 aτs

ξ

g
3/2
s

W 2
0

V3
M2

P . (2.14)

Clearly it is negative, but due to a cancellation of the leading order terms, it contains an

extra suppression by (aτs) ≃ log(V). For a realistic model this negative vacuum energy has

to be uplifted to V0 ≃ 0. For the computation of the gravity and anomaly mediated soft

terms in section 3, we will start by neglecting the effects of uplifting, but will then consider

the contributions of the uplifting sector.

2.2.2 Fixing the standard model/GUT cycle

Coming back to the GUT brane, following the zero mode arguments in [7], we assume

that the GUT branes are wrapping a four-cycle of size τa which is “orthogonal” to the

instanton cycle. As mentioned, in Type IIB orientifolds we allow for an additional gauge

flux Fa in the diagonal U(1)a ⊂ U(5) perturbative Chan-Paton gauge group. Vanishing of

the “Fayet-Iliopoulos” U(1)a D-term constraint (at order V−2)

∫

Da

J ∧ Fa = 0 (2.15)

implies that τa → 0 so that one is driven to the quiver locus where α′-corrections cannot

be ignored. In the EFT the condition (2.15) is essentially that the field dependent FI-term

vanishes KTa = 0. Using the Kähler potential in both the geometric and quiver regimes,

this condition show explicitly a dynamical preference for a collapsed cycle τa → 0. The

F-term of the field Ta is of the form

Fa = eK/2 (WTa + WKTa) . (2.16)

– 7 –
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Since the superpotential W does not depend on the modulus Ta and the D-term condition

implies KTa = 0, we can see that this field does not break supersymmetry, i. e. Fa =

0. Notice that this conclusion will not be modified by including perturbative and non-

perturbative corrections to the Kähler potential since these corrections will equally modify

the D- and F-terms. Since τa = 0 one finds that also F a = 0, which is a very important

conclusion, as it indicates that the standard model is somehow sequestered from the sources

of supersymmetry breaking.

A loophole to this argument is that it implicitly assumes that the standard model

fields, charged under the corresponding U(1), will not get a VEV. Otherwise they would

contribute to the D-terms and cancel the contribution from the FI-term. Even though

this is desirable phenomenologically to avoid a large scale breaking of the standard model

symmetries, such as colour, it should be the outcome of a calculation. We illustrate in the

appendix in a toy model that this is actually the case as long as the soft scalar masses are

not tachyonic.

A direct consequence is that the soft terms on the GUT brane can only be generated

at “sub-leading” order by F b, F s and FS , i. e. by moduli which are sort of sequestered

from the GUT brane.

2.3 Including matter fields

So far we have concentrated only on the EFT for moduli fields and their stabilisation. In

order to study soft-supersymmetry breaking we need to properly introduce the matter field

dependence in the EFTs in both the geometric and singular cycle regimes. The important

term to be included is the matter fields’ Kähler potential K̃ = Zαβϕαϕ∗
β + · · · with Zαβ a

function of the moduli fields.

At this state, only the dependence on τb and τs is relevant, as all the other fields do not

break supersymmetry (to leading order). Z should only depend on τb, S and the Kähler

modulus of the GUT brane τa, so Z = Z(τb, τa, S). The leading order expression for Z was

determined in [32] with Z ∼ 1/V2/3 (see also [33]) which applies to both chiral matter at

magnetised D7-branes and to the better understood fractional D3-branes at singularities.

Since the α′-corrections to the Kähler potential are crucial to determine the large volume

vacuum, consistency requires that these corrections should also be included in the matter

field Kähler potential. Unfortunately these corrections are not known at present. However,

as in the tree-level case, we are mostly interested on their overall volume dependence.

Let us parametrise the α′-corrections by a so far unknown function f :

Zα =
kα

τb

(

1 + f

(

Re(S)

τb

))

. (2.17)

The dependence of f on the variables can only be in the indicated way in order to have the

right power in gs. Now consider the next-to-leading order correction in α′ to the tree-level

result, which, we claim, must be of the form:

Zα =
kα

τb

(

1 − δ

(

Re(S)

τb

)n
2

+ · · ·
)

, (2.18)

– 8 –
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with n = 1, 2, . . . denoting the (α′)n order of this term. The question now is at which

order in (α′)n the first correction appears. Since we are only interested in the correction

which does not include τa, we can use a scaling argument like in [32]. Assuming that the

physical Yukawa couplings do not depend on the overall volume of the space and taking

into account the Kähler potential (2.9), the leading order correction to the Kähler metrics

were shown to scale as kα
τb

. Then it is expected that also at next-to-leading order the

scalings must match, which means that also the Kähler metrics are corrected at order

(α′)3. This argument shows that n = 3 is the smallest expected correction in (2.18) and

then Zα = kα
τb

(

1 − δ
(

Re(S)
τb

)3/2
)

.

2.4 Summary of EFTs

We can finally summarise the expressions for the EFTs we are using for the two rele-

vant regimes:

1. In the geometric regime the EFT is determined by:

K = −2 ln

(

V +
ξ̂

2

)

− ln
(

S + S̄
)

+ KCS + Zϕϕ∗ + · · · , (2.19)

W = W0 + Ae−aTs + Wmatter , (2.20)

fi = Ta −
1

2
κiS , (2.21)

where V = (ηbτb)
3/2 − (ηsτs)

3/2 − (ηaτa)
3/2 and Z = k

(

1 − δ (Re(S))3/2 /V
)

/V2/3.

2. In the singular cycle (blow-up) regime there is a slight change in the standard model

cycle dependence of K:

K = −2 ln

(

V +
ξ̂

2

)

+ α
τ2
a

V − ln
(

S + S̄
)

+ KCS + Zϕϕ∗ + · · · , (2.22)

W = W0 + Ae−aTs + Wmatter , (2.23)

f = δiS + sikTk , (2.24)

with now V = (ηbτb)
3/2 − (ηsτs)

3/2 and Z = (β − δ/V + γτm
a ) /V2/3 with m > 0.

Since in both cases the standard model/GUT cycle does not break supersymmetry, the

structure of soft breaking terms will be essentially the same.

3 Gravity mediated soft terms

As we have seen, the LARGE volume minimum of the scalar potential breaks supersymme-

try, so that this breaking induces soft supersymmetry breaking terms on the GUT brane.

There are two sources which are relevant here. First, there are of course the gravity medi-

ated soft terms. However, since the GUT brane is sequestered from the non-supersymmetric

bulk one might expect that anomaly mediation is the leading order contribution. In this
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section we compute the gravity mediated soft terms, i. e. the gaugino- and sfermion-masses

as well as the µ-, A- and B-terms. Moreover, we compute the anomaly mediated gaug-

ino masses. Let us emphasise again that the scenario differs from the usual intermedi-

ate scale LARGE volume scenario in that the string scale is much higher (we assume

Ms ∼ 1015 GeV for consistency with unification at MX ∼ 1016 GeV), and that the GUT

or MSSM branes are wrapping a four-cycle completely sequestered from the four-cycles

supporting D3-brane instantons.

First we express the string scale Ms = (α′)−1/2 in terms of the Planck scale and the

volume V of internal Calabi-Yau (in Einstein frame and in units of ℓs = 2π
√

α′)

Ms =

√
π g

1/4
s√
V

MP . (3.1)

Thus we obtain Ms ≃ 1015 GeV and MX ≃ 1.2 · 1016 GeV for V = O(106 − 107), a

value large enough to trust the V−1 expansion. Moreover, we immediately realise that

the LARGE volume expansion parameter is directly related to the local GUT expansion

parameter, i. e. V−1/2 ≃ Ms/MP . For computing the gravitino mass we simply utilise the

general formula M3/2 = e
K

2 W leading in our case to

M3/2 =
g
1/2
s |W0|√

2V
MP . (3.2)

3.1 Structure of soft terms

We are now in a position to compute each of the gravity mediated soft supersymmetry

breaking terms in this class of scenarios.

3.1.1 Gaugino masses

For gravity mediated supersymmetry breaking, the gaugino masses are calculated as

M eG =
1

2Re(fi)
F I ∂Ifi (3.3)

for i = 3, 2, 1, where for the gauge kinetic functions we use (2.2) with τa ≃ 0 due to the

D-term constraint.

Since the GUT brane is sequestered from the bulk we have F a = 0 and the only

contribution can come from the dilaton F-term FS = eK/2KSJ̄ F̄J̄ . We assume that the

F-term condition for the axio-dilaton FS = 0 is fulfilled at leading order. At next-to-

leading order, there are then only sub-leading contributions from FS as well as terms from

Fb adding up to FS = 3
2
√

2
γ ξ

g2
s

W0

V2 where γ is an O(1) factor (see in the appendix for

a more detailed derivation). Thus, the gravity mediation induced term for the gaugino

masses reads:

M eG =
3

4
√

2
γ

ξ

gs

|W0|MP

V2
=

3

4
γ

ξ

g
3/2
s

M3/2

V , (3.4)

independent of the MSSM gauge group factor, as the factor κi in (2.2) cancels. Here we

have assumed that the D-term fixes the size of the GUT four-cycle at small volume in

string units, so that the leading contribution to Re(fi) ≃ 25 comes from the gauge flux

induced correction ≃ κiRe(S).
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3.1.2 Squark/slepton masses

The scalar masses obtained for gravity mediation of supersymmetry breaking read

M2
eQ

= M2
3/2 + V0 − F IF J̄∂I∂J̄ ln Zα , (3.5)

where the potential in the minimum V0 is assumed to be already uplifted so that V0 ≃ 0.

Computing now the soft-sfermion masses, let us first discuss the tree-level term in Zα.

In this case (3.5) reduces to

M2
eQ

= M2
3/2 −

(F b)2

4τ2
b

, (3.6)

where we have neglected the vacuum energy in the minimum. Again, there is a cancellation

of the gravitino mass squared with the leading term in (F b)2. The term quadratic in FS

is sub-leading as being of order V−4. In the appendix A we compute the next-to-leading

order term in F b, which reads

(F b)2 ≈ 4τ2
b

[

M2
3/2 +

3

8aτs

ξ

g
3/2
s

(

1 +
3

2aτs

) M2
3/2

V

]

. (3.7)

Therefore, one gets for the soft sfermion masses squared

M2
eQ

= − 3

16aτs

ξ

g
1/2
s

(

1 +
3

2aτs

) |W0|2M2
P

V3

= − 3

8aτs

ξ

g
3/2
s

M2
3/2

V ,

(3.8)

which at this stage come out tachyonic.

Next we need to discuss the higher α′-corrections in (2.18). The term with the highest

power in 1/V is the one with (F b)2∂b∂b log · · · . It is straightforward, that for τa/τb ≪ 1

this simplifies to

FmFn∂m∂n log

(

1 − δ

(

ReS

τb

)n
2

+ · · ·
)

≃ F b F b δn (n + 2) (ReS)
n
2

4 τ
n
2
+2

b

∼ δ

g
n−2

2

s

|W0|2M2
P

V(2+ n
3
)

.

(3.9)

Therefore, if there would be corrections of order n = 1, 2, they would dominate over the

corrections in (3.8). It is precisely the third order corrections in α′ which contribute to the

sfermion masses at the same order in 1/V. Including also the other moduli fields in (3.9),

the overall value of the squared scalar masses will then be proportional to δ − ξ/3:

M2
eQ

= M2
3/2

(

− 1

4aτs

ξ

g
3/2
s V

+
15(δ − ξ/3)

4g
3/2
s V

)

. (3.10)

Therefore, depending on the relative size of these two contributions one can get tachy-

onic or non-tachyonic sfermion masses. Moreover, it also shows that for δ = ξ/3 there are

further cancellations taking place at this order. This is precisely the value one expects

from the above mentioned scaling argument of the physical Yukawa couplings. Later we
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will give an argument under which quite general assumptions such cancellations should oc-

cur. One of the assumptions will be that really the uplifting sector is correctly taken into

account, which leads to a further dependence of the Kähler metric on a supersymmetry

breaking field. Note that indeed the soft sfermion masses (3.8) are of the same order as the

AdS vacuum energy (2.14), indicating that in these computations the uplift sector cannot

be neglected.

3.1.3 µ̂/µ̂B-terms

The formula for the µ̂-term is

µ̂ =
(

eK/2µ + M3/2Z − F̄ Ī∂ĪZ
)

(ZH1
ZH2

)−1/2 , (3.11)

where µ denotes the supersymmetric µ-parameter, which we keep for completeness, al-

though it can be argued to vanish under very general assumptions [32]. We assume again

the Kähler metric (2.18) for the Higgs fields as well as for Z. Here again, a cancellation

of the second and the third term occurs. Note, if the µ parameter is not equal to zero, it

dominates over the sub-leading terms stemming from F b. Dropping the factors of order

one, we are left with:

µ̂ ≈
√

gs√
2

τb

V µ −
M eG

4aτs
. (3.12)

The expression for Bµ̂ is more complicated:

Bµ̂ = (ZH1
ZH2

)−1/2
(

eK/2µ(F I∂IK + F I∂I log µ − F I∂I log(ZH1
ZH2

) − M3/2)

+(2M2
3/2 + V0)Z − M3/2F̄

Ī∂ĪZ + M3/2F
I(∂IZ − Z∂I log(ZH1

ZH2
))

−F ĪF J (∂Ī∂JZ − (∂ĪZ)∂J log(ZH1
ZH2

))
)

. (3.13)

However, due to the simple Kähler metric and assuming that µ is just an input parameter

without any moduli dependence, after a long but straightforward calculation, the result is

rather simple:

Bµ̂ = −
(√

gs√
2

τb

V µ +
M3/2

2aτs

)

M eG , (3.14)

where we have dropped again the order one constants kHi and z.

3.1.4 A-terms

The A-terms are given by:

Aαβγ = F I(∂IK) + F I∂I log Yαβγ − F I∂I log ZαZβZγ . (3.15)

The Peccei-Quinn shift-symmetry forbids a dependence of the holomorphic superpotential

on the axio-dilaton or Kähler moduli, thus the Yukawa couplings Yαβγ can only depend on

the complex structure moduli and they drop out.

There is a cancellation of F b in the remaining two sums and we are left with

Aαβγ = F s(∂sK) + FS(∂SK) . (3.16)
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As listed in the appendix, F s(∂sK) is suppressed with respect to FS(∂SK) by a factor of

1/aτs. As we are interested only in orders of magnitude, we keep only the latter term and

get as result:

Aαβγ ≈ FS(∂SK) = − 3

4
√

2

ξ

gs

|W0|
V2

MP = −M eG . (3.17)

3.1.5 Anomaly mediated gaugino masses

Let us also now estimate the anomaly mediated gaugino mass. It is clear that, for such

a sequestered observable sector, one would have guessed that not gravity mediation but

anomaly mediation induces the leading order soft terms. General formula for all the dif-

ferent soft terms are not available, so that in this section we just compute the anomaly

mediated gaugino masses. The expression for them reads [34] (see also [35]):2

Manom
eG

= − g2

16π2

[

(3TG − TR)M3/2 − (TG − TR)(∂IK)F I

− 2TR

dR
F I∂I log det Zαβ

]

,

(3.18)

where TG is the Dynkin index of the adjoint representation, normalised to N for SU(N), and

TR is the Dynkin index associated with the representation R of dimension dR, normalised

to 1/2 for the SU(N) fundamental.

A careful calculation of F b, worked out in the appendix, reveals that it is proportional

to the gravitino mass at leading order: F b ≈ −2τbM3/2 − τb
2aτs

M eG
. This leads to a precise

cancellation of M3/2 in (3.18). The final expression for the anomaly mediated gaugino mass

for a SU(N) gauge group is thus

Manom
eG

= − g2

16π2

[(

N − 1

2

)

− 1

4aτs

(

3N − 1

2

)]

M eG
. (3.19)

Surprisingly, though the gravity mediated contribution to the gaugino mass is suppressed

with respect to the gravitino mass by a factor of (MX/MP )2, anomaly mediation is not the

dominating source for the gaugino mass. It is suppressed by the usual one-loop factor with

respect to the gravity mediated contribution. One expects a similar suppressed behaviour

for the other soft terms, so that anomaly mediation is even sub-leading to gravity mediation.

3.2 Summary of gravity mediated soft masses

In the above computation of soft terms we have seen that the leading terms cancel and

that we need to include higher order corrections in V−1. Since this scale is directly cor-

related with ζ = Ms/MP , we can express these gravity mediated soft terms in terms of

the scales M3/2 and ζ = Ms/MP . The results are listed in table 1, where we have set the

supersymmetric µ parameter to zero and estimated

√

π

3ξ
≃
√

400

χ(M)
≃ 1, and gs ≃ 1 . (3.20)
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soft-term scale

M eG
1
4 M3/2 ζ2

M2
eQ

1
16 log ζ M2

3/2 ζ2

µ̂-term 1
8 log ζ M eG

Bµ̂-term 1
4 log ζ M3/2 M eG

A-term −M eG

Table 1. Classical gravity mediated soft terms for a näıve computation of soft terms. Here the

expansion parameter is ζ = Ms/MP . We have assumed the supersymmetric µ-term to vanish [32].

All soft terms in table 1 are suppressed by (Ms/MP )2 relative to the näıve expectation

Mn
3/2 with n = 1, 2 depending on the mass-dimension. This explicitly demonstrates that

gravity effects from the bulk are suppressed on the shrinkable GUT cycles, which is the

main assumption of the local F-theory GUTs.

However, as seen in the text in certain cases there can be more cancellations leading to

even higher suppressions. Indeed so far we have neglected the uplift sector, but have seen

that the sfermion masses are actually of the same order of magnitude as the uplift so that

it should better not be neglected. We now discuss under which well-posed assumptions

further cancellations are present.

3.3 Uplift and cancellations

In the last section we have computed the gravity induced soft terms on the GUT brane.

As we have explained, the computation relies on assumptions about the expansions of the

matter metrics at higher orders in α′. While such corrections must surely be present, it

is difficult to know the precise form of these corrections. We have explicitly seen for the

sfermion masses that these corrections contribute at the same order in 1/V as the next-to-

leading order contributions from F b. Indeed, as seen in eq. (3.10) there can potentially be

further cancellations at this order. We have also computed the soft terms under the as-

sumption of V0 = 0, but have not taken into account the contribution of the supersymmetry

breaking from the uplifting sector to the soft terms. To consider these possibilities, let us

argue in this section, how one can arrive at quite general statements by making some well

posed assumptions and exploiting the consequences of using the supergravity formalism.

Recall that the physical Yukawas are given by

Ŷαβγ = eK/2 Yαβγ
√

ZαZβZγ
. (3.21)

2We use a different sign convention for the F-terms leading to a different sign in the second and third

term in the anomaly mediated mass term than in [34].
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The shift-symmetries of the Kähler moduli imply that they do not appear perturbatively

in the superpotential Yukawa couplings Yαβγ . Let us make the assumption that the phys-

ical Yukawas, being local renormalisable couplings, do not depend on the fields breaking

supersymmetry. This includes the volume and also the hidden sector fields that are re-

sponsible for uplifting and giving vanishing cosmological constant. We also assume pure

F-term uplifting.

Such supersymmetry breaking fields appear in the overall Kähler potential, and the

constraints of holomorphy then imply that in order for the physical Yukawas to be inde-

pendent of such fields,

Zα = eK/3 . (3.22)

Note that this includes the tree-level behaviour of local matter fields, Zα ∼ 1
V2/3

∼ 1
(Tb+T̄b)

.

In this case it follows that

m2
Q = V0 + M2

3/2 − FmF̄ n̄∂m∂n̄ ln Zα

= V0 + M2
3/2 − FmF̄ n̄Kmn̄

3
=

2

3
V0 = 0 ,

(3.23)

for the case of vanishing cosmological constant.

The A-terms also vanish under this assumption. In this case the A-terms can be most

intuitively written as

AαβγYαβγ = F I∂I Ŷαβγ , (3.24)

with Ŷαβγ the physical Yukawa couplings. So it immediately follows that if the physical

Yukawa couplings do not depend on the fields breaking supersymmetry, the A-terms all

vanish.

The anomaly mediated contribution for gaugino masses gives

Manom
eG

=
ba

16π2
M3/2−

(
∑

r nrTa(r)−T (G))

16π2
Fm∂mK(Φ, Φ̄)+

∑

r

nrTa(r)

8π2
Fm∂m ln Zr(Φ, Φ̄)

=
ba

16π2
M3/2 −

(
∑

r nrTa(r) − 3T (G))

16π2

Fm∂mK(Φ, Φ̄)

3

=
ba

16π2

(

M3/2 −
1

3
Fm∂mK

)

, (3.25)

where we have used Z = eK/3. The size of the anomaly mediated contributions to gaugino

masses then depends on the size of M3/2 − 1
3Fm∂mK. The no-scale cancellation for τb

implies the O(V−1) terms cancel with non-vanishing terms at O(V−2). However (3.25)

also includes the hidden uplifting sector, which must have Kφφ̄FφF φ̄ ∼ 1
V3 (in order to

uplift the vacuum energy to Minkowski). At this level we therefore cannot rule out that

Fφ∂φK ∼ V−3/2, giving gaugino masses of order g2

16π2

1
V3/2

.

For the µ-term, we obtain

µ̂ = eK/6µ +

(

M3/2 −
1

3
F I∂IK

)

. (3.26)
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For the B-term, we have (assuming no moduli dependence in µ)

(Bµ) = (ZH1
ZH2

)−1/2
(

eK/2µ
(

F I∂IK − F I∂I ln(ZH1
ZH2

) − M3/2

)

+ (2M2
3/2 + V0)Z − M3/2F

Ī∂ĪZ + M3/2F
I (∂IZ − Z∂I ln (ZH1

ZH2
))

− F IF J̄ (∂Ī∂JZ − (∂ĪZ)∂J ln (ZH1
ZH2

))
)

.

(3.27)

If we take Z = ZH1
= ZH2

= eK/3 then we eventually obtain

Bµ = eK/6µ

(

1

3
F I∂IK − M3/2

)

+

∣

∣

∣

∣

1

3
F I∂IK − M3/2

∣

∣

∣

∣

2

. (3.28)

This implies that the µ- and B-terms involve the same expression as appeared in the

anomaly mediated expression (3.25) and that the µ- and Bµ-term are of the same order as

required for successful electroweak symmetry breaking.

As we do not currently know the form of α′-corrections to the matter metrics, we do

not know whether the form Z = eK/3 is correct. However it is a natural choice in the sense

that it simply says that the physical Yukawa couplings, being local, do not depend on the

value of bulk fields. In the context of the ζ(3)χ(M)α′3-correction that entered the moduli

stabilisation, this is equivalent to the statement that physical Yukawa couplings do not

alter if you perform a conifold transition in the bulk (which alters the Calabi-Yau Euler

number).

The advantage of phrasing the computation in this way is that we can say that moduli

generate soft scalar masses to the extent to which the physical Yukawa couplings depend on

the moduli. While not straightforward, it is in principle easier to compute the dependence

of physical Yukawa couplings on the moduli. String CFT computations give the directly

physical couplings and therefore one could analyse for certain local models (for example for

a stack of D3-branes at an orbifold singularity in a compact space) whether the physical

couplings do depend on the volume through a direct vertex operator string computation.

We can also use (3.23) to compute the minimal value of the soft scalar masses. The

complete cancellation in (3.23) arose from the assumption that the physical Yukawa cou-

plings has no dependence on all fields with non-zero F-terms. However we know this

statement is not true. The dilaton has an irreducible F-term of O(V−2) and enters the

physical Yukawas. This provides a minimal value for the scale of the physical Yukawa

couplings.

4 Consequences for supersymmetry breaking

In this previous section we have seen that both gravity and anomaly mediated contri-

butions to soft terms occur at levels far lower than näıve expectation. This gives novel

phenomenological consequences for various aspects of supersymmetry breaking, which we

now discuss.
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4.1 Gauge mediated scenarios

In local F-theory models an interesting proposal was made assuming a model of gauge

mediation to dominate supersymmetry breaking in the observable sector. This is very

interesting since it incorporates the positive properties of gauge mediation, such as positive

squared scalar masses and flavour universality and yet address its problems, such as the

µ/Bµ problem. This proposal though requires the following implicit assumptions:

1. The mechanism responsible for moduli stabilisation, which was not considered, fixes

moduli at a high mass and decouples from supersymmetry breaking.

2. Introduce a new matter sector that breaks supersymmetry dynamically and a set of

messengers that communicate this breaking to the standard model fields.

3. An anomalous U(1) was proposed to communicate both sectors and address the µ/Bµ

problem of gauge mediation. The anomalous U(1) is naturally as heavy as the string

scale but has low-energy implications after being integrated out.

These conditions look at first sight too strong and unnatural. Achieving moduli stabil-

isation without supersymmetry breaking and small cosmological constant is a very strong

assumption not realised in any of the moduli stabilisation scenarios so far. It is known

that a supersymmetric vacuum in supergravity, such as in KKLT before the uplifting, is

naturally anti de Sitter since in that case the vacuum energy is V0 = −3M2
3/2M

2
P , which is

very large unless the superpotential is tuned in such a way that it almost vanishes at the

supersymmetric minimum. Also a positive cosmological constant has to be induced after

supersymmetry breaking. If the local supersymmetry breaking is responsible for this lifting

then its effect should not have been neglected for moduli stabilisation in the first place.

Finally, it is not consistent to consider the low-energy effects of a very heavy anomalous

U(1) without also including the effects of the moduli fields which are generically much

lighter than the string or compactification scale. In particular the Fayet-Iliopoulos term of

the anomalous U(1) is a function of the moduli.

Nevertheless, our explicit results here show that a scenario similar to this may not

be impossible to realise. The main point is that although moduli are stabilised at a non-

supersymmetric point, the breaking of supersymmetry is suppressed by inverse powers

of the volume or equivalently by powers of Ms/MP . This makes the first point above

approximately correct. The second point still has to be assumed as in all models of gauge

mediation and requires an explicit realisation. Here the relevant observation is to compare

the strength of gauge mediation FX/x to the strength of gravity mediation which is usually

taken to be M3/2. However as we have seen the proper comparison is between FX/x with

the size of the gravity mediation soft breaking terms which are much smaller than the

gravitino mass. Regarding the third point an explicit analysis should be performed in

which both the anomalous U(1) and the moduli are taken into account in the process of

moduli stabilisation and supersymmetry breaking.

Very similar to the recently discussed local F-theory models, we may expand our model

assuming that there exists a source for gauge mediation, which is parametrised by the
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vacuum expectation values of a scalar field 〈X〉 = x+θ2FX . This supersymmetry breaking

happens in a sector hidden from the GUT brane and is being mediated by messenger

fields, which are charged under the GUT gauge group. In order not to spoil gauge coupling

unification, this is generically assumed to be a vector-like pair in the 5 + 5̄ representation

of SU(5). For our purposes, in this paper we won’t present a viable dynamical stringy

realisation of this supersymmetry breaking, but just assume that there exists an extra

sector, which stabilises the new moduli such that just the field FX develops a non-zero VEV

without spoiling the LARGE volume minimum for the bulk moduli. This is clearly a strong

assumption, as a dynamical realisation of gauge mediation is known to be challenging [36–

38]. We will comment more on this towards the end of this section.

The gauge mediated gaugino and sfermion masses are of order

Mgauge
eQ

∼ Mgauge
eG

=
αX

4π

FX

x
, (4.1)

where the αX/4π prefactor is due to the fact that these masses are induced via a one-loop

effect for the gauginos and via a two-loop diagram for the sfermions. Note that these

formulae used a canonical normalised superfield X.

Now, we would like these gauge mediated soft masses to dominate the gravity mediated

ones. In particular, we want the gauge mediated sfermion masses to dominate over the

gravity mediated ones. To get a first impression of the numerology we get, we also impose

the strong constraint that the supersymmetry breaking FX already uplifts the negative

vacuum energy (2.14) of the LARGE volume minimum. We therefore require

F 2
X

M2
P

≃
M2

3/2

16 log
(

MP
Ms

)

M2
s

M2
P

, (4.2)

where Ms is the string scale, leading to the relation

FX ≃ 1

4

√

log
(

MP
Ms

)

M3/2 Ms . (4.3)

Requiring now that Mgauge
eQ

> |Mgrav
eQ

| leads to the moderate bound

x <
αX

4π
MP ≃ 1016 GeV , (4.4)

where we used the relation (3.8). If there is a further suppression, i. e. M eQ ≃ M3/2/V,

then this bound becomes even more relaxed. For solving the hierarchy problem, one also

needs FX/x ≃ 105 GeV. Once one has specified the favourite values for x and FX , one can

use (4.3) to determine the value of the gravitino mass, which we would like to stress will

be gravity-dominated. Let us discuss two examples.

• In the local F-theory models, it was argued that the best values are

x ≃ 1012 GeV, FX ≃ 1017 GeV2 (4.5)
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which lead to M3/2 ≃ 1 TeV, which needs a certain amount of tuning of W0. However,

the light modulus τb has a mass of the order

Mτb
≃ M3/2

Ms

MP
, (4.6)

which in this case gives Mτb
≃ 1 GeV. For such a light modulus, we expect to face

the cosmological modulus problem (CMP).

• Let us now require that the light modulus avoids the CMP by having a mass Mτb
≃

100 TeV. Then according to (4.6), the gravity mediated gravitino mass has to be of

the order M3/2 ≃ 105 TeV. Using (4.3), this leads to FX ≃ 1022 GeV2. For gauge

mediated soft masses of the order 500 GeV, we therefore get x ≃ 5 · 1016 GeV, which

is slightly beyond the stronger limit (4.4). For further suppression of the sfermion

masses there is no problem.

• In the first case one could ameliorate this problem by allowing for a certain tuning of

the Higgs mass, so that the supersymmetry breaking scale for the visible sector can be

larger than 500 GeV. Let us still have FX ≃ 1022 GeV2 to avoid the CMP and require

x ≃ 5 · 1014 GeV to satisfy the constraint (4.4) for gauge mediation dominance. Then

the gauge mediated soft masses are of the order 50 TeV.

Finally, let us discuss in which way this simple model of gauge mediation needs to

be improved in order to show that it can really be embedded into string theory. As we

already mentioned, we did not dynamically explain where the SUSY breaking field X gets

its VEV from. Recently, various kinds of models have been suggested, which, we think, so

far are not completely convincing from a string theory point of view. One promising model

is the so-called Fayet-Polonyi model. It combines an anomalous Peccei-Quinn symmetry

with a linear superpotential in X generated by another D3-instanton wrapping a del Pezzo

surface of size TFP. This gives rise both to a D-term potential with a TFP dependent Fayet-

Iliopoulos term and an F-term potential form the linear superpotential. Note, that the

latter also depends on TFP. Now, also taking the Kähler potentials into account one has to

show that dynamically really supersymmetry can be broken in such a way that the desired

values for x and FX arise.3 Moreover, one expects that also FTFP
6= 0, which gives another

source of supersymmetry breaking. Finally, one has to ensure that the moduli stabilisation

in the bulk, i. e. of the τb and τs moduli and the moduli stabilisation of the local X and

TFP moduli decouple. All these challenging questions are beyond the scope of this paper.

4.2 Implications for the cosmological moduli problem

Let us finish this section with some comments about the cosmological moduli problem [39–

41]. The cosmological moduli problem refers to the existence of late decaying moduli, with

mass comparable to the gravitino. The moduli are expected to be displaced from their

minimum during the inflationary epoch, subsequently oscillating about their minimum

3It was shown in [37], that this model with a simple choice of the Kähler potential actually still posses

supersymmetric minima.
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and red-shifting as matter. The lifetime of such moduli is τ ∼ M2

P

m3

φ
≫ 1 s for mφ . 1 TeV.

Moduli come to dominate the energy density of the universe, but if they decay too late

then they fail to reheat the universe to temperatures sufficient for nucleosynthesis. In some

ways the moduli problem is the most severe problem facing low-energy supersymmetry as

it is very difficult to construct a viable cosmology with such long-lived moduli.

There are various possible approaches to this problem. In the absence of moduli-fixing

mechanisms, it may have been hoped that one could stabilise the moduli at scales far above

the gravitino mass. The more that has been learned about moduli stabilisation the less

plausible this scenario has become.

The results in this paper suggest a novel approach to this problem. One of the proper-

ties of local LARGE volume GUTs with D-term stabilisation is that the soft terms appear

at a scale hierarchically smaller than the gravitino mass. Depending on the extent of can-

cellations, we have seen that soft terms appear at an order not larger than msoft ∼
M

3/2

3/2

M
1/2

P

,

in the case when the dilaton F-term is responsible for uplifting. In all other cases gaugino

masses will be further suppressed, with at least an extra loop factor as in anomaly medi-

ation, and possibly even as far as msoft ∼ M2

3/2

MP
. For the two extreme cases the gravitino

mass appropriate to TeV soft terms is

msoft ∼
M

3/2
3/2

M
1/2
P

−→ M3/2 ∼ 108 GeV msoft ∼
M2

3/2

MP
−→ M3/2 ∼ 1011 GeV . (4.7)

Instead of solving the moduli problem by making the moduli heavy and keeping soft terms

comparable to the gravitino mass, this suggests making the gravitino heavy and having

soft terms much lighter than the gravitino mass.

In the LARGE volume models the volume modulus Tb is relatively light and has a

mass mTb
∼ M

3/2

3/2

M
1/2

P

, while all other moduli have masses comparable to M3/2. In the first

case listed above, with a gravitino mass of around 108 GeV, the volume modulus has

m ∼ 1 TeV and still poses cosmological problems. However in the other cases mTb
is

sufficiently large to decay before nucleosynthesis. In the case of maximal suppression, with

M3/2 ∼ 1011 GeV, then we have mTb
∼ 107 GeV with no cosmological problems. In all

cases the other moduli (for example dilaton and complex structure moduli) have masses

comparable to the gravitino mass and decay very rapidly.

It would also be interesting to study whether these suppressed soft terms would affect

the thermal behaviour of the LARGE volume models studied in [42].

5 Conclusions

In this paper we have studied the structure of gravity mediated soft terms that arise when

combining LARGE volume moduli stabilisation with local GUTs and D-term stabilisation

of the cycle supporting the GUT brane.

We find that the modulus determining the size of the standard model cycle does not

break supersymmetry and therefore the scale of gravity mediated soft terms is highly
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suppressed compared to the gravitino mass. Both “standard” gravity mediated terms

of O(M3/2) and also known anomaly mediated terms of O(g2M3/2/16π
2) vanish. The

first non-zero terms appear to arise at O
(

M3/2√
V

)

≃ M
3/2

3/2

M
1/2

P

. However it is possible that

additional cancellations occur and suppress the soft terms even further than this down to

O
(

M2

3/2

MP

)

. The appearance of these further cancellations is related to the (in)dependence

of the physical Yukawa couplings on the fields breaking supersymmetry.

The cancellation of contributions to the soft masses of order M3/2 introduces several

subtleties. In particular, as the soft terms occur at a scale parametrically smaller than

the gravitino mass effects which are normally negligible become important. We have tried

to include all known effects and have given general arguments as to when cancellations

will take place. Nonetheless, it is important to look for any further possible contributions

to soft terms which could possibly be dangerous. In this respect one would ideally like

a direct stringy computation of soft terms that would bypass the need to go through the

supergravity formalism.

The suppression of soft terms relative to the gravitino mass opens new avenues for

thinking about the cosmological moduli problem. Rather than the traditional approach of

making the moduli heavy while keeping the gravitino and soft terms around a TeV, this

opens the possibility of having the moduli and gravitino much heavier than a TeV while

still maintaining TeVscale soft terms.

If the gravitational soft terms are of the order
M

3/2

3/2

M
1/2

P

, the volume modulus however

remains a problem in the LARGE volume scenario as its mass is much lighter than the

gravitino mass and would be the same order as the soft terms. If further cancellations

occur and the soft terms are of order
M2

3/2

MP
, then the volume modulus ceases to be a

cosmological problem.

Several scenarios regarding gravity and anomaly mediation are possible and which of

these is actually realised may be model dependent. The main possibilities are:

• If the F-term of the dilaton field is responsible for the uplifting to de Sitter space,

then FS ∼ V−3/2 and all the soft masses are of order MP

V3/2
∼ M3/2√

V . This is of the

same order as the mass of the lightest modulus, the volume modulus, and this field

remains dangerous for the cosmological moduli problem.

• If any other field is responsible for the de Sitter uplifting, the dilaton induces gravity

mediated gaugino masses of order MP
V2 or from anomaly mediation, barring any further

cancellation, of order α MP

V3/2
where α is a loop factor. In both of these cases, identifying

the gaugino masses with the TeV scale, the cosmological moduli problem is absent

since the volume modulus would be at least as heavy as 10 TeV.

• For each of the two cases of the previous item, gravity mediated scalar masses, if

not tachyonic, are of order MP

V3/2
and therefore hierarchically heavier than the gaugino

masses, indicating a minor version of split supersymmetry [43–45]. However if we have

perfect sequestering in the sense that physical Yukawa couplings do not depend on
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the Kähler moduli fields that break supersymmetry, such terms will cancel. However

scalar masses will always receive a contribution from the dilaton F-term at order MP
V2 .

• Since leading order gravity and anomaly mediation contributions to the soft terms

are suppressed, then other effects have to be considered. In particular string loop

corrections could be relevant, e. g. as in [46, 47], (giving potential contributions to

scalar masses of order MP

V5/3
[48, 49]) but also a novel scenario may be conceived

in which the main source of supersymmetry breaking for the observable sector is

gauge mediation, however the gravitino mass remains very large and unlike previous

models of gauge mediation, the LSP is no longer the gravitino but can be a more

standard neutralino.

Even though there are several scenarios, we can still extract some general conclusions

from this analysis. First, as emphasised in [50], the effects of the de Sitter uplifting play

an important rôle on the soft breaking terms. This is unlike previous scenarios based on

the LARGE volume in which they were negligible. Second, in all scenarios the gravitino

mass is much heavier than the TeV scale M3/2 ≥ 108 GeV which relaxes the cosmological

problems associated to low-energy supersymmetry. Generically (except in the case that

the dilaton is responsible for uplifting) the lightest modulus is heavier than the soft terms

and therefore cosmologically harmless also.

Finally we point out that even though there are several cancellations that reduce the

value of the volume to have the TeV scale, there is a minimum value of the volume that

can be extracted from this analysis. Namely, the universal source of gaugino masses due

to the dilaton dependence of the gauge kinetic function, implies that the gaugino masses

cannot be smaller than MP
V2 . The same limit appears for scalar masses for the case of

perfect sequestering (Z = eK/3). This provides a bound for the size of the overall volume

V ∼ 106 − 107 in string units which corresponds to a string scale of order Ms ∼ 1015 GeV.

Combining this with the recent result [23] that in local models the GUT unification scale is

given by MGUT ∼ MsV1/6 this gives a unification scale of the same order as the one expected

for supersymmetric GUT models from LEP precision results of MGUT ∼ 1016 GeV. If this

scenario is actually realised it would provide an example in which a string model addresses

simultaneously the two positive properties of the MSSM, namely the full hierarchy problem,

without tuning, and obtaining the preferred scale of gauge unification.

Furthermore, this value of the volume is of the order of magnitude preferred by models

of inflation in order for the inflaton to give rise to density perturbations of the right

amplitude, normalised by COBE. In particular a volume V ∼ 105 − 107 was needed

to achieve Kähler moduli inflation [51]. It also ameliorates the gravitino mass problem

pointed out in [52, 53].

We consider our results bring closer local string/F-theory models to honest-to-God

string compactifications since we incorporate the main properties of such models regarding

supersymmetry breaking and moduli stabilisation. Many questions remain open. Concrete

examples where the cancellations illustrated here are realised, including an uplifting term,

loop corrections, etc. are desirable. The presence of such sub-leading contributions to

soft terms can be recast in the presence of corrections to the physical Yukawa couplings.
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Specifically, the scale of the soft terms can be related to the extent to which the (local)

physical Yukawa couplings depend on the (bulk) supersymmetry breaking fields. In the

limit of perfect sequestering the Kähler moduli contribution to soft masses vanish. It

may be possible to study this issue more precisely using the techniques of orbifold CFT.

Furthermore, for F-theory constructions, even though in general they are treated in a way

similar to orientifold constructions, the 4D effective field theory for F-theory models is

less under control. In particular the α′-corrections which are crucial in the large volume

scenario, need to be computed for F-theory compactifications.
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A F-Terms

As there is a cancellation at leading order taking place in the calculation of various soft

terms, a careful large volume expansion up to the next-to-leading order has to be per-

formed. Let us start with the expressions for e−aτs and τ
3/2
s in the minimum, which will

be needed later.

For this purpose, consider the scalar potential (2.13). Upon minimising it with respect

to the two independent variables τs and V, we get two expression: First, from the condition
∂VF
∂τs

= 0, it follows:

e−aτs =
µ

λ

|W0|
aAV

1√
τs

(1 − aτs)

(−2a + 1
2τs

)
. (A.1)

After developing the denominator in powers of 1/(aτs) and inserting the expressions for µ

and λ we get

e−aτs ≈ 3

4

η
3/2
s

aA

√
τs

W0

V

(

1 − 3

4aτs

)

. (A.2)

The second expression arises upon solving ∂VF
∂V = 0 for τ

3/2
s and thereby using (A.2). The

result is

τ3/2
s ≈ ξ̂

2η
3/2
s

(

1 +
1

2aτs

)

. (A.3)

Another approximation needed in the following is:

Kab (∂bK) = − 4V2 + V ξ̂ + 4ξ̂2

2(V − ξ̂)(V + ξ̂
2)

τa ≈ −2τa −
3

2
ξ̂

τa

V , (A.4)
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where the sum runs only over Kähler moduli. The first equality can be derived using the

expressions for the Kähler metric and the derivatives of the Kähler potential with respect

to the moduli in terms of two-cycle volumes ta instead of four-cycle volumes τa (see [2, 54]).

We are now in a position to calculate F b:

F b = eK/2 KbJDJW = eK/2
(

Kbτj (∂τjK)W + Kbs (∂sW ) + KbSDSW
)

. (A.5)

The term involving DSW turns out to be sub-leading in the V−1 expansion and can be

neglected (see below). The derivative of the superpotential with respect to Ts undergoes a

sign-flip due to the minimisation with respect to the corresponding axion as argued in [2].

Using the approximations (A.2), (A.3) and (A.4), one easily gets:

F b = −2τb

√
gs√
2

W0

V − 3

8
√

2

τb

aτs

(

1 +
3

2aτs

)

W0

V2
+ O(V−3) , (A.6)

or with the expressions for the gravitino- and gaugino-mass (3.2) and (3.4) inserted:

F b = −2τbM3/2 −
τb

2aτs

(

1 +
3

2aτs

)

M eG
+ O(V−3) . (A.7)

From (A.2), it can be derived that aτs ≈ lnV ≈ 10. Thus, for the sake of shorter formulae,

one may also neglect the second term in the parenthesis:

F b ≈ −2τbM3/2 −
τb

2aτs
M eG (A.8)

Next, we want to calculate FS = eK/2KSJ̄DJ̄W̄ . Here, a subtlety arises concerning

DSW = ∂SW + W (∂SK): the Kähler potential depends on the dilaton not only in the

usual way via − ln(S + S̄), but there is also a contribution in the α′-correction in the

Kähler moduli part. Thus, ∂SK has V−1 corrections:

DSW ≈ ∂SW0 −
gs

2
W0 −

3

4

ξ

g
1/2
s

W0

V + O(V−2) . (A.9)

Also as a consequence of the α′-corrections, the minimum of the scalar potential for the

dilaton is shifted away from the supersymmetric locus DSW = 0 at order V−1. In order

to determine the new minimum, one would have to minimise the full potential, before

integrating out the dilaton. However, since we do not have an explicit model with a full

flux sector, in order to capture this effect, we assume that the two leading order terms

in (A.9) cancel and keep only the next-to-leading order terms in the V−1 expansion. The

expression we get in this way has certainly the correct order in V and we include an order

one constant γ in the final result comprising the uncertainty about the true location of the

new minimum.

DSW ≈ −3

4
γ′ ξ

g
1/2
s

W0

V . (A.10)

In the sum over DIW in the dilaton F-Term FS = eK/2KSJDJW , there are finally two

contributions at order V−2: one from KSbFb and one from KSSFS . The result reads:

FS ≈ 3

2
√

2
γ

ξ

g2
s

W0

V2
(A.11)
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B Vanishing D-terms including matter

We will consider in this appendix a concrete example with a generic D-term including not

only the field dependent FI-term but also a charged matter field. In general vanishing D-

terms do not imply vanishing FI-term but a cancellation between the two terms entering the

D-term potential. We argue here (following [55]) that once soft supersymmetry breaking

terms are included, as long as the square of the scalar masses is positive the minimum of

the scalar potential is for vanishing both matter field VEV and FI-term.

Since in local models the standard model cycle is a del Pezzo surface that can and

usually prefers to shrink to small size, it is dangerous to work in the regime where the

cycle size is larger than the string scale. Even though at sizes of the order of the string

scale the spectrum and couplings of the model are not understood, the regime close to a

del Pezzo singularity is under a much better control, the spectrum is determined by the

extended quiver diagrams and the low-energy effective theory can be reliably used in an

expansion in the small blow-up mode.

This effective field theory has been recently discussed in [9]. We start with the same

background geometry as before including one large τ1 and two small cycles τ2, τ3. On the

rigid cycle τ2 we have the standard non-perturbative effect. Being at the singular locus for

τ3, the effective field theory can be approximated by the following supergravity set-up:

K = −2 log (V +
ξ̂

2
) +

ατ2
3

V + Z|ϕ|2 ,

W = W0 + Ae−aT2 ,

f = dT3 + S ,

(B.1)

where ϕ denotes a matter field that is charged under an anomalous U(1) on the standard

model cycle, as is the cycle volume itself. As discussed in [9], the effective theory for τ3

differs from the standard treatment for relatively large values of τ3 since we are working

close to the singularity. The anomalous U(1) generates a D-term potential with a Fayet-

Iliopoulos term:

VD =
1

2(dτ3 + s)

(

QϕZ|ϕ|2 +
Qτ3τ3

V

)2

. (B.2)

The matter metric Z is taken to have the general form

Z =
1

V2/3

(

β + γτλ
3 − δ

V

)

, (B.3)

where the constants β, δ can in principle depend on the dilaton and complex structure

moduli.

The D-term potential determines the size of τ3 and implies

τ3 ∼ |ϕ|2V1/3 . (B.4)

For a vanishing VEV of ϕ this implies as previously τ3 = 0. Expanding around ϕ = 0, the

scalar potential is given by the standard LARGE volume potential and at next-to-leading
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order by a contribution quadratic in ϕ:

V =
1

(V + ξ
2 )2

(

8

3
|aA|2√τ2τ

3/2
1 e−2aτ2 − 4W0aAτ2e

−aτ2 +
W 2

0 3ξ

4τ
3/2
1

+ Y

− β|ϕ|2
3τ1

(

8

3
|aA|2√τ2τ

3/2
1 e−2aτ2 − 4W0aAτ2e

−aτ2 +
9W 2

0 (5 δ
β + 2ξ)

4τ
3/2
1

))

+
β|ϕ|2

τ1(V + ξ
2)2

(

8

3
|aA|2√τ2τ

3/2
1 e−2aτ2 − 4W0aAτ2e

−aτ2 +
3W 2

0 ξ

4τ
3/2
1

+ Y

)

,

(B.5)

where the last term arises from the expansion of eK and Y denotes the F-term uplifting

term, which allows for a stabilisation at zero vacuum energy.

With zero vacuum energy, the mass of ϕ is given by

m2
ϕ = K−1

ϕϕ

−β

3τ4
1





8

3
|aA|2√τ2τ

3/2
1 e−2aτ2 − 4W0aAτ2e

−aτ2 +
9W 2

0

(

2ξ − 5 δ
β

)

4τ
3/2
1





= − 1

3τ3
1



Vmin +
45W 2

0

(

ξ
3 − δ

β

)

4τ
3/2
1



 ≈
15W 2

0 ( δ
β − ξ

3)

4τ
9/2
1

.

(B.6)

Different ratios of δ/β allow for tachyonic, zero or positive masses at this order.

In particular:

δ

β















< ξ
3 tachyonic,

= ξ
3 zero,

> ξ
3 positive.

(B.7)

With respect to the matter metric the condition δ
β = ξ

3 can be understood as follows: The

case of vanishing masses corresponds to the following matter metric:

Z =
β

V2/3

(

1 − ξ

3V

)

≈ β

(V + ξ
2 )2/3

= βeK/3 , (B.8)

which is the condition found in section 3.3 for extreme sequestering and cancellation of

scalar masses at the 1/V3/2 level. Without the uplifting term, the effect of the term arising

from the expansion of eK is generally sub-leading to the other contribution since it is

suppressed with 1/aτ2.

For positive scalar masses we can clearly see that combining the term m2
ϕϕ2 with the

D-term potential, both the VEV of ϕ and the FI-term vanish at the minimum as desired.

For the tachyonic case this would indicate as usual that at the minimum the scalar field

and the FI-term would be non-vanishing. If ϕ is a field charged under the standard model

gauge group this is undesirable since it would break the standard model symmetries at

high energies. If the condition δ
β = ξ

3 is satisfied the positivity of the squared scalar masses

at a higher order would have to be determined.
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